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Multi-type Branching Processes (BPs) (Kolmogorov,1940s)
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BPs are classic, fundamental, stochastic processes, studied for
decades in probability theory, with many applications, eg.:
population biology, nuclear chain reactions, cancer tumor models, . . .

BPs are also “intimately related” to:

probabilistic BPPs (pBPPs)

probablistic BPAs

stochastic (probabilistic) Context-Free Grammars (SCFGs).

1-exit Recursive Markov Chains (1-RMCs)

stateless probabilistic Pushdown Systems (stateless pPDS).

Nevertheless, even basic algorithm questions about BPs remained
open until recently.



Branching Markov Decision Processes
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Branching Simple Stochastic Games
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Question: What is the probability of
eventual extinction, starting with one

?

xR =
1

3
x2

BxGxR +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx2

R

We get nonlinear fixed point equations:
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.



Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question: What is the probability of
eventual extinction, starting with one

?

xR =

1

3
x2

BxGxR +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx2

R

We get nonlinear fixed point equations:
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.



Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question: What is the probability of
eventual extinction, starting with one

?

xR =
1

3
x2

BxGxR +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx2

R

We get nonlinear fixed point equations:
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.



Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question: What is the probability of
eventual extinction, starting with one

?

xR =
1

3
x2

BxGxR +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx2

R

We get nonlinear fixed point equations:
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.



Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question: What is the probability of
eventual extinction, starting with one

?

xR =
1

3
x2

BxGxR +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx2

R

We get nonlinear fixed point equations:
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.



Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question: What is the probability of
eventual extinction, starting with one

?

xR =
1

3
x2

BxGxR +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx2

R

We get nonlinear fixed point equations:
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).

q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.



Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question: What is the probability of
eventual extinction, starting with one

?

xR =
1

3
x2

BxGxR +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx2

R

We get nonlinear fixed point equations:
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.



Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Question

What is the maximum probability of

extinction, starting with one ?

xR =
1
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BxGxY +
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2
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xB =
1

4
x2

R +
3

4
xG = xBx2

R

xY = max{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Theorem [E.-Yannakakis’05]

The maximum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).
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Question

What is the minimum probability of

extinction, starting with one ?
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B , xR}

We get fixed point equations, x̄ = P(x̄).

Theorem [E.-Yannakakis’05]

The minimum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).
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Question

What is the value of extinction, starting

with one ?
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BxGxY +
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2
xBxR +
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6
xB = min{x2

R , 1}
xG = xBx2

R

xY = max{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Theorem [E.-Yannakakis’05]

The extinction values are the LFP,
q∗ ∈ [0, 1]3 of x̄ = P(x̄).
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is a Probabilistic Polynomial: the coefficients are positive and sum to 1.

A Maximum Probabilistic Polynomial System (maxPPS) is a system

xi = max{pi ,j(x) : j = 1, . . . , mi} i = 1, . . . , n

of n equations in n variables, where each pi ,j(x) is a probabilistic
polynomial. We denote the entire system by:

x = P(x)

Minimum Probabilistic Polynomial Systems (minPPSs) are defined
similarly.

These are Bellman optimality equations for maximizing (minimizing)
extinction probabilities in a BMDP.

We use max/minPPS to refer to either a maxPPS or an minPPS.
We use max-minPPS to refer to combined max and min PPS equations.



Basic properties of max-minPPSs, x = P(x)

P : [0, 1]n → [0, 1]n defines a monotone map on [0, 1]n.

Proposition. [E.-Yannakakis’05]

Every max-minPPS, x = P(x) has a least fixed point, q∗ ∈ [0, 1]n.

q∗ = limk→∞ Pk(0).

q∗ is the vector of optimal extinction probabilities (values) for the
BMDP (the BSSG).

Question

Can we compute the probabilities q∗ efficiently (in P-time for BMDPs)?



Static optimal strategies for BMDP/BSSG extinction

Theorem ([E.-Yannakakis’05])

For any BSSG extinction game, both players have static optimal strategies
for maximizing (minimizing) extinction probability.

(However, computing an optimal strategy, even for BMDPs, is
PosSLP-hard ([E.-Yannakakis’05,’09]); and of course, for BSSGs this is
also as hard as solvings Condon’s finite-state SSGs.)

A static strategy is one that, for every type belonging to a player, always
chooses the same rule (i.e., it is deterministic, memoryless, and
“context-oblivious”.)

Question

Can we compute an ε-optimal strategy for the controller
maximizing/minimizing extinction probability in a BMDP in P-time?



P-time approximation for BMDPs and max/minPPSs

Theorem ([E.-Stewart-Yannakakis,ICALP’12])

Given a max/minPPS, x = P(x), with LFP q∗ ∈ [0, 1]n, we can compute a
rational vector v ∈ [0, 1]n such that

‖v − q∗||∞ ≤ 2−j

in time polynomial in the encoding size |P| of the equations, and in j.

We establish this via a new Generalized Newton’s Method that uses linear
programming in each iteration.

Theorem ([E.-Stewart-Yannakakis,ICALP’12])

Moreover, we can compute an ε-optimal static strategy for
(maximizing/minimizing) extinction probability for a BMDP, B, in time
polynomial in |B| and log(1/ε).



Newton’s method

Newton’s method

Seeking a solution to differentiable F (x) = 0, we start at a guess
x(0) ∈ Rn, and iterate:

x(k+1) := x(k) − (F ′(x(k)))−1F (x(k))

Here F ′(x), is the Jacobian matrix:

F ′(x) =


∂F1
∂x1

. . . ∂F1
∂xn

...
...

...
∂Fn
∂x1

. . . ∂Fn
∂xn


For PPSs, F (x) ≡ (P(x)− x), and Newton iteration looks like this:

x(k+1) := x(k) + (I − P ′(x(k)))−1(P(x(k))− x(k))

where P ′(x) is the Jacobian of P(x).



Newton on PPSs

We can decompose x = P(x) into its strongly connected components
(SCCs), based on variable dependencies, and eliminate “0” variables.

Theorem [E.-Yannakakis’05]

Decomposed Newton’s method converges monotonically to the LFP q∗ for
PPSs, and for more general Monotone Polynomial Systems (MPSs).

But...

In [E.-Yannakakis’05] we gave no upper bounds for Newton.

[Esparza,Kiefer,Luttenberger’10] gave bad examples of PPSs,
x = P(x), where q∗ = 1, requiring exponentially many Newton
iterations, as a function of the encoding size |P| of the equations, to
converge to within additive error < 1/2.



P-time approximation for PPSs

Theorem ([E.-Stewart-Yannakakis,STOC’12])

Given a PPS, x = P(x), with LFP q∗ ∈ [0, 1]n, we can compute a rational
vector v ∈ [0, 1]n such that

‖v − q∗‖∞ ≤ 2−j

in time polynomial in both the encoding size |P| of the equations
and in j (the number of “bits of precision”).

We use Newton’s method..... but how?



Qualitative decision problems for PPSs are in P-time

Theorem ([Kolmogorov-Sevastyanov’47,Harris’63])

For certain classes of strongly-connected PPSs, q∗i = 1 for all i iff the
spectral radius %(P ′(1)) for the moment matrix P ′(1) is ≤ 1,
and otherwise q∗i < 1 for all i .

Theorem ([E.-Yannakakis’05])

Given a PPS, x = P(x), deciding whether q∗i = 1 is in P-time.

(It is even in strongly-P-time ([Esparza-Gaiser-Kiefer’10]).)

Deciding whether q∗i = 0 is also easily in (strongly) P-time.
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Algorithm for approximating the LFP q∗ for PPSs

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

2 On the resulting system of equations, run Newton’s method starting
from 0.

Theorem ([E.-Stewart-Yannakakis’12])

Given a PPS x = P(x) with LFP 0 < q∗ < 1, if we apply Newton starting
at x(0) = 0, then

‖q∗ − x(4|P|+j)‖∞ ≤ 2−j
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Algorithm with rounding

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

2 On the resulting system of equations, run Newton’s method starting
from 0.

3 After each iteration, round down to a multiple of 2−h

Theorem ([E.-Stewart-Yannakakis’12])

If, after each Newton iteration, we round down to a multiple of 2−h where
h := 4|P|+ j + 2, then after h iterations ‖q∗ − x(h)‖∞ ≤ 2−j .

Thus, we obtain a P-time algorithm (in the standard Turing model) for
approximating q∗.



High level picture of proof

For a PPS, x = P(x), with LFP 0 < q∗ < 1, P ′(q∗) is a non-negative
square matrix, and (we show)

(spectral radius of P ′(q∗) ) ≡ %(P ′(q∗)) < 1

So, (I −P ′(q∗)) is non-singular, and (I −P ′(q∗))−1 =
∑∞

i=0(P ′(q∗))i .

We can show the # of Newton iterations needed to get within ε > 0 is

≈≈ log ‖(I − P ′(q∗))−1‖∞ + log
1

ε

‖(I − P ′(q∗))−1‖∞ is tied to the distance |1− %(P ′(q∗))|,
which in turn is related to mini (1− q∗i ), which we can lower bound.

Uses lots of Perron-Frobenius theory, among other things...

Kousha Etessami (U. Edinburgh) BMDPs Cassting 20 / 33



Towards Generalized Newton’s Method:
Newton iteration as a first-order (Taylor) approximation

An iteration of Newton’s method on a PPS, applied on current vector
y ∈ Rn, solves the equation

Py(x) = x

where
Py(x) ≡ P(y) + P ′(y)(x− y)

is the linear (first-order Taylor) approximation of P(x) at the point y.

Kousha Etessami (U. Edinburgh) BMDPs Cassting 21 / 33



Generalized Newton’s method

Linearization of max/minPPSs

Given a maxPPS

(P(x))i = max{pi ,j(x) : j = 1, . . . ,mi} i = 1, . . . , n

We define the linearization, Py (x), by:

(Py(x))i = max{pi ,j(y) +∇pi ,j(y).(x− y) : j = 1, . . . ,mi} i = 1, . . . , n

Generalised Newton’s method: iteration applied at vector y

Solve Py(x) = x. Specifically:

For a maxPPS, minimize
∑

i xi subject to Py(x) ≤ x;

For a minPPS, maximize
∑

i xi subject to Py(x) ≥ x;

These can both be phrased as linear programming problems. Their optimal
solution solves Py(x) = x , and yields one GNM iteration.
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solution solves Py(x) = x , and yields one GNM iteration.
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Algorithm for max/minPPSs

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1. Checking
q∗i = 0 is again easy.

Theorem ([E.-Yannakakis’06]) Checking q∗i = 1 is decidable in
P-time using linear programming.
(Reduces, with some work, to a spectral radius optimization problem
for non-negative square matrices. )

2 On the resulting system of equations, run Generalized Newton’s
Method, starting from 0. After each iteration, round down to a
multiple of 2−h.
Each iteration of GNM can be computed in P-time by solving an LP.

Theorem [E.-Stewart-Yannakakis’12]

Given a max/minPPS x = P(x) with LFP 0 < q∗ < 1, if we apply rounded
GNM starting at x(0) = 0, using h := 4|P|+ j + 1 bits of precision, then

‖q∗ − x(4|P|+j+1)‖∞ ≤ 2−j .
Thus, algorithm runs in time polynomial in |P| and j .



Algorithm for max/minPPSs

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1. Checking
q∗i = 0 is again easy.

Theorem ([E.-Yannakakis’06]) Checking q∗i = 1 is decidable in
P-time using linear programming.
(Reduces, with some work, to a spectral radius optimization problem
for non-negative square matrices. )

2 On the resulting system of equations, run Generalized Newton’s
Method, starting from 0. After each iteration, round down to a
multiple of 2−h.
Each iteration of GNM can be computed in P-time by solving an LP.

Theorem [E.-Stewart-Yannakakis’12]

Given a max/minPPS x = P(x) with LFP 0 < q∗ < 1, if we apply rounded
GNM starting at x(0) = 0, using h := 4|P|+ j + 1 bits of precision, then

‖q∗ − x(4|P|+j+1)‖∞ ≤ 2−j .
Thus, algorithm runs in time polynomial in |P| and j .



Algorithm for max/minPPSs

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1. Checking
q∗i = 0 is again easy.

Theorem ([E.-Yannakakis’06]) Checking q∗i = 1 is decidable in
P-time using linear programming.
(Reduces, with some work, to a spectral radius optimization problem
for non-negative square matrices. )

2 On the resulting system of equations, run Generalized Newton’s
Method, starting from 0. After each iteration, round down to a
multiple of 2−h.
Each iteration of GNM can be computed in P-time by solving an LP.

Theorem [E.-Stewart-Yannakakis’12]

Given a max/minPPS x = P(x) with LFP 0 < q∗ < 1, if we apply rounded
GNM starting at x(0) = 0, using h := 4|P|+ j + 1 bits of precision, then

‖q∗ − x(4|P|+j+1)‖∞ ≤ 2−j .
Thus, algorithm runs in time polynomial in |P| and j .



Proof outline: some key lemmas

(1− q∗) is the vector of pessimal survival probabilities.

Lemma

If q∗ − x(k) ≤ λ(1− q∗) for some λ > 0, then q∗ − x(k+1) ≤ λ
2 (1− q∗).

Lemma

For any Max(Min) PPS with LFP q∗, such that 0 < q∗ < 1, for any i ,
q∗i ≤ 1− 2−4|P|.
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Qualitative and Quantitative extinction problems for
BSSGs

Theorem ([E.-Yannakakis’06])

Given a BSSG, deciding if the extinction value is q∗i = 1 is in NP ∩ coNP.

And, it is at least as hard as computing the exact value for a finite-state
SSG.

Theorem ([E.-Stewart-Yannakakis’12])

Given a BSSG extinction game, and given ε > 0, we can compute a vector
v ∈ [0, 1]n, such that ‖v − q∗‖∞ ≤ ε, and we can compute ε-optimal
static strategies in FNP (and in PLS).



Optimal Reachability problem for BMDPs
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Optimal Reachability problem for BMDPs
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are 1− g∗, where g∗ ∈ [0, 1]3 is the
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Thm. [E.-Stewart-Yannakakis’15]

The supremum reachability probabilities
are 1− g∗, where g∗ ∈ [0, 1]3 is the
GREATEST FIXED POINT, of
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Optimal Reachability problem for BMDPs
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Question

What is the maximum probability of not

reaching , starting with one ?

yR =
2

3
yY yY +

1

3

yG =
2

3
yY = max{yG , yR}

We get fixed point equations, ȳ = Q(ȳ).

Thm. [E.-Stewart-Yannakakis’15]

The minimum reachability probabilities
are 1− g∗, where g∗ ∈ [0, 1]3 is the
GREATEST FIXED POINT of
ȳ = Q(ȳ).



P-time approximation of optimal reachability probability for
BMDPs

Theorem ([E.-Stewart-Yannakakis, 2015])

Given a max/minPPS, y = Q(y), with GFP g∗ ∈ [0, 1]n, we can compute
a rational vector v ∈ [0, 1]n such that

‖v − g∗||∞ ≤ 2−j

in time polynomial in the encoding size |Q| of the equations, and in j.

We again establish this via Generalized Newton’s Method.



Algorithm for GFP of max/minPPSs

1 Find and remove all variables xi such that g∗i = 1.
(This can be done in P-time, by qualitative analysis of y = Q(y).)

2 Interestingly, we do not need to eliminate the variables xi such that
g∗i = 0. (And we do not want to eliminate variables with q∗i = 0.)

3 On the resulting system of equations, run Generalized Newton’s
Method, starting from 0. After each iteration, round down to a
multiple of 2−h.

4 Amazingly this works! Note the very subtle difference with the
algorithm for approximating the LFP of the same max/minPPS.

Theorem [E.-Stewart-Yannakakis’ICALP15]

Given a max/minPPS x = P(x) with GFP 0 ≤ g∗ < 1, if we apply rounded
GNM starting at x(0) = 0, using h := 4|P|+ j + 1 bits of precision, then

‖g∗ − x(4|P|+j+1)‖∞ ≤ 2−j .
Thus, algorithm runs in time polynomial in |P| and j .
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Qualitative & quantitative reachability for BSSGs

Theorem [E.-Stewart-Yannakakis’ICALP15]

The value of a BSSG reachability game is captured by the GFP of
max-minPPS.

The player minimizing reachability probability has a static positional
optimal strategy. But, already for BMDPs, the player maximizing it
may have no optimal strategy at all, only ε-optimal
(randomized-static, or deterministic-memoryful) strategies.

We can approximate the value, and compute ε-optimal stratgies, for a
BSSG reachabilty game in FNP.
(For BMDPs, we can compute ε-optimal strategies in P-time.)

For BSSG reachability games, limit-sure = almost-sure, and we can
an answer all qualitative questions in P-time for BSSG reachability
games, including compute qualitative-optimal (not static) strategies.
(Note: This contrasts sharply with qualitative extinction, which is as
hard as computing the value of finite-state SSGs [E.-Yannakakis’05].)



Conclusion

We have established P-time algorithms for a number of fundamental
quantitative and qualitative analysis problems for Branching MDPs
(and related results for Branching SSGs), including for:

optimal extinction probabilities

optimal reachability probabilities

optimal expected total progeny size and “weight”
([E.-Wojtczak-Yannakakis’08], which I didn’t speak about.)

Many open questions remain. For example:

Quantitative CTL model checking of BMDPs:
Given BMDP, M , start color c , and CTL formula ϕ over the
color alphabet, compute: supσ∈Strategy Pr(Treeσc (M) |= ϕ).

(Our results only imply computability for fragments of CTL.)

Multi-player branching stochastic games? We know nothing!
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