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BPs are classic, fundamental, stochastic processes, studied for
decades in probability theory, with many applications, eg.:

population biology, nuclear chain reactions, cancer tumor models, ...

BPs are also “intimately related” to:

e probabilistic BPPs (pBPPs)

e probablistic BPAs

e stochastic (probabilistic) Context-Free Grammars (SCFGs).
o l-exit Recursive Markov Chains (1-RMCs)

o stateless probabilistic Pushdown Systems (stateless pPDS).

Nevertheless, even basic algorithm questions about BPs remained
open until recently.
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Multi-type Branching Processes
Question: What is the probability of
eventual extinction, starting with one
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The extinction probabilities are the least
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g = 0.276; g = 0.769; gi = 0.050.
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Xp = ngxGxY+§xBxR+6
1, 3
BT PR
X = XgXp
xy = max{x3,xg}

We get fixed point equations, x = P(X).

Theorem

|

The maximum extinction probabilities
are the least fixed point, q* € [0,1]3, of
x = P(X).
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extinction, starting with one . ?
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X = XgXp
xy = min{x3,xg}

We get fixed point equations, x = P(X).

Theorem
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The minimum extinction probabilities
are the least fixed point, q* € [0,1]3, of
x = P(x).
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What is the value of extinction, starting

with one ‘ ?

1 1
2
XR = =XgXGXy + =XBXRr + =
378 2 6
xg = min{x3,1}
XG = XBX/%
xy = max{x3, xr}

We get fixed point equations, x = P(X).

Theorem

|

The extinction values are the LFP,
q* €[0,1]® of x = P(x).
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is a Probabilistic Polynomial: the coefficients are positive and sum to 1.

A Maximum Probabilistic Polynomial System (maxPPS) is a system
x; = max{p;;(x):j=1,...,m} i=1,...,n

of n equations in n variables, where each p; ;(x) is a probabilistic
polynomial. We denote the entire system by:

x = P(x)
Minimum Probabilistic Polynomial Systems (minPPSs) are defined
similarly.
These are Bellman optimality equations for maximizing (minimizing)
extinction probabilities in a BMDP.

We use max/minPPS to refer to either a maxPPS or an minPPS.
We use max-minPPS to refer to combined max and min PPS equations.




Basic properties of max-minPPSs, x = P(x)

P :[0,1]" — [0,1]" defines a monotone map on [0, 1]".

Proposition.

e Every max-minPPS, x = P(x) has a least fixed point, g* € [0,1]".
o g" = limy_ P¥(0).

@ g is the vector of optimal extinction probabilities (values) for the
BMDP (the BSSG).

Can we compute the probabilities g* efficiently (in P-time for BMDPs)?




Static optimal strategies for BMDP /BSSG extinction

Theorem ( )

For any BSSG extinction game, both players have static optimal strategies
for maximizing (minimizing) extinction probability.

(However, computing an optimal strategy, even for BMDPs, is
PosSLP-hard ([E.-Yannakakis'05,'09]); and of course, for BSSGs this is
also as hard as solvings Condon’s finite-state SSGs.)

A static strategy is one that, for every type belonging to a player, always
chooses the same rule (i.e., it is deterministic, memoryless, and
“context-oblivious”.)

Can we compute an e-optimal strategy for the controller
maximizing/minimizing extinction probability in a BMDP in P-time?




P-time approximation for BMDPs and max/minPPSs

Theorem ([E.-Stewart-Yannakakis,ICALP'12])

Given a max/minPPS, x = P(x), with LFP q* € [0,1]", we can compute a
rational vector v € [0,1]" such that

v —q*[jec <27

in time polynomial in the encoding size |P| of the equations, and in j.

We establish this via a new Generalized Newton's Method that uses linear
programming in each iteration.

Theorem ([E.-Stewart-Yannakakis,ICALP'12])

Moreover, we can compute an e-optimal static strategy for
(maximizing/minimizing) extinction probability for a BMDP, B, in time
polynomial in |B| and log(1/€).




Newton's method

Newton's method

Seeking a solution to differentiable F(x) = 0, we start at a guess
x(® e R", and iterate:

x(k+1) = x(K) _ (F'(x(K))) L F(x(K)

Here F'(x), is the Jacobian matrix:

ok oF
Ox1 """ Oxn
/ o ..
F'(x) = -
IF, OF,
Ox1 """ Oxn

For PPSs, F(x) = (P(x) — x), and Newton iteration looks like this:

x(FD) = x() () — P/(xR)) 7L (P(x(K)) — x(K)y

where P’(x) is the Jacobian of P(x).




Newton on PPSs

We can decompose x = P(x) into its strongly connected components
(SCCs), based on variable dependencies, and eliminate “0" variables.

| \

Theorem [E.-Yannakakis'05]

Decomposed Newton's method converges monotonically to the LFP g* for
PPSs, and for more general Monotone Polynomial Systems (MPSs).

But...

@ In [E.-Yannakakis'05] we gave no upper bounds for Newton.

@ [Esparza,Kiefer,Luttenberger'10] gave bad examples of PPSs,
x = P(x), where ¢* = 1, requiring exponentially many Newton
iterations, as a function of the encoding size |P| of the equations, to
converge to within additive error < 1/2.




P-time approximation for PPSs

)

Given a PPS, x = P(x), with LFP q* € [0,1]", we can compute a rational
vector v € [0,1]" such that

Theorem (

v —a*loc < 27

in time polynomial in both the encoding size |P| of the equations
and in j (the number of “bits of precision” ).

We use Newton's method..... but how?



Qualitative decision problems for PPSs are in P-time

For certain classes of strongly-connected PPSs, g7 =1 for all i iff the
spectral radius o(P'(1)) for the moment matrix P'(1) is <1,
and otherwise q; < 1 for all i.

Given a PPS, x = P(x), deciding whether g =1 is in P-time.




Qualitative decision problems for PPSs are in P-time

For certain classes of strongly-connected PPSs, g7 =1 for all i iff the
spectral radius o(P'(1)) for the moment matrix P'(1) is <1,
and otherwise q; < 1 for all i.

Given a PPS, x = P(x), deciding whether g =1 is in P-time.

(It is even in strongly-P-time ([Esparza-Gaiser-Kiefer'10]).)




Qualitative decision problems for PPSs are in P-time

For certain classes of strongly-connected PPSs, g7 =1 for all i iff the
spectral radius o(P'(1)) for the moment matrix P'(1) is <1,
and otherwise q; < 1 for all i.

Given a PPS, x = P(x), deciding whether g =1 is in P-time.

(It is even in strongly-P-time ([Esparza-Gaiser-Kiefer'10]).)

Deciding whether qF = 0 is also easily in (strongly) P-time.




Algorithm for approximating the LFP for PPSs

© Find and remove all variables x; such that g7 = 0 or g/ = 1.

@ On the resulting system of equations, run Newton’s method starting
from 0.




Algorithm for approximating the LFP for PPSs

© Find and remove all variables x; such that g7 = 0 or g/ = 1.

@ On the resulting system of equations, run Newton’s method starting
from 0.

Theorem ( )

Given a PPS x = P(x) with LFP 0 < q* < 1, if we apply Newton starting
at x(0) =0, then

o — X P, < 27




Algorithm

© Find and remove all variables x; such that g; =0 or g; = 1.

@ On the resulting system of equations, run Newton's method starting
from 0.

© After each iteration, round down to a multiple of 2—h

Theorem ( )

If, after each Newton iteration, we round down to a multiple of 2=" where
h:=4|P| + j + 2, then after h iterations ||q* — x(N)||o, < 27/

v

Thus, we obtain a P-time algorithm (in the standard Turing model) for
approximating g*.



High level picture of proof

e For a PPS, x = P(x), with LFP 0 < g* < 1, P'(g*) is a non-negative
square matrix, and (we show)

(spectral radius of P'(q*) ) = o(P'(q")) < 1
e So, (I — P'(q*)) is non-singular, and (I — P'(g*))~! = Y20 (P'(g*))".

@ We can show the # of Newton iterations needed to get within ¢ > 0 is

o 1
e log (1 = P(67) o + log -

o ||(I = P(g")) !l is tied to the distance |1 — o(P'(q*))|,
which in turn is related to min;(1 — g7), which we can lower bound.

@ Uses lots of Perron-Frobenius theory, among other things...

Kousha Etessami (U. Edinburgh) BMDPs Cassting 20 /33



Towards Generalized Newton's Method:

Newton iteration as a first-order (Taylor) approximation

An iteration of Newton's method on a PPS, applied on current vector
y € R", solves the equation

PY(x) = x

where
PY(x) = P(y) + P'(y)(x —y)
is the linear (first-order Taylor) approximation of P(x) at the point y.

Kousha Etessami (U. Edinburgh)

Cassting
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Generalized Newton's method

Linearization of max/minPPSs

Given a maxPPS

(P(x))i = max{pjj(x):j=1,...,m;} i=1,...,n

We define the linearization, PY(x), by:

(PY(x))i = max{pii(y) + Vpi(y).(x—y) :j=1,....m}  i=1....n

Kousha Etessami (U. Edinburgh) BMDPs Cassting 22 /33



Generalized Newton's method

Linearization of max/minPPSs

Given a maxPPS

(P(x))i = max{pjj(x):j=1,...,m;} i=1,...,n

We define the linearization, PY(x), by:

(PY(x))i = max{pii(y) + Vpi(y).(x—y) :j=1,....m}  i=1....n

Generalised Newton's method: iteration applied at vector y

Solve PY(x) = x. Specifically:
For a maxPPS,  minimize ) ; x; subject to PY(x) < x;
For a minPPS,  maximize ), x; subject to PY(x) > x;

These can both be phrased as linear programming problems. Their optimal
solution solves PY(x) = x , and yields one GNM iteration.

v

Kousha Etessami (U. Edinburgh) BMDPs Cassting 22 /33



Algorithm for max/minPPSs

© Find and remove all variables x; such that g = 0 or g; = 1. Checking
q: = 0 is again easy.
Theorem ([E.-Yannakakis'06]) Checking g = 1 is decidable in
P-time using linear programming.
(Reduces, with some work, to a spectral radius optimization problem
for non-negative square matrices. )
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Algorithm for max,/minPPSs

© Find and remove all variables x; such that g = 0 or g; = 1. Checking
q: = 0 is again easy.

Theorem ([E.-Yannakakis'06]) Checking g = 1 is decidable in
P-time using linear programming.

(Reduces, with some work, to a spectral radius optimization problem
for non-negative square matrices. )

@ On the resulting system of equations, run Generalized Newton's
Method, starting from 0. After each iteration, round down to a
multiple of 277,

Each iteration of GNM can be computed in P-time by solving an LP. )

Theorem [E.-Stewart-Yannakakis'12]

Given a max/minPPS x = P(x) with LFP 0 < q* < 1, if we apply rounded

GNM starting at x(0) = 0, using h := 4|P| + j + 1 bits of precision, then
o — x@PHFD] o, < 277

Thus, algorithm runs in time polynomial in |P| and j.




Proof outline: some key lemmas

(1 — q*) is the vector of pessimal survival probabilities.

If q* — x¥) < \(1 — g*) for some \ > 0, then q* — x(*t1) < 3(1 — q¥).

For any Max(Min) PPS with LFP q*, such that 0 < q* < 1, for any i,
q- <1-—274Pl

Kousha Etessami (U. Edinburgh) BMDPs Cassting 24 /33



Qualitative and Quantitative extinction problems for
BSSGs

Given a BSSG, deciding if the extinction value is g© = 1 is in NP N coNP.

And, it is at least as hard as computing the exact value for a finite-state
SSG.

Given a BSSG extinction game, and given € > 0, we can compute a vector

v € [0,1]", such that ||v — q"||cc < €, and we can compute e-optimal
static strategies in FNP (and in PLS).
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Optimal problem for BMDPs
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Optimal problem for BMDPs

Same Question (rephrased)
What is the infimum probability of not
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Optimal

problem for BMDPs

2/3 {O’O}
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N

Same Question (rephrased)
What is the infimum probability of not
reaching . starting with one . ?

_2 +1
YR = 3)/YYY 3
2

yc:g

yy = min{yg, yr}

We get fixed point equations, ¥y = Q(¥)

V.

Thm.
The supremum reachability probabilities
are 1 — g*, where g* € [0,1]3 is the
GREATEST FIXED POINT, of

y = Q(y):




Optimal problem for BMDPs

Question

What is the maximum probability of not

13 {0>0O}
reaching . starting with one . ?
1/3 {} 2 1

Yr = gyw/v + 3

2

o (@) vo = 3
.< yy = max{ys,yr}
s ~{}
We get fixed point equations, y = Q(¥).

1 y
. (@} Thm.

(@} The minimum reachability probabilities
are 1 — g*, where g* € [0,1]3 is the
GREATEST FIXED POINT of

(@} - _
y = Q(¥)-




P-time approximation of optimal probability for

BMDPs

Theorem ( )

Given a max/minPPS, y = Q(y), with GFP g* € [0, 1]", we can compute
a rational vector v € [0, 1]" such that

v —g*loc <27

in time polynomial in the encoding size |Q| of the equations, and in j.

We again establish this via Generalized Newton's Method.



Algorithm for of max/minPPSs

© Find and remove all variables x; such that g/ = 1.
(This can be done in P-time, by qualitative analysis of y = Q(y).)
@ Interestingly, we do not need to eliminate the variables x; such that
g = 0. (And we do not want to eliminate variables with g = 0.)

© On the resulting system of equations, run Generalized Newton's
Method, starting from 0. After each iteration, round down to a
multiple of 277

@ Amazingly this works! Note the very subtle difference with the
algorithm for approximating the LFP of the same max/minPPS.




Algorithm for of max/minPPSs

© Find and remove all variables x; such that g/ = 1.
(This can be done in P-time, by qualitative analysis of y = Q(y).)
@ Interestingly, we do not need to eliminate the variables x; such that
g = 0. (And we do not want to eliminate variables with g = 0.)
© On the resulting system of equations, run Generalized Newton's
Method, starting from 0. After each iteration, round down to a
multiple of 277

@ Amazingly this works! Note the very subtle difference with the
algorithm for approximating the LFP of the same max/minPPS.

Theorem [E.-Stewart-Yannakakis'| CALP15]

Given a max/minPPS x = P(x) with GFP 0 < g* < 1, if we apply rounded
GNM starting at x(9) = 0, using h := 4|P| 4 j + 1 bits of precision, then
lg* — x(4|P|+j+1)”oo <2,

Thus, algorithm runs in time polynomial in |P| and j.




Qualitative & quantitative reachability for BSSGs

Theorem [E.-Stewart-Yannakakis'ICALP15]

@ The value of a BSSG reachability game is captured by the GFP of
max-minPPS.

@ The player minimizing reachability probability has a static positional
optimal strategy. But, already for BMDPs, the player maximizing it
may have no optimal strategy at all, only e-optimal
(randomized-static, or deterministic-memoryful) strategies.

@ We can approximate the value, and compute e-optimal stratgies, for
BSSG reachabilty game in FNP.
(For BMDPs, we can compute e-optimal strategies in P-time.)

5]

@ For BSSG reachability games, limit-sure = almost-sure, and we can
an answer all qualitative questions in P-time for BSSG reachability
games, including compute qualitative-optimal (not static) strategies.
(Note: This contrasts sharply with qualitative extinction, which is as
hard as computing the value of finite-state SSGs [E.-Yannakakis'05].)

v




Conclusion

We have established P-time algorithms for a number of fundamental

quantitative and qualitative analysis problems for Branching MDPs
(and related results for Branching SSGs), including for:

e optimal extinction probabilities
e optimal reachability probabilities

e optimal expected total progeny size and “weight”
([E.-Wojtczak-Yannakakis'08], which | didn't speak about.)

Many open questions remain. For example:
e Quantitative CTL model checking of BMDPs:
Given BMDP, M, start color ¢, and CTL formula ¢ over the

color alphabet, compute:  SUP,cgrareg, Pr(Treel (M) = ).
(Our results only imply computability for fragments of CTL.)

o Multi-player branching stochastic games? We know nothing!
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