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A few provocative quotes

“ In general, a game may have several equilibria. Yet uniqueness
is crucial . . .. Nash equilibrium makes sense only if each player knows
which strategies the others are playing; if the equilibrium recommended
by the theory is not unique, the players will not have this knowledge. ”

– Robert J. Aumann (foreword to Harsanyi & Selten’s book)

“ In comparative statics . . . we study the response of our
[market] equilibrium to designated changes in the parameters. ”

– Paul A. Samuelson (Foundations of Economic Analysis)

“ Post the 2008-09 crisis, the world economy is pregnant with
multiple equilibria. ”

“ . . . it may not take much . . . to move from the good to the bad
equilibrium. ”

– Olivier Blanchard, IMF Chief Economist (IMF Blog, 2011-13)
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A few provocative quotes

“A characteristic feature [of] economics is that for us the equations of
equilibrium constitute the center of our discipline. By contrast, other
sciences put more emphasis on the dynamic laws of change. The reason...
is that economists are good at recognizing a state of equilibrium, but are
poor at predicting precisely how an economy in disequilibrium will
evolve...”

– Mas-Colell, Whinston, & Green (Microeconomic Theory)
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Ok, let’s wish away the multiple equilibria, for now

What is the complexity of the following search problem?

Given a 2-player bimatrix game, Γ, with the promise that Γ has a unique
Nash equilibrium (NE), compute that unique NE.

Answer:

We do not know. (It is in PPAD, but unlikely to be PPAD-hard.)

(N.B. Ruta Mehta has made nice progress recently toward this question.
We will revisit it later, when we discuss open problems and conjectures.)

What about for 3-player games with a unique NE?

Given a 3-player normal form game, Γ, with the promise that it has a
unique NE, compute any vector with `∞-distance ≤ 1/2− ε from
the unique NE.

Answer: This is “hard”: even placing it in FNP would resolve long
standing open problems in arithmetic-vs.-Turing complexity.(PosSLP-hard.)
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What about for market equilibrium?

Given a Arrow-Debreu exchange economy, with n commodities, and with
market excess demands given by nonlinear functions (satisfying Walras’s
law and homogeneity of degree 0), and with the promise that there is a
unique (normalized) market price equilibrium, compute any vector with
`∞-distance ≤ 1/2− ε from the unique market equilibrium.

Answer:

Again, this is “hard”: PosSLP-hard.
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What makes an equilibrium/fixed point problem “hard”??

Note: These problems are in general not NP-hard, because existence of a
solution (equilibrium/fixed point), is guaranteed by a classic fixed point
theorem (e.g., Brouwer’s, Kakutani’s, Banach’s, Tarski’s, . . .).

PPAD-hardness captures a combinatorial difficulty for
computing/approximating an equilibrium or fixed point.

But there can also be another, numerical, difficulty for approximating
a (real-valued) equilibrium or fixed point, which is
not captured by PPAD-hardness.

It is captured by “PosSLP-hardness”.

These two kinds of difficulties are somewhat “orthogonal”.

FIXP(a)-complete problems have both of these difficulties.
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Rich landscape within FIXP:
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Outline of tutorial

Background: Games, Equilibria, Brouwer Fixed Points.

“Almost” vs. “Near” approximation of Fixed Points.

Scarf’s classic algorithm for “Almost”-approximation of a fixed point.

The complexity class PPAD, and “Almost” approximation.

PPAD-completeness results for ε-almost-Nash, and 2-player-Nash.

Hardness of “Near” approximation: arithmetic circuits & PosSLP.

The complexity classes FIXP and FIXPa.

3-player Nash ( approx-Nash ) is FIXP(a)-complete.

linear-FIXP = PPAD.

Many other FIXPa approximation problems:
Market price equilibria,
(Branching) stochastic processes/games,
Recursive Markov Chains, . . ..

Open problems and future challenges.
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Nash Equilibria

A mixed strategy profile x is called:

a Nash Equilibrium (NE) if:
∀ players i , and all mixed strategies yi : Ui (x) ≥ Ui (x−i ; yi )

In other words: No player can increase its own payoff by unilaterally
switching its strategy.

a ε-Nash Equilibrium (ε-almost-NE), for ε > 0, if:
∀ players i , and all mixed strategies yi : Ui (x) ≥ Ui (x−i ; yi )− ε
In other words: No player can increase its own payoff by more than ε
by unilaterally switching its strategy.

Theorem (Nash, 1950)

Every finite game has a Nash Equilibrium.
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Nash’s proof

Brouwer’s fixed point theorem

Every continuous function F : D 7→ D from a compact convex set D ⊆ Rm

to itself has a fixed point: x∗ ∈ D, such that F (x∗) = x∗.

The NEs of a finite game, Γ, are precisely the fixed points of the
following Brouwer function FΓ : X 7→ X :

FΓ(x)(i ,j) =
xi ,j + max{0, gi ,j(x)}

1 +
∑mi

k=1 max{0, gi ,k(x)}
where gi ,j(x)

.
= Ui (x−i ; j)− Ui (x).

Note: gi ,j(x) are polynomials in the variables in x , and they measure:

So, FΓ(x) is expressed by a formula using gates {+,−,×, /,max,min}.
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Question

What is the complexity of the following search problem:

(“Near”) ε-approximation of a Nash Equilibrium:
Given a finite (normal form) game, Γ, with 3 or more players,
and given ε > 0, compute a rational vector x ′ such that there is
some Nash Equilibrium x∗ of Γ with:

‖x∗ − x ′‖∞ < ε

Note:

This is not the same thing as asking for an ε-almost-NE.
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Almost vs. Near approximation of Fixed Points

2-player finite games always have rational NEs, and there are
algorithms for computing an exact rational NE in a 2-player game
(Lemke-Howson’64).

For games with ≥ 3 players, all NEs can be irrational (Nash,1951).
So we can’t hope to compute one “exactly”.

Two different notions of ε-approximation of fixed points:

(Almost) Given F : ∆n 7→ ∆n, compute x ′ such that:

‖F (x ′)− x ′‖ < ε

(Near) Given F : ∆n 7→ ∆n, compute x ′ s.t. there exists x∗ where
F (x∗) = x∗ and:

‖x∗ − x ′‖ < ε
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Scarf’s classic algorithm

Scarf (1967) gave a beautiful algorithm (refined by Kuhn and others) for
computing a ε-(Almost) fixed point of a given Brouwer function
F : ∆n 7→ ∆n:

1 Subdivide the simplex ∆n into “small” subsimplices of diameter δ > 0
(δ depending on ε and on the “modulus of continuity” of F ).

2 Color every vertex, z, of every subsimplex with a color i such that
zi > 0 & F (z)i ≤ zi .

3 By Sperner’s Lemma there must exist a panchromatic subsimplex.
(And the proof provides a way to “navigate” toward such a simplex.)

4 Fact: If δ > 0 is chosen such that δ ≤ ε/2n and
∀x , y ∈ ∆n, ||x − y ||∞ < δ ⇒ ||F (x)− F (y)||∞ < ε/2n,
then all points in a panchromatic subsimplex are ε-almost fixed points.

5 They need not in general be anywhere near an actual fixed point.
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Sperner’s Lemma
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“Proof” of Sperner’s lemma

(Things are more involved in higher dimensions.)
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The underlying “directed lines” parity argument in Scarf’s algorithm

(The same combinatorial argument was also used by (Lemke-Howson’64)
for an algorithm for computing a 2-player Nash Equilibrium.)

actual PCS

extra BOGUS endpoint

actual PCS actual PCS

actual PCS

actual PCS
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ε-almost-NEs are ε-almost-fixed points

Proposition

For finite games, Γ, computing an ε-almost-NE is P-time equivalent to
computing a ε-almost-fixed point of Nash’s function FΓ.

Thus, to compute an ε-almost-NE, simply apply Scarf’s algorithm to FΓ.

It also follows from this that computing a ε-almost-NE is in PPAD.
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Standard definition of PPAD

Papadimitriou (1992) defined PPAD, based on the “directed line” parity
argument, to capture (almost) Nash and Brouwer, etc...

Definition

PPAD is the class of search problems polynomial-time reducible to:
Directed line endpoint problem: Given two boolean circuits, S
(“Successor”) and P (“Predecessor”), each with n input bits and n output
bits, such that P(0n) = 0n, and S(0n) 6= 0n, find a n-bit vector, z, such
that either: P(S(z)) 6= z or S(P(z)) 6= z 6= 0n.
(By the directed line parity argument such a z exists.)

PPAD lies somewhere between (the search problem versions of) P and NP.
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By Scarf’s algorithm, computing a ε-almost-NE is in PPAD.

Theorem
1 [Daskalakis-Goldberg-Papadimitriou’06], [Chen-Deng’06]:

Computing a ε-NE for a 3 player game is PPAD-complete.

2 [Chen-Deng’06]:
Computing an exact (rational) NE for a 2 player game is

PPAD-complete.

But what if we want to do near approximation of a 3-player NE, or near
approximation of a fixed point?

Scarf’s algorithm does not in general yield something ε-near a fixed point.
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Why care about near approximation of equilibria/fixed points?

For many problems, the goal is to approximate a specific quantity which
happens to be given by the (unique) Brouwer fixed point of some function.

Examples:
–the value of Shapley’s Stochastic Games (or Condon’s Simple S.G.’s) ;
–the (optimal) extinction probability (or value) of a

Branching (Markov Decision) Processes and Branching S. G.’s;
–the termination probability of a Recursive Markov chain;
–the unique market equilibrium in certain specific kinds of markets;
–the unique (refined) equilibrium of specific kinds of games;

In these contexts, an “almost” fixed point may tell us nothing about the
unique fixed point that we are after.
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A basic upper bound for Near ε-approximation of Nash

Proposition

Given game Γ and ε > 0, we can ε-Near approximate a NE in PSPACE.

Proof.

For Nash’s functions, FΓ, the expression

∃x(x = FΓ(x) ∧ a ≤ x ≤ b)

can be expressed as a formula in the Existential Theory of Reals (ETR).
So we can Near ε-approximate an NE, x∗ ∈ ∆n, in PSPACE, using
log(1/ε)n queries to a PSPACE decision procedure for ETR
([Canny’89],[Renegar’92]).
(These are deep, but thusfar impractical algorithms.)

Can we do better than PSPACE?
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two hard problems

Sqrt-Sum: the square-root sum problem is the following decision problem:
Given (d1, . . . , dn) ∈ Nn and k ∈ N, decide whether

∑n
i=1

√
di ≤ k .

Solvable in PSPACE.
Open problem ([GareyGrahamJohnson’76]) whether it is in NP (or even
the polynomial time hierarchy).

PosSLP: Given an arithmetic circuit (Straight Line Program) with gates
{+, ∗,−}, with integer inputs, decide whether the output is > 0.
PosSLP captures all of polynomial time in the unit-cost arithmetic RAM
model of computation.

[Allender, Bürgisser, Kjeldgaard-Pedersen, Miltersen,2006] Gave a (Turing)
reduction from Sqrt-Sum to PosSLP and showed both can be decided in

the Counting Hierarchy: PPPPPPP

. Nothing better is known.
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why isn’t PosSLP easy??

7 14 8 9 12

*

*

+ +

*

−

Note: even the much easier EquSLP (“equal to 0”) is P-time equivalent
to polynomial identity testing (PIT/ACIT), as shown by [ABKM’06].
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Sqrt-Sum & PosSLP ≤p Near approximation of NE

Theorem ([E.-Yannakakis’07])

Any non-trivial Near approximation of an NE is PosSLP-hard.

More precisely: for every fixed ε > 0,
PosSLP is P-time reducible to the following problem:

Given a 3-player normal form game, Γ, with the promise that:

1 Γ has a unique NE, x∗, which is fully mixed, and

2 In x∗, the probability that player 1 plays pure strategy α is either:

(a.) < ε , or (b.) ≥ (1− ε)

Decide which of (a.) or (b.) is the case.
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ε-almost-NEs can be very far from actual NEs

Proposition ([E.-Yannakakis’07])

There are constants c , c ′ > 0, such that for any n ∈ N+, there is a game,
Γn, with encoding size Θ(n), which has a(

1

22c′nc

)
-almost-NE

which has `∞-distance 1 from the (unique) NE of Γn.

Note: This is the worst `∞-distance possible.
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The complexity class FIXP ( and FIXPa )

FIXP ( FIXPa ) is a class of real-valued (discrete) total search problems:

FIXP ( FIXPa )

Input: algebraic circuit (straight-line program) over basis
{+, ∗,−, /,max,min} with rational constants, having n input
variables and n outputs, such that the circuit represents a continuous
function F : [0, 1]n 7→ [0, 1]n.
(The domain can be much more general than [0, 1]n.)

Output: Compute a (ε-near approximate) fixed point of F .

Close these problems under suitable (P-time) reductions.
The resulting class is called FIXP ( FIXPa ).
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Nash is FIXP-complete

Theorem ([E.-Yannakakis’07])

Computing (ε-near approximating ) a 3-player Nash Equilibrium
given the game (and given ε > 0) is:

FIXP-complete ( FIXPa-complete, respectively).

Theorem ([E.-Yannakakis’07])

The gates {+, ∗,max} are sufficient to capture all of FIXP(a).

Furthermore, allowing gates, k
√·, for fixed k, does not add any power to

FIXP(a).
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Very brief sketch of some proof ideas

Suppose, given a FIXP circuit C , we can create a (3-player) game
such that, in any NE, Player 1 plays strategy α with probability > 1/2
iff C > 0 and with probability < 1/2 iff C < 0.
(Assume wlog that C = 0 can’t happen.)

Add an extra player with 2 pure strategies, who gets payoff 1 if it
“guesses correctly” whether player 1 plays pure strategy α or not, and
payoff 0 otherwise.

In any NE, the new player will play one of its two pure strategies with
probability 1.
Deciding which of the two solves PosSLP.
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A key ingredient in our proofs

Two beautiful results by Bubelis:

Theorem (Bubelis, 1979)

1 Every real algebraic number can be “encoded” in a precise sense as
the payoff to player 1 in a unique NE of a 3-player game.

2 There is a general polynomial-time reduction from n-player games to
3-player games.
Such that you can easily recover a (real valued) NE of the n-player game as

a separable-linear function of a given NE in the resulting 3-player game.
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Many details in the proof of FIXP-completeness:

A series of transformations to get circuits into a “normal form”.

Transform circuit to a game with a large (but bounded) number of
players, using suitable gadgets.
All key gadgets can be derived from (Bubelis’79)’s constructions.

(Alternatively, the gadgets of (Golberg-Papadimitriou’06),
(Daskalakis-Golberg-Papadimitriou’06), (Chen-Deng’06) can also be
used.)

Reduce to 3-players: again use (Bubelis ’79).
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Alternative characterizations of PPAD

Let linear-FIXP denote the subclass of FIXP where the algebraic circuits
are restricted to gates {+,max} and multiplication by rational constants.

Theorem ([E.-Yannakakis’07])

The following are all P-time equivalent:

1 PPAD

2 linear-FIXP

3 exact fixed point problem for “polynomial piecewise-linear functions”.

4 ε-“Almost”-fixed point problem for “polynomially computable” and
“polynomially continuous” functions, FI (x), given by input instance I ,
and given also ε > 0 as input (in binary).

5 [R. Mehta, 2014]: 2-variable-linear-FIXP (!!)
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Recursive Markov Chains

entry

exit1

exit2

A A A
3
4

1
4

1 1

1
3

2
3

1

What is the probability of terminating at exit2, starting at entry?

x2 =

Kousha Etessami (U. Edinburgh) probability, recursion, games, fixed points Horizons in TCS 2 / 3



Recursive Markov Chains

entry

exit1

exit2
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1

What is the probability of terminating at exit2, starting at entry?

x2 =
1

4
+

1

2
x2
2 +

1

2
x1x2 (Note: coefficients sum to > 1)

x1 =
3

4
x2
1 +

3

4
x2x1 +

1

4
x1x2 +

1

4
x2
2

Fact: The Least Fixed Point (LFP), q∗ ∈ [0, 1]n , gives the termination
probabilities.
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approximation for Recursive Markov chains

Theorem
1 [EY07]: Any non-trivial (near) approximation of the termination

probabilities q∗ of an RMC is PosSLP-hard.

In fact, deciding whether (a.) q∗1 = 1 or (b.) q∗1 < ǫ, is PosSLP-hard.

2 [ESY12]: ǫ-(near)-approximation of q∗ is in FIXPa.

(Can be reduced to a unique Brouwer fixed point problem.)

3 [EY’05]: But there appears to be no combinatorial difficulty for
approximating q∗: a decomposed Newton’s method converges
monotonically, starting from 0, to q∗.
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Branching Markov Decision Processes
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Branching Markov Decision Processes
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{ , }

}

{ , ,
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Question

What is the maximum probability of

extinction, starting with one ?

xR =
1

3
x2

BxGxY +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx2

R

xY = max{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Fact [E.-Yannakakis’05]

The maximum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).

Kousha Etessami (U. Edinburgh) Complexity of Equilibria & Fixed Points Dagstuhl 34 / 51



Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Question

What is the maximum probability of

extinction, starting with one ?

xR =
1

3
x2

BxGxY +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx2

R

xY =

max{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Fact [E.-Yannakakis’05]

The maximum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).

Kousha Etessami (U. Edinburgh) Complexity of Equilibria & Fixed Points Dagstuhl 34 / 51



Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Question

What is the maximum probability of

extinction, starting with one ?

xR =
1

3
x2

BxGxY +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx2

R

xY = max{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Fact [E.-Yannakakis’05]

The maximum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).

Kousha Etessami (U. Edinburgh) Complexity of Equilibria & Fixed Points Dagstuhl 34 / 51



Branching Markov Decision Processes
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Question

What is the minimum probability of

extinction, starting with one ?
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1
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xB =
1

4
x2

R +
3

4
xG = xBx2

R

xY = min{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Fact [E.-Yannakakis’05]

The minimum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).
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Max-Probabilistic Polynomial Systems of Equations

A Max-Probabilistic Polynomial System (maxPPS) is a system

xi = max{pi ,j(x) : j = 1, . . . ,mi} i = 1, . . . , n

of n equations in n variables, where each pi ,j(x) is a probabilistic
polynomial. We denote the entire system by:

x = P(x)

Min-Probabilistic Polynomial Systems (minPPSs) defined similarly.

These are Bellman optimality equations for maximizing (minimizing)
extinction probabilities in a BMDP.

We use max/minPPS to refer to either a maxPPS or an minPPS.
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Basic properties of max/minPPSs, x = P(x)

P : [0, 1]n → [0, 1]n defines a monotone map on [0, 1]n.

Proposition. [E.-Yannakakis’05]

Every max/minPPS, x = P(x) has a least fixed point, q∗ ∈ [0, 1]n.

q∗ = limk→∞ Pk(0).

q∗ is the vector of optimal extinction probabilities for the BMDP.

[EY’07] Deciding whether q∗1 > 1/2 is PosSLP-hard.

[ESY’12] ε-Near approximation of q∗ is in FIXPa.
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P-time approximation for BMDPs and max/minPPSs

Theorem ([E.-Yannakakis’06])

Given a BMDP, deciding whether the optimal (max or min) extinction
probability is q∗i = 1 is in P-time.

Reduces to a spectral radius optimization problem for non-negative
matrices (solvable using LP).

Theorem ([E.-Stewart-Yannakakis,2012])

Given a BMDP, or max/minPPS, x = P(x), with LFP q∗ ∈ [0, 1]n, we can
compute a rational vector v ∈ [0, 1]n such that

‖v − q∗||∞ ≤ 2−j

in time polynomial in the encoding size |P| of the equations, and in j.

We establish this via a Generalized Newton’s Method that uses linear
programming in each iteration.
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Branching Simple Stochastic Games (BSSGs)

Both Max and Min types (two players): their goal is to maximize
(minimize) extinction probability. We again get max-&-min-PPS equations
whose LFP gives the game value.

Condon’s finite-state Simple Stochastic Games (SSGs) are a special case.

Theorem

Given a BSSG,

1 [EY’06]: deciding whether extinction value q∗1 = 1 is in NP ∩ coNP.
And it is at least as hard as computing the exact value of Condon’s
finite-state SSG.

2 [ESY’12]: Given ε > 0, computing a vector v ∈ [0, 1]n, such that
‖v − q∗‖∞ ≤ ε, is in FIXPa, and in PLS.

(But we still do not know whether it is in PPAD.)
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Shapley’s Stochastic Games (Shapley, 1953)

2-player, zero-sum, imperfect information, discounted stochastic games.

1 finite state space, finite move alphabet.

2 Starting in a given state, at each round both players (independently),
choose a move, or a probability distribution on moves. Their joint
move determines a probability distribution on the next state, and a
reward to player 1.

3 The rewards after each round are discounted by given factor
0 < β < 1, and the total discounted reward to player 1 is sum

∑
i β

i ri .

The value of Shapley’s games (which can be irrational) can be
characterized by fixed point equations, x = P(x), where P(x) is a
contraction map.
There is a unique Banach fixed point (which can be irrational), which
yields the game value starting at each state.
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Theorem ([E.-Yannakakis’07])

For Shapley’s stochastic games:

1 Computing the game value is in FIXP.

2 The (Near) approximation problem for the game value is in PPAD.

3 The decision problem (is the game value ≥ r?) is SqrtSum-hard.

Proof.

Sketch Proof of part (2.): P(x) is a “fast enough” contraction mapping.
For such mappings, ε-“Almost” fixed points are “close enough” to the
actual Banach fixed point. P(x) is a Brouwer function on a “not too big”
domain.
Thus: apply Scarf’s algorithm to P(x).

Note: this also implies computing the value of Condon’s SSGs is in PPAD.
But this can be shown more easily by observing unique linear-FIXP
equations for the value of SSGs. (Cf. also, [Juba, MSc. thesis, 2005].)
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Market (Price) Equilibria

Price Equilibria in Exchange Economies

An idealized exchange economy with n agents and m commodities.

Each agent j starts off with an initial endowment of commodities
wj = (wj ,1, . . . ,wj ,m).

For a given price vector, p ≥ 0, each agent j has an demand function
d j
i (p) for commodity i .

It will choose its demands to maximize its utility using the budget
obtained by selling all its endowment wj at the price vector p.
Under certain conditions (e.g., continuity and strict quasi-concavity of
utilitity functions) demands are uniquely determined continuous
functions of the utilities of the agents.
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Excess demands, Walras’s law, etc.

From the demand functions we directly get excess demand functions:
g j
i (p) = d j

i (p)− wj ,i , for agent j and commodity i .

The total excess demand for commodity i is gi (p) =
∑

j g j
i (p).

Excess demands are continuous and satisfy economically justified
axioms:

(Homogeneous of degree 0): For all α > 0, p ≥ 0, g l
i (αp) = g l

i (p).
(So, we can w.l.o.g. consider only “normalized” price vectors in ∆m.)
(Walras’s law):

∑
i pigi (p) = 0.

Excess demand functions can be quite arbitrary continuous functions
(Sonnenschein-Mantel-Debreu,1973-74).
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Price Equilibrium

A vector of prices p∗ ≥ 0 such that gi (p∗) ≤ 0 for all i (= 0 if p∗i > 0).

Theorem ((Arrow-Debreu’54) proved a much more general fact)

Every exchange economy has a price equilibrium.

The proof is via Brouwer’s fixed point theorem. (And for more general
market equilibrium results (including with production, etc.), it is via the
closely related Kakutani fixed point theorem.)
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Theorem

Computing (approximating) a price equilibrium for an exchange economy
with demands given by {+,−, ∗, /,max}-circuits is FIXP(a)-complete.

Proof.

One direction of proof is via the following variant of Nash’s function:

H(p)i =
pi + max{0, gi (p)}

1 +
∑m

j=1 max{0, gj(p)}
where gi (x) is the total excess demand for commodity i .
The (Brouwer) fixed points of H(p) are the price equilibria of the economy.
The other direction (Uzawa (1962)): given Brouwer function
F : ∆n 7→ ∆n, define total excess demand function g : ∆n 7→ Rn by

g(p) = F (p)− (
〈p,F (p)〉
〈p, p〉 )p

g(p) satisfies excess demand axioms. The price equilibria of g(p) are the
fixed points of F (p).
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Conclusions: Some open problems

Open Problem 1: unique fixed points and Nash equilibria

Question 1: What is the complexity of computing the NE of a 2-player
normal form game with a unique NE?

Conjecture 1: At least as hard as computing the value of Condon’s SSGs,
and, more generally, at least as hard as computing the fixed point of any
linear-FIXP function with a unique fixed point.

Remark: This does not follow from PPAD-completeness results. Both
[Chen-Deng’06]’s and [Daskalakis-Goldberg-Papadimitriou’06]’s reductions
go through ε-NEs, so uniqueness is lost.

Remark: [R. Mehta, 2014]: new PPAD-completeness proof, reduces
unique-linear-FIXP to 2-player games with a convex set of NEs.
Remark: For 3 or more players ([E.-Yannakakis’07]) our
FIXP-completeness reductions similarly almost preserve uniqueness (but
not quite!): 1-to-1 correspondence between fixed points & player 1’s mixed
strategies in NEs.
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Open problems

In many settings, one can establish the existence of a unique market
(price) equilibrium.

One classic setting is a Arrow-Debreu exchange economy satisfying
weak gross substitutes ( WGS).

[Arrow-Block-Hurwicz’1959] showed these have a unique price equilibrium.

[Codenotti et. al., 2005] showed that one can compute a
ε-“Almost”-equilibrium for a WGS economy in P-time.

Open Problem 1b: unique price equilibrium for WGS economies

Question 1b: Can one ε-Near-approximate the (unique) price equilibrium
for a WGS exchange economy in P-time?

(Such a Near approximation might already be PosSLP-hard.
We don’t know.)
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Open problems

Open problem 2: complexity of PosSLP and unit-cost-P-time

Question 2: Can we obtain any better upper bounds for PosSLP??

Here is one basic (and probably bad) idea:
Given a {+,−, ∗}-circuit, C , guess a monotone {+, ∗}-circuit, C ′, as a
“Witness of positivity”, and verify that C − C ′ = 0 in co-RP.
(Checking equality to 0 is PIT-equivalent ([ABKM’06]).)

Conjecture 2: This does not work. In other words (surely!) ∃ a family of
positive integers, 〈An〉n∈N, such that An has encoding size O(n) as a
{+,−, ∗}-circuit, but requires size 2Ω(n) monotone {+, ∗}-circuits.

Current state of knowledge is abismal. (We don’t even know super-linear
lower bounds.)
This is despite the fact that [Valiant’79] proved an exponential lower
bound for monotone polynomials.
(This doesn’t imply a lower bound in the integer setting.)
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Open problems

Open problem 2: complexity of PosSLP and unit-cost-P-time

Question 2: Can we obtain any better upper bounds for PosSLP??

Definition: call a circuit, C ′, quasi-monotone if it consists of some squared
{+, ∗,−}-subcircuits, which are inputs to a monotone {+, ∗}-circuit.

Same idea: Given a {+,−, ∗}-circuit, C , guess a pair of quasi-monotone
circuits C ′,C ′′ as a “witness of positivity” for C , & verify the equality
((C ′ + 1) ∗ C − C ′′) = 0 in co-RP. Checking equality is in fact
PIT-equivalent ([Allender,et. al.’06]).

Conjecture 3: This works. There always exists poly-sized witness
quasi-monotone circuits. More formally: For every positive integer
expressed by a {+,−, ∗}-circuit, C , there are quasi-montone circuits C ′

and C ′′ of size poly(|C |), such that val((C ′ + 1) ∗ C ) = val(C ′′).

Remark: This would imply that PosSLP ∈MA, and if we also knew that
PIT ∈ P, then it would further imply PosSLP ∈ NP.
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Open problems

Open problem 3: how many variables are needed for FIXP??

Recall: [Mehta’14]: linear-FIXP = 2-variable-linear-FIXP

Question 3: Is FIXP = 3-variable-FIXP ?? (or k-variable-FIXP, for any
fixed k?)

Note: If boundedly many variables suffice, it requires k-variable circuits,
not formulas: fixed points of k-variable formulas, for fixed k, can be
approximated in P-time (using decision procedures for the existential
theory of reals).
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Open problems

Open problem 4: complexity of FIXP and NPR
Question 4: Can we get any better upper bound than PSPACE for FIXPa?

Conjecture 4 (wildly optimistic wishful thinking):

The existential theory of reals is decidable in NPPosSLP .

Remark: Would imply the (discrete) BSS class NPR is equal to NPPosSLP .

Would also imply that FIXPa ⊆ FNPPosSLP .

Conjectures 3 & 4 together would imply (discrete) NPR ⊆ PH.
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