Algorithms for Branching MDPs and Branching stochastic games

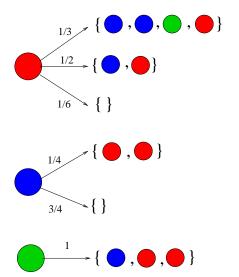
Kousha Etessami

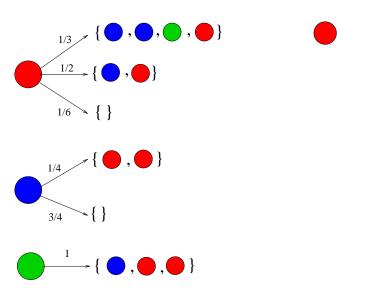
University of Edinburgh

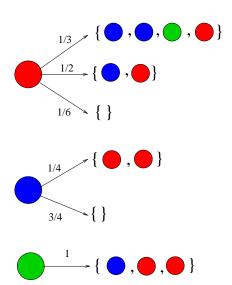
Based on joint works with:

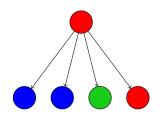
Alistair Stewart & Mihalis Yannakakis
U. of Edinburgh (now USC) Columbia Uni.

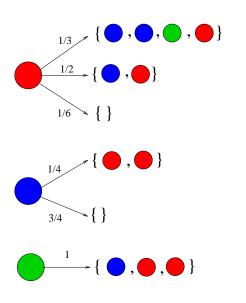
Cassting Workshop (ETAPS'16) April 2016

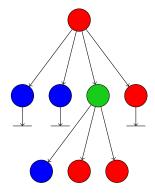


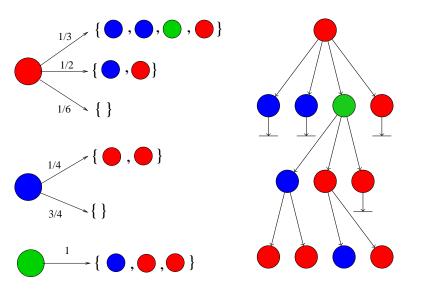


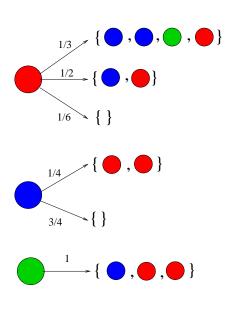


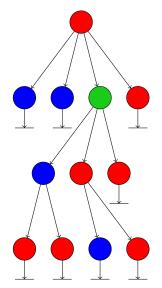










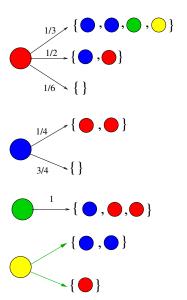


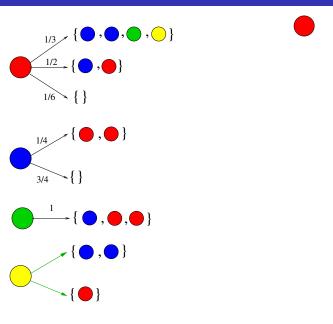
BPs are classic, fundamental, stochastic processes, studied for decades in probability theory, with many applications, eg.: population biology, nuclear chain reactions, cancer tumor models, ...

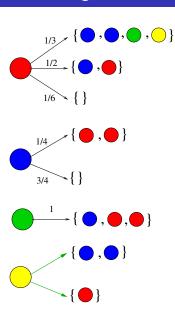
BPs are also "intimately related" to:

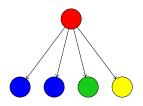
- probabilistic BPPs (pBPPs)
- probablistic BPAs
- stochastic (probabilistic) Context-Free Grammars (SCFGs).
- 1-exit Recursive Markov Chains (1-RMCs)
- stateless probabilistic Pushdown Systems (stateless pPDS).

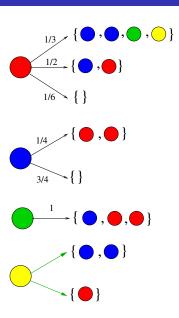
Nevertheless, even basic algorithm questions about BPs remained open until recently.

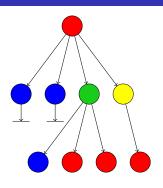


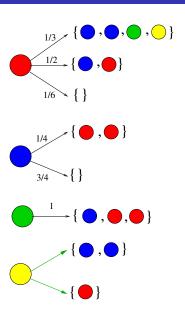


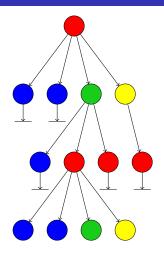


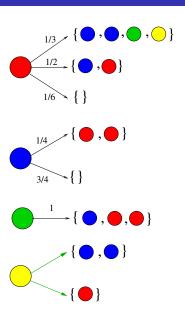


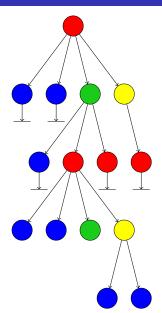




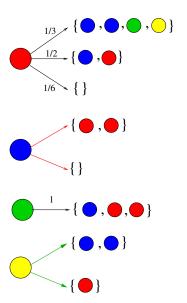




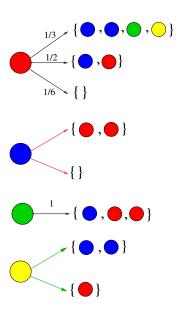




Branching Simple Stochastic Games

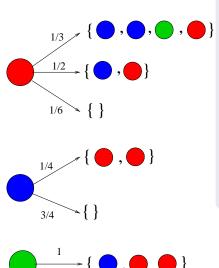


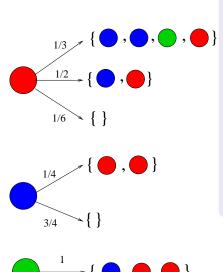
Branching Simple Stochastic Games



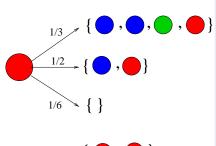
Types belonging to min:

Types belonging to max:

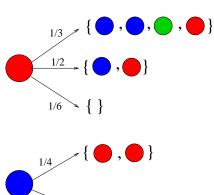




$$x_R =$$



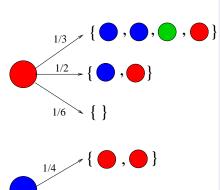
$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$



$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$

$$x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$$

$$x_{G} = x_{B}x_{R}^{2}$$



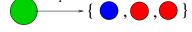
Question: What is the probability of eventual extinction, starting with one

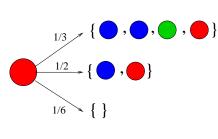
$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$

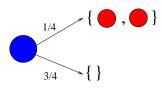
$$x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$$

$$x_{G} = x_{B}x_{R}^{2}$$

We get nonlinear fixed point equations: $\bar{\mathbf{x}} = P(\bar{\mathbf{x}}).$







Question: What is the probability of eventual extinction, starting with one

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$

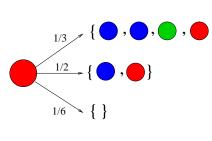
$$x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$$

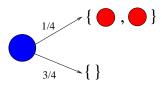
$$x_{G} = x_{B}x_{R}^{2}$$

We get nonlinear fixed point equations: $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Fact

The extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0,1]^3$, of $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.





Question: What is the probability of eventual extinction, starting with one

$$x_R = \frac{1}{3}x_B^2x_Gx_R + \frac{1}{2}x_Bx_R + \frac{1}{6}$$

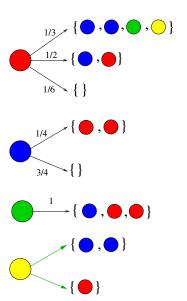
$$x_B = \frac{1}{4}x_R^2 + \frac{3}{4}$$

 $x_G = x_B x_R^2$

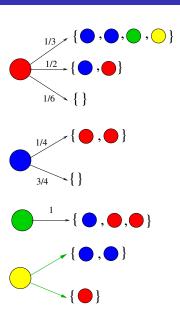
We get nonlinear fixed point equations: $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Fact

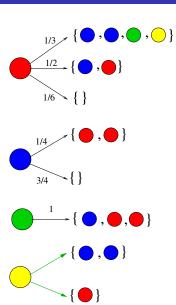
The extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0, 1]^3$, of $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$. $q_R^* = 0.276$; $q_R^* = 0.769$; $q_C^* = 0.059$.



Branching Markov Decision Processor Question



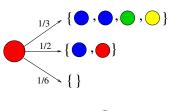
What is the maximum probability of extinction, starting with one ?

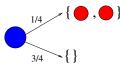


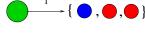
Question

What is the maximum probability of extinction, starting with one $x_R = \frac{1}{3}x_B^2x_Gx_Y + \frac{1}{2}x_Bx_R + \frac{1}{6}$ $x_B = \frac{1}{4}x_R^2 + \frac{3}{4}$ $x_G = x_B x_R^2$

Branching Markov Decision Processes Question









What is the maximum probability of extinction, starting with one

extinction, starting with one
$$x_R = \frac{1}{3}x_B^2x_Gx_Y + \frac{1}{2}x_Bx_R + \frac{1}{6}$$

$$x_B = \frac{1}{4}x_R^2 + \frac{3}{4}$$

$$x_G = x_B x_R^2$$

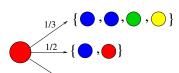
$$x_{Y} = \max\{x_{B}^{2}, x_{R}\}$$

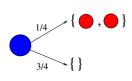
Theorem [E.-Yannakakis'05]

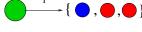
The maximum extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0,1]^3$, of $\bar{\mathbf{x}} = P(\bar{\mathbf{x}}).$

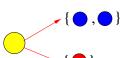
We get fixed point equations, $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Branching Markov Decision Question









Question What is th

What is the minimum probability of extinction, starting with one?

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{Y} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$

$$x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$$

$$x_G = x_B x_R^2$$

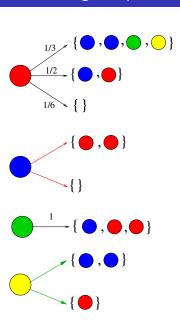
$$x_{Y} = \min\{x_{B}^{2}, x_{R}\}$$

We get fixed point equations, $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Theorem [E.-Yannakakis'05]

The minimum extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0, 1]^3$, of $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

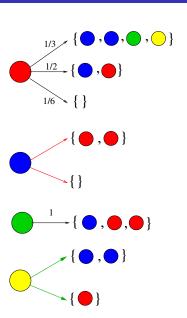
Branching Simple Stochastic Games



Question

What is the value of extinction, starting with one ?

Branching Simple Stochastic Games



Question

What is the value of extinction, starting with one ?

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{Y} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$

$$x_{B} = \min\{x_{R}^{2}, 1\}$$

$$x_{G} = x_{B}x_{R}^{2}$$

$$x_Y = \max\{x_B^2, x_R\}$$

We get fixed point equations, $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Theorem [E.-Yannakakis'05]

The extinction values are the LFP, $\mathbf{q}^* \in [0, 1]^3$ of $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

$$\frac{1}{3}x_B^2x_Gx_R + \frac{1}{2}x_Bx_R + \frac{1}{6}$$

A Maximum Probabilistic Polynomial System (maxPPS) is a system

is a Probabilistic Polynomial: the coefficients are positive and sum to 1.

$$\mathbf{x}_i = \max\{p_{i,i}(\mathbf{x}): j = 1, \dots, m_i\}$$
 $i = 1, \dots, n$

of n equations in n variables, where each $p_{i,j}(x)$ is a probabilistic polynomial. We denote the entire system by:

$$\mathbf{x} = P(\mathbf{x})$$

Minimum Probabilistic Polynomial Systems (minPPSs) are defined similarly.

These are Bellman optimality equations for maximizing (minimizing) extinction probabilities in a BMDP.

We use max/minPPS to refer to either a maxPPS or an minPPS. We use max-minPPS to refer to combined max and min PPS equations.

Basic properties of max-minPPSs, $\mathbf{x} = P(\mathbf{x})$

 $P:[0,1]^n \to [0,1]^n$ defines a monotone map on $[0,1]^n$.

Proposition. [E.-Yannakakis'05]

- Every max-minPPS, x = P(x) has a least fixed point, $q^* \in [0,1]^n$.
- q* is the vector of optimal extinction probabilities (values) for the BMDP (the BSSG).

Question

Can we compute the probabilities q^* efficiently (in P-time for BMDPs)?

Static optimal strategies for BMDP/BSSG extinction

Theorem ([E.-Yannakakis'05])

For any BSSG extinction game, both players have static optimal strategies for maximizing (minimizing) extinction probability.

(However, computing an optimal strategy, even for BMDPs, is PosSLP-hard ([E.-Yannakakis'05,'09]); and of course, for BSSGs this is also as hard as solvings Condon's finite-state SSGs.)

A static strategy is one that, for every type belonging to a player, always chooses the same rule (i.e., it is deterministic, memoryless, and "context-oblivious".)

Question

Can we compute an ϵ -optimal strategy for the controller maximizing/minimizing extinction probability in a BMDP in P-time?

P-time approximation for BMDPs and max/minPPSs

Theorem ([E.-Stewart-Yannakakis,ICALP'12])

Given a max/minPPS, $\mathbf{x} = P(\mathbf{x})$, with LFP $\mathbf{q}^* \in [0,1]^n$, we can compute a rational vector $\mathbf{v} \in [0,1]^n$ such that

$$\|\mathbf{v} - \mathbf{q}^*\|_{\infty} \le 2^{-j}$$

in time polynomial in the encoding size |P| of the equations, and in j.

We establish this via a new Generalized Newton's Method that uses linear programming in each iteration.

Theorem ([E.-Stewart-Yannakakis,ICALP'12])

Moreover, we can compute an ϵ -optimal static strategy for (maximizing/minimizing) extinction probability for a BMDP, B, in time polynomial in |B| and $\log(1/\epsilon)$.

Newton's method

Newton's method

Seeking a solution to differentiable $F(\mathbf{x}) = \mathbf{0}$, we start at a guess $\mathbf{x}^{(0)} \in \mathbb{R}^n$. and iterate:

$$\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} - (F'(\mathbf{x}^{(k)}))^{-1}F(\mathbf{x}^{(k)})$$

Here $F'(\mathbf{x})$, is the **Jacobian matrix**:

$$F'(\mathbf{x}) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} \cdots \frac{\partial F_1}{\partial x_n} \\ \vdots & \vdots \\ \frac{\partial F_n}{\partial x_1} \cdots \frac{\partial F_n}{\partial x_n} \end{bmatrix}$$

For PPSs, $F(x) \equiv (P(x) - x)$, and Newton iteration looks like this:

$$\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + (I - P'(\mathbf{x}^{(k)}))^{-1}(P(\mathbf{x}^{(k)}) - \mathbf{x}^{(k)})$$

where $P'(\mathbf{x})$ is the Jacobian of $P(\mathbf{x})$.

Newton on PPSs

We can decompose $\mathbf{x} = P(\mathbf{x})$ into its strongly connected components (SCCs), based on variable dependencies, and eliminate "0" variables.

Theorem [E.-Yannakakis'05]

Decomposed Newton's method converges monotonically to the LFP \mathbf{q}^* for PPSs, and for more general Monotone Polynomial Systems (MPSs).

But...

- In [E.-Yannakakis'05] we gave no upper bounds for Newton.
- [Esparza, Kiefer, Luttenberger'10] gave bad examples of PPSs, $\mathbf{x} = P(\mathbf{x})$, where $q^* = 1$, requiring exponentially many Newton iterations, as a function of the encoding size |P| of the equations, to converge to within additive error < 1/2.

P-time approximation for PPSs

Theorem ([E.-Stewart-Yannakakis,STOC'12])

Given a PPS, $\mathbf{x} = P(\mathbf{x})$, with LFP $\mathbf{q}^* \in [0,1]^n$, we can compute a rational vector $\mathbf{v} \in [0,1]^n$ such that

$$\|\mathbf{v} - \mathbf{q}^*\|_{\infty} \le 2^{-j}$$

in time polynomial in both the encoding size |P| of the equations and in j (the number of "bits of precision").

We use Newton's method.... but how?

Qualitative decision problems for PPSs are in P-time

Theorem ([Kolmogorov-Sevastyanov'47,Harris'63])

For certain classes of strongly-connected PPSs, $\mathbf{q}_i^* = \mathbf{1}$ for all i iff the spectral radius $\varrho(P'(\mathbf{1}))$ for the moment matrix $P'(\mathbf{1})$ is ≤ 1 , and otherwise $\mathbf{q}_i^* < \mathbf{1}$ for all i.

Theorem ([E.-Yannakakis'05])

Given a PPS, $\mathbf{x} = P(\mathbf{x})$, deciding whether $\mathbf{q}_i^* = 1$ is in P-time.

Qualitative decision problems for PPSs are in P-time

Theorem ([Kolmogorov-Sevastyanov'47,Harris'63])

For certain classes of strongly-connected PPSs, $\mathbf{q}_i^* = \mathbf{1}$ for all i iff the spectral radius $\varrho(P'(\mathbf{1}))$ for the moment matrix $P'(\mathbf{1})$ is ≤ 1 , and otherwise $\mathbf{q}_i^* < \mathbf{1}$ for all i.

Theorem ([E.-Yannakakis'05])

Given a PPS, $\mathbf{x} = P(\mathbf{x})$, deciding whether $\mathbf{q}_i^* = 1$ is in P-time. (It is even in strongly-P-time ([Esparza-Gaiser-Kiefer'10]).)

Qualitative decision problems for PPSs are in P-time

Theorem ([Kolmogorov-Sevastyanov'47,Harris'63])

For certain classes of strongly-connected PPSs, $\mathbf{q}_i^* = \mathbf{1}$ for all i iff the spectral radius $\varrho(P'(\mathbf{1}))$ for the moment matrix $P'(\mathbf{1})$ is ≤ 1 , and otherwise $\mathbf{q}_i^* < \mathbf{1}$ for all i.

Theorem ([E.-Yannakakis'05])

Given a PPS, $\mathbf{x} = P(\mathbf{x})$, deciding whether $\mathbf{q}_i^* = 1$ is in P-time.

(It is even in strongly-P-time ([Esparza-Gaiser-Kiefer'10]).)

Deciding whether $q_i^* = 0$ is also easily in (strongly) P-time.

Algorithm for approximating the LFP 💣 for PPSs

- Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$.
- ${f @}$ On the resulting system of equations, run Newton's method starting from ${f 0}.$

Algorithm for approximating the LFP ****** for PPSs

- Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$.
- ② On the resulting system of equations, run Newton's method starting from ${\bf 0}$.

Theorem ([E.-Stewart-Yannakakis'12])

Given a PPS $\mathbf{x}=P(\mathbf{x})$ with LFP $\mathbf{0}<\mathbf{q}^*<\mathbf{1}$, if we apply Newton starting at $\mathbf{x}^{(0)}=\mathbf{0}$, then

$$\|\mathbf{q}^* - \mathbf{x}^{(4|P|+j)}\|_{\infty} \le 2^{-j}$$

Algorithm with rounding

- **1** Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$.
- ② On the resulting system of equations, run Newton's method starting from ${\bf 0}$.
- **3** After each iteration, round down to a multiple of 2^{-h}

Theorem ([E.-Stewart-Yannakakis'12])

If, after each Newton iteration, we round down to a multiple of 2^{-h} where h:=4|P|+j+2, then after h iterations $\|\mathbf{q}^*-\mathbf{x}^{(h)}\|_{\infty}\leq 2^{-j}$.

Thus, we obtain a P-time algorithm (in the standard Turing model) for approximating q^* .

High level picture of proof

• For a PPS, x = P(x), with LFP $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, $P'(q^*)$ is a non-negative square matrix, and (we show)

(spectral radius of
$$P'(q^*)$$
) $\equiv arrho(P'(q^*)) < 1$

- So, $(I P'(q^*))$ is non-singular, and $(I P'(q^*))^{-1} = \sum_{i=0}^{\infty} (P'(q^*))^i$.
- ullet We can show the # of Newton iterations needed to get within $\epsilon>0$ is

$$pprox pprox \log \|(I - P'(q^*))^{-1}\|_{\infty} + \log rac{1}{\epsilon}$$

- $\|(I P'(q^*))^{-1}\|_{\infty}$ is tied to the distance $|1 \varrho(P'(q^*))|$, which in turn is related to $\min_i (1 q_i^*)$, which we can lower bound.
- Uses lots of Perron-Frobenius theory, among other things...

Towards Generalized Newton's Method: Newton iteration as a first-order (Taylor) approximation

An iteration of Newton's method on a PPS, applied on current vector $y \in \mathbb{R}^n$, solves the equation

$$P^{\mathbf{y}}(\mathbf{x}) = \mathbf{x}$$

where

$$P^{\mathbf{y}}(\mathbf{x}) \equiv P(\mathbf{y}) + P'(\mathbf{y})(\mathbf{x} - \mathbf{y})$$

is the linear (first-order Taylor) approximation of P(x) at the point y.

Generalized Newton's method

Linearization of max/minPPSs

Given a maxPPS

$$(P(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{x}) : j = 1, \dots, m_i\}$$
 $i = 1, \dots, n$

We define the linearization, $P^{y}(x)$, by:

$$(P^{\mathbf{y}}(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{y}) + \nabla p_{i,j}(\mathbf{y}).(\mathbf{x} - \mathbf{y}) : j = 1, \dots, m_i\}$$
 $i = 1, \dots, n$

Generalized Newton's method

Linearization of max/minPPSs

Given a maxPPS

$$(P(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{x}) : j = 1, \dots, m_i\}$$
 $i = 1, \dots, n$

We define the linearization, $P^{y}(x)$, by:

$$(P^{\mathbf{y}}(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{y}) + \nabla p_{i,j}(\mathbf{y}).(\mathbf{x} - \mathbf{y}) : j = 1, \dots, m_i\}$$
 $i = 1, \dots, m_i$

Generalised Newton's method: iteration applied at vector y

Solve $P^{\mathbf{y}}(\mathbf{x}) = \mathbf{x}$. Specifically:

For a maxPPS, minimize $\sum_i x_i$ subject to $P^{y}(\mathbf{x}) \leq \mathbf{x}$;

For a minPPS, maximize $\sum_i x_i$ subject to $P^{\mathbf{y}}(\mathbf{x}) \geq \mathbf{x}$;

These can both be phrased as linear programming problems. Their optimal solution solves $P^{y}(x) = x$, and yields one GNM iteration.

Algorithm for max/minPPSs

for non-negative square matrices.)

• Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$. Checking $q_i^* = 0$ is again easy.

Theorem ([E.-Yannakakis'06]) Checking $q_i^* = 1$ is decidable in P-time using linear programming. (Reduces, with some work, to a spectral radius optimization problem

Algorithm for max/minPPSs

• Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$. Checking $q_i^* = 0$ is again easy.

Theorem ([E.-Yannakakis'06]) Checking $q_i^* = 1$ is decidable in P-time using linear programming.

(Reduces, with some work to a spectral radius optimization proble

(Reduces, with some work, to a spectral radius optimization problem for non-negative square matrices.)

② On the resulting system of equations, run Generalized Newton's Method, starting from $\mathbf{0}$. After each iteration, round down to a multiple of 2^{-h} .

Each iteration of GNM can be computed in P-time by solving an LP.

Algorithm for max/minPPSs

• Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$. Checking $q_i^* = 0$ is again easy.

Theorem ([E.-Yannakakis'06]) Checking $q_i^* = 1$ is decidable in P-time using linear programming.

(Reduces, with some work, to a spectral radius optimization problem for non-negative square matrices.)

② On the resulting system of equations, run Generalized Newton's Method, starting from $\mathbf{0}$. After each iteration, round down to a multiple of 2^{-h} .

Each iteration of GNM can be computed in P-time by solving an LP.

Theorem [E.-Stewart-Yannakakis'12]

Given a max/minPPS $\mathbf{x}=P(\mathbf{x})$ with LFP $\mathbf{0}<\mathbf{q}^*<\mathbf{1}$, if we apply rounded GNM starting at $\mathbf{x}^{(0)}=\mathbf{0}$, using h:=4|P|+j+1 bits of precision, then $\|\mathbf{q}^*-\mathbf{x}^{(4|P|+j+1)}\|_{\infty}\leq 2^{-j}$.

Thus, algorithm runs in time polynomial in |P| and j.

Proof outline: some key lemmas

 $(1 - q^*)$ is the vector of pessimal survival probabilities.

Lemma

If
$$\mathbf{q}^* - \mathbf{x}^{(k)} \le \lambda (\mathbf{1} - \mathbf{q}^*)$$
 for some $\lambda > 0$, then $\mathbf{q}^* - \mathbf{x}^{(k+1)} \le \frac{\lambda}{2} (\mathbf{1} - \mathbf{q}^*)$.

Lemma

For any Max(Min) PPS with LFP \mathbf{q}^* , such that $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, for any i, $q_i^* \leq 1 - 2^{-4|P|}$.

Qualitative and Quantitative extinction problems for BSSGs

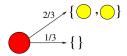
Theorem ([E.-Yannakakis'06])

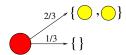
Given a BSSG, deciding if the extinction value is $q_i^* = 1$ is in NP \cap coNP.

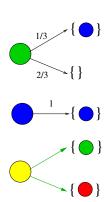
And, it is at least as hard as computing the exact value for a finite-state SSG.

Theorem ([E.-Stewart-Yannakakis'12])

Given a BSSG extinction game, and given $\epsilon > 0$, we can compute a vector $v \in [0,1]^n$, such that $\|v-q^*\|_{\infty} \le \epsilon$, and we can compute ϵ -optimal static strategies in **FNP** (and in **PLS**).

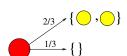


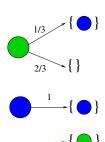




Question

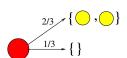
What is the maximum (actually supremum) probability of reaching , starting with one ?

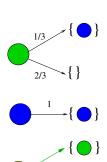




Same Question (rephrased)

What is the infimum probability of not reaching , starting with one ?

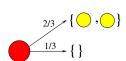


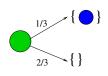


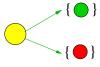
Same Question (rephrased)

What is the infimum probability of not reaching , starting with one ?

$$y_R =$$







Same Question (rephrased)

What is the infimum probability of not reaching , starting with one ?

$$y_R = \frac{2}{3}y_Yy_Y + \frac{1}{3}$$

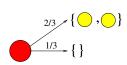
$$y_G = \frac{2}{3}$$

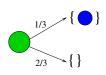
$$y_Y = \min\{y_G, y_R\}$$

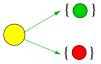
We get fixed point equations, $\bar{\mathbf{y}} = Q(\bar{\mathbf{y}})$.

Thm. [E.-Stewart-Yannakakis'15]

The supremum reachability probabilities are $\mathbf{1} - \mathbf{g}^*$, where $\mathbf{g}^* \in [0,1]^3$ is the GREATEST FIXED POINT, of $\bar{\mathbf{y}} = Q(\bar{\mathbf{y}})$.







Question

What is the maximum probability of not reaching , starting with one ?

$$y_{R} = \frac{2}{3}y_{Y}y_{Y} + \frac{1}{3}$$

$$y_{G} = \frac{2}{3}$$

$$y_{Y} = \max\{y_{G}, y_{R}\}$$

We get fixed point equations, $\bar{\mathbf{y}} = Q(\bar{\mathbf{y}})$.

Thm. [E.-Stewart-Yannakakis'15]

The minimum reachability probabilities are $\mathbf{1}-\mathbf{g}^*$, where $\mathbf{g}^*\in[0,1]^3$ is the GREATEST FIXED POINT of $\bar{\mathbf{y}}=Q(\bar{\mathbf{y}})$.

P-time approximation of optimal reachability probability for BMDPs

Theorem ([E.-Stewart-Yannakakis, 2015])

Given a max/minPPS, $\mathbf{y} = Q(\mathbf{y})$, with GFP $\mathbf{g}^* \in [0,1]^n$, we can compute a rational vector $\mathbf{v} \in [0,1]^n$ such that

$$\|\mathbf{v} - \mathbf{g}^*\|_{\infty} \le 2^{-j}$$

in time polynomial in the encoding size |Q| of the equations, and in j.

We again establish this via Generalized Newton's Method.

Algorithm for GFP of max/minPPSs

- Find and remove all variables x_i such that $g_i^* = 1$. (This can be done in P-time, by qualitative analysis of $\mathbf{y} = Q(\mathbf{y})$.)
- ② Interestingly, we do not need to eliminate the variables x_i such that $g_i^* = 0$. (And we do not want to eliminate variables with $q_i^* = 0$.)
- **3** On the resulting system of equations, run Generalized Newton's Method, starting from $\mathbf{0}$. After each iteration, round down to a multiple of 2^{-h} .
- Amazingly this works! Note the very subtle difference with the algorithm for approximating the LFP of the same max/minPPS.

Algorithm for GFP of max/minPPSs

- Find and remove all variables x_i such that $g_i^* = 1$. (This can be done in P-time, by qualitative analysis of $\mathbf{y} = Q(\mathbf{y})$.)
- ② Interestingly, we do not need to eliminate the variables x_i such that $g_i^* = 0$. (And we do not want to eliminate variables with $q_i^* = 0$.)
- **3** On the resulting system of equations, run Generalized Newton's Method, starting from $\mathbf{0}$. After each iteration, round down to a multiple of 2^{-h} .
- Amazingly this works! Note the very subtle difference with the algorithm for approximating the LFP of the same max/minPPS.

Theorem [E.-Stewart-Yannakakis'ICALP15]

Given a max/minPPS $\mathbf{x}=P(\mathbf{x})$ with GFP $\mathbf{0}\leq\mathbf{g}^*<\mathbf{1}$, if we apply rounded GNM starting at $\mathbf{x}^{(0)}=\mathbf{0}$, using h:=4|P|+j+1 bits of precision, then $\|\mathbf{g}^*-\mathbf{x}^{(4|P|+j+1)}\|_{\infty}\leq 2^{-j}$.

Thus, algorithm runs in time polynomial in |P| and j.

Qualitative & quantitative reachability for BSSGs

Theorem [E.-Stewart-Yannakakis'ICALP15]

- The value of a BSSG reachability game is captured by the GFP of max-minPPS.
- The player minimizing reachability probability has a static positional optimal strategy. But, already for BMDPs, the player maximizing it may have no optimal strategy at all, only ϵ -optimal (randomized-static, or deterministic-memoryful) strategies.
- We can approximate the value, and compute ϵ -optimal stratgies, for a BSSG reachabilty game in FNP. (For BMDPs, we can compute ϵ -optimal strategies in P-time.)
- For BSSG reachability games, limit-sure = almost-sure, and we can
 an answer all qualitative questions in P-time for BSSG reachability
 games, including compute qualitative-optimal (not static) strategies.
 (Note: This contrasts sharply with qualitative extinction, which is as
 hard as computing the value of finite-state SSGs [E.-Yannakakis'05].)

Conclusion

We have established P-time algorithms for a number of fundamental quantitative and qualitative analysis problems for Branching MDPs (and related results for Branching SSGs), including for:

- optimal extinction probabilities
- optimal reachability probabilities
- optimal expected total progeny size and "weight" ([E.-Wojtczak-Yannakakis'08], which I didn't speak about.)

Many open questions remain. For example:

- Quantitative CTL model checking of BMDPs: Given BMDP, M, start color c, and CTL formula φ over the color alphabet, compute: $\sup_{\sigma \in Strategy} Pr(\operatorname{Tree}_c^{\sigma}(M) \models \varphi)$. (Our results only imply computability for fragments of CTL.)
- Multi-player branching stochastic games? We know nothing!

Papers

- K. Etessami, A. Stewart, and M. Yannakakis. Polynomial time algorithms for multi-type branching processes and stochastic context-free grammars. Proceedings of STOC, 2012. Full version: arXiv:1201.2374
- K. Etessami and M. Yannakakis. Recursive Markov decision processes and recursive stochastic games. Journal of the ACM, 62(2):169, 2015.
- K. Etessami, A. Stewart, and M. Yannakakis. Polynomial time algorithms for Branching Markov Decision Processes and Probabilistic Min/Max Polynomial Bellman Equations. Proceedings of ICALP, 2012. Full version: arXiv:1202.4798
- K. Etessami, A. Stewart, and M. Yannakakis. Greatest Fixed Points of Probabilistic Min/Max Polynomial Bellman Equations, and Reachability for Branching Markov Decision Processes. Proceedings of ICALP, 2015. Full version: arXiv:1502.05533
- K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations. Journal of the ACM, 56(1), 2009.
- ► K. Etessami and M. Yannakakis. Recursive Concurrent Stochastic Games. LMCS, 4(4), 2008.
- K. Etessami, D. Wojtczak, and M. Yannakakis. Recursive Stochastic Games with Positive Rewards. ICALP'08. Full version:

http://homepages.inf.ed.ac.uk/kousha/
Other related papers accessible from my web page.