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Abstract

Macaulay’s form of the resultant, as the ratio of two determinants, has been used to good
effect in Computer Algebra applications. The first part of this paper gives a shorter self
contained version of Macaulay’s proof in modern notation. One problem with Macaulay’s
form is that under some conditions the denominator can vanish. This problem was addressed
by Canny in 1990. Here we present an alternative solution. We also present a method for
computing the u-resultant that does not suffer from exceptional cases and study the special
case when the given forms have no common zeros at infinity.

§1. Introduction. Let x1, x2, . . . , be indeterminates over an algebraically closed field k. Given
α = (α1, α2, . . . , αn) ∈ Nn we set xα = xα1

1 xα2
2 · · ·xαn

n and |α| = α1 + α2 + · · ·+ αn (we include 0
in N). For a given n > 0, fix n non-zero degrees d1, d2, . . . , dn and distinct indeterminates ui,α for
1 ≤ i ≤ n and α ∈ Nn with |α| = di. Let Fi =

∑
|α|=di

ui,αxα be n generic homogeneous forms.
As is well known there is a polynomial, called the resultant, Res(F1, F2, . . . , Fn) in the ui,α with
integer coefficients such that:

1. For all specializations of the ui,α to values from k, the resulting homogeneous forms have a
non-trivial zero if and only if the resultant vanishes.

2. The resultant is irreducible over k.

3. Set D = d1d2 · · · dn. For each i, the resultant is homogeneous of degree D/di in the ui,α and
of total degree

∑n
i=1 D/di.

4. Res(xd1
1 , xd2

2 , . . . , xdn
n ) = 1.

See van der Waerden [14], Jouanolou [5] or Gelfand, Kapranov and Zelevinsky [3] for material on
resultants. For s ≥ 2 we will use F

(s)
i to denote the generic form in x1, x2, . . . , xs−1 obtained from

Fi by the substitution xi 7→ 0 for all i ≥ s.

§2. Macaulay’s Construction. Given a degree t set

S(n, t, 0) = {xα | α ∈ Nn with |α| = t and xd1
1 | xα},

S(n, t, 1) = {xα | α ∈ Nn with |α| = t and xd2
2 | xα and xd1

1 6 | xα},
...

S(n, t, n− 1) = {xα | α ∈ Nn with |α| = t and xdn
n | xα and xd1

1 6 | xα and . . . and x
dn−1
n−1 6 | xα}.

S(n, t, n) = {xα | α ∈ Nn with |α| = t and xd1
1 6 | xα and . . . and xdn

n 6 | xα}.

Note that these sets are disjoint and S(n, t, i) is empty for 0 ≤ i ≤ n − 1 if and only if t < di+1

while S(n, t, n) is empty if and only if t ≥ d where

d = 1 +
n∑

i=1

(di − 1),

(d has this meaning throughout the paper). We use xβS(n, t, i) to denote {xβxα | xα ∈ S(n, t, i)}.
We record a couple of simple observations.

Lemma 2.1 For 0 ≤ i ≤ n − 2 the power products from S(n, t − 1, i) are in 1-1 correspondence
with the power products of form xαx−1

n where xα ∈ S(n, t, i) and xn | xα. Moreover the power
products from S(n, t− 1, n− 1) are in 1-1 correspondence with the power products of form xαx−1

n

where xα
n ∈ S(n, t, n− 1) and xdn+1

n | xα.
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proof. For 0 ≤ i ≤ n− 2 it is clear that every power product of the given form is in S(n, t− 1, i).
Conversely if xβ ∈ S(n, t− 1, i) then xβxn ∈ S(n, t, i).

For the second part, if xβ ∈ S(n, t− 1, n− 1) then xdn
n | xβ so that xβxn ∈ S(n, t, n− 1) and

xdn+1
n | xβ . The converse is clear. 2

Lemma 2.2 For 0 ≤ i ≤ t the power products from S(n − 1, t − i, 0), S(n − 1, t − i, 1), . . . , S(n −
1, t− i, n−2) are in 1-1 correspondence with the power products of form xβxi

n such that β ∈ Nn−1,
|β| = t− i and xβxi

n 6∈ S(n, t, n− 1) ∪ S(n, t, n).

proof. If a power product is of the given form then |β| = t−i and x
dj

j | xβ for some 1 ≤ j ≤ n−1.
It follows that xβ is in one of the given sets. Conversely if xβ ∈ S(n − 1, t − i, j) for some
0 ≤ j ≤ n− 2 then x

dj+1
j+1 | xβ and so xβxi

n 6∈ S(n, t, n− 1) ∪ S(n, t, n). 2

Consider the following forms of degree t:

(xα/xd1
1 )F1, xα ∈ S(n, t, 0),

(xα/xd2
2 )F2, xα ∈ S(n, t, 1),

...

(xα/xdn
n )Fn, xα ∈ S(n, t, n− 1).

These define a matrix consisting of the generic coefficients (the ui,α) whose rows are indexed
by the elements of S(n, t, 0), S(n, t, 1), . . . , S(n, t, n − 1) and columns by the power products of
degree t. If we delete the columns (if any) that are indexed by the elements of S(n, t, n) then we
obtain a (possibly empty) square matrix which we denote by M(F1, F2, . . . , Fn; t). We will use
D(F1, F2, . . . , Fn; t) to denote the determinant of this matrix (if the matrix is empty then we define
its determinant to be 1). Let vi be the coefficient of xdi

i in Fi for 1 ≤ i ≤ n. Then each diagonal
entry of M(F1, F2, . . . , Fn; t) is one of v1, v2, . . . , vn. To see this suppose that xα ∈ S(n, t, i− 1) so
that the entries of the row indexed by xα are the coefficients of (xα/xdi

i )Fi. Set Fi = vix
di
i + F̂i

so that (xα/xdi
i )Fi = vix

α + (xα/xdi
i )F̂i and so the entry indexed by (xα, xα) is vi as claimed. It

follows that D(F1, F2, . . . , Fn; t) 6= 0 since M(xd1
1 , xd2

2 , . . . , xdn
n ; t) is the identity matrix.

Of course there is some ambiguity in our notation since the order of the rows and columns
of M(F1, F2, . . . , Fn; t) has not been fixed. This is not a real problem provided we understand
equalities involving determinants to be up to sign.

Suppose that t ≥ d and specialize the generic coefficients of the forms to values from k. If
the resulting forms have a non-trivial common zero then it is clear that the rows of the ma-
trix M(F1, F2, . . . , Fn; t) are linearly dependent and so D(F1, F2, . . . , Fn; t) = 0. In other words,
D(F1, F2, . . . , Fn; t) vanishes whenever Res(F1, F2, . . . , Fn) vanishes. The irreducibility of the re-
sultant and the algebraic closure of k now imply that

D(F1, F2, . . . , Fn; t) = Res(F1, F2, . . . , Fn)∆(F1, F2, . . . , Fn; t) (1)

for some non-zero polynomial ∆(F1, F2, . . . , Fn; t). Note that D(F1, F2, . . . , Fn; t) has degree at
most (in fact equal to) D/dn in the coefficients of Fn because M(F1, F2, . . . , Fn; t) has this many
rows consisting of these coefficients. Since Res(F1, F2, . . . , Fn) has degree exactly D/dn in the
same coefficients it follows, as Macaulay observed, that ∆(F1, F2, . . . , Fn; t) is independent of the
coefficients of Fn. In fact Macaulay proved that the extraneous factor ∆(F1, F2, . . . , Fn; t) is given
by a minor of M(F1, F2, . . . , Fn; t). To obtain this minor we delete all rows and columns that are
indexed by any power product that is divisible by exactly one xdi

i for 1 ≤ i ≤ n. The aim of
this section is to provide a modern (and shorter) version of the proof of this result which is self
contained. (Proofs can also be found in the book by Gröbner [4] and the paper by Jouanolou [6].)

An examination of Macaulay’s proof shows that for all t ≥ 1 the matrix M(F1, F2, . . . , Fn; t)
has a very useful structure provided we (partially) order the power products as follows.
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T1 T2 T3

T1 A

T2 0 B

T3 C1 C2 C3

Figure 1: The structure of M(F1, F2, . . . , Fn; t) with power products partially ordered.

T1 T2

1 xn x2
n x3

n . . .

T1 1 A0 . . .

xn 0 A1 . . .

x2
n 0 0 A2 . . .

T2 x3
n 0 0 0 A3 . . .

...
...

...
...

...
. . .

Figure 2: The structure of the part of M(F1, F2, . . . , Fn; t) indexed by T1, T2.

T1 : First take those power products not divisible by xn.

T2 : Then take those power products that are divisible by xn but are not in S(n, t, n− 1); order
these by the highest power of xn that divides them.

T3 : Finally take the power products from S(n, t, n− 1).

The structure of M(F1, F2, . . . , Fn; t) when indexed by T1, T2, T3 is shown in Figure 1 (the un-
marked blocks do not play a significant role below). Note that A is M

(
F

(n)
1 , F

(n)
2 , . . . , F

(n)
n−1; t

)
.

Moreover if we let T ′
3 be all the power products in T3 that are divisible by xdn+1

n then, by
Lemma 2.1, the sub-matrix indexed by T2, T ′

3 is M(F1, F2, . . . , Fn; t−1). The sub-matrix indexed
by T1, T2 has a finer structure that is determined by the largest power of xn that divides each
indexing power product. This is shown in Figure 2 in which A0 is A. It follows from Lemma 2.2
that that

Ai = M
(
F

(n)
1 , F

(n)
2 , . . . , F

(n)
n−1; t− i

)
, (2)

for all i (see also Gröbner [4, p.65]). The matrices C1, C2 and C3 in Figure 1 consist of coefficients
of Fn and the diagonal entries of C3 consist of the coefficient of xdn

n in Fn.
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Lemma 2.3 For all t ≥ 1,

1. D(F1, F2, . . . , Fn−1, x
dn
n ; t) = D

(
F

(n)
1 , F

(n)
2 , . . . , F

(n)
n−1; t

)
D(F1, F2, . . . , Fn−1, x

dn
n ; t− 1).

2. D(F1, F2, . . . , Fn−1, x
dn
n ; t) =

∏t−1
i=0 D

(
F

(n)
1 , F

(n)
2 , . . . , F

(n)
n−1; t− i

)
.

proof. If we set Fn = xdn
n then C1, C2 are both zero while C3 is the identity matrix. This,

together with the observations preceding (2), proves the first part. The second part follows by
induction on t or directly from (2). 2

The identities of the Lemma are contained in the proof of the Theorem in §5 of Macaulay’s original
paper. Gröbner [4] introduced a short cut in Macaulay’s proof using the fact that

Res(F1, F2, . . . , Fn−1, x
e
n) = Res

(
F

(n)
1 , F

(n)
2 , . . . , F

(n)
n−1

)e
,

which follows from

Res(F1, F2, . . . , FnF ′
n) = Res(F1, F2, . . . , Fn) Res(F1, F2, . . . , F

′
n),

Res(F1, F2, . . . , Fn−1, xn) = Res
(
F

(n)
1 , F

(n)
2 , . . . , F

(n)
n−1

)
.

These follow from the basic properties of resultants given in §1 (although van der Waerden [14]
proves the first of these and uses it to establish the third property of §1). Bearing in mind that
the extraneous factor ∆ is independent of the coefficients of Fn we have:

D(F1, F2, . . . , Fn−1, x
dn
n ; t) = Res

(
F

(n)
1 , F

(n)
2 , . . . , F

(n)
n−1

)dn∆(F1, F2, . . . , Fn; t). (3)

Theorem 2.1 For all t ≥ d we have

∆(F1, F2, . . . , Fn; t) =
dn−1∏
i=0

∆
(
F

(n)
1 , F

(n)
2 , . . . , F

(n)
n−1; t− i

) t−1∏
i=dn

D
(
F

(n)
1 , F

(n)
2 , . . . , F

(n)
n−1; t− i

)
proof. We have

D
(
F

(n)
1 , F

(n)
2 , . . . , F

(n)
n−1; t− i

)
= Res

(
F

(n)
1 , F

(n)
2 , . . . , F

(n)
n−1

)
∆

(
F

(n)
1 , F

(n)
2 , . . . , F

(n)
n−1; t− i

)
for 0 ≤ i ≤ dn − 1. The result now follows from (3) and Lemma 2.3. 2

It follows that ∆(F1, F2, . . . , Fn; t) depends only on the coefficients of F
(n)
1 , F

(n)
2 , . . . , F

(n)
n−1; Macaulay

also proved this by an argument based on weights.

Theorem 2.2 For all t ≥ d the extraneous factor ∆(F1, F2, . . . , Fn; t) is equal (up to sign) to the
minor of M(F1, F2, . . . , Fn; t) obtained by deleting all rows and columns that are indexed by any
power product that is divisible by exactly one xdi

i for 1 ≤ i ≤ n.

proof. We use induction on n. The result is trivially true for n = 1. For n > 1 note that the
entries indexed by T3 are divisible by xdn

n but not by x
dj

j for 1 ≤ j ≤ n−1. With reference to Fig-
ure 2, note that a product of minors of the matrices A0, A1, . . . is a minor of M(F1, F2, . . . , Fn; t).
Now the second product in Theorem 2.1 is the product of the determinants of the matrices
Adn

, Adn+1 , . . . which consist of entries indexed by a power product from xr
nS(n, t, j) for some

r ≥ dn and 0 ≤ j ≤ n − 2. Thus every such power product is divisible by xdn
n as well as x

dj+1
j+1 .

By induction each factor ∆
(
F

(n)
1 , F

(n)
2 , . . . , F

(n)
n−1; t − i

)
from the first product in Theorem 2.1 is

the minor of Ai that is indexed by power products of degree t − i that are divisible by at least
two distinct powers xdr

r , xds
s for some 1 ≤ r, s ≤ n − 1. The induction is completed by noting

that the correspondence between indices of Ai viewed as a stand alone matrix and as part of
M(F1, F2, . . . , Fn; t) is given by xα ↔ xαxi

n (bearing in mind that 0 ≤ i ≤ dn − 1). 2
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§3. Vanishing of the Extraneous Factor. Macaulay’s expression for the resultant has a
serious drawback in applications; it is possible that upon specialization of the generic coefficients
(usually to rationals) the extraneous factor vanishes even when the resulting polynomials do not
have a non-trivial root. For example take F1 = x2, F2 = x3 and F3 = x2

1. Canny [1] provided a way
round this using a method that computes the characteristic polynomial of M(F1, F2, . . . , Fn; d)
(recall that d = 1 +

∑n
i=1(di − 1)). This increases the cost somewhat since we now replace a

computation involving only numbers with one that involves an unknown; however see Manocha
and Canny [11]. It is therefore of interest to be able to detect situations when the extraneous
factor does vanish more efficiently than just computing it directly.

When deciding whether the extraneous factor polynomial vanishes at a given specialization we
do not need repeated factors so let us write G ∼ H to mean that the polynomials G, H have the
same square free part. Furthermore we simplify notation by writing ∆(d1, d2, . . . , dr, t) in place of
∆(F (r+1)

1 , F
(r+1)
2 , . . . , F

(r+1)
r , t) (and similarly for D(·) as well as Res(·)).

Repeated application of Theorem 2.1 yields the following.

Lemma 3.1 For all t ≥ d we have

∆(d1, d2, . . . , dn; t) ∼D(d1, d2, . . . , dn−1; t− dn) · · ·D(d1, d2, . . . , dn−1, 1)
D(d1, d2, . . . , dn−2; t− dn−1) · · ·D(d1, d2, . . . , dn−2, 1)
...
D(d1, t− d2) · · ·D(d1, 1).

We can carry out further simplifications by using the following result.

Lemma 3.2 Suppose that t < dn or t > d. Then

D(d1, d2, . . . , dn; t) = D(d1, d2, . . . , dn−1; t)D(d1, d2, . . . , dn; t− 1).

Moreover for t < dn we have

D(d1, d2, . . . , dn; t) ∼ D(d1, d2, . . . , dn−1; t)D(d1, d2, . . . , dn−1; t− 1) · · ·D(d1, d2, . . . , dn−1; 1),

while for t > d we have

D(d1, d2, . . . , dn; t) ∼ D(d1; t1)D(d1, d2; t2) · · ·D(d1, d2, . . . , dn; tn)

where ti = 1 +
∑i

j=1(di − 1).

proof. If t < dn then the matrices C1, C2, C3 of Figure 1 are not present. The matrix A accounts
for the first determinant of the product and B accounts for the second.

If t > d then every power product in S(n, t, n − 1) is divisible by xdn+1
n so that in the forms

(xα/xdn
n )Fn for xα ∈ S(n, t, n − 1) every power product is divisible by xn. It follows that the

matrix C1 is zero.
The two expansions follow easily. 2

The case t > d was observed by Macaulay in §8 of [8] where he also gives explicit powers for the
expansion. As examples we have

∆(1, 2, 3; 4) ∼ D(1; 1),
∆(1, 2, 3, 4; 7) ∼ D(1; 1)D(1, 2; 2)D(1, 2, 3; 3).

We could also use (1) in simplifications but in general this introduces resultants which are harder to
evaluate than determinants (in the case of the second example we would simply replace D(1, 2; 2)
with R(1, 2) but these are equal).

Finally we observe that if t < dr for some 1 ≤ r ≤ n − 1 then D(d1, d2, . . . , dn; t) is (up to
sign) equal to D(d1, . . . , dr−1, dr+1, . . . , dn, dr; t) where we have now changed the ordering of the
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indeterminates from x1, x2, . . . , xn to x1, . . . , xr−1, xr+1, . . . , xn, xr. Of course this case does not
arise if we order the forms by non-decreasing degree.

§4. Testing the Resultant. In this section we describe another way of testing the resultant (for
equality to 0) that avoids the problem of the extraneous factor vanishing. One possible approach
might be to change the order of the polynomials since the extraneous factor depends on the order
they are used. Unfortunately this is not guaranteed to work as is shown by the simple example at
the start of §3. Of course the construction of Macaulay’s matrix sets up a correspondence between
each form Fi and an indeterminate xi (in our case). This correspondence is arbitrary and could
be varied in an attempt to avoid the vanishing of the extraneous factor; however it would be very
inefficient to try out all possibilities.

Consider the forms
xαF1, |α| = t− d1,

xαF2, |α| = t− d2,

...
xαFn, |α| = t− dn.

We define a matrix L(F1, F2, . . . , Fn; t) in a manner similar to §2; there is one row for each form
xαFi whose entries are the coefficients of Fi disposed as before. If we assume that t ≥ d and
choose any square sub-matrix of L(F1, F2, . . . , Fn; t) its determinant is either 0 or is a non-zero
polynomial divisible by Res(F1, F2, . . . , Fn) (Macaulay [9] defines the resultant to be the gcd of
all such determinants with t = d; see also §6a of [8].) We note here that the the construction
of the matrix L makes sense even when the number of forms is different from the number of
indeterminates and this will be used in §5.

In this section we will work with A = k[x1, x2, . . . , xn] and forms G1, G2, . . . , Gn ∈ A of degree
d1, d2, . . . , dn respectively. We set I = (G1, G2, . . . , Gn) and use As, Is to denote the forms in A
and I of degree s (including 0 so that we have a k-vector space).

Let λ be an indeterminate over Z and define the formal power series

H(A/I, λ) =
∞∑

s=0

dimk(As/Is)λs.

Suppose that G1, G2, . . . , Gr, where r ≤ n, is a regular sequence (called ‘prime sequence’ by Zariski
and Samuel [15]) and set J = (G1, G2, . . . , Gr) (this has dimension n − r). Macaulay [9] shows
that

H(A/J, λ) = (1− λd1)(1− λd2) · · · (1− λdr )(1− λ)−n.

A modern treatment is given by Stanley [13] (Macaulay [10] states that the result was known
before [9]). The key point is that for each i the linear map As−di

/(G1, G2, . . . , Gi−1)s−di
→

As/(G1, G2, . . . , Gi−1)s given by G 7→ GGi is 1-1. Note that for r = n we have

H(A/J, λ) = (1 + λ + · · ·+ λd1−1)(1 + λ + · · ·+ λd2−1) · · · (1 + λ + · · ·+ λdn−1)

= c0 + c1λ + · · ·+ cd−1λ
d−1,

where cd−1 = 1 and in fact the sequence c0, c1, . . . , cd−1 is equal to its reversed version (as
Macaulay [9] observed). Moreover

c0 + c1 + · · ·+ cd−1 = d1d2 · · · dn, (1)

as can be seen by setting λ = 1 (this is a version of Bézout’s Theorem).

Lemma 4.1 Suppose that G1, G2, . . . , Gn have no common zero other than the trivial one. Then
dimk(As/Is) = 0 for all s ≥ d, i.e., Is has maximum possible dimension over k.
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proof. From the observations above, it suffices to show that G1, G2, . . . , Gn is a regular sequence.
Let M = (x1, x2, . . . , xn) then the local ring AM is Cohen-Macaulay and AM/IAM has the same
dimension as I which is 0 (since I has just one zero in affine space). The claim now follows from
Theorem 2 in Appendix 6 of [15]. 2

Lemma 4.2 G1, G2, . . . , Gn have a non-trivial common zero if and only if L(G1, G2, . . . , Gn; d)
has rank strictly less than

(
n+d−1

n−1

)
.

proof. If G1, G2, . . . , Gn have no common zero other than the trivial one the preceding lemma
shows that dimk Id =

(
n+d−1

n−1

)
which is the same as the rank of L(G1, G2, . . . , Gn; d).

Conversely if the rank of L(G1, G2, . . . , Gn; d) is
(
n+d−1

n−1

)
then it has a non-singular square

sub-matrix that contains all the columns. This shows that the power products of degree d can be
written as linear combinations of the xαFi corresponding to the rows of the square sub-matrix,
i.e., all the power products are in I. In particular xd

i ∈ I for 1 ≤ i ≤ n and so G1, G2, . . . , Gn have
no common zero other than the trivial one. 2

An interesting consequence of this lemma is that we can find a square matrix in the coefficients
of G1, G2, . . . , Gn whose determinant vanishes if and only if the resultant vanishes provided we
enlarge k with new indeterminates. Let the rows of L(G1, G2, . . . , Gn; d) be l1, l2, . . . , lr and denote
the number of columns by c. Introduce new indeterminates vij for 1 ≤ i ≤ c and c + 1 ≤ j ≤ r.
Then 

l1 + v1,c+1lc+1 + · · ·+ v1,rlr
l2 + v2,c+1lc+1 + · · ·+ v2,rlr

...
lc + vc,c+1lc+1 + · · ·+ vc,rlr


has the claimed property. Of course it is too costly to compute the determinant of this matrix.
Following Schwartz [12] we have the following simple probabilistic algorithm. Let S be a subset of
k of size at least c and choose values for the vij from S uniformly at random. If the determinant
of the matrix is non-zero then the resultant is non-zero, otherwise the resultant is zero with
probability at least 1− c/|S|.

§5. The u-resultant. In this section we deal with n homogeneous forms in n+1 indeterminates
that have finitely many zeros in projective space. We denote the forms by H1,H2, . . . ,Hn and let
the indeterminates be x0, x1, . . . , xn where, as usual, the points at infinity are those with x0 = 0.
We denote the degrees of the forms by d1, d2, . . . , dn and continue to use d = 1+

∑n
i=1(di−1). The

u-resultant of the forms is simply Res(H0,H1, . . . ,Hn) in which H0 = u0x0 + u1x1 + · · · + unxn

where u0, u1, . . . , un are new indeterminates over k. This is discussed by Macaulay [9] and van
der Waerden [14]; see also Cox, Little and O’Shea [2]. It can be shown that

Res(H0,H1, . . . ,Hn) =
∏

p H0(p)m(p),

where the product ranges over all common zeros p of H1,H2, . . . ,Hn and m(p) denotes the
multiplicity of p. Macaulay showed that ∆(H1,H2, . . . ,Hn,H0; d) is independent of the ui so
that whenever this is non-zero we can obtain the u-resultant (up to a constant multiple) as
D(H1,H2, . . . ,Hn,H0; d). We proceed to describe a method that ensures that the extraneous
constant factor does not vanish.

Recall that an order < on power products is said to be admissible provided that 1 is the
smallest power product and whenever xα < xβ then xαxγ < xβxγ . We will use graded (or degree
based) orders, i.e., orders with the extra property that whenever xα < xβ then |α| ≤ |β|. From
now on we assume that such an order has been fixed. For a non-zero polynomial f we use lpp(f)
to denote the largest power product that occurs in f with a non-zero coefficient. We extend this
notation to sets in the obvious way, i.e., lpp(S) = {lpp(f) | f ∈ S − { 0 }}.

An algorithm for computing the u-resultant of H1,H2, . . . ,Hn is as follows.
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1. Construct the matrix L(H1,H2, . . . ,Hn; d). Use Gaussian elimination and keep the non-zero
rows, these correspond to forms B1, . . . , Br.

2. Construct L(H1,H2, . . . ,Hn; d − 1) with the columns indexed by power products sorted in
decreasing order. Use Gaussian elimination on this and let P be the set of power products
corresponding to the first non-zero entry in each non-zero row. Let xα1 , ..., xαs be all the
power products of degree d − 1 that are not in P . (If d = 1 then we just return 1 as the
sequence of power products.)

3. Let U(H0,H1, . . . ,Hn) be the coefficient matrix of the forms B1, . . . , Br, x
α1H0, ..., x

αsH0.

Lemma 5.1 If H1, . . . ,Hn have finitely many common zeros then the matrix U(H0,H1, . . . ,Hn)
is square and

detU(H0,H1, . . . ,Hn) = aRes(H0,H1, . . . ,Hn)

for some non-zero a ∈ k. Otherwise the matrix is either not square or the determinant is zero.

proof. Suppose that H1, . . . ,Hn have finitely many common zeros. Let K be the algebraic
closure of k(u0, u1, . . . , un). Since Res(H0,H1, . . . ,Hn) 6= 0 it follows that H0,H1, . . . ,Hn have no
common zero in Pn(K) other than the trivial one. It follows from the proof of Lemma 4.1 that
H1, . . . ,Hn,H0 is a regular sequence in K[x0, x1, . . . , xn].

Clearly the forms B1, . . . , Br constitute a K-vector basis for (H1,H2, . . . ,Hn)d. We claim that
xα1H0, ..., x

αsH0 extend this basis to one for (H0,H1, . . . ,Hn)d. For xα1 , ..., xαs are a basis for
K[x0, x1, . . . , xn]d−1/(H1,H2, . . . ,Hn)d−1 since the set P constructed in step 2 of the algorithm
is precisely lpp(H1,H2, . . . ,Hn)d−1. Since H1, . . . ,Hn,H0 is a regular sequence the claim follows.
Lemma 4.1 now shows that U(H0,H1, . . . ,Hn) is square and it follows from the remarks at the
beginning of §4 that det U(H0,H1, . . . ,Hn) = aRes(H0,H1, . . . ,Hn) for some a ∈ K. In fact
a ∈ k[u0, u1, . . . , un] since the entries of the matrix U(H0,H1, . . . ,Hn) are the coefficients of the
forms and they are from k apart from those of H0 which are u0, u1, . . . , un. We show that the degree
of det U(H0,H1, . . . ,Hn) as a polynomial in u0, u1, . . . , un is at most d1d2 · · · dn. The lemma will
then follow (for the case of finitely many common zeros) since the degree of Res(H0,H1, . . . ,Hn)
is exactly d1d2 · · · dn (by the third property given in §1). Now the only rows of U(H0,H1, . . . ,Hn)
that involve u0, u1, . . . , un are those corresponding to xα1H0, ..., x

αsH0 and from §4 we know that s
is the coefficient of λd−1 in

∏n
i=1(1 − λ)di/(1 − λ)n+1, i.e., s = c0 + c1 + · · · + cd−1. It follows

from (1) that s = d1d2 · · · dn as required.
Suppose now that H1, . . . ,Hn have infinitely many common zeros and the matrix is square.

The u-resultant is then identically zero since for each p ∈ V(H1, . . . ,Hn) we have that lp(u)
divides Res(H0,H1, . . . ,Hn). The lemma follows since det U(H0,H1, . . . ,Hn) is a multiple of
Res(H0,H1, . . . ,Hn). 2

The proof of the lemma justifies the insertion of the following test between the first and second
steps of the algorithm:

1.5 If r 6=
(
n+d−1

n−1

)
− d1d2 · · · dn then halt (the forms have infinitely many common zeros).

We note also that in step 2 we could use Gröbner bases to compute P and hence xα1 , ..., xαs .
However the runtime for such a computation is difficult to predict. In practical terms it would
pay to run the two approaches in parallel.

We now consider the special case when H1,H2, . . . ,Hn have no common zeros at infinity. We will
use h1, h2, . . . , hn to denote the dehomogenizations of the forms, i.e., hi is Hi with x0 7→ 1. We will
also use H∗

1 ,H∗
2 , . . . ,H∗

n to denote the forms obtained from H1,H2, . . . ,Hn by the substitution
x0 7→ 0 .

Note that x0 does not divide any of the forms H1,H2, . . . ,Hn. For if, w.l.o.g, Hn is divisible by
x0 then H∗

n = 0 and since the forms H∗
1 ,H∗

2 , . . . ,H∗
n−1 ∈ k[x1, x2, . . . , xn] must have a non-trivial
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common zero it follows that H1,H2, . . . ,Hn have a non-trivial common zero at infinity, contrary
to assumption. We set

I = (h1, h2, . . . , hn),
I∗ = (H∗

1 ,H∗
2 , . . . ,H∗

n),

ideals of k[x1, x2, . . . , xn] and
J = (H1,H2, . . . ,Hn),
K = (x0,H1,H2, . . . ,Hn)

ideals of k[x0, x1, . . . , xn]. From now on we assume that the graded order on power products is
such that if xr

0x
α < xs

0x
β then xα < xβ where r + |α| = s + |β| and x0 does not divide either of

xα or xβ . An example of such an order is obtained by sorting lexicographically within each degree
with x0 as the smallest indeterminate.

Lemma 5.2 lpp(I) = lpp(J) ∩ k[x1, x2, . . . , xn] = lpp(K) ∩ k[x1, x2, . . . , xn].

proof. Suppose that xα ∈ lpp(I) so that there are g, g1, g2, . . . , gn ∈ k[x1, x2, . . . , xn] such that

xα + g = g1h1 + g2h2 + · · ·+ gnhn

where all the power products of g are less than xα. Homogenizing we have

xe
0x

α + xd
0G = xe1

0 G1H1 + xe2
0 G2H2 + · · ·+ xen

0 GnHn,

where e ≤ d since we are using a graded order. If e = 0 then it follows immediately that
xα ∈ lpp(J) ∩ k[x1, x2, . . . , xn], so assume that e > 0. It follows that xe

0(x
α + xd−e

0 G) is zero in
k[x0, x1, . . . , xn]/(H1,H2, . . . ,Hn). However the proof of Lemma 4.1 shows that x0,H1,H2, . . . ,Hn

is a regular sequence and hence so is xe
0,H1,H2, . . . ,Hn. It now follows that xα + xd−e

0 G ∈
(H1,H2, . . . ,Hn) and so xα ∈ lpp(J) ∩ k[x1, x2, . . . , xn].

If xα ∈ lpp(K) ∩ k[x1, x2, . . . , xn] there are homogeneous polynomials G, G0, G1, . . . , Gn such
that

xα + G = G0x0 + G1H1 + · · ·+ GnHn

where each power product of G is less than xα. It follows that deg G0 = |α|− 1 and so each power
product of G0 is also less than xα. Dehomogenizing we obtain

xα + g − g0 = g1h1 + g2h2 + · · ·+ gnhn

and so xα ∈ lpp(I).
The lemma follows since J ⊆ K. 2

Lemma 5.3 lpp(I∗) = lpp(I).

proof. By Lemma 5.2 it suffices to prove that lpp(I∗) = lpp(K)∩k[x1, x2, . . . , xn]. Suppose that
xα ∈ lpp(K) ∩ k[x1, x2, . . . , xn] so that there are polynomials G, G0, G1, . . . , Gn such that

xα + G = G0x0 + G1H1 + · · ·+ GnHn

where each power product of G is less than xα. Substituting x0 7→ 0 shows that xα ∈ lpp(I∗).
The converse follows from the fact that K = (x0,H

∗
1 ,H∗

2 , . . . ,H∗
n). 2

Lemma 5.4 Let xβ1 , . . . , xβs be all the power products of degree less than or equal to a degree e

that are not in lpp(I∗) and xα1 , . . . , xαs their homogenizations to degree e (i.e., xαi = x
e−|βi|
0 xβi .

Then xα1 , . . . , xαs is a k-basis for k[x0, x1, . . . , xn]e/Je.

proof. Suppose that xr
0x

α ∈ lpp(J) where r+|α| = e and xα ∈ k[x1, x2, . . . , xn]. The substitution
x0 7→ 1 shows that xα is in lpp(I) and hence in lpp(I∗) by Lemma 5.3. Conversely if xα ∈ lpp(I∗)
where |α| ≤ e then x

e−|α|
0 xα ∈ lpp(J)e.

It follows that the power products of degree e that do not belong to lpp(J)e are as described
in the lemma and hence form a k-basis for k[x0, x1, . . . , xn]e/Je. 2
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The final lemma justifies the following modified version of step 2 of the algorithm for computing
the u-resultant of H1,H2, . . . ,Hn:

2∗ For min(d1, d2, . . . , dn) ≤ i ≤ d−1, construct L(H∗
1 ,H∗

2 , . . . ,H∗
n; i) with the columns indexed

by power products sorted in decreasing order. Use Gaussian elimination and let Pi be the
set of power products corresponding to the first non-zero entry in each non-zero row. Let
xβ1 , . . . , xβs be all the power products of degree at most d − 1 that are not in ∪iPi. Let
xα1 , . . . , xαs be the homogenizations of the preceding power products to degree d − 1. (If
d = 1 then we just return 1 as the sequence of power products.)

In practice this might not produce a gain in computational cost as compared to the original step 2,
however the Gröbner bases approach would usually benefit from replacing H1,H2, . . . ,Hn with
H∗

1 ,H∗
2 , . . . ,H∗

n.
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