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Abstract. This chapter surveys some basic algorithms for analyzing Markov chains (MCs) and
Markov decision processes (MDPs), and discusses their computational complexity. We focus on
discrete-time processes, and we consider both finite-statemodels as well as countably infinite-state
models that are finitely-presented. The analyses we will primarily focus on are hitting (reachability)
probabilities andω-regular model checking, but we will also discuss various reward-based analyses.

Although it may not be evident at first, there are fruitful connections between automata theory
and stochastic processes. Firstly, and not surprisingly,ω-automata play a naturally important role
for specifyingω-regular properties of sample paths (trajectories) of stochastic processes. Com-
puting the probability of the event that a random sample pathsatisfies a givenω-regular property
constitutes the (linear-time) model checking problem for probabilistic systems.

Secondly, it turns out that there are close relationships between classic infinite-state automata-
theoretic models and classic denumerably infinite-state stochastic processes, even though these
models were developed independently in separate mathematical communities. Roughly speaking,
some classic stochastic processes share their underlying state transition systems with corresponding
classic automata-theoretic models. Furthermore, exploiting these connections to automata theory
is fruitful for the algorithmic analysis of such stochasticprocesses, and for their controlled MDP
extensions. This holds even when the analyses are much simpler than model checking, such as
computing (optimal) hitting probabilities.

A number of important infinite-state stochastic models connected with automata theory can
be captured as (restricted fragments of)recursive Markov chainsand recursive Markov decision
processes, which are obtained by adding a natural recursion feature tofinite-state MCs and MDPs.
Key computational problems for analyzing classes of recursive MCs and MDPs can be reduced
to computing theleast fixed point(LFP) solution of corresponding classes ofmonotonesystems
of nonlinear equations. The complexity of computing the LFPfor such equations is a intriguing
problem, with connections to several areas of research in theoretical computer science.
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1 Introduction

Markov chains are a fundamental mathematical model for systems that evolve randomly
over time. They thus play a central role in stochastic modeling in many fields. In settings
where in addition to stochastic behavior we also allowcontrol (or non-determinism), so
that the system state evolves partly randomly and partly based on decisions by a controller,
the resulting model is called a Markov decision process (MDP). MDPs give rise to a
variety of stochastic dynamic optimization problems, depending on what objective the
controller wishes to optimize.

Historically, automata theory developed entirely separately from the theory of stochas-
tic processes and stochastic optimal control, with each developed by a separate mathemat-
ical community having distinct motives. It turns out, however, that there are fruitful con-
nections between these fields. In particular, a number of classic infinite-state automata-
theoretic models, such as one-counter automata, context-free grammars, and pushdown
automata, are in fact closely related to corresponding classic and well-studied countably
infinite-state stochastic processes. Roughly speaking, such automata-theoretic models
share the same (or, a closely related) underlying state transition system with correspond-
ing classic stochastic processes.

Upon reflection, it should not be entirely surprising that this is the case. After all,
Markov chains are nothing other than probabilistic state transition systems. In order for a
class of infinite-state Markov chains to be considered important, it should not only model
interesting real-world phenomena, but it should also hopefully be “analyzable” in some
sense. Better yet, its analyses should have reasonable computational complexity. But
these same criteria also apply to infinite-state automata-theoretic models: their relevance
is at least partly dictated by whether we have efficient algorithms for analyzing them.

Clearly, we can not devise effective algorithms for analyzing arbitrary finitely-presented
countably infinite-state transition systems. For example,Turing machines are clearly
finitely presented, but we can not decide whether a Turing machine halts, i.e., whether
we can reach the halting configuration from the start configuration. Furthermore, if we
considerprobabilistic Turing machines (PTMs), we easily see that there can not exist
any algorithm that computesany non-trivial approximationof the probability that a given
probabilistic Turing machine halts.

Researchers working on automata theory and on stochastic processes have, over time,
arrived at related classes of “analyzable” infinite-state transition systems, and they have
built automata-theoretic structure, or stochastic structure, upon them to suit their own
purposes. Let us mention a couple of examples. Consider the derivation graph of a
context-free grammar(CFG), in which states consist of sequences of terminals andnon-
terminals and with a simultaneous derivation law defining transitions between states, so
all non-terminals in a sequence are expanded at once according to rules associated with
those nonterminals. The state transition systems obtainedthis way are intimately related
to the underlying state transition systems ofmulti-type branching processes(BP), a classic
stochastic process ([33]). Basically, the transition system for the BP corresponding to a
CFG is the quotient of the CFG’s transition system under the equivalence that equates any
two sequences of terminals and nonterminals that contain the same number of occurrences
of each nonterminal symbol in them (see [28] for a detailed explanation).

Likewise, one-counter automatashare essentially the same state transition system
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with quasi-birth-death processes(QBDs) (see [21] for the details). QBDs are a class of
stochastic processes heavily studied in queuing theory, where the counter can basically be
used to keep track of the number of jobs in the queue. A generalization of QBDs, referred
to astree-like QBDsin the queuing theory literature, turns out to share its state transition
graphs withpushdown automata(again, see [21] for the precise correspondence).

The aforementioned stochastic models (in discrete-time) can all be formulated as sub-
cases, in precise ways, of a model obtained by adding a natural recursion feature to finite-
state Markov chains, calledrecursive Markov chains(RMCs) [28]. RMCs are also es-
sentially equivalent toprobabilistic pushdown systems[17] (see [28] for the precise sense
of this equivalence). RMCs and RMDPs constitute natural abstract models of the control
flow of probabilistic procedural programs with recursion.

Of course, being analyzable as automata does not automatically imply that the cor-
responding class of probabilistic transition systems or MDPs is also analyzable, nor the
other way around. For some classes of transition systems, effective/efficient “analyz-
ability” does coincide in the two settings, whereas for others it does not. We shall see
examples of both.

This chapter surveys some basic algorithmic results for theanalysis of Markov chains
(MCs) and Markov decision processes (MDPs), in both finite-state settings, as well as
in finitely presented countably-infinite state settings. Wewill consider a few different
analyses, focusing on computation of hitting (reachability) probabilities and on model
checking. But we will also discuss important reward-based analyses. We will also em-
phasize computational complexity considerations for the relevant problems. Finally, we
shall very briefly mention the extension from MDPs to stochastic games and give some
references to the relevant literature.

Algorithmic analyses of MCs and MDPs, including transient analyses, steady state
analyses, optimal reward analyses, and model checking, play an important role in many
application areas. A sampling of the many application areaswhere stochastic modeling
and analysis play a role includes: queueing theory, computational biology, natural lan-
guage processing, verification, economics, finance, and operations research in general.

Automata-theoretic models and methods come into play for analysis of stochastic sys-
tems in several ways. To begin with, we can view a Markov chainas a probabilistic
state transition system (or probabilistic automaton). Formodel checkingof MCs (and, re-
spectively, MDPs), one is interested in determining the (optimal) probability with which
a random walk on the MC (respectively, on the MDP using a chosen strategy for the
controller) satisfies a given temporal property. The temporal property may be specified,
for example, as a Linear Temporal Logic (LTL) formula, or as an ω-automaton. In the
latter case the connection to automata theory is very direct: the properties are given by
automata, or formalisms closely related to automata, so automata-theoretic methods are
largely unavoidable.

Even for classic analyses of MCs and MDPs, as already indicated, there are deeper
connections between the transition graphs of models studied originally in automata the-
ory, such as context-free grammars, one-counter automata,and pushdown automata, and
classic stochastic models that have been studied extensively in the stochastic processes
literature over many decades, such as (multi-type) branching processes and (quasi-)birth-
death processes.

Recently, these connections have been exploited to developefficient algorithms for
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analyzing such stochastic models, and to obtain results about the computational complex-
ity of such analyses. We will survey some of this work. The literature on analysis of such
Markov chains and MDPs is large and growing, even when restricted to aspects involv-
ing automata-theoretic connections. Thus, in this brief survey I can only hope to cover a
very limited selection of the many models and algorithms. Wewill restrict our attention
entirely to finite or countable-state discrete-time Markovchains (MCs) and MDPs.

After providing some basic background, in Section 2.1 we will define formally a num-
ber of important analysis problems for MCs and MDPs, and discuss carefully the different
computation and decision problems that they give rise to, and we give some examples of
analyses on finite-state MCs and MDPs in section 2.2, to help build the intuition of the
reader. We then proceed in subsequent sections to discuss algorithms for and complex-
ity of these analyses, beginning in section 3, then proceeding in section 4 to finite-state
MDPs. We then definerecursive Markov chainsandrecursive MDPsin section 5. As
already discussed, these recursive models subsume a numberof stochastic models and
MDPs which have tight automata-theoretic connections. We then briefly discuss algo-
rithms and complexity of analyzing RMCs and RMDPs, and provide pointers to the by
now large relevant literature.

One of the themes that will emerge in this survey is that for key analyses of both
finite-state MCs and MDPs, as well as for analysing classes ofinfinite-state recursive
MCs and MDPs, a basic ingredient in their algorithms will be to find a solution to a
corresponding system of equations. In the case of MDPs, these equations correspond
to the appropriateBellman optimality equationsfor the classes of MDPs involved. In
particular, in several settings we will need to find theleast fixed point(least non-negative)
solution to amonotonesystem of equations. As the models become richer, these systems
of equations become richer and more involved, e.g., going from linear to non-linear and
requiring richer sets of algebraic operators (e.g., going from operators{+} to {+,max},
or to {+, ∗}, and then to{+, ∗,max}, etc.). The computational complexity of finding
solutions to such systems of equations, which turn out to be very intriguing problems
with interesting connections to several areas of research,are thus intimately connected to
the computational complexity of basic analysis problems for such stochastic models.

Finally, although we do not have room to discuss it in this chapter, let us briefly men-
tion that one can also study the complexity of analysis problems for the extension of
MDPs tostochastic games. In particular, in a two-player zero-sum stochastic game, there
is not just one controller, but also anadversary, whose objective is the opposite of that of
the controller. Inturn-basedstochastic games, also referred to assimple stochastic games
(SSGs), and first studied by Condon [10], the two players control different states. Condon
[10] showed that deciding whether the value is> 1/2 for a given SSG with the objectives
of maximizing and minimizing the probability of hitting a target state for the two adver-
sarial players is in NP∩co-NP, and it is a major open problem whether this problem can
be decided in P-time. (The problem is well known to be at leastas hard as solvingparity
gamesandmean payoff games; see e.g. [46].) Although we shall not have room to dis-
cuss it this survey, we note that, again, key computational questions for stochastic games
boil down to finding a solution for certain equation systems,and again, these equations
become richer as the class of stochastic game models becomesricher, for example, going
from {+,max,min} to {+, ∗,max,min}, and to{+,Val} and to{+, ∗,Val}, whereVal

is thevalueoperatorVal(M) that gives the minimax value of a 2-player zero-sum matrix
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game with matrixM . Note thatVal clearly generalizes bothmax andmin. Equations
over{+,Val} were already used by Shapley [39] to characterize the value of his original
2-player zero-sum stochastic games (which, in the parlanceused in this paper, constituted
stochastic games with a discounted total payoff objective). Shapley’s discounted equa-
tions for these defined acontractionmapping whose Banach fixed point gives the value
of the stochastic game starting at each state. In other settings, e.g., in (concurrent) stochas-
tic reachability (hitting) games, the equations define amonotonemapping whose Tarski
least fixed pointdefines the value vector (note thatVal). These games further generalize to
infinite-state recursive settings and require monotone equations over{+, ∗,Val} for their
value [25]. The reader interested in learning more about thestochastic game extensions
of some of the models we discuss in this chapter can consult [30, 27, 22, 18].

Warning: This chapter iscertainly nota comprehensive survey of algorithms for
analysis and verification of Markov chains and MDPs and theirconnections to automata
theory. These are vast and rapidly growing subjects, with a huge existing theoretical and
practical literature. No comprehensive survey is feasiblenow, and it is not our intention to
attempt one. This chapter only highlights a few basic topics, based largely on the author’s
own research interests, focusing on some connections between probabilistic processes
and automata theory, and on recent research on algorithms for analyzing infinite-state
recursive probabilistic systems. We do not mention many important related subjects. For
example, we do not discuss existing software tools for analysis and model checking of
probabilistic systems. There are many; see, e.g. [34]. Also, some software already exists
for analysing recursive probabilistic systems; see, e.g.,[44]. We also do not mention
verification of probabilistic models againstbranching-timetemporal logics like PCTL
(see, e.g., Chapter 10 of [2] for one treatment of this in a textbook). We also do not
discuss probabilistic (bi)simulation and related topics (again, see Chapter 10 of [2] for a
brief treatment of this). There are many other topics related to both algorithms for analysis
of probabilistic processes and to automata theory that we shall not mention at all.

2 Definitions and Background

Although we will endeavour to provide most of the formal definitions needed for our
purposes, our subject is vast and we will need to assume some familiarity with basic
notions and facts from probability theory, the theory of Markov chains, and the theory
of Markov decision processes. For background on these topics the reader is referred, for
example, to the following excellent textbooks [9, 36, 38].

Recall that aσ-algebraover a setΩ is a setF ⊆ 2Ω of subsets ofΩ, such thatΩ ∈ F ,
and such thatF is closed under countable union and under complementation with respect
to Ω. Recall that aprobability space, (Ω,F ,P), consists of a set ofoutcomes, Ω (i.e.,
the sample space), a σ-algebraF ⊆ 2Ω of eventsover Ω, and aprobability measure,
P : F → [0, 1]. For a real-valued random variable (r.v.),X : Ω → R, over a probability
space(Ω,F ,P), theexpected valueof X , when it exists, is denotedE(X)

.
=

∫

ΩX dP.
Note that, whenE(X) is defined,E(X) ∈ R

.
= [−∞,+∞]. We will sometimes need

to considerextended-real-valued r.v.’s,X : Ω → R, and their expectation. The theory
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for these r.v.’s is readily available (see, e.g., [9]), and consists of natural extensions to the
definitions for real-valued r.v.’s and their expectation. Aprobability distributionover a
finite or countably-infinite set,U , is a functionF : U → [0, 1] such that

∑

u∈U F (u) = 1.
Thesupportof the distributionF is the setsupport(F ) := {u ∈ U | F (u) > 0}.

Markov chains. We view a (denumerable, discrete-time, time homogeneous)Markov
chain (MC) as being given by a pair,M = (S, P ), consisting of a countable (or finite)
set of states,S, and a probabilistic transition functionP : S × S → [0, 1], such that for
all s ∈ S,

∑

s′∈S P (s, s′) = 1. P is also referred to as thetransition probability matrix
of M, and fors, s′ ∈ S we often use the notationPs,s′ as an alternative toP (s, s′).
When |S| = n is finite, we will indeed find it convenient to viewP as an(n × n)
matrix, and we will often find it convenient to view the countable (or finite) state set
S as consisting of (an initial segment of) the positive integers N+ = {1, 2, . . .}. P is
thus, by definition, astochastic matrix, meaning it is non-negative and all its rows sum
to 1. We use∆ ⊆ S × S to denote the underlyingtransition relationof the Markov
chainM, defined by∆ = {(s, s′) | P (s, s′) > 0}. The state setS together with
∆ defines theunderlying directed graph, G = (S,∆), of the Markov chainM. For
everys ∈ S, definesuccessors(s) = {s′ | (s, s′) ∈ ∆}. Clearly, for all s ∈ S,
successors(s) 6= ∅, so all states have at least one successor in∆. We use the notation
s → s′ as an alternative to(s, s′) ∈ ∆, and we uses

∗
; s′ to denote that(s, s′) is in the

transitive closure∆∗ of ∆, i.e., that there is a (possibly empty) directed path inG from s

to s′. We uses
+
; s′ (respectively,s

k
; s′) to denote there is a directed path of positive

length (respectively, of lengthk) from s to s′. The Markov chain is calledirreducible if
for all statess, s′ ∈ S, s

∗
; s′ holds. In other words, irreducibility means the graphG has

one strongly-connected component (SCC). Recall that an SCCis a maximal subsetC ⊆ S

such that for alls, s′ ∈ C, s
∗
; s′. The structure of the strongly-connected components

ofG plays an important role in the analysis of finite-state Markov chainsM. Particularly
important arebottom strongly-connected components(BSCCs). A BSCC,C ⊆ S, of G
is an SCC such that for alls ∈ C there is no states′ 6∈ C such thats

∗
; s′. For s ∈ S,

we usePs to denote the functionPs : S → [0, 1] defined byPs(s
′) := P (s, s′) for all

s′ ∈ S. Note that, for alls ∈ S, Ps defines a probability distribution onS.
A Markov chainM = (S, P ), together with aninitial probability distribution on

states,I : S → [0, 1], defines a probability space(Ω,F ,PI) where the sample space
Ω = Sω consists of the set of infinitetrajectories, or sample paths, or runs of M.1 A
trajectoryπ = π0π1 . . . ∈ Ω = Sω is simply an infinite word (ω-word) over the alphabet
S. For a finite stringw ∈ S∗, let CM(w) := wSω ⊆ Ω denote the set of trajectories that
have the stringw as an initial prefix. The (Borel)σ-algebraF ⊆ 2Ω of measurable events
associated with trajectories of the MC,M, is the (unique)σ-algebra generated by (i.e., the
smallestσ-algebra containing) all basic open sets orbasic cylinders, given by{CM(w) |
w ∈ S∗}. The probability measurePI : F → [0, 1], which is parametrized by the
initial distributionI, is uniquely determined by specifying, as follows, the probabilities
of all basic cylinders,CM(w). Firstly, for the empty stringw = ǫ, we haveCM(ǫ) =
Sω = Ω, so of course we definePI(CM(ǫ)) := 1. For any non-empty stringw =

1In the probability theory literature the wordrun is not often used to refer to sample paths. We use it here to
highlight the close correspondence with the notion of runs in automata theory.
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w0w1 . . . wk ∈ S+, wherewi ∈ S, i = 0, . . . , k, k > 0, we definePI(CM(w)) :=

I(w0) ·
∏k

i=1 P (wi−1, wi). This definition extends uniquely to all events in theσ-algebra
F . When the initial distributionI assigns probability 1 to a single state,s, we will
sometimes usePs instead ofPI to denote the associated probability measure.

A more common formulation of Markov chains, encountered in the probability theory
literature, is the following: a Markov chainM, together with initial distributionI, defines
a discrete-time stochastic process, (Xi : i ∈ N), consisting of a sequence of random
variablesXi : Ω → S over the probability space(Ω,F ,PI), where eachXi maps a
trajectory,π = π0π1π2 . . . ∈ Sω = Ω, to thei’th state along that trajectory, i.e.,Xi(π) :=
πi. Clearly, according to these definitions,P(X0 = s) = I(s), for all s ∈ S, and
furthermore,(Xi)i∈N satisfied theMarkov property, i.e., for any finite sequence of states
s0, s1, . . . , sk, sk+1, wherek > 0, we have:

P(Xk+1 = sk+1 | X0 = s0, . . . , Xk = sk) = P(Xk+1 = sk+1 | Xk = sk) = P (sk, sk+1)

Clearly, these properties also uniquely characterize the Markov chainM (and initial dis-
tributionI), so they can alternatively be taken as the definition of the Markov chain.

Let us observe here that, for any finite-state MC,M, with any initial distributionI,
with probability 1, a trajectory ofM will eventually enter somebottom strongly con-
nected component(BSCC)C ⊆ S of G, and will forever thereafter stay inC. In other
words, if the BSCCs of the underlying graphG of a finite-state MC,M, are given by
C1, C2, . . . , Ck, thenPI(

∨k

j=1 ∃t > 0 : ∀t′ > t : Xt′ ∈ Cj) = 1.
We will sometimes wish to consider alabelled Markov chain, M = (S, P, l), where

l : S → Σ is a mapping that assigns to each states ∈ S a symboll(s) ∈ Σ from some
alphabetΣ. The labels on distinct states need not be distinct. Sometimes, we may wish
to associaterewards(payoffs) to states, in which case the labeling functionl : S → Σ
assigns numerical values to states. For example, we may haveΣ = Z. We associate with
every trajectoryπ = π0π1π2 . . . ∈ Sω of M, anω-word l(π) ∈ Σω over the alphabetΣ,
defined byl(π)

.
= l(π0)l(π1)l(π2) . . ..

For a random variableY : Ω → R over the probability space(Ω,F ,PI) of trajectories
generated by a Markov chainM with initial distributionI, we useEI(Y )

.
=

∫

Ω Y dPI ,
to denote theexpected valueof Y , assuming it exists, parametrized by initial distribution
I. If I assigns probability1 to a states, then we typically writeEs(Y ) instead ofEI(Y ).

Example 2.1. A simple example of a labeled finite-state Markov chain,M1 = (S, P, l),
with 6 states,S = {s1, . . . , s6}, is depicted in Figure 1. This6-state MC has the following
transition probability matrix,P = (Pi,j)i,j∈{1,...,6}:

P =

















0 1/3 1/2 0 1/6 0
2/5 0 1/5 0 2/5 0
0 0 1/2 1/2 0 0
0 0 1/2 1/2 0 0
0 0 0 0 0 1
0 0 0 0 1 0

















.

Each states has a labell(s) ∈ Σ = {a, b, c}, and these are depicted in red in Figure 1.
So, for example,l(s1) = a.
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s1

a

s2

b

s3

c

s5

b

s4

a

s6

c

1
3

1
2

1
6

1
2

1
2

2
5

2
5

1
5

1

1
2

1
2

1

Figure 1. A simple6-state labeled Markov chain,M1.

Let us considerhitting probabilities, in this MC. It is clear that in the MCM1, regard-
less of what state a trajectory starts in, with probability 1the trajectory will eventually
hit (reach) one of the two statess3 or s5, and will thereafter infinitely-often return to that
state. Consider thehitting (or reachability) probabilities, q∗i,j , whereq∗i,j is defined as the
probability of eventually hitting vertexsj starting at vertexsi, with i, j = 1, . . . , 6. What,
for example, is the probabilityq∗1,3 for M1 in Figure 1? This hitting probability happens
to be17/26. How can we compute it? We will come back to this question in section 3.
For finite-state MCs, such probabilities can be computed easily by solving corresponding
systems of linear equations. For this example, the probabilities (q∗1,3, q

∗
2,3) constitute the

unique solution vector to the linear system of equations in two variables,(x1, x2), given
by x1 = (1/3) ∗ x2 + (1/2) ; x2 = (2/5) ∗ x1 + (1/5). Hitting probabilities form a basic
ingredient for many other kinds of analyses of MCs, including model checking.

Markov decision processes. A (finite-state or countable-state)Markov decision pro-
cess (MDP)is a tupleD = (S, (S0, S1),∆, P ), whereS is a (finite or countable) set
of states; (S0, S1) is a partition ofS into randomstates,S0, andcontrolledstatesS1,
i.e., S = S0 ∪ S1 andS0 ∩ S1 = ∅; ∆ ⊆ S × S is a transition relation; and finally
P : S0 × S → [0, 1] is a probabilistic transition function out of random states. For every
s ∈ S, definesuccessors(s) = {s′ | (s, s′) ∈ ∆}. We assume that for all statess ∈ S,
successors(s) 6= ∅, so all states have at least one successor in∆. For eachs ∈ S0, we
again usePs to denote the functionPs : S → [0, 1] defined by lettingPs(s

′) := P (s, s′).
We furthermore assume that for eachs ∈ S0, Ps defines a probability distribution (i.e.,
∑

s′∈S Ps(s
′) = 1), and thatsupport(Ps) = successors(s). In other words, the tran-

sitions that are assigned positive probability are precisely transitions to those states that
are immediate successors ofs according to the transition relation∆, and these probabili-
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ties must of course sum to 1.
We will be focusing on either finite-state MDPs, or countablyinfinite-state MDPs

that are finitely presented. Every specific family of MCs and MDPs that we consider is
finitely-branching, meaning that for alls ∈ S, the setsuccessors(s) is finite. Indeed, all
families of MDPs that we consider areboundedly-branching, meaning there is an integer
k > 1 (depending on the MDP) such that for alls ∈ S, |successors(s)| 6 k.

An MDP represents a partially controlled stochastic process. Thecontroller (a.k.a.
player) exerts its control by choosing astrategy(a.k.a.policy, a.k.a.scheduler). A strat-
egy(policy) is a functionσ that, to each stringws ∈ S∗S1 ending in a controlled states ∈
S1, assigns a probability distribution on the neighbors ofs, σ(ws) : successors(s) →
[0, 1]. We say that a strategyσ is memorylessif σ(ws) depends only on the last vertexs.
In this case we can denote the strategy by a function which assigns to every states ∈ S0

a probability distributionσ(s) : successors(s) → [0, 1].
We say that a strategyσ is deterministicif for everyws ∈ S∗S1, these is somes′ ∈ S

such thatσ(ws)(s′) = 1, in other words,σ(ws) assigns probability 1 to some neighbor
of s. Whenσ is deterministic, we writeσ(ws) = s′ instead ofσ(ws)(s′) = 1. Likewise,
for a memoryless deterministic strategyσ, we writeσ(s) = s′ instead ofσ(ws)(s′) =
1. Strategies that are not necessarily memoryless (respectively, deterministic) are called
history-dependent(respectively,randomized).

Given an MDP,D = (S,∆, (S0, S1), P ), fixing a strategyσ for the controller deter-
mines a unique Markov chain,D(σ) = (S+, P σ), for which the set of states isS+ (i.e.,
the non-empty strings overS), and where, for allw,w′ ∈ S∗ ands, s′ ∈ S:

P σ(ws,w′s′) :=







P (s, s′) if s ∈ S0, and(s, s′) ∈ ∆, andw′ = ws
σ(ws) if s ∈ S1, and(s, s′) ∈ ∆, andw′ = ws
0 otherwise

Note that states ofD(σ) essentially store the entire history of states ofD that are encoun-
tered during a run, starting from some initial state (or evensome initial “history”). Let
Ω(σ) = (S+)ω denote the set of trajectories (sample paths) of the Markov chainD(σ).
To every trajectory ofD(σ) in Ω(σ) = (S+)ω , ξ = (ξ0)(ξ1) . . . ∈ Ω(σ), we associate a
correspondingplay, π ∈ Sω. Namely,πξ = πξ

0π
ξ
1 . . . ∈ Sω, where ifξi = w′s, for some

w′ ∈ S∗ ands ∈ S, thenπξ
i = s. In other words,πξ

i is the state ofS currentlyvisitedby
the historyξi, i.e., it is the last “letter” of the stringξi ∈ S+.

An MDP, D, with an initial distributionI : S → [0, 1], and a strategyσ for the con-
troller, together determine a probability space(Ω(σ),F(σ),Pσ

I) of trajectories ofD(σ).
We also want to considerlabelled MDPs, D = (S,∆, (S0, S1), P, l), where, again,

l : S 7→ Σ assigns to each state a label from the alphabetΣ, and again the symbols inΣ
may denote rewards, e.g., we may haveΣ = Z. Given an MDP,D, and a strategyσ, we
can also associate labelsl(ws) to the statesws ∈ S+ of the resulting Markov chainD(σ),
by lifting the labels fromD. Thus, ifws ∈ S+, with s ∈ S, then we overload notation and
let l(ws) := l(s). We can then associate with every trajectoryξ = ξ0ξ1ξ2 . . . ∈ (S+)ω

of D(σ), anω-word l(ξ) ∈ Σω, defined byl(ξ)
.
= l(ξ0)l(ξ1)l(ξ2) . . .. Likewise, we also

associate the same wordl(ξ) to the corresponding playπξ, namely, we letl(πξ) = l(ξ).
Given an MDP,D, and an initial distributionI, we will often be interested in the

optimal probability of some family of events,E(σ), parametrized by the strategyσ used
by the controller, whereE(σ) is an event over the probability space(Ω(σ,F(σ),Pσ

I) of
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Figure 2. A 6-state labeled MDP,M2.

trajectories with initial distributionI generated by the strategyσ. For instance, the event
E(σ) could be the event specifying that the trajectory eventually hits a set of target states,
or that the trajectory satisfies some temporal property. When it is clear from the context we
usually simplify notation and refer to the family of events,E(σ), as simplytheeventE,
and we use the notationPσ

I(E) to denote the probability of eventE(σ) in the probability
space of trajectories generated byD(σ). Likewise, we will often be interested in the
optimal expected value of a family of random variables,Y (σ) : Σ(σ) → R, parametrized
by the strategyσ. When it is clear from the context, we will useEσ

I(Y )
.
=

∫

Ω(σ) Y dP
σ
I

to denote the expected value ofY (σ), parametrized by the strategyσ, in the probability
space of trajectories generated byD(σ), and we refer to the familyY (σ) of r.v.’s as simply
therandom variableY . We shall consider several important analyses in Section 2.1.

Example 2.2. An example of a 6-state labeled MDP,M2 = (S, (S0, S1),∆, P, l), with
statesS = {s1, . . . , s5, s6}, is depicted in Figure 2. The states are partitioned into a set
of random statesS0 = {s1, . . . , s4}, colored blue, and a set of controlled statesS1 =
{s5, s6}, colored green. Note that the controller has only two choices at each of the two
controlled states5 ands6: from s5 it can either move next to states1 or s2, and froms6
it can either move next to states2 or s4.
For this MDP, each states hastwo labels, one of which is a labell(s) ∈ Σ from the
alphabetΣ = {a, b, c}, and the other of which is a numerical labelr(s) ∈ Z. These two
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labels are depicted in red in Figure 2. So, for example,l(s1) = a andr(s1) = 6. 2

Consider themaximum (supremum) hitting probabilities, q∗max,i,j = supσ Pσ
si

(∃t > 0 :
Xt = sj), defining the supremum probability (over all strategies) ofeventually hitting
vertexsj starting at vertexsi, i, j = 1, . . . , 6. What isq∗max,5,3 for the MDPM2 in
Figure 2? The maximum hitting probability happens to beq∗max,5,3 = 3/4, and the mem-
oryless strategy that always chooses to move from states5 to states1, and from state
s6 to states2, achieves this optimal probability. Indeed, for finite-state MDPs, there is
always a memoryless optimal strategy for maximizing (or minimizing) the probability
of eventually hitting given target states. How can we compute such probabilities? We
will come back to this question in section 4. For general finite-state MDPs these max-
imum (minimum) probabilities can be computed by solving corresponding systems of
max(min)-linearBellman equations. Such equations can be solved in polynomial time,
using linear programming. Optimal hitting probabilities again form a basic ingredient for
many other kinds of analyses of MDPs, including model checking.

Quick review of Büchi automata,ω-regular languages, and Linear Temporal Logic.
In order to discuss model checking problems for MCs and MDPs,we now review basic
facts about, and fix notation for,ω-automata and linear temporal logic, which are topics
covered in more detail in Chapter 6 of this Handbook ([43]). Two standard formalisms
for specifying languages ofω-words, are Büchi automata and Linear Temporal Logic. A
Büchi automaton (BA)is given by a tupleB = (Q,Σ, q0, δ, F ), whereQ is a finite set of
states,Σ is a finite alphabet,q0 ∈ Q is an initial state,δ ⊆ Q × Σ × Q is a transition
relation, andF ⊆ Q is a set of accepting states. We can assume without loss of generality
(if necessary, by adding an extra dummy state) that the transition relationδ is total in
the sense that for every stateq ∈ Q, and every lettera ∈ Σ of the alphabet, there is
some stateq′ ∈ Q such that there is a transition(q, a, q′) ∈ δ. The Büchi automaton is
calleddeterministicif for every stateq and everya ∈ Q′ there exists at most one state
q′ such that(q, a, q′) ∈ δ. Otherwise, it isnondeterministic. A run of B is a sequence
π = q0v0q1v1q2 . . . of alternating statesqi ∈ S and lettersvi ∈ Σ, i > 0, such that for all
i > 0 (qi, vi, qi+1) ∈ δ. Theω-word associated with runπ is L(π) = v0v1v2 . . . ∈ Σω.
The runπ is acceptingif for infinitely many i, qi ∈ F . We define theω-regular language
associated withB byL(B) = {L(π) | π is an accepting run ofB}. Note thatL(B) ⊆ Σω.

It is well known that anyω-regular language can be described as the language ofω-
words associated with a (nondeterministic) Büchi automaton. Indeed, we can take this
as the definitionω-regular languages. However, unlike the fact that deterministic finite
automata (DFAs) suffice to capture all regular languages over finite strings,deterministic
BAs do notsuffice for expressing allω-regular languages. For example, the language
of ω-words over the alphabet{a, b} that contains only a finite number ofb’s can not be
described by any deterministic BA. To capture allω-regular languages using deterministic
automata, we need more sophisticated acceptance conditions, likeMüller, Rabin, Streett,
or Parity acceptance conditions. (See Chapter 6: [43].)

In particular, the standardsubset construction, which when applied to any (nondeter-
ministic) finite automaton yields a deterministic finite automaton that accepts the same

2Of course we can also simply view the labelsl(s) as assigning to each states a pair(ys, zs) consisting of
a label fromys ∈ Σ = {a, b, c} and a payoffzs ∈ Z.



D
R

A
FT

12 K. Etessami

language of finite strings, does not work forω-automata: it may yield anω-automaton
that accepts a strictly larger language ofω-words.

Remarkably however, it turns out that in a certain sense the standard subset con-
structiondoes workfor the purpose of model checking ofω-regular properties of labeled
Markov chains and Markov decision processes. This is one of several key insights first re-
vealed in thetour-de-forcepapers by Courcoubetis and Yannakakis [11, 12, 13, 14]. These
papers also established the best complexity bounds available (and best possible, subject
to complexity-theoretic assumptions), for model checkingfinite-state Markov chains and
MDPs. We will highlight some of these results.

Another major insight in the Courcoubetis-Yannakakis papers relates to model check-
ing Linear Temporal Logic properties of MCs. Recall thatLinear Temporal Logic(LTL)
[37] formulas are built from a finite setProp = {P1, . . . ,Pk}. of propositions, using the
usual Boolean connectives,¬,∨, and∧, the unary temporal connectiveNext(denotedf)
and the binary temporal connectiveUntil (U); thus, ifξ, ψ are LTL formulas thenfξ and
ξ U ψ are also LTL formulas, as are¬ξ, ξ∨ψ, as well asξ∧ψ. This constitutes an induc-
tive definition of temporal formulas. Note that other usefultemporal connectives can be
defined usingU. The formulaTrue U ψ means “eventuallyψ holds” and is abbreviated
3ψ. The formula¬(3¬ψ) means “alwaysψ holds” and is abbreviated2ψ.

An LTL formula specifies a language ofω-words over the alphabetΣ = 2Prop, as
follows. If w = w0, w1, w2 . . . ∈ Σω is anω-word, andϕ is an LTL formula, then first
we define satisfaction of the formula byw at positioni, wherei > 0, denoted(w, i) |= ϕ.
We define this inductively on the structure of the formulaϕ as follows.

• (w, i) |= p for p ∈ Prop iff p ∈ wi.
• (w, i) |= ¬ξ iff not (w, i) |= ξ.
• (w, i) |= ξ ∨ ψ iff (w, i) |= ξ orw, i |= ψ.
• (w, i) |= ξ ∧ ψ iff (w, i) |= ξ andw, i |= ψ.
• (w, i) |= fξ iff (w, (i+ 1)) |= ξ.
• (w, i) |= ξ U ψ iff ∃j > i : ( (w, j) |= ψ and∀k (i 6 k < j) : (w, k) |= ξ ).

Theω-language specified by an LTL formulaϕ, is L(ϕ) := {w ∈ Σω | (w, 0) |= ϕ}.
The language specified by every LTL formula isω-regular, and in fact any LTL formula
can be converted to an equivalent (albeit, exponentially bigger) nondeterministic Büchi
automaton that accepts the same language (see, e.g., [42] and Chapter 6 [43]).

2.1 Some important analysis problems for MCs and MDPs

We now formally define a variety of important algorithmic analyses that one might wish
to perform on MCs and MDPs. Given an MDP,D, initial distributionI, and strategyσ,
letXi denote the random variable that assigns to a trajectoryξ of the Markov chainD(σ),
the stateXi(ξ) = si ∈ S of D that is visited by the play at timei. (In other words,
Xi(ξ) = si if ξi = wsi, for somew ∈ S∗ andsi ∈ S.) The controller’s goal is to
optimize the (expected) value of some random variable, or the probability of some event,
both of which could be a function of the entire random trajectory. There are a wide variety
of objectives that have been studied in the MDP literature. We now list some important
analyses that have been considered.
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Note that all of the analyses listed below are also applicable to purely stochastic
Markov chains, because MCs are just special cases of MDPs, where there are no con-
trolled nodes. In other words, in an MC the controller has only one (vacuous) strategy,
which is to do nothing.

I. MP: Mean payoff3: the labelling functionl is a payoff function, l : S → Q, which
associates to every states a (rational valued) payoffl(s) ∈ Q.4 The goal of the
controller is to maximize5 the expectedmean payoffof the playπ = s0s1s2s3 . . .:

Eσ
I(lim inf

n→∞

∑n−1
i=0 l(Xi)

n
)

Note that in the case of irreducible finite-state MCs, mean payoff analysis sub-
sumes, as a very special case, computation of theinvariant (stationary) distribution
of the MC. Recall, the invariant distribution for an irreducible MC, M = (S, P ),
with S = {1, . . . , n}, is the unique probability distributionλ on states, given by
a non-negative row vectorλ = (λ1, . . . , λn) with

∑

i λi = 1, such thatλP = λ.
When the finite-state MC isergodic(irreducible and aperiodic), the invariant distri-
butionλ is thesteady-statedistribution, giving the long-run probability of being in
any particular state, regardless of the initial distribution. Consider a statej ∈ S, and
consider the following labeling of the states ofM with payoffs: letl(j) := 1, and

for all other statesj′ ∈ S\{j}, let l(j′) := 0. Thenλj = Ej(limn→∞

Pn−1
i=0 l(Xi)

n
).

II. DTP: Discounted total payoff: Given a payoff functionl : S → Q labelling the states,
and given a rationaldiscount factor 0 < β < 1, the goal is to maximize the
expecteddiscounted total payoff:

Eσ
I( lim

n→∞

n
∑

i=0

βil(Xi))

The limit in the expression exists under mild conditions on the MDP (e.g., it suffices
if the payoffs labeling states are bounded in absolute value). Discounted payoff ob-
jectives play an important role, e.g., in economics and finance, where the discount
factorβ can often be viewed as being given by the rate of inflation, i.e., the rate at
which the present value of money depreciates over time.

III. NTP: Non-negative total payoff: There is no discount, the states are labeled bynon-
negativepayoffs,l : S → Q>0. The goal is to either maximize or minimize the
expectedtotal reward, which may in general be+∞:

Eσ
I( lim

n→∞

n
∑

i=0

l(Xi)) (2.1)

Sometimes the structure of the MCs or MDPs implies that this expectation is finite.

3This objective is also known as thelimiting-average payoff objective in the MDP literature.
4We restrict to rational payoffs inQ, rather than payoffs inR, for computational reasons. We wish to analyze

the complexity of algorithms also in terms of the encoding size of the input coefficients.
5Note that maximizing expected mean payoff (or discounted payoff), when payoffs can be both positive and

negative rational values, is computationally equivalent to minimizing expected mean payoff, because minimizing
the mean payoff amounts to maximizing the mean payoff when all payoffs labeling states are negated.
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Analyzing expected non-negative total reward includes, asa special case, analysis
of the expectedhitting time of a set of target states. Consider an MDP,M =
(S, (S0, S1), P,∆), with a setF ⊆ S. Turn all target states inF into absorbing
random states, meaning re-define the random states asS′

0 := S0∪F , and controlled
states asS′

1 := S1 \ F , and letPs,s := 1 for s ∈ F . Define the payoff labels at
states as follows: fors ∈ F , let l(s) := 0, and fors ∈ S \ F , let l(s) := 1. Let
HF denote the random variable (family) defining thehitting timeof the target set
F . Then clearly, for every strategyσ, Eσ

I(HF ) = Eσ
I(limn→∞

∑n

i=0 l(Xi)).
IV. HP: Hitting probability of desired (or undesired) target states: Given a set of target

statesF ⊆ S, the goal is to maximize (or minimize) the probability of eventually
hitting a states ∈ F . In other words, we wish to choose a strategyσ to maximize,
or minimize:Pσ

I(∃i > 0 : Xi ∈ F ).
Let us denote the supremum and infimum of these probabilitiesby

q∗max,I,F ≡ sup
σ

Pσ
I(∃i : Xi ∈ F ) and q∗min,I,F ≡ inf

σ
Pσ
I(∃i : Xi ∈ F )

It need not in general be the case that there exists any optimal strategyσ∗ such that
q∗max,I,F = Pσ∗

I (∃i : Xi ∈ F ); and likewise, for infinitely-branching MDPs, there

need not exist any strategyσ∗ such thatq∗min,I,F = Pσ∗

I (∃i : Xi ∈ F ). Indeed,
one can easily construct examples of infinite-state MDPs where no optimal strategy
exists for maximizing/minimizing the probability of hitting a set of target states.6

In such cases, there only existǫ-optimal strategies, for everyǫ > 0.
The objective of optimizing hitting probability can also beeasily reformulated as
a special case ofNTP, i.e., of optimizing expected total non-negative reward, as
follows: remove all out-going transitions from states inF , and replace them with
a single transition from each state inF to a new states∗. Let χ(s) = 1 for all
s ∈ F , and letχ(s) = 0 otherwise. Then the goal of maximizing/minimizing
the probability of eventually hitting the target statesF is equivalent to the goal of
maximizing/minimizing the undiscounted expected total non-negative payoff, when
the payoffs labelling the states are given byχ.
However, the ability to label non-absorbing states with reward 0 is crucial for
this. In fact, in some MDP settings, analysing expected total reward when all non-
absorbing states are labeled bystrictly positiverewards is substantially easier than
analyzing hitting probability (see, in particular, [22] for an example).

V. MoCh: Model checking ofω-regular or LTL properties. Given a labelled MDP,D =
(S,∆, P, l), and initial distributionI, wherel : S → Σ, and given anω-regular
languageL over the alphabetΣ, specified by giving a Büchi automatonB or LTL
formulaϕ, so thatL = L(B) orL = L(ϕ), the goal of the controller is to choose a
strategyσ so as to maximize (or minimize) the probability that the trajectoryπ of
D(σ) generates anω-word l(π) ∈ L. In other words, we can, associate with theω-
regular languageL, the corresponding event (family)EL(σ) = {π ∈ Ω(σ) | l(π) ∈
L} in the probability space generated of trajectories of the MCD(σ) generated by
the MDPD and the strategyσ. It can be checked that, regardless of what the

6In the case of minimization, such examples require infinitely-branching infinite-state MDPs, but for max-
imization, simple finitely-presented boundedly-branching infinite-state MDPs suffice to show that no optimal
strategy for hitting the target states exists.
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strategyσ is used, for anyω-regular languageL, the propertyEL(σ) does indeed
constitute an event in theσ-algebraF(σ). (This was noted already, e.g., in [41].)
When it is clear from the context, we overload notation and use L to refer to the
event familyEL(σ), parametrized by the strategyσ. The goal of model checking7

for MDPs is thus to maximize (or minimize) the probabilityPσ
I(L).

For analyses likeHP andMoCh, which involve computing the (optimal) probabil-
ity of some event, the associated computational problems can be further subdivided and
classified as eitherqualitativeor quantitativeanalyses, as we now discuss.

Sometimes we may not need to know the (optimal) probability of the event in ques-
tion, and we may instead just be satisfied to know whether or not the event holdsalmost
surely, i.e., with (maximum) probability 1, or equivalently whether the complement event
has (infimum) probability0. These constitute what are generally referred to asqualita-
tive analyses, whereasquantitative analysesinvolve computing the (optimal) probability
of the event in question. However, particularly for MDPs, there are subtle distinctions
between different forms of qualitative analysis, and also between different forms of quan-
titative analysis. In some settings these distinctions canmake a big difference in terms
of the computational complexity of the problems involved. So we now examine these
distinctions more carefully.

(1) Qualitative analysis of MCs and MDPs:Given an (MC or) MDP,D, and an initial
distribution,I, for an eventE (again, strictly speaking, a family of event,E(σ),
in the respective probability spaces of trajectories of theMCs,D(σ), parametrized
by the strategyσ), and for setΨ of strategies constraining the strategies that the
controller may use (e.g.,Ψ may simply beall strategies, or onlymemorylessones,
or deterministicones, etc.), consider the following decision problem:

Decide whether ∃σ ∈ Ψ : Pσ
I(E) = 1. (2.2)

This decision problem is referred to as thequalitativealmost-suredecision prob-
lemfor the eventE (and with respect to the strategy constraintΨ). This problem is
of course equivalent to asking whether∃σ ∈ Ψ : Pσ

I(E) = 0, whereE = Ω \ E
denotes the complement event. (Again, strictly speakingE(σ) = Ω(σ) \E(σ) is a
family of events parametrized byσ.)
If such a strategyσ exists, then we may also want to compute (some representation
of) such a strategy, in which case this is no longer just a decision problem.
A closely related, but in generalnotequivalent, problem is:

Decide whether sup
σ∈Ψ

Pσ
I(E) = 1. (2.3)

This is referred to as thequalitativelimit-sure decision problemfor the eventE.8

7In the context of MDPs, as phrased here, this is an optimization problem, and not a decision problem, so
the word “model checking” is a bit of a misnomer. But we will adhere to this terminology.

8The termlimit-sure was first used in [15], where they considered the distinct almost-sure and limit-sure
decision problems in the context of concurrent (stochastic) reachability games. As we shall see, the distinc-
tion between almost-sure and limit-sure qualitative analyses is relevant in various other contexts, including for
important classes of finitely-presented infinite-state MDPs.
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Although the almost-sure and limit-sure decision problemsare related, and al-
though they are obviously equivalent if the model is simply aMarkov chain, these
problems are certainly not equivalent for all MDPs, becauseas already discussed in
relation toHP, in general there need not exist any optimal strategyσ that achieves
probability 1 for the eventHitF

.
= (∃i : Xi ∈ F ), and yet there may exist a se-

quence of strategiesσ1, σ2, σ3, . . ., which achieve probabilities arbitrarily close to
1. For example, we could havePσi

I (HitF ) = 1 − 1
2i . In such a case, the limit-sure

condition (2.3) holds while the almost-sure condition (2.2) does not.
We also in general need to consider, as distinct qualitativeproblems for MDPs,
the following dualsof the above problems, which are not in general equivalent,
namely, decide whether:∀σ ∈ Ψ : Pσ

I(E) = 1. This is of course the complement
of deciding whether∃σ ∈ Ψ : Pσ

I(E) < 1, which is equivalent to:

Decide whether ∃σ ∈ Ψ : Pσ
I(E) > 0 (2.4)

Note however that, in this dual setting, there is no distinction between the almost-
sure and the limit-sure cases. The above problems are also equivalent to deciding
whetherinfσ∈Ψ Pσ

I(E) < 1, and to deciding whethersupσ∈Ψ Pσ
I(E) > 0.

We refer to problem (2.4) as thequalitative witness-positivity9 decision problemfor
(the family of) eventsE.
Let us also mention some “qualitative” problems that can be associated with objec-
tives such asNTP, where the objective is optimize the expected total non-negative
payoff. It is possible, for example, that∃σ ∈ Ψ : Eσ

I(limn→∞

∑∞
i=0 l(Xi)) = +∞

holds true, or else thatsupσ∈Psi Eσ
I(limn→∞

∑∞
i=0 l(Xi)) = +∞. Again, the lat-

ter may hold true while the former does not, because there maybe no optimal
strategy. These problems are clearly analogous to the almost-sure and limit-sure
qualitative decision problems for the probability of an eventE. We will call them
the qualitative witness-infinity problemand thequalitative limit-infinity problem
for the expectation of the associated random variable (family) Y . In many settings,
such “qualitative” problems are not relevant because the random variableY is guar-
anteed to have bounded expectation. For example, this holdsfor finite-state MDPs
with MP andDTP, namely mean payoff and discounted total payoff objectives.

(2) Quantitative analysis of MCs and MDPs:
Quantitative analysis problems can be considered for all ofthe problems (I.-V.) on
on our list, and not just for those relating to the (optimal) probability of an event.
In general, for quantitative analysis we want to compute theoptimal (supremum or
infimum) expected value of some random variable familyY or the optimal proba-
bility of some event familyE.
However, it may not always be possible to compute the quantity in question exactly.
This may be because of the computational complexity doing so. It may also be
because of a more basic reason: in a variety of stochastic models we can consider,
the optimal (supremum or infimum) value over allσ ∈ Ψ may beirrational, even
when all of the finite data describing the Markov chain or MDP consists of rational
values. In such cases, we can still considerapproximatingthe optimal value within
some desired error bound, ordecidingwhether the optimal value is at least a given

9Or, witness-less-than-one, where appropriate.
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rational valuer ∈ Q. Again, there are some subtle distinctions, so let us formulate
these problems more precisely:

(a) Quantitative decisionproblems:Given an MDP,D, and initial distributionI,
and some event (family)E, and given a rational valuer ∈ Q:

Decide whether ∃σ ∈ Ψ : Pσ
I(E) > r (2.5)

Or, if the objective is to optimize the expected value of a r.v. Y , we may want
to decide whether or not∃σ ∈ Ψ : Eσ

I(E) > r.
Of course, if such a strategyσ exists, we may also wish to compute (some
representation of) such a strategy. A different decision problem is:

Decide whether ∃σ ∈ Ψ : Pσ
I(E) 6 r (2.6)

And analogously, decide whether∃σ ∈ Ψ : Eσ
I(E) 6 r.

Note that decision problem (2.5) is concerned with the goal of maximizingthe
probability of the eventE (or expectation of the r.v.Y ): does there exist a
strategy that obtains a value ofat leastr? Whereas, decision problem (2.6) is
concerned with the goal ofminimizingthe probability ofE (or expectation of
r.v. Y ): does there exist a strategy that obtains an value ofat mostr?
Sometimes, the above decision problems are too hard computationally, whereas
the correspondingapproximationproblems are not as hard.

(b) Quantitativeǫ-approximationproblems:We are given an MC or MDP,D, and
initial distributionI, some event (family)E whose probability we are inter-
ested in, or a random variable (family)Y whose expectation we are interested
in. Let v∗ = supσ∈Ψ Pσ

I(E), or v∗ = infσ∈Ψ Eσ
I(Y ), in the respective cases.

We are also given a rational positive error thresholdǫ > 0. We wish to10:

Compute anǫ-approximate value,v ∈ Q, such that|v∗ − v| < ǫ. (2.7)

We may then also wish to compute (a representation of) anǫ-optimal strategy:
a strategyσ′ such that|v∗ − Pσ′

I (E)| < ǫ or |v∗ − Eσ′

I (Y )| < ǫ, respectively.

2.2 More examples of analyses for finite-state MCs and MDPs

We now reconsider the example MC and MDP given in Figures 1 and2, and consider
other analyses for these.

Example 2.3. Let us consider again the labeled6-state finite-state Markov chain,M1 =
(S, P, l), depicted in Figure 1, and let us consider some other analyses for that MC.
MoCh: Consider the following model checking problem. The LTL formula2 3 b, ex-
presses the property that the symbolb occurs infinitely often in theω-word. What is
the the probabilityPs1(L(2 3 b))? It is not difficult to see, by inspection ofM1, that
Ps1(L(2 3 b)) is precisely equal to the probability of eventually hittingstates5 starting
in states1. In other words,Ps1(L(2 3 b)) = q∗1,5. Furthermore, since we know that
starting from states1, with probability1 we will eventually hit either states3 or s5, i.e.,

10Note: such anǫ-approximation may be impossible withv ∈ Q, e.g., becausev∗ = sup
σ∈Ψ Eσ

I
(Y ) = ∞.
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thatq∗1,3 + q∗1,5 = 1, and since we have already noted thatq∗1,3 = 17/26, we can conclude
thatPs1(L(2 3 b)) = 9/26.

Note that in this case model checking was boiled down to computing hitting prob-
abilities. The general algorithms for model checking Markov chains againstω-regular
properties are much more involved, but as we shall see they also ultimately reduce the
problem to computing hitting probabilities on certain associated Markov chains.
MP: Now let us use hitting probabilities to domean payoffanalysis on the MC,M1. In
particular, suppose that the labels on states are associated with payoffs, as follows:a := 4,

b := −3, c := 7. Letv∗i = Esi
(lim infn→∞

Pn−1
i=0 l(Xi)

n
) denote the expected mean payoff

when starting in statesi. In the MCM1, what isv∗1? LetG1 denote the underlying graph
of M1. The two BSCCs ofG1 areC1 = {s3, s4} andC2 = {s5, s6}. Clearly, starting
in states1 of M1, with probability1 we will eventually hit one of these two BSCCs and
stay in that BSCC forever thereafter. We already know that wewill eventually hitC1 with
probabilityq∗1,3 = 17/26, and that we will hitC2 with probabilityq∗1,5 = 9/26. Note that
the MC defined by restrictingM1 to the nodes of BSCCC1 is ergodic, and that its unique
steady-state distribution is clearly(1/2, 1/2). Likewise, although the MC defined by
restrictingM1 to the nodes ofC2 is not ergodic, it is irreducible, and its unique invariant
distribution is(1/2, 1/2). In other words, in the case of both BSCCsC1 andC2, once we
enter such a BSCC, in the long run we spend1/2 the time in each of the two states of that
BSCC. Thusv∗1 , the long-run mean payoff starting in states1, can be calculated via the
following expression:v∗1 = (17/26) × (1/2 × 7 + 1/2 × 4) + (9/26) × (1/2 × −3 +
1/2 × 7) = 217/52.

Example 2.4.Now let us reconsider the 6-state labeled MDP,M2 = (S, (S0, S1),∆, P, l),
with statesS = {s1, . . . , s6}, depicted in Figure 2.
MoCh: Consider, in particular, the following model checking problem. What is the supre-
mum probabilitysupσ Pσ

s5
(L(2 3 b))?

It is not difficult to see, by inspection ofM2, that regardless what strategyσ is used,
Pσ

s5
(L(2 3 b)) is precisely equal to the probabilityPσ

s5
(∃i : Xi = s4) of eventually

hitting states4 starting at states5. It can furthermore be seen that the probability of
hitting states4 is maximized by the simple memoryless strategy,σ∗, that always moves
to states2 whenever in states5, and always moves to states4 whenever in states6. And,
furthermore the (maximum) probability that this strategy achieves of eventually hitting
states4 is 13/22. In other words,supσ Pσ

s1
(M1 |= 32 b) = Pσ∗

(M1 |= 3 2 b) =
q∗max,5,4 = 13/22.

This example is too simple in at least one sense: the maximum probability in this
case is attained by a deterministic memoryless strategy, but in general for obtaining the
maximum probability of an LTL orω-regular property on a finite-state MDPs it need
not suffice to use a deterministic memoryless strategy (in particular, memory may be
required).
MP: Finally, let us consider themean payoffobjective on the MDP,M2, in Figure 2,
where the aim is to maximize the expected limiting (lim inf of the) average payoff per
step, where the one-step reward at states is given by the functionr(s). In other words, the

aim is to maximizeEσ
I(lim infn→∞

Pn−1
i=0 r(Xi)

n
). Note that in the MDP,M2, regardless

of what strategy is employed by the controller, with probability 1 the trajectory will even-
tually enter one of the two statess3 or s4, and stay there forever thereafter. Once it is in
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one of these two states, the (expected) limiting average payoff thereafter is simply the pay-
off at that state, which isr(s3) = 7 for states3 and andr(s4) = 8 for states4. Thus, since
r(s4) > r(s3), in order to maximize the expected mean payoff starting at any other state,
we simply need to maximize the probability of eventually hitting states4. We already
know from our previous calculations that, starting at states5, the maximum probability of
eventually hitting states4 is 13/22, and this is achieved by the deterministic memoryless
strategy that always moves from states5 to states2, and from states6 to states4. Thus
the maximum expected mean payoff is(13/22) ∗ 8 + (1 − 13/22) ∗ 7 = (167/22), and
this is achieved by the same deterministic memoryless strategy. For finite-state MDPs, it
is always the case that there exists an optimal deterministic memoryless strategy for max-
imizing the expected limiting average payoff (see, e.g., Theorem 9.1.8 in [38]), and one
can compute the optimal limiting average payoff, and an optimal memoryless strategy, in
polynomial time using linear programming (see, e.g., chapters 8 and 9 of [38]).

3 Analysis of finite-state Markov chains

In this section we review some algorithms for analyzing finite-state MCs, and discuss
their complexity. Let us already summarize the known facts:for all of the analyses (I.-V.)
listed in section 2.1, all qualitative and quantitative decision and computation problems
are solvable in strongly11 polynomial time, as a function of the encoding size of the given
finite-state MC,M. For qualitative analyses, the algorithms only involve graph-theoretic
analysis of the underlying transition graphG of the MC,M. For quantitative analyses,
the algorithms additionally involve solving corresponding systems of linear equations.
For model checking (MoCh) the complexity is polynomial in the encoding size ofM
but exponential in the encoding size of theω-regular language,L, and remarkably this
is so whetherL is specified by a non-deterministic Büchi automaton (BA),B, or as an
LTL formulaϕ (as shown by Courcoubetis and Yannakakis [11, 13]). This is despite the
fact that worst-case exponential blow-up is unavoidable when translating LTL formulas
to BAs.

We shall only discuss analyses (III.-V.) in more detail. We will also observe that some
key facts used for analyzing finite-state MCs hold more generally, for all denumerable
MCs. Suppose we are “given” a MC,M = (S, P ), where for now we allow the setS
to be countably infinite. Later, for computational purposes, we will assumeS is finite.
For convenience, we equateS with (an initial segment of) the positive natural numbers
N+ = {1, 2, . . .}. We letn ≡ |S|. Thus, ifn ∈ N+, thenS = {1, . . . , n}, and otherwise
if n = ∞ (i.e., if n = ω), thenS = N+.
HP: Suppose we are “given” a subsetF ⊆ S of target states, and suppose we wish to
compute the probabilities,q∗i , of eventually hitting a target state inF starting from initial

11Recall that a problem whose input instances are representedby a vector of rational values is said to be solv-
able instronglypolynomial time if the problem can be solved by an algorithm that both:(i) runs in polynomial
time, as a function of the dimensionn of the input vector, in the unit-cost (arbitrary precision)arithmetic RAM
model of computation, where standard arithmetic operations {+, ∗} on, and comparisons of, arbitrary rational
numbers require unit-cost, and(ii) runs in polynomial space as a function of the encoding size ofthe input
vector, where the rational coordinates are encoded as usual, with numerator and denominator given in binary.
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statei ∈ S. In other words,q∗i
.
= Pi(∃t > 0 : Xt ∈ F ).

We first observe that hitting probabilities for a denumerable MC can be “computed” by
“solving” the following linear system of equations (albeit, with infinitely many equations,
if there are infinitely many states). There is one variable,xi, and one equation, for every
statei ∈ S:

xi = 1 for all i ∈ F ;
xi =

∑

j∈S Pi,j · xj for all i ∈ S \ F .
(3.1)

The vector of variables is denotedx = (xi : i ∈ S). Note that ifn ≡ |S| = ∞,
then the infinite sums in (3.1) are always uniquely defined, because the coefficients are
non-negative and we interpret the variablesxj only over non-negative reals (indeed, over
probabilities). We can denote the entire system of equations, in vector notation, as:

x = R(x)

whereR(x) denotes the linear (affine) map given by the right hand sides of the linear
equations in (3.1). Note that since all coefficients and constants in the linear maps defining
R(x) are non-negative,R : Rn

>0 → Rn
>0 defines amonotonemapping from non-negative

vectors to non-negative vectors. That is, for allx > y > 0, we haveR(x) > R(y) > 0.
It is easy to see that the hitting probabilitiesq∗ = (q∗i : i ∈ S) must be a solution of
x = R(x). Indeed, ifi ∈ F , then clearlyq∗i = 1, and if i ∈ S \ F , then clearly
q∗i =

∑

j∈S Pi,jq
∗
j , because starting ati 6∈ F , in order to eventually hitF , we first have

to take one step and thereafter eventually hitF , and
∑

j∈S Pi,jq
∗
j captures the probability

of eventually hittingF after one step, starting ati.
Unfortunately, in general the equationsx = R(x) can have multiple solutions, for

trivial reasons. To see this, consider the trivial 2-state Markov chain with statesS =
{1, 2}, with transition probabilities defined byP1,1 = P2,2 = 1, andPi,j = 0 for i 6= j,
and where the target state isF = {1}. The equationsx = R(x) are thus given by (x1 = 1;
x2 = x2). Obviously, any pair(1, r) for r ∈ R is a solution.

It turns out the hitting probabilitiesq∗ = (q∗i : i ∈ S) are always the least non-negative
solution ofx = R(x), which is theleast fixed point(LFP) of the monotone operator
R : Rn

>0 → Rn
>0. Let us state this more precisely. For a vectory ∈ Rn, andk > 1,

let R0(y) = y, and fork > 1, letRk+1(y) = R(Rk(y)). For anyk > 0, let qk
i denote

the probability of hitting target setF starting in initial statei, in at mostk time steps. In
other words,qk

i

.
= Pi(∃t (0 6 t 6 k) : Xt ∈ F ). Note thatlimk→∞ qk

i ↑= q∗i , meaning
qk
i converges monotonically from below toq∗, ask → +∞. Let qk = (qk

i : i ∈ S)
denote the corresponding vector. We shall use0, or just0, to denote an all-zero vector
of the appropriate dimensions, when this is clear from the context. The following key
Proposition, 3.1, is well-known and easy to prove: part (1) can be proved by induction on
k, and the rest follows. (We will later learn that variants of Proposition 3.1 hold in much
more general settings, when the symbols in the proposition are interpreted differently.)

Proposition 3.1.

(1) For all k > 0, qk = Rk+1(0), and thusRk+1(0) 6 q∗, andlimk→∞Rk(0) ↑= q∗.
(2) q∗ = R(q∗), and ifq′ ∈ Rn

>0 andq′ = R(q′) thenq∗ 6 q′.
In other words,q∗ is theLeast Fixed Point(LFP) ofR(x).
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Now suppose thatM = (S, P ) is a finite-state Markov chain, son ≡ |S| < ∞,
and that we are given the transition probability matrixP explicitly. How can we use
Proposition (3.1) to compute the hitting probabilitiesq∗? We have to compute the least
non-negative solution to the linear system of equationsx = R(x). One (not very efficient)
way to do this in polynomial time is to formulate this as a linear programming problem.
Namely, the vectorq∗ is the unique optimal solution to the following LP.

minimize:
∑

i∈S xi

subject to:
R(x) 6 x ;
x > 0.

(3.2)

Note that the inequalityR(x) 6 x stands for a system of inequalitiesRi(x) 6 xi, i ∈ S,
and likewisex > 0 stands forxi > 0, i ∈ S.

Although this already shows we can computeq∗ in P-time, we can do much better.
Namely, let us denote byG = (S,∆) the underlying directed graph of the MC,M. Note
thatq∗i = 0 if and only if there is no path inG from i to any statej ∈ F . We can thus
easily compute the setSZero = {i | q∗i = 0} in P-time by a simple depth-first search in
G. We can then remove the equations corresponding to variablesxi, i ∈ SZero, from the
system of equationsx = R(x), and replace occurrences of variablesxi ∈ SZero by 0 on
the right hand side of any other equationsxj = Rj(x) where they occur. For convenience
in what is to follow, we also remove the variablesxi for i ∈ F , and their equationsxi = 1,
and replace the occurrences of variablesxi ∈ F by 1 on the RHS of any other equations
xj = Rj(x) where they occur.

This gives us a new system of linear equationsx̂ = R̂(x̂), in fewer variables. It
turns out that this new system has auniquesolution, corresponding to the remaining
(positive) coordinates ofq∗, and furthermore, if the equation is written in matrix notation
asx̂ = P̂ x̂+ b, then the matrix(I − P̂ ) is guaranteed to be invertible, and the (positive)
coordinates ofq∗ that were not eliminated are given by the solution(I− P̂ )−1b. Thus, we
can computeq∗ in (strongly) polynomial time by first doing some simple graph-theoretic
analysis onG, and then solving a linear system of equations.

We note that it follows from basic facts in matrix theory that(I − P̂ )−1 =
∑∞

k=0 P̂
k.

We can use this to put a probabilistic interpretation on the calculationq∗ = (I− P̂ )−1b =
∑∞

k=0 P̂
kb. Note thatP̂ k

i,j = Pi(Xk = j) is the probability that, in Markov chain̂M
derived fromM, which excludes all states inSZero ∪ F , and replaces them with dead-
end absorbing states, starting in statei, at timek the trajectory is in statej. Thus, for
k > 0, (P̂ kb)i is the probability of entering a state inF for the first time at timek + 1. It
is thus clear, by a probabilistic argument, thatq∗ =

∑∞
k=0 P̂

kb = (I − P̂ )−1b.
A more basic method for computingq∗ numerically is already immediately suggested

by Proposition 3.1, and it “works” even for infinite-state MCs. Namely, we can simply
iteratively compute a sequence of vectorsyk = Rk(0), k = 0, 1, . . ., lettingy0 := 0, and
yk+1 := R(yk). By Proposition 3.1, the sequenceyk = Rk(0) converges monotonically
to q∗. This well-known method is calledvalue iteration. Of course, one issue is that we
do nota priori know how many iterations of value iteration are required as afunction
of the input matrixP in order to converge to within a desired error bound of the vector
q∗. It turns out that in the worst case there are bad examples forfinite-state MCs, where
convergence of value iteration can be very slow. For example, consider the MCM =
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(S, P ), whereS = {1, . . . , n}, and where the target set isF = {n}, and where for all
i ∈ {1, . . . , n− 1}, Pi,1 = 1/2 andPi,i+1 = 1/2, andPn,n = 1, and all other transition
probabilities are of course0. Note thatq∗i = 1 for all i ∈ S. Now by Proposition 3.1,
qk
i = Lk

i (0). However, it can be seen that for allk 6 2n, qk
1 6 1 − (1 − 1/2n)2

n

6

(1 − (1/e)), wheree = 2.71828 . . . is the base of the natural log. Thus, we need at least
k > 2n value iterations before|Lk

1(0) − q∗1 | 6 1/3 6 (1/e). However, value iteration
works reasonably well on many instances of MCs, and optimized variants of it are widely
used in practice (also for MDPs).
NTP: Let us now consider non-negative total payoff analysis of MCs which, as already
noted, generalizes hitting probability analysis. We shallnow reuse symbolsq∗ andR(x),
with a different interpretation, for reasons that will become clear shortly. Suppose we
have a non-negative payoff-labeled MC,M = (S, P, l), with n ≡ |S| states (possibly
infinite), and withl : S → N. We wish to computeq∗j = Ej(limk→∞

∑k
i=0 l(Xi)). We

can again write a linear system of equations for this, with one equation per variablexi,
over variablesx = (xi | i ∈ S), as follows.

xi = l(i) +
∑

j∈S Pi,j · xj , for all i ∈ S. (3.3)

We can again denote this system of linear equations, in vector notation, asx = R(x).
Sincel(i) > 0, the operatorR(x) is again monotone, and it turns out that again the vector
q∗ of expected total payoffs is the least non-negative solution of x = R(x), except with
the difference that we now must also allow for the possibility that some coordinates ofq∗

are+∞. Formally, we can work over the ordered semi-ringR>0 = R>0 ∪{+∞}, where
by definition+∞ ∗ 0 = 0, and+∞ + r = +∞, and+∞ > r, for all r ∈ R̂>0. Let
qk
j = Ej(

∑k

t=0 l(Xt)). Then, it turns out that

Proposition 3.2. The statement of Proposition 3.1 holds true, verbatim, for the above
re-interpretations ofx = R(x), q∗, andqk.

Thus the expectation vectorq∗ is the least fixed pointof the monotone operatorR :
R

n

>0 → R
n

>0. Thus, by Proposition 3.2, value iterationyk := Rk(0) converges monotoni-
cally, in the limit, to the expected total payoff vectorq∗. However, since some coordinates
of q∗ may now be+∞, the value iteratesyk may never actually get “close enough” to
q∗. We can nevertheless again compute expectationsq∗ in strongly polynomial time for
finite-state MCs, including determining those coordinatesthat are+∞, using a variant of
what was described earlier for computing hitting probabilities. First, consider the under-
lying graphG = (S,∆) of M. For any bottom-SCC,C ⊆ S, ofG, if there is somej ∈ C
such thatl(j) > 0, then clearlyv∗j′ = +∞ for all j′ ∈ C, and for allj′ ∈ S such that

j′
∗
; j. Indeed, this describes all states such thatv∗j′ = +∞, because with probability

1 the trajectory will eventually hit some BSCC, and thereafter stay in that BSCC forever.
We can thus use depth-first search to decomposeG into its DAG of SCCs, and find and
remove from the equationsx = R(x) any variablexi such thatq∗i = +∞. Likewise,
by simple reachability analysis onG we can find and remove all variablesxi such that
q∗i = 0, by just noting thatq∗i = 0 iff there is no statej ∈ S such that bothl(j) > 0

andi
∗
; j. After we remove, as indicated, both+∞ and0 variables from the equations,

we are left either with an empty list of equations or a system of linear equations on the
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remaining variables whoseuniquesolution is a positive real-valued vector that yields the
remaining coordinates of the vectorq∗. We can thus compute these remaining coordinates
(in strongly polynomial time) by solving the remaining linear equations.
MoCh: Suppose we are given a labeled finite-state MC,M = (S, P, l), an initial dis-
tributionI, and a Büchi automaton,B = (Q,Σ, q0, δ, F ). Suppose we wish to compute
the probabilityp∗ = PI(L(B)). We now describe an algorithm for computingp∗, due to
Courcoubetis and Yannakakis [13], which runs in time polynomial in the encoding size
|M| of M, and exponential in the encoding size|B| of B.

We can assume, without loss of generality thatΣ = S, i.e., the alphabet ofB is the set
of states ofM. We can do so because we can always update the transition relation δ of B,
refining it so that if(q, a, q′) was inδ, and for somes ∈ S we havel(s) = a, then we put
(q, s, q′) in the new transition relation. It is clear that the probability that M generates
a trajectory accepted by the new BA is the same as the probability that M generates a
trajectory labeled by anω-word inL(B). So from now on, we assumeΣ = S.

We first perform a naivesubset constructionon the BA,B, to obtain a determinis-
tic BA. Recall however that the subset construction doesn’tin general preserve theω-
regular language of a BA, and that in factω-regular languages accepted by some non-
deterministic BAs are not accepted by any deterministic BA.Nevertheless, it was shown
by [11, 13] that the subset construction “works” in a suitable way for probabilistic model
checking. LetB′ = (2Q,Σ, {q0}, δ′, F ′), be the deterministic BA obtained by perform-
ing the usual subset construction onB. The states ofB′ are2Q, the alphabet isΣ = S,
the start state is{q0}, andδ′ ⊆ 2Q × Σ × 2Q is a deterministictransition relation de-
fined byδ′ := {(T, a, T ′) | T ′ = {q′ ∈ Q | ∃q ∈ T : (q, a, q′) ∈ δ}. Finally, we let
F ′ = {T ⊆ Q | T ∩ F 6= ∅}.

Next, we define theproductMC, M⊗B′ = (S × 2Q, P̃ ), obtained from the MCM,
and the deterministic Büchi automaton,B′. The states ofM⊗B′ are pairs(s, T ), where
s ∈ S andT ∈ 2Q, The transition probability functioñP is defined as follows:

P̃ ((s, T ), (s′, T ′)) =

{

P (s, s′) if (T, s′, T ′) ∈ δ′

0 otherwise

Note thatM⊗B′ is indeed an MC, whose trajectories are arefinementof the trajec-
tories ofM. In particular, projecting a trajectoryξ ∈ (S × 2Q)ω on to its left coordinates
yields a trajectory ofM. LetGM⊗B′ denote the underlying directed graph of the MC,
M ⊗ B′. Finally, for a pair(s, T ) ∈ S × 2Q, which defines a state ofM ⊗ B′, and
thus also a node ofGM⊗B′ , letGM⊗B′((s, T )) denote the directed subgraph ofGM⊗B′

induced by the set of nodes consisting of all of the nodes(s′, T ′) ∈ S × 2Q of GM⊗B′

that are reachable from(s, T ), i.e., such that(s, T )
∗
; (s′, T ′).

The following important definitions are key to the algorithm. A pair (s, q) ∈ S×Q is
calledspecial12 if q ∈ F and some bottom-SCCC of GM⊗B′ ((s, {q})) contains a node
(s, T ) ∈ C with q ∈ T . For a bottom-SCC,C ⊆ S × 2Q of GM⊗cB′ (and thus also of
M⊗B′) we shall callC acceptingif there exists some(s, T ) ∈ C such that there exists
q ∈ T ∩ F such that(s, q) is a special pair. The following theorem from [11, 13] reduces
theMoCh problem for finite-state MCs toHP problems on (larger) finite-state MCs:

12In [13] “recurrent” was used, but “recurrent” has other meanings so we use “special” instead, as in [29].
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Theorem 3.3 ([11, 13]). Given a labeled finite-state MC,M = (S, P, l), with initial
states ∈ S, and given a non-deterministic BA,B, with initial stateq0, the probability
Ps(L(B)) is equal to the probability that in the MCM ⊗ B′, starting from initial state
(s, {q0}), the trajectory eventually reaches an accepting bottom-SCC ofM⊗B′.

Thus, in order to computePs(L(B)), we first need to do graph-theoretic analysis on
the directed graphsGM⊗B′ , and also analysis of various subgraphsGM⊗B′((s′, {q})),
for s′ ∈ S andq ∈ F , so as to computespecialpairs (s′, q) ∈ S × Q, and use that
to compute allacceptingbottom-SCCs ofGM⊗B′ . We can then consider all nodes in
such accepting bottom-SCCs as target nodes, and compute theprobability of hitting a
target node starting from the initial state(s, {q0}) of the MC M ⊗ B′, which yields
the probabilityPs(L(B)) that we are after. To compute the hitting probabilities we of
course use the methods already described for solvingHP. Note that this algorithm does
not involve full-fledged determinization of Büchi automata (such as Safra’s construction)
which involves a2|B| log |B| blow-up in size and requires more sophisticated acceptance
conditions such as Rabin or Müller conditions.

Overall, this algorithm runs instronglypolynomial time as a function of|M| (assum-
ingB is fixed) and exponential time as a function of|B|, whenB is nondeterministic (and
polynomial in |B| whenB is deterministic). It was furthermore shown in [11, 13] that,
given MC,M, and nondeterministic BA,B, as input, the qualitative problem of deciding
whetherPs(L(B)) = 1 is in PSPACE, and it was already shown in [41] that the problem
is PSPACE-hard, so the qualitative problem is PSPACE-complete.

Courcoubetis-Yannakakis [11, 13] also considered model checking of finite-state MCs
with respect to properties specified by LTL formulas and, remarkably, they showed that
both the quantitative problem and the qualitative problem for LTL model checking of
MCs has the same complexity as that of model checking anω-regular property given by a
nondeterministic BA. This was surprising, because it is well-known that in general trans-
lating an LTL formula to a BA requires worst-case exponential blow-up. Their algorithm
involves iterative constructions of larger and larger finite-state MCs, starting fromM,
built up via a structural induction on the subformulas of theLTL formula. The transi-
tion probabilities of the new MCs in the iterative construction are obtained by computing
certain hitting probabilities on the old MCs. See [13] for details.

4 Analysis of finite-state MDPs

We now review some algorithms for analyzing finite-state MDPs, and discuss their com-
plexity. Many analogies with the algorithms for finite-state MCs will soon become clear.
In fact, we have deliberately stated some equations and facts for finite-state MCs in a
general enough form so as to be able to reuse them here (and also later, for recursive MCs
and 1-recursive MDPs).

Let us already summarize the known facts: again, for all of the analyses (I.-V.), listed
in section 2.1, all qualitative and quantitative decision and computation problems are
solvable in polynomial time as a function of the encoding size of the given MDP (but the
known P-time algorithms for all of them require solving linear programming problems,
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and thus none of them are currently known to be solvable instronglypolynomial time13).
For qualitative analyses, the algorithms only involve and-or game graph analysis on the
underlying transition graphG of the MDP,D, which can be done in P-time. For quantita-
tive analyses, the algorithms additionally involve solving corresponding max/min-linear
Bellman optimality equations, which can be solved in P-time using linear programming.
For model checking (MoCh) the complexity is polynomial in the encoding size ofD, but
again exponential in the encoding size|B| if the ω-regular property,L = L(B), is given
by a nondeterministic Büchi automaton,B. However for finite-state MDPs, unlike finite-
state MCs, ifL = L(ϕ) is given by an LTL formula,ϕ, then the complexity is double-
exponential as a function of the encoding size ofϕ. These complexity bounds can not be
improved, because the problems are EXPTIME-hard and 2EXPTIME-hard, respectively.
These results on model checking finite-state MDPs were established by Courcoubetis and
Yannakakis in [11, 13, 12, 14].

Analyses, I.MP, and II.DTP, are standard for finite-state MDPs, and algorithms for
them can be found in any textbook on MDPs. See, e.g., [38] for athorough treatment.

Let us mention that for analyses (I.-IV.) on finite-state MDPs, it is well-known that
there always exist deterministic memoryless optimal strategies (see [38]). For model
checking (V.MoCh), memoryless strategies do not suffice in general for optimizing the
probability of anω-regular property, but bounded-memory strategies do suffice ([14]).

We shall only discuss analysesHP andMoCh further. Suppose we are “given” a MDP,
D = (S, (S0, S1),∆, P ), where for now we allow the setS to be countably infinite.
Again, for convenience, we equateS with (an initial segment of) the positive natural
numbersN+ = {1, 2, . . .}, and letn ≡ |S|. We will furthermore assume that every state
i ∈ S1 is boundedly branching, meaning there is somek ∈ N (depending on the MDP),
such that for everyi ∈ S1, |successors(i)| 6 k. This allows us to usemax andmin
operators in the Bellman optimality equations, whereas we would otherwise requiresup
andinf.
HP: Suppose we are “given” a subsetF ⊆ S of target states, and suppose we wish
to compute the supremum probabilities,q∗max,i, or the infimum probabilities,q∗min,i, of
eventually hitting a target state inF starting from initial statei ∈ S. In other words,
q∗max,i

.
= supσ Pσ

i (∃t > 0 : Xt ∈ F ), andq∗min,i

.
= infσ Pσ

i (∃t > 0 : Xt ∈ F ),
Maximum (minimum, respectively) hitting probabilities for a denumerable MDP can

be “computed” by “solving” the following max-(min-)linearsystem of equations, called
their Bellman optimality equations. There is one variable,xi, and one equation, for ev-
ery statei ∈ S. Let opt = max or min, according to whether we are maximizing or
minimizing hitting probability. The equations are given by:

xi = 1 for all i ∈ F ;
xi =

∑

j∈S Pi,j · xj for all i ∈ S0 \ F ;

xi = optj∈successors(i)xj for all i ∈ S1 \ F .
(4.1)

Note that, as in the case of MCs, ifn ≡ |S| = ∞, then the infinite sums for variables
i ∈ S0 in (3.1) are always well defined because of non-negativity. Furthermore, since we

13A notable exception is the case ofDTP where the discount factor is afixed constant, which was shown
in [45] to be solvable in strongly polynomial time. See also [32] for a generalization to turn-based discounted
stochastic games
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have assumed|successors(i)| 6 k < ∞ for all i ∈ S1, themax (or min) operators
in the equations for variablesi ∈ S1 are well defined for any real values assigned to the
variablesxj . We can denote the entire system of equations, in vector notation, as:

x = R(x)

whereR(x) denotes themax-(min)-linear map given by the right hand sides of the
equations in (4.1). Note that since all coefficients and constants definingR(x) are non-
negative,R : Rn

>0 → Rn
>0 again defines amonotonemap from non-negative vectors to

non-negative vectors. Letq∗ = (q∗opt,i : i ∈ S), whereopt = max or= min, respectively.
For anyk > 0, let qk

opt,i denote the optimal probability of hitting target setF starting in
initial statei, in at mostk time steps. Let qk = (qk

opt,i : i ∈ S) denote the corresponding
vector of optimal probabilities. The following is again easy to prove by induction onk.

Proposition 4.1. The statement of Proposition 3.1 holds true, verbatim, for the above
re-interpretations ofx = R(x), q∗, andqk.

Thus the optimal hitting probabilitiesq∗ are the LFP ofx = R(x). Now suppose
thatD = (S, (S0, S1),∆, P ) is a finite-state MDP. How can we use Proposition (4.1) to
compute the optimal hitting probabilitiesq∗? We have to compute the least non-negative
solution to the linear system of equationsx = R(x). One way to do this in polyno-
mial time for maximizingMDPs is to formulate this as a linear programming problem.
Namely, the vectorq∗max is the unique optimal solution to the LP given in (3.2), with
this new interpretation ofR(x). However, to express the constraintsR(x) 6 x as an
LP, and recalling that fori ∈ S1, Ri(x) ≡ maxj∈successors(i) xj , we need to rewrite
the corresponding constraints,Ri(x) 6 xi, as a system of linear inequality constraints
(xi 6 xi | j ∈ successors(i)). With this modification (3.2) again defines an LP, and
the vectorq∗max is the unique optimal solution to this LP.

For minimizingMDPs, computingq∗min can also be reduced to linear programming,
but this case involves some more preprocessing. In order to express the problem as an LP
one first needs to do a little graph-theoretic analysis. Specifically, we first need to identify
and remove all statesi such thatq∗min,i = 0. We can do this by a simple and-or game
graph analysis on the underlying graphG of the MDP. Once this is done, it turns out that
on the remaining MDP one can solve forq∗min as the unique optimal solution of a different
LP, namely the LP given bymaximize:

∑

i xi ; subject to:R(x) > x, x > 0, where in
this case when we haveRi(x) = minj∈successors(i) xj , we have to rewrite the constraint
Ri(x) > xi, as a system of constraints(xj > xi | j ∈ successors(i)).

A more basic method for computingq∗ is again already immediately suggested by
Proposition 3.1:value iteration. By Proposition 3.1, the sequenceyk = Rk(0) converges
monotonically toq∗. As we already saw, even for finite-state MCs, value iteration can be
slow to converge in the worst case, but it is widely used in practice, also for MDPs.

Another standard method for solvingHP for maximizing MDPs, as well as for solv-
ing many other classes of MDPs, is calledpolicy iterationor strategy improvement. It
involved initially fixing an arbitrary (memoryless) strategy for the controller, and evaluat-
ing q∗ on the resulting MC, and then updating the strategy (at everystate) by choosing a
neighbor whose value is strictly greater than that of the currently chosen neighbor chosen
by the previous fixed strategy, if such a strictly greater neighbor exists. See, e.g., [38] for
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much more on policy iteration for MDPs.
It is worth mentioning that answering thequalitativequestions of whetherq∗max,i =

0, 1, or whetherq∗min,i = 0, 1, requires only (game) graph theoretic analyses that do
not depend on the actual probabilities of transitions in thegiven MDP, and so do not
require solving LPs. Thus, these qualitative questions forHP can be answered instrongly
polynomial time. (See, e.g., [13, 14].)
MoCh: Given a labeled finite-state MDP,D = (S, (S0, S1),∆, P, l), an initial state
s0 ∈ S, and a Büchi automaton,B = (Q,Σ, q0, δ, F ), we wish to compute the optimum
(w.l.o.g., maximum) probabilityp∗ = supσ Pσ

s0
(L(B)). Qualitative decision problems

associated with this were studied in [13, 41], and quantitative decision problems where
studied in [14]. We briefly mention the main results of [14].

As in the case ofMoCh for MCs, we can assume, w.l.o.g., thatΣ = S, and we
let B′ = (2Q,Σ, {q0}, δ′, F ′), be the deterministic BA obtained by performing the usual
(naive) subset construction onB. Next, as for MCs, we define theproductMDP,D⊗B′ =
(S × 2Q, (S0 × 2Q, S1 × 2Q), ∆̃, P̃ ). Note that there is a one-to-one correspondence
between strategiesσ onD and strategiesσ onD⊗B′ (becauseB′ is deterministic). Using
more involved analysis than for the case of MCs, employing the notion ofcontrollably
recurrentpairs(s, q) ∈ S × Q (which we will not define here) that roughly correspond
to thespecialpairs in the case of MCs, [14] showed how one can compute a set of target
statesZ ⊆ S × 2Q of D ⊗ B′, such that in order to optimize the probabilityPσ

I(L(B))
in D, it suffices for the strategyσ to first optimize the probability of hitting a target setZ
in D ⊗ B′ and once a target state inz ∈ Z is hit, the strategyσ should then switch to a
different strategyσz that thereafter assures that with probability 1 the infinitetrajectory is
accepted byB (which is made possible, by definition of the target statesZ). In this way,
the problemMoCh is reduced to (much larger) instances of the problemHP, which as
we saw can be solved using linear programming. Let us note however that, whereas for
HP we always have memoryless deterministic (positional) optimal strategies, the optimal
strategies obtained this way forMoCh by [14] are not positional, and in fact it is easy to
see that optimal positional strategies forMoCh need not exist. The complexity of [14]’s
algorithm for computingp∗ = maxσ Pσ

s0
(L(B)) is polynomial in|D| and exponential in

the size|B| for a nondeterministic Büchi automatonB. It was previously shown in [13]
that even the qualitative decision problem of determining whetherp∗ = 1 is EXPTIME-
complete, and thus we can not improve substantially on this complexity upper bound. If
theω-regular property is specified as an LTL formula instead, it was shown in [13] that
the resulting qualitative problem of determining whetherp∗ = 1 is already 2EXPTIME-
complete.

5 Adding Recursion to MCs and MDPs

As mentioned in the introduction, a number of important classes of countably infinite-
state MCs and MDPs that are closely related to automata-theoretic models are subsumed,
in precise senses, by adding a naturalrecursionfeature to MCs and MDPs. in a manner
similar to allowing potentially recursive subroutine calls in procedural programs. The
resulting formal models, calledrecursive Markov chains(RMCs) andrecursive Markov
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Decision Processes(RMDPs) were defined and studied in [28, 29] and in [30, 27], re-
spectively. RMCs and RMDPs provide natural abstract modelsfor probabilistic pro-
cedural programs with recursion (and this indeed partly motivated their study). RMCs
(and RMDPs), and various of their subclasses, capture probabilistic and controlled exten-
sions of classic infinite-state automata theoretic models,including pushdown automata,
context-free grammars, and one-counter automata. Indeed,RMCs and RMDPs can equiv-
alently be viewed as probabilistic and MDP extensions of pushdown automata. We refer
the reader to [28] and [30] for detailed formal definitions and results about RMCs and
RMDPs, respectively.

A (not-necessarily finitely-presented)Recursive Markov Chain (RMC), A, is a tuple
A = (A1, . . . , Ak), where eachcomponentAi = (Ni, Bi, Yi, Eni, Exi, δi) consists of:

• A (countable, or finite) setNi of nodes.
• A subset ofentrynodesEni ⊆ Ni, and a subset ofexit nodesExi ⊆ Ni.
• A (countable, or finite) setBi of boxes, and a mappingYi : Bi 7→ {1, . . . , k} that

assigns to every box (the index of) one of the components,A1, . . . , Ak. To each
box b ∈ Bi, we associate a set ofcall ports, Callb = {(b, en) | en ∈ EnYi(b)}
corresponding to the entries of the corresponding component, and a set ofreturn
ports, Returnb = {(b, ex) | ex ∈ ExYi(b)}, corresponding to the exits of the
corresponding component.

• A probabilistic transition relationδi, where transitions are of the form(u, pu,v, v)
where:
(1) the sourceu is either a non-exit nodeu ∈ Ni\Exi, or a return portu = (b, ex)

of a boxb ∈ Bi,
(2) The destinationv is either a non-entry nodev ∈ Ni \ Eni, or a call port

u = (b, en) of a boxb ∈ Bi ,
(3) pu,v ∈ R>0 is the transition probability fromu to v,
(4) Consistency of probabilities: for eachu,

∑

{v′|(u,pu,v′ ,v′)∈δi}
pu,v′ = 1, un-

lessu is a call port or exit node, neither of which have outgoing transitions, in
which case by default

∑

v′ pu,v′ = 0.
When we want to ensure that an RMC is finitely-presented for computational pur-

poses, we assume that all the sets involved (like nodesNi and boxesBi) are finite, and
we assume that the transition probabilitiespu,v are rational numbers, given as the ratio
of two integers, and we measure their size by the number of bits in the numerator and
denominator. The size,|A|, of a given finitely-presented RMC,A, is the number of bits
needed to specify it (including the encoding size of the transition probabilities). As in the
case of MCs and MDPs, some general theorems used for analysisof RMCs hold true even
when sets defining them like nodesNi and boxesBi are (countably) infinite.

We will use the termvertexof Ai to refer collectively to its set of nodes, call ports,
and return ports, and we denote this set byQi. Thus, the transition relationδi is a set of
probability-weighted directed edges on the setQi of vertices ofAi. We will use all the
notations without a subscript to refer to the union over all the components of the RMC
A. Thus,N = ∪k

i=1Ni denotes the set of all the nodes ofA, Q = ∪k
i=1Qi the set of all

vertices,B = ∪k
i=1Bi the set of all the boxes,Y = ∪k

i=1Yi the mapY : B 7→ {1, . . . , k}
of all boxes to components, andδ = ∪iδi the set of all transitions ofA.

Example 5.1. Figure 3 depicts a example RMC (taken from [29]). This RMC hastwo
componentsA1, A2, each with one entry and two exits (in general different components
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Figure 3. A sample Recursive Markov Chain (taken from [29])

may have different numbers of entries and exits). ComponentA2 has two boxes,b′1 which
maps toA1 andb′2 which maps toA2.

An RMC A defines a global denumerable Markov chainMA = (V, PA) as follows.
The globalstatesV ⊆ B∗ ×Q are pairs of the form〈β, u〉, whereβ ∈ B∗ is a (possibly
empty) sequence of boxes andu ∈ Q is a vertexof A, denoting thecall stack. More
precisely, the statesV ⊆ B∗ × Q and transition probabilities,PA, of MA are defined
inductively as follows:

(1) 〈ǫ, u〉 ∈ V , for u ∈ Q. (ǫ denotes the empty string.)
(2) if 〈β, u〉 ∈ V and(u, pu,v, v) ∈ δ, then〈β, v〉 ∈ V andPA(〈β, u〉, 〈β, v〉) = pu,v.
(3) if 〈β, (b, en)〉 ∈ V , where(b, en) ∈ Callb, then

〈βb, en〉 ∈ V andPA(〈β, (b, en)〉, 〈βb, en〉) = 1.
(4) if 〈βb, ex〉 ∈ V , where(b, ex) ∈ Returnb, then

〈β, (b, ex)〉 ∈ V andPA(〈βb, ex〉, 〈β, (b, ex)〉) = 1.

(1) corresponds to the possible initial states, (2) corresponds to a transition within a com-
ponent, (3) corresponds to a recursive call when a new component is entered via a box, (4)
corresponds to the end of a recursive call when the process exits a component and control
returns to the calling component.

Some states ofMA areterminating, having no outgoing transitions. These are pre-
cisely the states〈ǫ, ex〉, whereex is an exit. If we want to viewMA as a proper Markov
chain, we can consider terminating states ofMA to beabsorbingstates, with a self-loop
transition to themselves having probability 1.

Unrestricted RMCs are essentially equivalent, in a precisesense, toprobabilistic push-
down automata(pPDAs) (see [28] for the precise equivalence). An RMC whereevery
component has at most one exit is called a1-exitRMC, or just1-RMC. 1-RMCs corre-
spond, in a precise sense, to the stochastic process generated by left-most derivations of
a stochastic context-free grammar(SCFG), and they also intimately related tomulti-type
branching processes(see [28] for details of these relationships). An RMC where there is
only one box in the entire RMC is call a1-boxRMC. As shown in [23], these correspond
to probabilistic 1-counter automata, and to (discrete-time) quasi-birth death processes.
Termination probability analysis (VI. TP): We now define a key analysis for RMCs,
namely computation oftermination probabilities, which plays a central role in many other
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analyses of RMCs. For an RMC,A = (A1, . . . , Ak), given a vertexu ∈ Qi and an exit
ex ∈ Exi, both in the same componentAi, letq∗(u,ex) denote the probability of eventually
reaching the state〈ǫ, ex〉, starting at the state〈ǫ, u〉. Computation of termination prob-
abilitiesq∗(u,ex) plays an important role for many other analyses of RMCs, including for
MoCh, in a way analogous to the role thatHP plays for analysing (finite-state) MCs.

Considering the termination probabilitiesq∗(u,ex) as unknowns, we can set up a system
of non-linearpolynomial equations, such that the probabilitiesq∗(u,ex) are theLeast Fixed
Point (LFP) solution of this system. Use a variablex(u,ex) for each unknown probability
q∗(u,ex). We will often find it convenient to index the variablesx(u,ex) according to a fixed
order, so we can refer to them also asx1, . . . , xn, with eachx(u,ex) identified withxj

for somej. Of course, ifNi orBi are infinite for some componentAi, then we have an
infinite vectorx = (x1 . . . xj . . .) of variables, rather than ann-vectorx = (xj | j ∈
{1, . . . , n}), for somen <∞.

Given RMCA = (A1, . . . , Ak), we define a system of polynomial equations,x =
R(x), over the variablesx(u,ex), whereu ∈ Qi andex ∈ Exi, for 1 6 i 6 k. The system
contains one equationx(u,ex) = R(u,ex)(x), for each variablex(u,ex), whereR(u,ex)(x)
is a multivariate polynomial with positive rational coefficients. x = R(x) is defined as
follows: There are several based on the “type” of vertexu. Let [k] = {1, . . . , k}.

x(u,ex) = 1 if u = ex ∈ Exi for i ∈ [k]
x(u,ex) = 0 if u, ex ∈ Exi, andu 6= ex, for i ∈ [k]
x(u,ex) =

∑

{v|(u,pu,v ,v)∈δ} pu,v · x(v,ex) if u ∈ Ni \ {ex} or u = (b, ex′) for b ∈ Bi, i ∈ [k]

x(u,ex) =
∑

ex′∈ExY (b)
x(en,ex′) · x((b,ex′),ex) if u = (b, en), for b ∈ Bi, i ∈ [k]

(5.1)
Given a (finitely-presented) RMCA, we can obviously construct the systemx = R(x)

in polynomial time.R(x) has sizeO(|A|θ2), whereθ denotes the maximum number of
exits of any component. Letq∗ ∈ Rn denote then-vector of probabilitiesq∗(u,ex), using
the same indexing as used forx. The mapR : Rn

>0 7→ Rn
>0 is clearly monotone onRn

>0,
and furthermore, the following analog of Proposition 3.1 holds.

Theorem 5.1. (see [28]14) The termination probability vectorq∗ for an RMC is theleast
fixed pointof x = R(x). Thus,q∗ = R(q∗), and for allq′ ∈ Rn

>0, if q′ = R(q′), then
q∗ 6 q′. Furthermore,Rk(0) 6 Rk+1(0) 6 q∗ ∀k > 0, andq∗ = limk→∞Rk(0).

For (finitely-presented) RMCs the termination probabilities q∗ are in general irra-
tional, so we can’t compute them “exactly”. However, using decision procedures for
theexistential theory of reals, we can decide, e.g., whetherq∗j > r, for any given rational
valuer, in PSPACE (see [28]). It was shown in [28] that for general RMCsany non-trivial
approximationof the probabilitiesq∗ is at least as hard as long standing open problems
in the complexity of numerical computation, namely, thesquare-root sum problemand a
harder arithmetic circuit decision problem known as PosSLP([1]), both of which are not
even known to be decidable in NP nor in the polynomial time hierarchy.

In [28], a decomposed multivariateNewton’s methodis studied and shown to converge

14In [28] this theorem is only claimed for finitely-presented RMCs, where the sets of nodes and boxes are
finite, but exactly the same proofs establish the result whenthe sets of nodes and boxes can be countably infinite.
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monotonically to the LFP,q∗, of x = R(x) for an arbitrary RMC, starting from0, and
more generally this holds for anymonotone polynomial system of equations(MPS),x =
R(x). The convergence behavior of Newton’s method for MPSs was subsequently studied
further in [16], yielding some important insights. Firstly, [16] gave examples of (not
strongly connected) 1-exit RMCs, on whose system of equationsx = R(x) Newton’s
method would require an exponential number of iterations asa function of the encoding
size of the 1-RMC (and ofx = R(x)) to converge to within even 1 bit of precision of
the LFP vectorq∗ starting from0, and on the other hand, in certain strongly-connected
cases of RMCs [16] gave exponential upper bounds on the number of iterations required
to obtain a desired approximation toq∗ as a function of the encoding size ofx = R(x)
for RMCs. For arbitrary MPSs, [16] gave no upper bounds on thenumber of iterations
of Newton required as a function of the encoding size of the input MPS. Recently, in
[40] an exponential worst-case upper bound was establishedfor Newton’s method for as
a function of the encoding size of the MPS for computing its LFP to desired precision.
The bound in [40] is essentially optimal in several important parameters of the problem.

In the case of 1-exit RMCs, the corresponding equation system x = R(x) is aprob-
abilistic polynomial system of equations(PPS). These consist of equations of the form
xi = Ri(x), whereRi(x) is a probabilistic polynomial, meaning a multivariate poly-
nomial in the variablesx whose monomial coefficients and constant term are all non-
negative and their sum is (at most) 1. A recent result in [19] shows that Newton’s method,
combined with P-time methods from [28] for qualitative analysis of termination for 1-exit
RMCs, can be used to obtain a P-time algorithm for PPSs and 1-exit RMCs (in the stan-
dard Turing model of computation) for approximatingq∗ to within arbitrary desired preci-
sion2−j, for j given in unary. This result also has important consequencesfor multi-type
branching processes(BPs) andstochastic context-free grammars(SCFGs). For instance,
it yields the first P-time algorithm for computing extinction probabilities of BPs, and for
computing the probability of generating a given string forarbitrary SCFGs (see [19]). See
also the recent paper [20], where it is has been further shownthat for a very broad class
of SCFGs, excluding only some degenerate “deeply critical”SCFGs, Newton’s method
yields a P-time algorithm for computing within desired precision the probability that the
SCFG generates a string in a given regular language, given bya DFA. In particular, [20]
shows that this runs in P-time for any SCFG whose parameters are estimated using the
standard EM (“inside-outside”) method.

In the case of 1-box RMCs, which are essentially equivalent to discrete-timequasi-
birth-death processes(QBDs), and toprobabilistic one-counter automata, it was shown
in [21] that decomposed Newton’s method requires only polynomially many iterations, as
a function of the encoding size ofx = R(x), and ofj, to computeq∗ to within additive
error 2−j. The vectorq∗ corresponds to the so calledG matrix of a QBD, which is a
key to many other analyses of QBDs (see, e.g., [35, 3]), and this thus yields the first P-
time algorithm, in the unit-cost arithmetic RAM model of computation, for computing
theG matrix of an arbitrary QBD. More recently, in [40], it was shown that with suitable
rounding of Newton’s method theG matrix can be computed in P-time in the standard
Turing model of computation.
Model checking (MoCh): model checking of RMCs was studied in [29], where it was
shown how to useTP analysis toward both qualitative and quantitative model checking of
RMCs. The algorithms are involved: in brief, given a labeledRMC,A, and aω-regular
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property, say given by a Büchi automatonB, it is possible to use termination probabilities
q∗ to first define a finite-state MC, called theconditioned summary chain, M′, of the
“product” of the RMC and the naive determinizationB′ of B, and then to boil down
the probability ofL(B) in the original RMC to the probability of hitting a subsetT of
states inM′, whereT can be computed using suitable modifications to the notion of
special pairs, used earlier for solvingMoCh by [13] for finite-state MCs. Furthermore, a
different algorithm can be used for properties specified by LTL formulas. For the resulting
complexity bounds for the various cases of qualitative and quantitative analysis, see [29],
whose results also yield the best available complexity bounds (improving by more than
one exponential the prior bounds) for model checkingω-regular and LTL properties of
probabilistic pushdown systems, a problem which was first studied in [17].

For model checking 1-box RMCs (equivalently, probabilistic one-counter automata
(pOCAs)), a recent paper [8] shows how to use the polynomial time algorithm obtained
in [23, 40] for computing (to within any desired precision) the termination probabilities
q∗ for 1-box RMCs and pOCAs, in order to obtain an algorithm for computing (to within
desired precision) the probability of anω-regular property for pOCAs which, for a fixed
ω-regular property, also runs in polynomial time (see also [40]).

Recursive Markov Decision Processes (RMDPs):It is not difficult to generalize the
definition of RMCs to define RMDPs, by allowing some nodes of the RMC to becon-
trolled. RMDPs were first studied in [24, 30], where it was shown that,unfortunately,
even very basic computational problems, such as computingany non-trivial approxima-
tion of theoptimal (supremum or infimum)termination probabilities of finitely presented
RMDPs is not computable. Furthermore, [24, 30] showed that even qualitative model
checking (MoCh) analyses are undecidable already for 1-exit RMDPs.

Fortunately it was also shown in [24, 30] that for1-exitRMDPs (1-RMDPs), which
correspond also to controlled versions of BPs and SCFGs, it is possible to set up a mono-
tonemax/min probabilistic polynomial system of equations(max/minPPS),x = R(x),
whose LFP,q∗, corresponds precisely to the vector of optimal termination probabilities.
A maxPPS (respectively, minPPS),x = R(x) consists of equationsxi = Ri(x), where
eachRi(x) has the formmax{Q1(x), . . . , Qki

(x)}, where eachQj(x) is a probabilistic
polynomial in the variablesx. It was furthermore shown in [24, 30] that the controller
always has optimal deterministic stackless and memorylessoptimal strategies for opti-
mizing termination probability in 1-RMDP. Already for 2-exit RMDPs, it is not even the
case that there necessarily existsanyoptimal strategy for maximizing the probability of
termination (see [24]). It was subsequently shown in [25, 30] thatqualitativeoptimal ter-
mination problems for 1-RMDPs can be decided in P-time usinga spectral optimization
method that requires use of linear programming. The algorithms from [25] for decid-
ing whether optimal termination probability for 1-RMDPs isexactly 1 were later used in
[7] in order to show that there is a P-time algorithm for detecting whether there exists a
strategy which achieves optimal termination probability 1of reaching a given vertex of
a 1-exit RMC inanycalling context (any call stack). However, there need not exist any
optimal strategy for reaching a vertex in any calling context, even when the supremum
probability of doing so is 1, and even the decidability of determining whether the supre-
mum probability is 1 for this problem remains open. Finally,in a recent advance it was
shown in [18] that for 1-RMDPs the vectorq∗ of optimal termination probabilities can
be approximated in P-time to within arbitrary desired precision, by using a generaliza-
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tion of Newton’s method applied to the corresponding max/minPPS equationsx = R(x),
which converges monotonically to their LFP. The generalized Newton method requires
solving an LP in each iteration (in both the maximizing and minimizing cases, which are
different).

For 1-box RMDPs, corresponding to controlled QBDs and to MDPextensions of
probabilistic one-counter automata, we do not have a corresponding equation system
x = R(x) which captures their termination probabilities. Nevertheless, it was shown
in [6] and [4] that for both maximizing and minimizing the termination probability in 1-
box RMDPs, the qualitative problem of deciding whether the optimal probability is 1 for
termination, i.e. for hitting counter value 0 inanystate, can be decided in P-time using,
among other things, linear programming. Subsequently, it was shown in [5] that for a
1-box RMDP one canapproximatethe optimal probability of termination inanystate in
exponential time. Optimal strategies need not exist for maximizing termination probabil-
ity in 1-box RMDPs [5]. It remains open whether this exponential time upper bound can
be improved. Deciding whether the (optimal) termination probability is, say,> 1/2, is
already square-root-sum-hard, even for 1-box RMCs ([23]).Apparently harderselective
termination problems for 1-box RMDPs were also studied in [6], such as whether there is
some strategy with which we hit counter value0 in a desired control statewith probability
1. It was shown in [6] that this problem is already PSPACE-hard, and that this particu-
lar qualitative selective termination problem is decidable. However, the decidability of
limit-sure (and quantitative) “selective” termination for 1-box RMDPs remains open.
Recursive Stochastic Games:although we have not discussedstochastic games(see,
e.g., [39, 10, 31]), we mention that a number of results, in particular about 1-RMDPs,
extend naturally to two-player zero-sum1-exit Recursive Simple Stochastic Games(1-
RSSGs) ([24, 30]) and to1-exit Recursive Concurrent Stochastic Games(1-RCSGs) ([26,
27]). In particular, corresponding to 1-RSSGs with the objective (and counter-objective)
of maximizing (and minimizing) termination probability, there are monotone min-max-
polynomial equationsx = R(x) whose LFP yields the vector of termination values start-
ing at each vertex ([24, 30]). Corresponding to 1-RCSGs as shown in [27], there are
monotone minimax-polynomial equations, where the value operator,Val(M), for a 1-
shot 2-player zero-sum matrix gameM is used in the equations, the LFP of which yields
the value vector of the 1-RCSG. It was shown in [25, 30] that deciding whether the value
of a 1-RSSG termination game is exactly 1 is in NP∩ co-NP, and that this problem is
already at least as hard as Condon’squantitativedecision problem for finite-state SSGs
[10], whereas for finite-state SSGs the qualitative decision problem of deciding whether
the value is 1 is known to be in P-time. For 1-RCSG terminationgames it was shown in
[27] that quantitative decision and approximation problems for the game value are solv-
able in PSPACE using the associated monotone system of equationsx = R(x), and it was
shown that even thequalitativeproblem deciding whether the game value is1 is at least
as hard as thesquare-root sum problem, which as discussed already is not even known
to be in NP. The complexity of analyzing 1-box RSSGs (equivalently, one-counter SSGs)
was studied in [6, 4, 5] where some upper and lower bounds wereestablished, but the pre-
cise complexity of a number of analysis problems for one-counter SSGs (and one-counter
MDPs) remains open.
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