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Recursive Markov Chains (RMCs) are a natural abstract model of procedural probabilistic programs
and related systems involving recursion and probability. They succinctly define a class of denumerable
Markov chains that generalize several other stochastic models, and they are equivalent in a precise sense
to probabilistic Pushdown Systems. In this article, we study the problem of model checking an RMC
against an ω-regular specification, given in terms of a Büchi automaton or a Linear Temporal Logic (LTL)
formula. Namely, given an RMC A and a property, we wish to know the probability that an execution of
A satisfies the property. We establish a number of strong upper bounds, as well as lower bounds, both for
qualitative problems (is the probability = 1, or = 0?), and for quantitative problems (is the probability ≥ p?,
or, approximate the probability to within a desired precision). The complexity upper bounds we obtain for
automata and LTL properties are similar, although the algorithms are different.

We present algorithms for the qualitative model checking problem that run in polynomial space in the
size |A| of the RMC and exponential time in the size of the property (the automaton or the LTL formula). For
several classes of RMCs, including single-exit RMCs (a class that encompasses some well-studied stochastic
models, for instance, stochastic context-free grammars) the algorithm runs in polynomial time in |A|. For
the quantitative model checking problem, we present algorithms that run in polynomial space in the RMC
and exponential space in the property. For the class of linearly recursive RMCs we can compute the exact
probability in time polynomial in the RMC and exponential in the property. For deterministic automata
specifications, all our complexities in the specification come down by one exponential.

For lower bounds, we show that the qualitative model checking problem, even for a fixed RMC, is already
EXPTIME-complete. On the other hand, even for simple reachability analysis, we know from our prior
work that our PSPACE upper bounds in A can not be improved substantially without a breakthrough on a
well-known open problem in the complexity of numerical computation.
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1. INTRODUCTION
Recursive Markov Chains (RMCs) are a natural abstract model of systems that involve
probability and recursion, such as procedural probabilistic programs. Informally, an
RMC consists of a collection of finite state component Markov chains (MC) that can call
each other in a potentially recursive manner. Each component MC has a set of nodes
(ordinary states), a set of boxes (each of which is mapped to a component MC), a well-
defined interface consisting of a set of entry and exit nodes (the nodes where it may
start and terminate), and a set of probabilistic transitions connecting the nodes and
boxes. A transition to a box specifies the entry node and models the invocation of the
component MC associated with the box; when (and if) the component MC terminates
at an exit, execution of the calling MC resumes from the corresponding exit of the box.

RMCs are a probabilistic version of Recursive State Machines (RSMs) [Alur et al.
2005]. RSMs and closely related models like Pushdown Systems (PDSs) have been
studied extensively in recent research on model checking and program analysis,
because of their applications to verification of sequential programs with procedures
[Bouajjani et al. 1997]. Recursive Markov Chains subsume, in a certain precise sense,
several other well-studied models involving probability and recursion: Stochastic
Context-Free Grammars (SCFGs), have been extensively studied mainly in natural
language processing (NLP) [Manning and Schütze 1999] as well as biological sequence
analysis [Durbin et al. 1999]. A subclass of SCFGs corresponds to a model of web
surfing called backoff or back-button process, studied in Fagin et al. [2000]. Stochastic
context-free grammars can be modeled by a subclass of RMCs, in particular the
class of 1-exit RMCs, in which all components have one exit. Multi-Type Branching
Processes (MT-BPs), are an important family of stochastic processes, modeling the
stochastic evolution of a population of entities of various types (species), with many
applications in a great variety of areas such as biology, population dynamics and many
others (see, e.g., Haccou et al. [2005]; Harris [1963]; Kimmel and Axelrod [2002]). As
shown in Etessami and Yannakakis [2009], the extinction probabilities of branching
processes (the central quantities of interest) can be expressed as the termination
probabilities of 1-exit RMCs.

RMCs can be viewed also as a recursive version of ordinary finite-state Markov
chains, in the same way that RSMs are a recursive version of ordinary finite-state ma-
chines. Markov chains have been used to model nonrecursive probabilistic programs
and analyze their properties. Probabilistic models of programs and systems are of in-
terest for several reasons. First, a program may use randomization, in which case
the transition probabilities reflect the random choices of the algorithm. Second, we
may want to model and analyse a program or system under statistical conditions on
its behavior (e.g., based on profiling statistics or on statistical assumptions), and to
determine the induced probability of properties of interest.

We introduced RMCs in Etessami and Yannakakis [2009], where we developed some
of their basic theory and focused on algorithmic reachability analysis: what is the prob-
ability of reaching a given state starting from another? In this article, we study the
more general problem of model checking an RMC against an ω-regular specification:
given an RMC A and an ω-regular property, we wish to know the probability that an
execution of A satisfies the property. The techniques we develop in this article for
model checking go far beyond what was developed in Etessami and Yannakakis [2009]
for reachability analysis.

General RMCs are intimately related to probabilistic Pushdown Systems (pPDSs),
an equivalent model introduced by Esparza et al. [2004], and there are efficient trans-
lations between RMCs and pPDSs [Etessami and Yannakakis 2009]. Thus, our results
apply with the same complexity to the pPDS model. There has been recent work on
model checking of pPDSs [Brázdil et al. 2005; Esparza et al. 2004]. As we shall describe
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below, our results yield substantial improvements, when translated to the setting of
pPDSs, on the best upper and lower bounds known for the complexity of ω-regular
model checking of pPDSs.

We now outline the main results in this article. We consider the two most popular
formalisms for the specification of ω-regular properties over words, (nondeterministic)
Büchi automata (BA for short) and Linear Temporal Logic (LTL). The automata
formalism can express all ω-regular properties, while LTL expresses a (important)
proper subset. On the other hand, LTL is a common and more succinct formalism.
The complexity results turn out to be similar for the two formalisms (even though au-
tomata are more general and LTL is more succinct), but require different algorithms.

We are given an RMC A and a property in the form of a (nondeterministic) Büchi
automaton (BA) B, whose alphabet corresponds to (labels on) the vertices of A, or a
LTL formula ϕ whose propositions correspond to properties of (labels on) the vertices
of A. Let PA (L(B)) (respectively, PA (ϕ)) denote the probability that an execution of
A is accepted by B (resp. satisfies the property ϕ). The qualitative model checking
problems are: (1) determine whether almost all executions of A satisfy the property
(i.e., is PA (L(B)) = 1?, resp. PA (ϕ) = 1?); this corresponds to B or ϕ being a desirable
correctness property, and (2) whether almost no executions of A satisfy the property
(i.e., is PA (L(B)) = 0?, resp. PA (ϕ) = 0?), corresponding to B or ϕ being an undesir-
able error property. In the quantitative model checking problems we wish to compare
PA (L(B)) (or PA (ϕ)) to a given rational threshold p, in other words, is PA (L(B)) ≥ p?,
or alternatively, we may wish to approximate PA (L(B)) to within a given number of
bits of precision. Note that in general the probabilities PA (L(B)), PA (ϕ) may be irra-
tional and may not even be expressible by radicals [Etessami and Yannakakis 2009],
and hence they cannot be computed exactly.

We show that for both Büchi automata and LTL specifications, the qualitative model
checking problems can be solved with an algorithm that runs in polynomial space
in the size |A| of the given RMC and exponential time in the size of the property
specification (i.e., the size |B| of the given automaton B or the size |ϕ| of the given LTL
formula ϕ). More specifically, in a first phase the algorithm analyzes the RMC A by
itself (using polynomial space). In a second phase it analyses further A in conjunction
with the property, using polynomial time in A and exponential time in the size of
the automaton B or the formula ϕ. If the property is specified by a deterministic
automaton B, then the time is polynomial in B.

For several important classes of RMCs we can obtain better complexity. First, if
A is a single-exit RMC then the first phase, and hence the whole algorithm, can be
done in polynomial time in A. This result applies in particular to (qualitative) model
checking of stochastic context-free grammars and backoff processes. Another class of
RMCs that we can model-check qualitatively in polynomial time in A is when the total
number of entries and exits in A is bounded (we call them bounded RMCs). In terms of
probabilistic program abstractions, this class of RMCs corresponds to programs with
a bounded number of different procedures, each of which has a bounded number of
input/output parameter values. The internals of the components of the RMCs (i.e., the
procedures) can be arbitrarily large and complex. A third class of RMCs with efficient
model checking is the class of linear RMCs, that is, RMCs with linear recursion.

For quantitative model checking, we show that deciding whether PA (L(B)) ≥ p
(resp. PA (ϕ) ≥ p) for a given rational p ∈ [0, 1] can be decided in space polynomial
in |A| and exponential in |B| (resp., |ϕ|). For a deterministic automaton B, the space
is polynomial in both A , B. For linear RMCs we show that the probability PA (L(B))
or PA (ϕ) is rational and can be computed exactly in polynomial time in the RMC A
and exponential time in the specification B or ϕ. For A a bounded RMC, and when the
property is fixed, there is an algorithm that runs in polynomial time in |A|; however, in
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Fig. 1. Complexity of qualitative and quantitative problems.

this case (unlike the others) the exponent of the polynomial depends on the property.
Figure 1 summarizes our complexity upper bounds.

For lower bounds, we prove that the qualitative model checking problem, even for
a fixed, single entry/exit RMC, is already EXPTIME-complete, both for automata and
for LTL specifications. On the other hand, even for reachability analysis, we showed
in Etessami and Yannakakis [2009] that our PSPACE upper bounds in A, even for
the quantitative 1-exit problem, and the general qualitative problem, can not be im-
proved substantially without a breakthrough on the complexity of the square root sum
problem, a well-known open problem in the complexity of numerical computation (see
Section 2.2).

1.1. Related Work

Model checking of ordinary flat (i.e., nonrecursive) finite Markov chains has received
extensive attention both in theory and practice [Courcoubetis and Yannakakis 1995;
Kwiatkowska 2003; Pnueli and Zuck 1993; Vardi 1985]. It is known that model check-
ing of a Markov chain A with respect to a Büchi automaton B or a LTL formula ϕ
is PSPACE-complete, and furthermore the probability PA (L(B)) or PA (ϕ) can be com-
puted exactly in time polynomial in A and exponential in B or ϕ [Courcoubetis and
Yannakakis 1995]. Recursive Markov chains were introduced recently in Etessami
and Yannakakis [2009], where we developed some of their basic theory and investi-
gated the termination and reachability problems; we summarize the main results in
Section 2.2. Recursion introduces a number of new difficulties that are not present in
the flat case. For example, in the flat case, the qualitative problems depend only on
the structure of the Markov chain (i.e., which transitions are present) and not on the
precise values of the transition probabilities; this is not the case for RMCs and numer-
ical issues have to be dealt with even in the qualitative problem. Furthermore, unlike
the flat case, the desired probabilities are irrational and cannot be computed exactly.

The equivalent model of probabilistic Pushdown Systems (pPDS) was introduced
and studied by Esparza et al. [2004] and Brázdil et al. [2005]. They largely focus
on model checking against branching-time properties, but they also study determinis-
tic [Esparza et al. 2004] and nondeterministic [Brázdil et al. 2005] Büchi automaton
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specifications. There are efficient (linear time) translations between RMCs and pPDSs
[Etessami and Yannakakis 2009], similar to translations between RSMs and PDSs
[Alur et al. 2005].

This article combines, and expands on, the content of our two conference publi-
cations [Etessami and Yannakakis 2005a; Yannakakis and Etessami 2005] on model
checking of Recursive Markov Chains. Those two papers treated separately the case
of model checking against ω-regular properties and LTL properties. Our upper bounds
for model checking, translated to pPDSs, improve substantially on those obtained by
Esparza et al. [2004] and Brázdil et al. [2005], by at least an exponential factor in the
general setting, and by more for specific classes like single-exit, linear, and bounded
RMCs. Specifically, Brázdil et al. [2005], by extending results in Esparza et al. [2004],
show that qualitative model checking for a pPDS and a Büchi automaton can be done
in PSPACE in the size of the pPDS and 2-EXPSPACE in the size of the Büchi au-
tomaton, while quantitative model checking can be decided in EXPTIME in the size of
the pPDS and in 3-EXPTIME in the size of the Büchi automaton. They do not obtain
stronger complexity results for the class of pBPAs (equivalent to single-exit RMCs).
Also, the class of bounded RMCs has no direct analog in pPDSs, as the total number
of entries and exits of an RMC gets lost in translation to pPDSs. These papers do not
address directly LTL specifications.

The rest of this article is organized as follows. In Section 2 we give the necessary
definitions and background on RMCs from Etessami and Yannakakis [2009]. We also
indicate how the model checking problems for stochastic context-free grammars (and
backoff processes) reduce to (1-exit) RMCs. In Section 3 we show how to construct from
an RMC A a flat “summary” Markov chain M′

A which in some sense summarizes the
recursion in the trajectories of A; this chain plays a central role analogous to that of
the “summary graph” for Recursive State machines [Alur et al. 2005]. In Section 4 we
address the qualitative model checking problems for Büchi automata specifications,
presenting both upper and lower bounds. In Section 5 we show a fundamental “unique
fixed point theorem” for RMCs, which allows us to isolate the termination probabilities
of an RMC as the unique solution of a set of constraints. In Section 6 we use this to
address the quantitative model checking problem for Büchi automata. Section 7 con-
cerns the qualitative model checking of LTL specifications, and Section 8 quantitative
model checking of LTL.

2. DEFINITIONS AND BACKGROUND

We will first formally define Recursive Markov Chains and give the basic terminol-
ogy. Then, in Section 2.1 we will recall the definitions of Büchi automata and Linear
Temporal Logic, and define formally the qualitative and quantitative model checking
problems for RMCs. In Section 2.2 we will summarize the basic theory of RMCs and
results from Etessami and Yannakakis [2009] regarding reachability and termination.
In Section 2.3 we describe the reduction of stochastic context-free grammars to 1-exit
RMCs, with respect to the model checking problems.

A Recursive Markov Chain (RMC), A, is a tuple A = (A1, . . . , Ak), where each com-
ponent graph Ai = (Ni, Bi, Yi, Eni, Exi, δi) consists of:

— a finite set Ni of nodes.
— a subset of entry nodes Eni ⊆ Ni, and a subset of exit nodes Exi ⊆ Ni.
— a finite set Bi of boxes, and a mapping Yi : Bi �→ {1, . . . , k} that assigns to every box

(the index of) one of the components, A1, . . . , Ak. To each box b ∈ Bi, we associate
a set of call ports, Callb = {(b , en) | en ∈ EnYi(b )} corresponding to the entries of the
corresponding component, and a set of return ports, Returnb = {(b , ex) | ex ∈ ExYi(b )},
corresponding to the exits of the corresponding component.
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Fig. 2. A sample Recursive Markov Chain.

— a finite transition relation δi, where transitions are of the form (u, pu,v, v) where:
(1) the source u is either a nonexit node u ∈ Ni \ Exi, or a return port u = (b , ex) of

a box b ∈ Bi,
(2) The destination v is either a nonentry node v ∈ Ni \ Eni, or a call port u = (b , en)

of a box b ∈ Bi ,
(3) pu,v ∈ R>0 is the transition probability from u to v,
(4) Consistency of probabilities: For each u,

∑
{v′|(u,pu,v′ ,v′)∈δi} pu,v′ = 1, unless u is a

call port or exit node, neither of which have outgoing transitions, in which case
by default

∑
v′ pu,v′ = 0.

For computational purposes, we assume that the transition probabilities pu,v are
rational numbers, given as the ratio of two integers, and we measure their size by the
number of bits in the numerator and denominator. The size |A| of a given RMC A is the
number of bits needed to specify it (including the size of the transition probabilities).

We will use the term vertex of Ai to refer collectively to its set of nodes, call ports,
and return ports, and we denote this set by Qi. Thus, the transition relation δi is a set
of probability-weighted directed edges on the set Qi of vertices of Ai. We will use all
the notations without a subscript to refer to the union over all the components of the
RMC A. Thus, N = ∪k

i=1Ni denotes the set of all the nodes of A, Q = ∪k
i=1 Qi the set of

all vertices, B = ∪k
i=1 Bi the set of all the boxes, Y = ∪k

i=1Yi the map Y : B �→ {1, . . . , k}
of all boxes to components, and δ = ∪iδi the set of all transitions of A.

An example RMC is shown in Figure 2. The RMC has two components A1, A2,
each with one entry and two exits (in general different components may have different
numbers of entries and exits). Component A2 has two boxes, b ′

1 which maps to A1
and b ′

2 which maps to A2. Note that the return ports of a box may have different
transitions.

An RMC A defines a global denumerable Markov chain MA = (V,�) as follows. The
global states V ⊆ B∗ × Q are pairs of the form 〈β, u〉, where β ∈ B∗ is a (possibly empty)
sequence of boxes and u ∈ Q is a vertex of A. More precisely, the states V ⊆ B∗ × Q
and transitions � are defined inductively as follows.

(1) 〈ε, u〉 ∈ V, for u ∈ Q. (ε denotes the empty string.)
(2) if 〈β, u〉 ∈ V and (u, pu,v, v) ∈ δ, then 〈β, v〉 ∈ V and (〈β, u〉, pu,v, 〈β, v〉) ∈ �.
(3) if 〈β, (b , en)〉 ∈ V, where (b , en) ∈ Callb , then

〈βb , en〉 ∈ V and (〈β, (b , en)〉, 1, 〈βb , en〉) ∈ �.
(4) if 〈βb , ex〉 ∈ V, where (b , ex) ∈ Returnb , then

〈β, (b , ex)〉 ∈ V and (〈βb , ex〉, 1, 〈β, (b , ex)〉) ∈ �.

Item 1 corresponds to the possible initial states, item 2 corresponds to a transition
within a component, item 3 corresponds to a recursive call when a new component is
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entered via a box, item 4 corresponds to the end of a recursive call when the process
exits a component and control returns to the calling component.

Some states of MA are terminating, having no outgoing transitions. These are pre-
cisely the states 〈ε, ex〉, where ex is an exit. We want to view MA as a proper Markov
chain, so we consider terminating states to be absorbing states, with a self-loop of
probability 1.

A trace (or trajectory) t ∈ Vω of MA is an infinite sequence of states t = s0s1s2 . . .. such
that for all i ≥ 0, there is a transition (si, psi,si+1 , si+1) ∈ �, with psi,si+1 > 0. Let � ⊆ Vω

denote the set of traces of MA . For a state s = 〈β, v〉 ∈ V, let Q(s) = v denote the vertex
at state s. Generalizing this to traces, for a trace t ∈ �, let Q(t) = Q(s0)Q(s1)Q(s2) . . . ∈
Qω. We will consider MA with initial states from Init = {〈ε, v〉 | v ∈ Q}. More generally
we may have a probability distribution pinit : V �→ [0, 1] on initial states (we usually
assume pinit has support only in Init, and we always assume it has finite support).
This induces a probability distribution on traces generated by random walks on MA .
Formally, we have a probability space (�,F , Pr�), parametrized by pinit, where F =
σ (C) ⊆ 2� is the σ -field generated by the set of basic cylinder sets, C = {C(x) ⊆ � |
x ∈ V∗}, where for x ∈ V∗ the cylinder at x is C(x) = {t ∈ � | t = xw, w ∈ Vω}. The
probability distribution Pr� : F �→ [0, 1] is determined uniquely by the probabilities
of cylinder sets, which are given as follows (see, e.g., Billingsley [1995]):

Pr�(C(s0s1 . . . sn)) = pinit(s0)ps0,s1 ps1,s2 . . . psn−1,sn.

We will consider three important subclasses of RMCs, and obtain better complexity
results for them. We say that an RMC is linearly recursive, or simply linear, if there
is no path in any component from a return port of any box to a call port of the same
or another box. This corresponds to the usual notion of linear recursion in procedures.
For example, the RMC of Figure 1 is not linear because of the transition from the
second exit of box b1 to the entry of the box; if the transition was not present then the
RMC would be linear.

An RMC where every component has at most one exit is called a 1-exit RMC. As
shown in Etessami and Yannakakis [2009], these encompass in a certain sense several
well-studied important stochastic models, for instance, Stochastic Context-free Gram-
mars and (Multi-type) Branching Processes, as well as the “back-button” model of Web
surfing studied in Fagin et al. [2000].

Finally, RMCs where the total number of entries and exits is bounded by a constant
c, (i.e.,

∑k
i=1 |Eni| + |Exi| ≤ c) are called bounded RMCs. These correspond to recursive

programs with a bounded number of different procedures which pass a bounded num-
ber of input and output values (the procedures themselves can be internally arbitrarily
complicated).

2.1. The Central Questions for Model Checking of RMCs

We first define termination (exit) probabilities that play an important role in our anal-
ysis. Given a vertex u ∈ Qi and an exit ex ∈ Exi, both in the same component Ai,
let q∗

(u,ex) denote the probability of eventually reaching the state 〈ε, ex〉, starting at the
state 〈ε, u〉. Formally, we have pinit(〈ε, u〉) = 1, and q∗

(u,ex)
.= Pr�({t = s0s1 . . . ∈ � |

∃ i , si = 〈ε, ex〉}). As we shall see, the probabilities q∗
(u,ex) will play an important role in

obtaining other probabilities.
Two popular formalisms for specifying properties of executions are Büchi automata

and Linear Temporal Logic. A Büchi automaton (BA for short) B = (
, S, q0, R, F),
has an alphabet 
, a set of states S, an initial state q0 ∈ S, a transition relation R ⊆
S×
×S, and a set of accepting states F ⊆ S. A run of B is a sequence π = q0v0q1v1q2 . . .
of alternating states and letters such that for all i ≥ 0 (qi, vi, qi+1) ∈ R. The ω-word
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associated with run π is wπ = v0v1v2 . . . ∈ 
ω. The run π is accepting if for infinitely
many i, qi ∈ F. Define the ω language L(B) = {wπ | π is an accepting run of B}. Note
that L(B) ⊆ 
ω. Let L : Q �→ 
, be a given 
-labeling of the vertices of RMC A.
L naturally extends to the state set V of the infinite Markov chain MA , by letting
L(〈β, v〉) = L(v) for each state 〈β, v〉 ∈ V of MA , and it further generalizes to a mapping
L : Vω �→ 
ω from trajectories of MA (in other words, executions (paths) of the RMC
A) to infinite 
-strings: for t = s0s1s2 . . . ∈ Vω, L(t) = L(s0)L(s1)L(s2) . . .. The execution
t satisfies the property specified by the automaton B iff L(t) ∈ L(B). Given RMC A,
with initial state s0 = 〈ε, u〉, and given a Büchi automaton B over the alphabet 
,
let PA (L(B)) denote the probability that a trace of MA is in L(B). More precisely:
PA (L(B)) .= Pr�({t ∈ � | L(t) ∈ L(B)}). As in the case of flat (ordinary finite) Markov
chains [Courcoubetis and Yannakakis 1995; Vardi 1985], it is easy to show that the
sets {t ∈ � | L(t) ∈ L(B)} are measurable (in F).

Linear Temporal Logic (LTL) [Pnueli 1977] has formulas that are built from a finite
set Prop of propositions using the usual Boolean connectives (e.g., ¬,∨,∧), the unary
temporal connective Next (denoted ©) and the binary temporal connective Until (U );
thus, if ξ, ψ are LTL formulas then ©ξ and ξUψ are also LTL formulas. To specify
a property of an RMC using LTL, every vertex of the given RMC A is labeled with a
subset of Prop: the set of propositions that hold at that vertex. That is, there is a given
labeling (often called a valuation function) L : Q �→ 
 = 2Prop. As noted previously,
the labeling function can be extended naturally to the infinite Markov chain MA and
to its trajectories. If t = s0, s1, s2 . . . is a trajectory of MA and ϕ is an LTL formula, then
we define satisfaction of the formula by t at step i, denoted t, i |= ϕ inductively on the
structure of ϕ as follows.

— t, i |= p for p ∈ Prop iff p ∈ L(si).
— t, i |= ¬ξ iff not t, i |= ξ .
— t, i |= ξ ∨ ψ iff t, i |= ξ or t, i |= ψ .
— t, i |= ©ξ iff t, (i + 1) |= ξ .
— t, i |= ξUψ iff there is a j ≥ i such that t, j |= ψ , and t, k |= ξ for all k with i ≤ k < j.

We say that the trajectory t satisfies ϕ iff t, 0 |= ϕ. Other useful temporal connectives
can be defined using U . The formula True Uψ means “eventually ψ holds” and is
abbreviated �ψ . The formula ¬(�¬ψ) means “always ψ holds” and is abbreviated �ψ .

If ϕ is an LTL formula and A is an RMC with a labeling function over the proposi-
tions of ϕ, then the set of executions of A (i.e., trajectories of MA ) that satisfy ϕ is a
measurable set. We use PA (ϕ) to denote the probability of this set. As is well known,
LTL formulas specify ω-regular properties: From a given LTL formula ϕ over set of
propositions Prop, one can construct a Büchi automaton Bϕ with alphabet 
 = 2Prop

such that L(Bϕ) is precisely the set of infinite words that satisfy ϕ [Vardi and Wolper
1986]. The automaton has in general exponentially larger size than the formula (and
this is inherent), that is, LTL is in general a more succinct formalism. On the other
hand, Büchi automata are a more general formalism in that they can express all ω-
regular properties, whereas LTL expresses a proper subset.

The model checking problems for ω-regular properties of RMCs are defined as fol-
lows. We are given a RMC A and a property ϕ, in terms of either a given LTL formula
or a given Büchi automaton B (i.e., ϕ = L(B) in the latter case).

(1) Qualitative model checking problems: Is PA (ϕ) = 1? Is PA (ϕ) = 0?
(2) Quantitative model checking problems:

(a) Decision problem: Given a rational p ∈ [0, 1] (in addition to the RMC A and
the property ϕ), is PA (ϕ) ≥ p?
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(b) Approximation problem. Given a number j in unary (in addition to the RMC
A and the property ϕ), approximate PA (ϕ) to within j bits of precision, that is,
compute a value that is within an additive error 2− j of PA (ϕ).

Note that if we have a routine for the decision problem PA (ϕ) ≥ p?, then we can
approximate PA (ϕ) to within j bits of precision using binary search with j calls to
the routine. Thus, for quantitative model checking it suffices to address the decision
problem.

Note that probabilistic reachability (and termination) is a special case of model
checking for a simple fixed automaton B (or LTL formula ϕ): Given a vertex u of the
RMC A and a subset of vertices F, the probability that the RMC starting at u visits
eventually some vertex in F (with some stack context) is equal to PA (L(B)), where we
let the labeling L map vertices in F to 1 and the other vertices of A to 0, and B is
the 2-state automaton over alphabet {0, 1} that accepts strings that contain a 1. For
the termination probability q∗

(u,ex), that is, the probability that the RMC starting at a
vertex u terminates at the exit ex of the component Ai of u (with empty stack), let A ′
be the RMC obtained from A by adding a new component A ′

i that is identical to the
component Ai of u; then q∗

(u,ex) is equal to the probability that A ′ starting at vertex u
of A ′

i reaches the exit ex of A ′
i. Similarly, for the repeated reachability problem, where

we are interested whether a trajectory from u visits infinitely often a vertex of a set
F (with any stack context), we can let B be the (2-state deterministic) automaton that
accepts strings with an infinite number of 1’s. Similarly we can write small fixed LTL
formulas for reachability and repeated reachability.

2.2. Basic RMC Theory and Reachability Analysis

We recall some of the basic theory of RMCs developed in Etessami and Yannakakis
[2009], where we studied reachability analysis. Considering the termination probabil-
ities q∗

(u,ex) as unknowns, we can set up a system of (nonlinear) polynomial equations,
such that the probabilities q∗

(u,ex) are the Least Fixed Point (LFP) solution of this sys-
tem. Use a variable x(u,ex) for each unknown probability q∗

(u,ex). We will often find it
convenient to index the variables x(u,ex) according to a fixed order, so we can refer to
them also as x1, . . . , xn, with each x(u,ex) identified with x j for some j. We thus have a
vector of variables: x = (x1 x2 . . . xn)T .

Definition 1. Given RMC A = (A1, . . . , Ak), define the system of polynomial equa-
tions, SA , over the variables x(u,ex), where u ∈ Qi and ex ∈ Exi, for 1 ≤ i ≤ k. The
system contains one equation x(u,ex) = P(u,ex)(x), for each variable x(u,ex), where P(u,ex)(x)
is a multivariate polynomial with positive rational coefficients. There are 3 cases,
based on the “type” of vertex u:

(1) Type I: u = ex. In this case: x(ex,ex) = 1.
(2) Type II: either u ∈ Ni \ {ex} or u = (b , ex′) is a return port. In these cases:

x(u,ex) =
∑

{v|(u,pu,v ,v)∈δ} pu,v · x(v,ex).

(3) Type III: u = (b , en) is a call port. In this case:

x((b ,en),ex) =
∑

ex′∈ExY (b )
x(en,ex′) · x((b ,ex′),ex)

In vector notation, we denote SA = (x j = Pj(x) | j = 1, . . . , n) by: x = P(x).

Given RMC A, we can construct the system x = P(x) in polynomial time: P(x)
has size O(|A|θ2), where θ denotes the maximum number of exits of any component.
For vectors x, y ∈ R

n, define x � y to mean that x j ≤ y j for every coordinate j. For
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D ⊆ R
n, call a mapping H : R

n �→ R
n monotone on D, if: for all x, y ∈ D, if x � y

then H(x) � H(y). Define P1(x) = P(x), and Pk(x) = P(Pk−1(x)), for k > 1. Let q∗ ∈ R
n

denote the n-vector of probabilities q∗
(u,ex), using the same indexing as used for x. Let 0

denote the all 0 n-vector. Define x0 = 0, and xk = P(xk−1) = Pk(0), for k ≥ 1. The map
P : Rn �→ R

n is monotone on R
n
≥0.

T HEOREM 2 [ETESSAMI AND YANNAKAKIS 2009], SEE ALSO E SPARZA ET AL.
[2004]. The vector of termination probabilities q∗ ∈ [0, 1]n is the Least Fixed Point
solution, LFP(P), of x = P(x). Thus, q∗ = P(q∗) and for all q′ ∈ R

n
≥0, if q′ = P(q′), then

q∗ � q′. Furthermore, xk � xk+1 � q∗ for all k ≥ 0, and q∗ = limk→∞ xk.

There are RMCs, even 1-exit RMCs, for which the probability q∗
(en,ex) is irrational and

not “solvable by radicals” [Etessami and Yannakakis 2009]. Thus, we can’t compute
probabilities exactly.

Given a system x = P(x), and a vector q ∈ [0, 1]n, consider the following sentence in
the Existential Theory of Reals (which we denote by ExTh(R)):

ϕ ≡ ∃x1, . . . , xm

m∧
i=1

(Pi(x1, . . . , xm) = xi) ∧
m∧

i=1

(0 ≤ xi) ∧
m∧

i=1

(xi ≤ qi).

ϕ is true precisely when there is some z ∈ R
m, 0 � z � q, and z = P(z). Thus, if we can

decide the truth of this sentence, we could tell whether q∗
(u,ex) ≤ p, for some rational

p, by using the vector q = (1, . . . , p, 1, . . .). We will rely on decision procedures for
ExTh(R). It is known that ExTh(R) can be decided in PSPACE [Canny 1988; Renegar
1992]. Furthermore it can be decided in exponential time, where the exponent depends
(linearly) only on the number of variables; thus for a fixed number of variables the
algorithm runs in polynomial time. As a consequence:

THEOREM 3 [ETESSAMI AND YANNAKAKIS 2009]. Given RMC A and rational
value ρ, there is a polynomial space algorithm that decides whether q∗

(u,ex) ≤ ρ, with
running time O(|A|O(m)), where m is the number of variables in the system x = P(x) for
A. Moreover q∗

(u,ex) can be approximated to within j bits of precision within PSPACE
and with running time at most O( j |A|O(m)).

Better results are possible for special classes of RMCs. For linear RMCs, the termi-
nation probabilities q∗

(u,ex) are rational and can be computed exactly in polynomial time
by solving two systems of linear equations. For bounded RMCs, the probabilities are
irrational, but it is possible to solve efficiently the quantitative decision and approx-
imation problems by constructing a system of (nonlinear) constraints in a bounded
number of variables, and using the fact that ExTh(R) is decidable in P-time when the
number of variables is bounded. For single-exit RMC the qualitative termination (exit)
problem can be solved efficiently. The algorithm does not use the ExTh(R) but rather
graph theory and an eigenvalue characterization. We summarize these results in the
following theorem.

THEOREM 4 [ETESSAMI AND YANNAKAKIS 2009].

(1) For a linear RMC A, the termination probabilities q∗
(u,ex) are rational and can be

computed in polynomial time.
(2) Given a bounded RMC A and a rational value p ∈ [0, 1], there is a P-time algorithm

that decides for a vertex u and exit ex, whether q∗
(u,ex) ≥ p (or ≤ p).

(3) Given a 1-exit RMC A, vertex u and exit ex, we can decide in polynomial time which
of the following holds: (1) q∗

(u,ex) = 0,(2) q∗
(u,ex) = 1, or (3) 0 < q∗

(u,ex).
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Hardness, such as NP-hardness, is not known for RMC reachability. However, in
Etessami and Yannakakis [2009] we gave strong evidence of “difficulty” in terms of two
important open problems: The first one is the Square-root sum (SQRT-SUM) problem:
given (d1, . . . , dn) ∈ N

n and k ∈ N, decide whether
∑n

i=1

√
di ≤ k. This problem arises

often, especially in geometric computations. It is solvable in PSPACE, but it has been
a longstanding open problem since the 1970’s whether it is solvable even in NP [Garey
et al. 1976]. The second problem, called PosSLP (Positive Straight-Line Program), asks
whether a given straight-line program (equivalently, arithmetic circuit) with integer
inputs and operations +,−, ∗, computes a positive number or not. It was shown in
Allender et al. [2009] that PosSLP is complete under Cook reductions for the class
of decision problems that can be solved in polynomial time in the unit-cost algebraic
RAM model, a model with unit-cost exact rational arithmetic, that is, all operations
+,−, ∗, / on rational numbers take unit time, regardless of the size of the numbers.
The square-root sum problem can be solved in polynomial time in this model [Tiwari
1992]. Both problems, PosSLP and SQRT-SUM, are in PSPACE (and actually in the
Counting Hierarchy [Allender et al. 2009]), but it is not known whether they are in P
or even in NP.

In Etessami and Yannakakis [2009] we showed that the PosSLP and SQRT-SUM
problems are P-time (many-one) reducible to the quantitative termination problem
(i.e., q∗

(u,ex) ≥ p?) for 1-exit RMCs, and to the qualitative termination problem (i.e.,
q∗

(u,ex) = 1?) for 2-exit RMCs. Furthermore, we showed that even any nontrivial approx-
imation of the termination probabilities (within any additive constant error c < 1) for
2-exit RMCs is at least as hard as the PosSLP and SQRT-SUM problems.

As a practical algorithm for numerically computing the probabilities q∗
(u,ex), it was

proved in Etessami and Yannakakis [2009] that a version of multidimensional New-
ton’s method converges monotonically to the LFP of x = P(x), and constitutes a rapid
acceleration of iterating Pk(0), k → ∞.

2.3. Stochastic Context-Free Grammars, Backoff Processes, and 1-Exit RMCs

A Stochastic Context-Free Grammar (SCFG) is a context-free grammar whose rules
(productions) have associated probabilities. Formally, a SCFG is a tuple G =
(T, V, R, S1), where T is a set of terminal symbols, V = {S1, . . . , Sk} is a set of non-
terminals, and R is a set of rules Si

p→ α, where Si ∈ V, p ∈ (0, 1], and α ∈ (V ∪ T)∗,
such that for every nonterminal Si,

∑
〈pj|(Si

pj→α j)∈R〉 pj = 1. S1 is specified as the starting

nonterminal. A SCFG G generates a language L(G) ⊆ T∗ and associates a probability
p(τ ) to every terminal string τ in the language, according to the following stochastic
process. Start with the starting nonterminal S1, pick a rule with left hand side S1 at
random (according to the probabilities of the rules) and replace S1 with the string on
the right-hand side of the rule. In general, in each step we have a sentential form, that
is, a string σ ∈ (V ∪ T)∗; take the leftmost nonterminal Si in the string σ (if there is
any), pick a random rule with left-hand side Si (according to the probabilities of the
rules) and replace this occurrence of Si in σ by the right-hand side of the rule to obtain
a new string σ ′. The process stops only when (and if) the current string σ has only
terminals. This process defines a (infinite) Markov chain MG with state set (V ∪ T)∗,
initial state S1, and set of terminating states T∗; of course, the unreachable states can
be ignored, and also we can add self-loops with probability 1 at the terminating states
to make MG into a proper Markov chain.

The probability p(τ ) of a terminal string τ ∈ T∗ is the probability that the process
reaches (and thus terminates at) the string τ . The definition of the SCFG process
given in the prior paragraph applies a leftmost derivation rule; the probabilities of
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Fig. 3. RMC of a SCFG.

the terminal strings are the same if one uses any other derivation rule, for example
rightmost derivation, or simultaneous expansion in each step of all nonterminals in
the current sentential form. The probability of the language L(G) of the SCFG G is
p(L(G)) =

∑
τ∈L(G) p(τ ); this is the probability that the stochastic process starting with

S1 generates some terminal string (and terminates).
A probabilistic model of web surfing, called Random walk with “back buttons,” or

backoff process, was introduced and studied in Fagin et al. [2000]. The model extends
an ordinary finite Markov chain with a “back button” feature: There is a finite set of
pages (states) V = {S1, . . . , Sn}, and the process starts from some initial page, say S1. In
each step, if the current page is Si then the process can either proceed along a forward
link to a page Sj with probability pij, or it can “press the back button” with probability
bi = 1 − ∑

j pij and return to the previous page from which page Si was entered. A
backoff process C defines an infinite Markov chain MC on state set V∗ with initial state
S1, where each state of MC is the sequence of pages that led to the current page via
forward links. As observed in Etessami and Yannakakis [2009], backoff processes can
be mapped to (a subclass of) SCFGs: Given such a backoff process C, the SCFG G with

rules {Si
pij→ SjSi|pij > 0} ∪{Si

bi→ ε|bi > 0} defines the same infinite Markov chain MG =
MC. Fagin et. al. ([Fagin et al. 2000]) provide a thorough study of backoff processes
and efficient algorithms; for example they can approximate in polynomial time to any
desired precision the termination probability, that is, the probability p(L(G)) of the
language of the associated SCFG. It is an open problem whether such an algorithm
exists for the whole class of all SCFGs.

Stochastic context-free grammars (and thus also backoff processes) can be mapped
to 1-exit RMCs in a probability-preserving manner [Etessami and Yannakakis 2009]: A
SCFG G is mapped to a 1-exit RMC A that has one component Ai for each nonterminal
Si of G, the component has one entry eni and one exit exi, and has one path from entry
to exit for each rule Si

p→ α of G with left hand side Si; the path contains a box for
every nonterminal on the right-hand side α of the rule mapped to the corresponding
component, a node for each terminal in α, the first edge of the path has probability p
equal to the probability of the rule and the other edges have probability 1. An example
of the mapping is given in Figure 3, which shows the RMC A corresponding to the

SCFG G with nonterminals V = {S1, S2}, terminals T = {a, b} and rules R = {S1
1/2→

S1S1, S1
1/4→ a, S1

1/4→ S2aS2b , S2
1/2→ S2S1a, S2

1/2→ ε}. The unshaded boxes of the figure
are mapped to A1 and the shaded boxes are mapped to A2. All edges that do not have
an attached probability label have probability 1.

There is a 1-to-1 correspondence between the trajectories of the infinite Markov
chains MG and MA associated with a SCFG G and the corresponding RMC A, where
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the only difference between corresponding trajectories is that the one in MA executes
some additional probability 1 steps.

The mapping from SCFGs to 1-exit RMCs can be used in a straightforward way to
reduce model checking questions from SCFGs to 1-exit RMCs. For example, we may
consider an execution of the stochastic process of a SCFG G as a sequence of rule
applications. Let ϕ be any ω-regular property over the set R of rules of G, and suppose
we wish to know the probability PG(ϕ) that an execution of G (i.e., a trajectory of MG)
satisfies the property ϕ. For example, G may be the SCFG for a backoff process C
and ϕ a property concerning the pattern of visits to the pages (states) of C. We can
map the SCFG G to a RMC A as before, label the vertices of A that are immediate
successors of the entries of the components with the rules corresponding to the edges
leading to these vertices, label all the other vertices with some other label i that stands
for ‘ignore’, and let ϕ′ be the property on alphabet R ∪ {i} obtained from ϕ by ignoring
label i; for example, if ϕ is given by an automaton B, we add self-loops on letter i to all
states of B. It is easy to see then that PG(ϕ) = PA (ϕ′). Hence, the results we show for
1-exit RMCs apply in particular to SCFGs. Thus for example, the qualitative problems
can be solved in polynomial time in the size of the SCFG G and exponential in the size
of the property ϕ (polynomial if ϕ is given by a deterministic automaton).

A special, finite-string, case of an ω-regular property is the following: given a SCFG
G = (T, V, R, S1) and a regular language (on finite strings) K ⊆ T∗, what is the proba-
bility PG(K) that the SCFG G generates a string in K? The problem can be reduced to
a model checking problem for 1-exit RMCs as before, but it is not necessary to use the
set R of rules for the labels of the RMC, we can simply use the terminal alphabet T of
the SCFG and label the RMC as indicated in the figure. In more detail, assume w.l.o.g
that the starting nonterminal S1 of G does not appear on the right-hand-side of any
rule; if it does appear, add a new starting nonterminal S′

1 and a rule S′
1

1→ S1. Con-
struct the 1-exit RMC A corresponding to the SCFG G, label the nodes corresponding
to terminals in the rules by the terminals as shown in the figure, label the exit of the
component of the starting nonterminal by a new “endmarker” symbol e, label all other
vertices by a new symbol i (for “ignore”), and let K ′ be the ω-regular language over
alphabet T ∪ {e, i} whose projection to T ∪ {e} is Keω. Then PG(K) = PA (K ′).

In fact, in the case of finite-string regular language properties K, the model check-
ing problem can be reduced to a termination problem for RMCs. This holds actually
more generally, for all RMCs, not only SCFGs. Let A be a labeled RMC (e.g. the 1-exit
RMC corresponding to a SCFG G), let B be a deterministic finite automaton (on finite
strings) for the language K over the label set of A, and let PA (K) be the probability,
that A generates a terminating trajectory that is in K (e.g., if A is the RMC for a SCFG
G, then PA (K) is the probability PG(K) that G derives a string in K ). From A and
B we can construct a (multiexit) RMC A ′ of size |A| · |B| (A ′ is essentially the product
of A and B) such that the probability of termination of A ′ is equal to the probability
PA (K). The RMC A ′ has generally multiple exits, even if A is a 1-exit RMC (the
number of exits is multiplied by |B|). For the qualitative problems however, it suffices
to deal only with the original RMC A, and thus, if A is a 1-exit RMC, we can solve the
qualitative problems in polynomial time in |A| and |B|. First, regarding the question
PA (K) = 0?, note that this is equivalent to the question whether A generates any
terminating trajectory that is in K; this can be determined in polynomial time by the
RSM algorithm of Alur et al. [2005]. (In the special case of a SCFG G, the equivalent
question is ‘L(G) ∩ K = ∅?’, which can be tested in polynomial time in the sizes of G
and B by standard methods.) Second, regarding the question PA (K) = 1?, note that
this is equivalent to the conjunction of two conditions: (i) the RMC A terminates with
probability 1, and (ii) all terminating trajectories are in K, equivalently, there is no
terminating trajectory that is accepted by the DFA B̄ that accepts the complement
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of K (in the SCFG case, condition (i) is p(L(G)) = 1, and (ii) is L(G) ∩ K̄ = ∅.)
Condition (ii) can be tested again in polynomial time in |A| and |B| = |B̄| using the
RSM algorithms (and by standard methods in the SCFG case). Thus, the question
reduces to condition (i), that is, whether A terminates with probability 1 (whether
p(L(G)) = 1 in the SCFG case), which can be solved in polynomial time for 1-exit RMCs
and SCFGs.

We finish this section with a remark concerning Multitype Branching Processes
[Harris 1963], a classical stochastic model related to SCFGs. We will not give the
formal definition here, but we just mention that they involve a finite set of types,
corresponding to nonterminals in SCFGs, and they have also a set of probabilistic rules
like SCFGs, except that there are no terminals and the right hand sides of the rules
are unordered multi-sets of types (nonterminals) rather than strings. A significant
difference in a branching process is that the evolution of the system (i.e., the induced
infinite Markov chain) involves in each step a simultaneous expansion of all the types
in the current state, rather than a leftmost derivation rule that we used for SCFGs. If
we are interested in the probability of termination of the process (called the extinction
probability), the derivation rule does not make any difference, and thus the extinction
probability can be reduced to the termination probability of a 1-exit RMC [Etessami
and Yannakakis 2009]. However, if we are interested in other temporal properties of
the process, then the derivation rule can matter. Thus, our results in this article on
model checking RMCs do not imply, at least immediately, analogous results for the
model checking of more general properties of branching processes.

3. THE CONDITIONED SUMMARY CHAIN M ′
A

For an RMC A, suppose we somehow have the probabilities q∗
(u,ex) “in hand.” Based on

these, we construct a conditioned summary chain, M′
A , a finite Markov chain that will

will play a key role to model checking RMCs. Since probabilities q∗
(u,ex) are potentially

irrational, we can not compute M′
A exactly. However, M′

A will be important in our cor-
rectness arguments, and we will in fact be able to compute the “structure” of M′

A , that
is, what transitions have nonzero probability. The structure of M′

A will be sufficient
for answering various “qualitative” questions.

We will assume, w.l.o.g., that each RMC has one initial state s0 = 〈ε, eninit〉, with
eninit the only entry of some component A0 that does not contain any exits. Any RMC
with any initial node can readily be converted to an “equivalent” one in this form,
while preserving relevant probabilities: Given an RMC A = (A1, . . . , Ak) with initial
node u, which belongs say to component Ai, add a new component A0 that is a copy
of Ai except that it has one new entry node eninit which has the same transitions as u,
and all the exit nodes of Ai are changed in A0 into ordinary nodes with probability 1
self-loops.

The conditioned summary chain is the probabilistic analogue of the “summary
graph” of a Recursive State Machine, defined in Alur et al. [2005]. The summary
graph of a RSM is a finite graph with the same vertex set as the RSM, whose paths
correspond to a ‘summarized’ version of the executions of the RSM, where the summa-
rization involves shortcutting all the recursive calls that terminate. In other words,
only the steps of nonterminated calls of the execution are retained, while terminated
recursive calls are replaced by a direct transition from the call vertex to the return
vertex, and for each retained step we only record the current vertex (and not the stack
of boxes). We will define formally the summarization operation on executions further
on, after the definition of the summary graph.
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We recall from Alur et al. [2005], the construction of the summary graph
HA = (Q, EHA ) of the underlying RSM of a RMC A; the construction of HA ignores
probabilities and is based only on information about reachability in the underlying
RSM of A. Let R be the binary relation between entries and exits of components
such that (en, ex) ∈ R precisely when there exists a path from 〈ε, en〉 to 〈ε, ex〉, in
the underlying graph of MA . The edge set EHA is defined as follows. For u, v ∈ Q,
(u, v) ∈ EHA iff one of the following holds.

(1) u is not a call port, and (u, pu,v, v) ∈ δ, for pu,v > 0.
(2) u = (b , en) is a call port, and (en, ex) ∈ R, and v = (b , ex) is a return port.
(3) u = (b , en) is a call port, and v = en is the corresponding entry.

We call the edges of these types 1, 2, 3, respectively, ordinary, summary, and nesting
edges.

A “summarization” map ρH from executions of the underlying RSM of A to se-
quences of vertices, which form paths in the summary graph HA , is defined as follows.
Let t = s0s1 . . . si . . . be an execution of the RSM starting at an arbitrary vertex w, in
other words, t is a trace of the infinite graph of MA starting at s0 = 〈ε,w〉. We define
ρH(t) sequentially based on prefixes of t, as follows. For the basis, we let ρH(s0) = w,
in other words, the path ρH(t) in the summary graph starts at w. Inductively, suppose
that ρH maps the prefix s0 . . . si to the path w . . . u of HA , where si = 〈β, u〉 for some
β, in other words, the vertex of si is u. If u is not a call port then the next state of
t is si+1 = 〈β, v〉 for some transition (u, pu,v, v) ∈ δ of A; in this case we let ρH map
the prefix s0 . . . sisi+1 to w . . . uv, in other words, the path in HA continues from u to v
along the corresponding ordinary edge (u, v). Next, suppose u = (b , en) is a call port.
The next state of t is si+1 = 〈βb , en〉. There are two cases: (i) If the trace eventually
returns from this call of b , that is, if there exists j > i + 1, such that sj = 〈βb , ex〉 and
sj+1 = 〈β, (b , ex)〉, and such that each of the states si+1 . . . sj, has βb as a prefix of the
call stack, then s0 . . . sj+1 is mapped by ρH to w . . . u(b , ex), i.e the path in HA follows
from u the summary edge (u, (b , ex)) to the corresponding return port (b , ex) of b . (ii)
If the trace never returns from this call of b , then s0 . . . sisi+1 maps to w . . . u en, i.e the
path in HA follows from u the nesting edge (u, en) to the corresponding entry en of the
component Y (b ).

The conditioned summary chain M′
A = (QM′

A
, δM′

A
) of RMC A plays an analogous role

for the RMC as the summary graph HA plays for the underlying RSM. The summary
chain M′

A is a finite-state Markov chain whose underlying graph is the subgraph of the
summary graph HA induced on a subset of vertices QM′

A
; the subset has the property

that the executions of the RMC A starting at the initial state eninit of the RMC are
mapped by the summarization map ρH to paths in this subgraph with probability 1, in
other words, they do not use any of the other missing vertices almost surely. Further-
more, the transition probabilities of M′

A are set so that the probability distribution of
the trajectories of M′

A is the same (up to a set of measure 0) as the probability dis-
tribution of the summarizations of the executions of the RMC A starting at its initial
vertex eninit.

The state set QM′
A

of the conditioned summary chain M′
A is defined as follows.

For each vertex v ∈ Qi, let us define the probability of never exiting: ne(v) =
1 − ∑

ex∈Exi
q∗

(v,ex). Call a vertex v deficient (or a survivor) if ne(v) > 0, in other
words, there is a nonzero probability that if the RMC starts at v it will never ter-
minate (reach an exit of the component), and let Def (A) be the set of deficient vertices
of A. The state set QM′

A
of the summary chain M′

A is the set of deficient vertices:
QM′

A
= Def (A) = {v ∈ Q | ne(v) > 0}.
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The transition set δM′
A

of the conditioned summary chain M′
A is defined as follows.

For u, v ∈ QM′
A
, there is a transition (u, p′

u,v, v) in δM′
A

if and only if one of the following
conditions holds.

(1) u is not a call port and (u, pu,v, v) ∈ δ (where pu,v > 0) , and p′
u,v = pu,v ·ne(v)

ne(u) . We call
these ordinary transitions.

(2) u = (b , en) ∈ Callb and v = (b , ex) ∈ Returnb and q∗
(en,ex) > 0, and p′

u,v =
q∗

(en,ex) ne(v)
ne(u) .

We call these summary transitions.
(3) u = (b , en) ∈ Callb and v = en, and p′

u,v = ne(v)
ne(u) . We call these transitions, from a call

port to corresponding entry, nesting transitions.

Intuitively, for all three types of transitions, the probability p′
u,v of a transition of

M′
A from a vertex u to a vertex v is set equal to the conditional probability that the

summarization of an execution of the RMC A starting at u transitions next to v, con-
ditioned on the event that the execution does not terminate (does not reach an exit of
the component of u). Note that in all three cases, p′

u,v is well defined (the denominator
is nonzero, since u ∈ Def (A)) and it is positive.

Recall that we assumed that the initial vertex eninit is the entry of a component
A0, and A0 has no exits. Thus for all v ∈ Q0, ne(v) = 1, and thus Q0 ⊆ QM′

A
, and if

(u, pu,v, v) ∈ δ0, then (u, pu,v, v) ∈ δM′
A
.

M′
A is an ordinary (flat) finite Markov chain. Let (�′,F ′, Pr�′) denote the probability

space on traces of M′
A starting from the initial state einit. We can define a mapping

ρ : � �→ �′ ∪ {�} that maps every trace t of the original (infinite) Markov chain MA
starting at its initial state 〈ε, einit〉, either to a unique trajectory ρ(t) ∈ �′ of the Markov
chain M′

A , or to the special symbol �, as follows. If ρH(t) contains only deficient vertices,
that is, if they are all in QM′

A
, then we let ρ(t) = ρH(t); otherwise, we let ρ(t) = �. We will

show that the probability that the summarization of a trace of MA contains a deficient
vertex is 0, that is, Pr�(ρ−1(�)) = 0, and moreover, that M′

A preserves the probability
measure of MA : for all D ∈ F ′, ρ−1(D) ∈ F , and Pr�′(D) = Pr�(ρ−1(D)).

Example 5. Consider the sample RMC of Figure 2, and suppose that the initial ver-
tex is entry en of component A1. We first add a new component A0 that is a copy of
A1 except that the copies of the exit nodes ex1 and ex2 are ordinary nodes that have
self-loops with probability 1. Let A be the resulting RMC with initial vertex eninit the
copy of en in A0. The conditioned summary chain M′

A of A is shown in Figure 4. The
vertex set consists of all the deficient vertices of the RMC; this includes all the vertices
of component A0 (eninit and the unlabeled vertices in the upper left part of Figure 4),
but not all the vertices of A1 and A2. For example, in component A2, the two exits, the
vertex w, both return ports of box b ′

1 and the second return port of box b ′
2 can reach

an exit with probability 1 and hence they are not included in the summary chain. The
summary transitions are shown in Figure 4 as dashed arcs and the nested transitions
are shown as dotted arcs.

To compute the transition probabilities, we first set up and solve the system of equa-
tions for the RMC to compute for each vertex the probability that it can reach the exits
of its component, and from these we compute the no-exit probabilities of the vertices.
For example, the entry vertex en of component A1 can reach the first exit ex1 with
probability 0.15, the second exit ex2 with probability 0.25, and hence its no-exit proba-
bility is ne(en) = 0.6. The other vertices of A1 have the following no-exit probabilities:
(b1, en′) : 0.7, u : 0.5, z : 1, (b1, ex′

1) : 0, (b1, ex′
2) : 0.6. The entry vertex en′ of A2

can reach the first exit ex′
1 with probability 0.28, the second exit ex′

2 with probability
0.05, and thus its no-exit probability is 0.67. The other deficient vertices of A2 have
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Fig. 4. The conditioned summary Markov chain.

the following no-exit probabilities: (b ′
1, en) : 0.6, (b ′

2, en′) : 0.88, (b ′
2, ex′

1) : 0.75, v : 1.
All vertices of A0 have no-exit probability 1. The transition probabilities of M′

A can be
computed from these probabilities.

Every trajectory t of the RMC is mapped by ρH to a path of the summary graph HA .
However, the path may go through vertices that are not in the summary chain M′

A
(i.e., vertices that are not in Def (A)), in which case the trajectory t is mapped by ρ to
�. For instance, in this example RMC, an execution t may eventually reach vertex w of
A2 and loop there forever; since ne(w) = 1, vertex w is not in M′

A and hence ρ(t) = � in
this case.

We proceed now to show the properties of the conditioned summary chain M′
A . We

will show first that M′
A is a proper Markov chain, in other words, the probabilities of

the transitions out of each state sum to 1.

PROPOSITION 6. The probabilities on the transitions out of each state in QM′
A

sum
to 1.

PROOF. We split into cases.
Case 1: u is any vertex in QM′

A
other than a call port. In this case,

∑
v p′

u,v =∑
v

pu,v ne(v)
ne(u) . Note that ne(u) =

∑
v pu,v ne(v). Hence

∑
p′(u, v) = 1.

Case 2: Suppose u is a call port u = (b , en) in Ai, and box b is mapped to component
A j. Starting at u, the trace will never exit Ai iff either it never exits the box b
(which happens with probability ne(en)) or it exits b through some return vertex
v = (b , ex) and from there it does not manage to exit Ai (which has probability
q∗

(en,ex) ne((b , ex))). That is, ne((b , en)) = ne(en) +
∑

ex∈Exj
q∗

(en,ex) ne((b , ex)). Dividing both
sides by ne((b , en)), we have

1 = ne(en)/ ne((b , en)) +
∑
ex

q∗
(en,ex) ne((b , ex))/ ne((b , en)),

which is the sum of the probabilities of the edges out of u = (b , en).

Recall the definition of the function ρ that maps executions of the RMC A starting
at the initial state einit (i.e., trajectories of the infinite Markov chain MA ) to trajectories
of the summary chain M′

A or the symbol �. We show next that the set of trajectories of
the RMC that map to � has probability 0.

LEMMA 7. Pr�(ρ−1(�)) = 0.
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PROOF. Let D = ρ−1(�). We can partition D according to the first failure. For t ∈ D,
let ρH(t) = w0w1 . . . ∈ Qω. Let i ≥ 0 be the least index such that wi ∈ QM′

A
but

wi+1 �∈ QM′
A

(such an index must exist). We call w′ = w0 . . . wi+1 a failure prefix. Let
C(w′) = {w ∈ �′ | w = w′w′′ where w′′ ∈ Qω} be the cylinder at w′, inside F ′. Let
D[w′] = {t ∈ � | ρH(t) ∈ C(w′)}.

We claim Pr�(D[w′]) = 0 for all such “failure” prefixes, w′. (To be completely formal,
we have to first argue that D[w′] ∈ F , but this is not difficult to establish: D[w′] can
be shown to be a countable union of cylinders in F .)

By definition, ne(wi) > 0, but ne(wi+1) = 0. We distinguish cases, based on what type
of vertex wi and wi+1 are.

Case 1: Suppose wi ∈ Q is not a call port. In this case, (wi, wi+1) ∈ EHA is an ordinary
edge of the summary graph and corresponds to an edge in the RMC A. A trajectory
t ∈ D[w′], is one that reaches 〈β,wi〉 then moves to 〈β,wi+1〉 and then never exits the
component of wi and wi+1, in other words, retains β as a prefix of the call stack. (This
follows from the definition of ρH, and the fact that in HA there are no edges out of exit
vertices). Since ne(wi+1) = 0 the probability of such trajectories t is 0, in other words,
Pr�(D[w′]) = 0.

Case 2: wi = (b , en) is a call port, and wi+1 = (b , ex). Thus (wi, wi+1) ∈ EHA is a
summary edge. Again, ne(wi) > 0, but ne(wi+1) = 0. Any trajectory t ∈ D[w′], reaches
〈β,wi〉, then sometime later reaches 〈β,wi+1〉, having always retained β as a prefix
of the call stack in between, and thereafter it never exits the component of wi and
wi+1. (Again, similar to case 1, this follows by definition of ρH, and HA .) But since
ne(wi+1) = 0, this Pr�(D[w′]) = 0.

Case 3: wi = (b , en) and wi+1 = en. In other words, (wi, wi+1) is a nesting edge of
EHA where we move from a call port of box b to the corresponding entry en of the
component A j, where Y (b ) = j. Thus a trajectory t ∈ D[w′] enters component A j at
entry en, on step i+ 1, and never exits this component thereafter. Note again, however,
that ne(wi+1) = 0. Thus, Pr�(D[w′]) = 0.

Now note that D =
⋃

w′ D[w′], where the union is over all failure prefixes, w′ ∈
Q∗. Note that this is a countable union of sets, each having probability 0, thus
Pr�(D) = 0.

Thus, we can effectively ignore trajectories of MA that are not mapped into trajec-
tories of M′

A . We will now show that the mapping ρ preserves probabilities.

LEMMA 8. For all D ∈ F ′, ρ−1(D) ∈ F and Pr�(ρ−1(D)) = Pr�′(D).

(The proof has been moved to the electronic appendix, due to space constraints. The
proof shows by induction on k, using Lemma 7 as a base case, that the claim holds for
all D that are basic cylinder sets defined by sequence of states of length k. From this,
the full claim follows readily by standard facts in probability theory.)

Let H′
A = (QH′

A
, EH′

A
) be the underlying directed graph of M′

A . In other words, the
states QH′

A
= QM′

A
= Def (A), and (u, v) ∈ EH′

A
iff (u, p′

u,v, u) ∈ δM′
A
. The graph H′

A is the
subgraph of the summary graph HA induced by the set Def (A) of deficient vertices.
We will show that we can compute H′

A in P-time for linear RMCs, single-exit RMCs
and bounded RMCs, and in PSPACE for arbitrary RMCs. The basic observation is that
the structure of M′

A depends only on qualitative facts about the probabilities q∗
en,ex and

ne(u), for u ∈ Q.

PROPOSITION 9. For a RMC A (respectively, linear or single-exit or bounded RMC),
and u ∈ Q, we can decide whether ne(u) > 0 in PSPACE (respectively, P-time).
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PROOF. Suppose u is in a component Ai where Exi = {ex1, . . . , exk}. Clearly, ne(u) > 0
iff

∑k
j=1 q∗

(u,ex j)
< 1. Consider the following sentence, ϕ, in ExTh(R).

ϕ ≡ ∃x1, . . . , xn

n∧
i=1

(Pi(x1, . . . , xn) = xi) ∧
n∧

i=1

(0 ≤ xi) ∧
k∑

j=1

x(u,ex j) < 1.

Since q∗ is the LFP solution of x = P(x), ϕ is true in the reals if and only if
∑k

j=1 q∗
(u,ex j)

<

1. This query can be answered in PSPACE.
For linear RMCs, the termination probabilities can be computed exactly in polyno-

mial time. For single-exit RMCs, we have Exi = {ex1}, and ne(u) > 0 iff q∗
(u,ex1) < 1.

As mentioned in section 2.2, this can be answered in P-time for single-exit RMCs
[Etessami and Yannakakis 2009]. Similarly, for bounded RMCs the question can be
answered in P-time by the techniques developed in Etessami and Yannakakis [2009].

Once we determine the deficient vertices of A, the structure of M′
A can be

determined in polynomial time.

COROLLARY 10. For a RMC A (respectively, linear, single-exit or bounded RMC), we
can compute the underlying graph H′

A of the conditioned summary chain in polynomial
space (respectively, in polynomial time).

PROOF. Recall that u ∈ QH′
A

precisely when u ∈ Q and ne(u) > 0. Thus we can
determine the set of nodes with the said complexities, respectively. The ordinary
and nesting transitions in the definition of M′

A are immediately determined. For
the summary transitions, where u = (b , en) and v = (b , ex), in order to determine
whether to include the corresponding summary edge (u, v) we need to decide whether
q∗

(en,ex) > 0. This can be done in polynomial time by invoking the reachability algorithm
for RSMs [Alur et al. 2005].

4. QUALITATIVE MODEL CHECKING FOR BÜCHI AUTOMATA

We are given a RMC A and a (nondeterministic) Büchi automaton B. To simplify the
descriptions of our results, we assume henceforth that the alphabet 
 = Q, the vertices
of A. This is w.l.o.g. since the problem can be easily reduced to this case by relabeling
the RMC A and modifying the automaton B (see, e.g., Courcoubetis and Yannakakis
[1995]); however, care must be taken when measuring complexity separately in the
RMC, A, and in the automaton B, since typically B and 
 are small in relation to A.
Our complexity results hold with respect to the given inputs A, B.

We will first present our algorithms for qualitative model checking, and then we will
prove a lower bound on the complexity of the problem.

4.1. Upper Bounds

Given an RMC A = (A1, . . . , Ak) and a (nondeterministic) Büchi automaton
B = (
, S, q0, R, F) whose alphabet 
 is the vertex set of A, we wish to deter-
mine whether PA (L(B)) = 1, = 0, or is in-between. We give a high-level view of the
approach. We will construct a finite Markov chain M′

A ,B from the RMC A and the au-
tomaton B and we will classify its bottom strongly connected components (SCCs) into
“accepting” and “rejecting”. The classification has the property that PA (L(B)) is equal
to the probability that a trajectory of M′

A ,B, starting from its initial state, reaches
eventually an accepting bottom SCC. Thus, PA (L(B)) = 1 iff all reachable bottom SCCs
are accepting and PA (L(B)) = 0 iff they are all rejecting. The finite Markov chain M′

A ,B
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is the conditioned summary chain of an RMC formed by taking a product of the given
RMC A with a simple determinization of the automaton B. The number of states and
transitions of M′

A ,B is linear in those of A and exponential in B (but linear in B if B is
deterministic). For the qualitative analysis we only need the structure (i.e., the states
and transitions) of the Markov chain M′

A ,B and not the actual transition probabilities.
The computational bottleneck in the construction of the underlying graph of M′

A ,B is
the qualitative termination analysis of the RMC A to determine the deficient vertices;
once we have determined the deficient vertices of A, we show that the construction
can be carried out in polynomial time in A. Thus, for special classes of RMCs (e.g.,
1-exit RMCs, bounded RMCs and linear RMCs) the construction takes polynomial
time in A. In terms of the mathematical analysis, the most complex part is showing
a necessary and sufficient condition that characterizes the accepting bottom SCCs.
This involves an intricate combinatorial analysis of the interaction between the RMC
and the automaton. Algorithmically however, once we have constructed the graph of
the Markov chain M′

A ,B, the condition can be tested efficiently and we can classify the
bottom SCCs and hence determine whether PA (L(B)) = 1, = 0, or is in-between.

We now proceed with the detailed development. First, let B′ = (
, 2S, {q0}, R′, F′) be
the deterministic automaton obtained by the usual subset construction on B. In other
words, the states of B′ are subsets T ⊆ S, the set F′ of accepting states is F′ = {T|T ⊆
S, T ∩ F �= ∅}, and the transition function R′ : (2S × 
) �→ 2S is given by: R′(T1, v) =
{q′ ∈ S | ∃q ∈ T1 s.t. (q, v, q′) ∈ R}. (We are making no claim that L(B) = L(B′).)

Next we define the standard product RMC, A ⊗ B′, of the RMC A, and the
deterministic Büchi automaton B′. A ⊗ B′ has the same number of components as A.
Call these A ′

1, . . . , A ′
k. The vertices in component A ′

i are pairs (u, T), where u ∈ Qi and
T ∈ 2S, and (u, T) is an entry (exit) iff u is an entry (exit). The transitions of A ′

i are
as follows: there is a transition ((u, T), pu,v, (v, R′(T, v))) in A ′

i iff there is a transition
(u, pu,v, v) in Ai.

Define M′
A ,B as M′

A ,B = M′
A⊗B′ . Thus M′

A ,B is the conditioned summary chain of
RMC A ⊗ B′. For qualitative analysis on M′

A ,B, we need the underlying graph H′
A ,B.

Importantly for the complexity of our algorithms, we do not have to explicitly construct
A ⊗ B′ to obtain H′

A ,B. Observe that states of M′
A ,B = (Q × 2S, δM′

A ,B
) are pairs (v, T)

where v is a state of M′
A , and T a state of B′. The initial state of M′

A ,B is (v0, {q0}),
where v0 is the initial state of M′

A and q0 of B. The transitions of M′
A ,B from a state

(v, T) are of three types, corresponding to the types of the transitions out of v in M′
A ,

as follows.

— Type 1: v is not a call port. Then for every transition (v, p′
v,v′ , v′) ∈ δM′

A
, we have a

corresponding ordinary transition ((v, T), p′
v,v′ , (v′, R′(T, v′))) ∈ δM′

A ,B
.

— Type 2: v is a call port, v = (b , en). If there is a nesting transition (v, pv,en, en) ∈ δM′
A

then there is a nesting transition ((v, T), pv,en, (en, R′(T, en)) ∈ δM′
A ,B

with the same
probability.

— Type 3: v is a call port, v = (b , en). If v has a summary transition (v, pv,v′ , v′) in M′
A ,

where v′ = (b , ex), then we have summary transitions of the form ((v, T), p′′, (v′, T ′))
in M′

A ,B to states of the form (v′, T ′) iff there exists a path in MA from 〈ε, en〉 to 〈ε, ex〉
which, viewed as a string, drives B′ from T to T′; the probability p′′ of the transition
is p′′ = p′ · ne(v′)/ne(v) where p′ is the probability of all such v-v′ paths that drive B′
from T to T′.

M′
A ,B is a well-defined Markov chain, which is a refinement of M′

A . That is, every
trajectory of M′

A ,B projected on the first component is a trajectory of M′
A and the
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projection preserves probabilities. We can define a mapping σ from the trajectories t
of the original (infinite) Markov chain MA to the trajectories of M′

A ,B, or the special
symbol �, in a similar manner as we defined the mapping ρ from trajectories of M to
M′

A . For a trajectory t of MA , it is easy to see that if ρ(t) �= � then also σ (t) �= �. Thus,
with probability 1 a trajectory of MA is mapped to one of M′

A ,B. Furthermore, we can
show along similar lines the analogue of Lemma 8, that is, the mapping σ preserves
probabilities.

Consider a product graph (without probabilities) M′
A ⊗ B between the Markov

chain M′
A and the given nondeterministic Büchi automaton B (not B′) as follows:

The product has nodes (v, q), for all vertices v of M′
A and states q of B, and an edge

(v, q) → (v′, q′) if either (i) v → v′ is an ordinary edge or a nesting edge of M′
A and q

has a transition to q′ on input v′, or (ii) v → v′ is a summary edge and the RMC has a
path from v to v′ that corresponds to a run of B from q to q′; if the run goes through an
accepting state then we mark the edge (v, q) → (v′, q′) as an accepting edge. Also, call
a node (v, q) accepting if q ∈ F is an accepting state of B.

With every transition (edge) of M′
A ,B and every edge of M′

A ⊗ B we associate a string
γ over 
 (the vertex set of A) that caused the edge to be included; that is, if edge
(v, T) → (v′, T ′) of M′

A ,B (respectively, edge (v, q) → (v′, q′) of M′
A ⊗ B) corresponds to

an ordinary or nesting edge of M′
A then γ = v′. If it corresponds to a summary edge

then we let γ be any string that corresponds to a v − v′ path that drives B′ from T to
T′ (resp., for which B has a path from q to q′; if the edge (v, q) → (v′, q′) is marked as
accepting then we pick a path that goes through an accepting state of B). In the case
of a summary edge, there may be many such strings γ ; we just pick anyone of them.

Let t be any trajectory of MA starting from 〈ε, v〉, for some vertex v of M′
A and let

r be a corresponding run of B starting from a state q. With probability 1, t maps to a
trajectory t′ = ρ(t) of M′

A . The mapping ρ can be extended to pairs (t, r), where r is a run
of B on t, in other words, the pair (t, r) is mapped to a run (path) r′ = ρ(t, r) of M′

A ⊗ B.
If r is an accepting run of B then r′ goes infinitely often through an accepting node or
an accepting edge. The converse does not hold necessarily: a nonaccepting run r of B
corresponding to a trajectory t may be mapped to a run r′ of M′

A ⊗ B that traverses
infinitely often an accepting edge.

If B is a deterministic Büchi automaton then M′
A ,B and M′

A ⊗B are clearly the same,
except that in M′

A ⊗ B we did not include the probabilities of the edges. In this case,
the analysis is simpler. Let us say that a bottom strongly connected component (SCC)
of M′

A ,B (and M′
A ⊗ B) is accepting iff it contains an accepting node or an accepting

edge.

THEOREM 11. For a RMC A and a deterministic BA B, the probability PA (L(B))
that a trajectory of A is accepted by B is equal to the probability that a trajectory of
M′

A ,B starting from the initial node (v0, q0) reaches an accepting bottom SCC.

PROOF. With probability 1 a trajectory t of the RMC A maps to a trajectory t′ = σ (t)
of M′

A ,B which reaches a bottom SCC C.
If C is not accepting then there is no accepting node or edge in C, hence the run of B

on t goes only finitely often through accepting states, and thus t is not accepted by B.
If C is an accepting bottom SCC, then there is an accepting node or an accepting edge

in C. If C has an accepting node (v, q), q ∈ F, then with probability 1 the trajectory
t′ = σ (t) of M′

A ,B goes infinitely often through it, and thus t is accepted by B. Suppose C
has an accepting edge (v, q) → (v′, q′) and let γ be the string associated with the edge,
in other words, γ is a path from v to v′ which drives B from q to q′ going through an
accepting state. With probability 1, a trajectory t whose image t′ = σ (t) reaches C has
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the property that t′ visits infinitely often (v, q) and furthermore there is an infinite
number of such visits where the next substring of t is γ . Thus again, conditioned on
the event that t′ reaches the bottom SCC C, t is accepted by B with probability 1.

Suppose now that B is nondeterministic. We will follow the approach of
Courcoubetis and Yannakakis [1995] for flat Markov chains, except that here we
have to deal with recursive calls and with the summary edges of the constructed
Markov chain M′

A ,B which correspond to sets of paths in the original chain MA rather
than single steps. This complicates things considerably. We will define a set of “special
pairs” of the form (v, q), where v is a vertex of M′

A and q ∈ F, which will be useful in
characterizing the accepting trajectories.

There are two types of special pairs. The first type is defined as follows. Let v be a
vertex of M′

A and q ∈ F an accepting state of B. Let D(v, q) be the subgraph of M′
A ,B

induced by the node (v, {q}) and all nodes reachable from it . We say that the pair (v, q)
is special of type 1 if some bottom SCC C of D(v, q) contains a state (v, T) with q ∈ T.
We associate with such a pair (v, q) a string γ (v, q) ∈ 
∗ that is the concatenation of
the strings associated with the edges of D(v, q) on a path from (v, {q}) to a node of C.
(There may be many such paths; just pick any one.)

The second type of special pair is defined as follows. Let v = (b , en) be a vertex of
M′

A that is a call port of a box b of A and let q �∈ F be a nonaccepting state of B. Define
a graph D(v, q) as follows. The graph contains a root node vq and a subgraph of M′

A ,B
consisting of the nodes reachable from vq after we add the following edges. We add
an edge from vq to a node (v′, {q′}) of M′

A ,B, where v′ = (b , ex) is a return port of the
same box b as v, iff there is a path γ from 〈ε, en〉 to 〈ε, ex〉 such that B has a run from
q to q′ on γ that goes through an accepting state; we label the edge vq → (v′, {q′}) with
such a string γ . The graph D(v, q) consists of the root vq and the subgraph of M′

A ,B
induced by all the nodes that are reachable from vq after adding the just described
edges. We call the pair (v, q) special of type 2 if some bottom SCC C of D(v, q) contains
a state (v, T) with q ∈ T. As in the previous case, we associate with the pair (v, q) a
string γ (v, q) ∈ 
∗ that is the concatenation of the strings associated with the edges of
D(v, q) on a path from vq to a node of C.

Special pairs have the following important properties.

LEMMA 12. Suppose (v, q) is special and that RMC A starts at 〈ε, v〉 and first per-
forms the transitions in γ (v, q). Then with probability 1 such a trajectory t of the RMC
is accepted by B with initial state q. Specifically, there is a corresponding accepting
run r of B such that ρ(t, r) is a run of M′

A ⊗ B starting from (v, q) that infinitely repeats
node (v, q) if (v, q) is special of type 1, or repeats an accepting edge out of (v, q) if (v, q)
is special of type 2.

PROOF. We construct the accepting run r of B and run r′ of M′
A ⊗ B one segment

at a time. Suppose that (v, q) is special of type 1. Then γ (v, q) corresponds to a path
in D(v, q) (and M′

A ,B) from (v, {q}) to a node of a bottom SCC C that contains a state
(v, T) with q ∈ T. Consider a trajectory t of the RMC that starts with γ (v, q) and the
corresponding trajectory t′ of M′

A ,B starting from (v, {q}). With probability 1, t′ exists
(i.e. t maps to a trajectory of of M′

A ,B starting from (v, {q})), and t′ goes to the bottom
SCC C and visits infinitely often all the states of C. For every visit to the state (v, T)
there is a nonzero probability that in the following steps the trajectory t′ will perform
the transitions of γ (v, q). Hence, with probability 1, at some finite step i, t′ visits (v, T)
and in the following steps the trajectory t performs γ (v, q). Let i be the first time this
happens. Since q ∈ T, the prefix of t up to step i has a corresponding run in B from
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q to q and in M′
A ⊗ B from (v, q) to (v, q). This constitutes the first segment of the

constructed run r.
At step i, the trajectory t is at vertex v and the suffix from this point on starts

again with the sequence γ (v, q) of transitions. Since we have a Markov process
we can repeat the argument for the remainder of T and construct the second and
subsequent segments of r. In general, if Ek denotes the event that the procedure
succeeds in constructing k segments, then the probability of Ek+1 conditioned on Ek
is 1. Therefore, the probability of ∩k Ek is also 1, and thus the required accepting run
r will be constructed with probability 1.

Suppose that (v, q) is special of type 2 and let vq → (v′, {q′}) be the first edge (an
accepting edge) in D(v, q) of the path corresponding to γ (v, q) that leads from the root
vq to the bottom SCC C that contains (v, T) with q ∈ T. Let α be the label of this edge;
then γ (v, q) = αβ for some β. The argument is similar to the case of type 1. Consider
a trajectory t of the RMC starting from v with the transitions of γ (v, q), and let t = ατ .
After the prefix α, the trajectory t is at vertex v′ (with empty stack, i.e the chain MA is
at vertex 〈ε, v′〉). The remaining trajectory τ starts with β. With probability 1, τ maps
to a trajectory τ ′ of M′

A ,B starting from state (v′, {q′}), and since τ starts with β, τ ′ goes
to the bottom SCC C. As in case 1, the trajectory hits with probability 1 infinitely
often all the states of C, and furthermore there is a finite time i at which it reaches
(v, T) and the following suffix of t starts again with γ (v, q). We can map now the prefix
of t up to step i to a run of B from q that goes first to q′ passing on the way through
an accepting state of B (this path corresponds to the prefix α) and then continues and
reaches state q again at time i; the corresponding path of M′

A ⊗ B follows first the
edge to (v′, q′) and then goes on to reach (v, q). This constitutes the first segment of
the constructed run r. As in case 2, we can then repeat the process to construct the
subsequent segments, and the process will succeed with probability 1.

LEMMA 13. Suppose there is nonzero probability that a trajectory of the RMC A
starting at any vertex u ∈ M′

A has a corresponding run in M′
A ⊗ B starting from any

node (u, p) which repeats an accepting state (v, q) infinitely often or repeats an accepting
edge (v, q) → (v′, q′) infinitely often. Then (v, q) is special.

PROOF. Suppose that an accepting state (v, q) is not special. With probability 1,
a trajectory t of the RMC that starts at v corresponds to a trajectory t′ of M′

A ,B that
starts at (v, {q}) and reaches a bottom SCC C of M′

A ,B (and of D(v, q)). Since (v, q) is
not special, there is no state (v, T) of C with q ∈ T. Therefore, every run of M′

A ⊗ B
starting at (v, q) that corresponds to t does not visit (v, q) after t′ reaches C, hence,
repeats (v, q) only finitely often.

Suppose that t starts at a vertex u ∈ M′
A and corresponds to a run of M′

A ⊗ B
starting at a node (u, p) that visits (v, q) infinitely often. Let i be the first step at which
the run visits (v, q). The suffix of t from this point on corresponds to a run of M′

A ⊗ B
starting from (v, q) that visits (v, q) infinitely often. By the argument in the previous
paragraph, the probability that a trajectory of the RMC has this property is equal to
0, and by the Markov property it follows that the probability that t has such a suffix is
also 0.

Consider an accepting edge (v, q) → (v′, q′) and suppose that (v, q) is not special.
The graph D(v, q) contains an edge vq → (v′, {q′}). Since (v, q) is not special, no bottom
SCC contains any state (v, T) with q ∈ T. Suppose that a trajectory t of the RMC
starting at v′ corresponds to a run of M′

A ⊗ B starting at (v′, q′) that traverses the edge
(v, q) → (v′, q′) infinitely often. With probability 1, t corresponds to a trajectory of M′

A ,B
starting from (v′, {q′}) that reaches a bottom SCC C of D(q, v). Since no such bottom
SCC contains a state (v, T) with q ∈ T it follows that every run of M′

A ⊗ B from (v′, q′)
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that corresponds to t does not visit (v, q) after some point, and hence does not traverse
the edge.

Suppose that a trajectory t starts at a vertex u ∈ M′
A and corresponds to a run of

M′
A ⊗ B starting at a node (u, p) that visits the edge (v, q) → (v′, q′) infinitely often. The

argument is similar to the type 1 case. Consider the first time that the edge is traversed
and write t as t = ατ , where the prefix α corresponds to the run from (u, p) to (v′, q′)
ending with the traversal of the edge. The suffix τ corresponds to a run starting from
(v′, q′) that repeats the edge infinitely often. From the earlier argument, the probability
that a trajectory τ of the RMC starting at v′ has this property is 0, hence the probability
that t has such a suffix is also 0.

PROPOSITION 14. PA (L(B)) > 0 iff node (v0, q0) in M′
A ⊗ B can reach a special node

(v, q).

PROOF. Suppose that a trajectory t of the RMC starting at v0 is accepted by B
(starting at q0), With probability 1, t has a corresponding run in M′

A ⊗ B starting
at (v0, q0) that repeats infinitely often some accepting state (v, q) or some accepting
edge (v, q) → (v′, q′). It follows from the preceding lemma that (v, q) must be special,
and obviously (v0, q0) can reach (v, q).

Conversely, suppose that (v0, q0) can reach the special pair (v, q) in the graph M′
A ⊗B

and let α be the label of such a path from (v0, q0) to (v, q). With nonzero probability,
the RMC will execute first the sequence of transitions αγ (v, q). If this occurs, then
from that point on with probability 1 the trajectory will correspond to an accepting
run of B.

Call a bottom SCC of the flat Markov chain M′
A ,B accepting if it contains a state

(v, T) and T contains some q such that (v, q) is special; otherwise call the bottom SCC
rejecting.

THEOREM 15. PA (L(B)) is equal to the probability that a trajectory of M′
A ,B starting

from the initial state (v0, {q0}) reaches an accepting bottom SCC.

PROOF. With probability 1 a trajectory t of the RMC maps to a trajectory t′ = σ (t) of
M′

A ,B which reaches a bottom SCC C.
If C is not accepting then there is no special pair (v, q) such that C contains a state

(v, T) with q ∈ T. Then every run of M′
A ⊗ B starting from (v0, q0) that corresponds to t

visits special nodes only finitely many times. It follows that with probability 1, t is not
accepted by B.

If C is an accepting bottom SCC, then there is a special pair (v, q) such that C
contains a state (v, T) with q ∈ T. The trajectory will visit (v, T) infinitely often,
and at every visit there is nonzero probability that the RMC will execute next the
sequence γ (v, q). Hence, with probability 1 this will occur at some finite point. Then
the trajectory t will be accepted by B with probability 1.

It follows that PA (L(B)) = 1 iff all the bottom SCCs of M′
A ,B reachable from (v0, {q0})

are accepting, and PA (L(B)) = 0 iff no reachable bottom SCC is accepting (or equiva-
lently by Proposition 14, there is no path in M′

A ⊗ B from (v0, q0) to any special node
(v, q)).

As with M′
A and H′

A , let H′
A ,B denote the underlying directed graph of M′

A ,B. For
the qualitative problem, we only need (1) to construct H′

A ,B and thus only need to know
which nodes and edges are present, and (2) to determine which pairs (v, q) are special,
and hence which bottom SCCs are accepting. Thus we first have to identify the vertices
u of the RMC A for which ne(u) > 0, which can be done in PSPACE for general RMCs,
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and P-time for single-exit RMCs, linear RMCs, and for bounded RMCs. Then, the edges
of H′

A ,B can be determined by the standard reachability algorithm for RSMs [Alur et al.
2005]. This works by first constructing the genuine product of the underlying RSM of
A (ignoring probabilities on transitions) together with the Büchi automaton B′. This
defines a new RSM A ⊗ B′ (no probabilities), whose size is polynomial in A and B′, and
thus is exponential in the original non-deterministic Büchi automaton B. The time
required for reachability analysis for RSMs is polynomial [Alur et al. 2005]. Thus, once
we have identified the deficient vertices of the RMC A, the rest of the construction of
H′

A ,B takes time polynomial in A and B′.
To determine which pairs (v, q) are special, we construct for each candidate pair

(v, q) the graph D(v, q). For a pair (v, q) with q ∈ F, this is immediate from H′
A ,B.

For a pair (v, q) with q /∈ F and v = (b , en) a call port of a box b , we test for each
return port v′ = (b , ex) of the box and each state q′ of B whether there should be an
edge vq → (v′, {q′}); this involves a call to the RSM algorithm of Alur et al. [2005] to
determine whether there is a path in the RSM A ⊗ B from (en, q) to (ex, q′) (with empty
stack) that goes through a vertex whose second component is an accepting state of B.
Once we determine these edges, we can construct D(v, q). This takes time polynomial
in A and B′. Then compute the SCCs of D(v, q), examine the bottom SCCs and check
if one of them contains (v, T) with q ∈ T.

Finally, once we have identified the special pairs, we examine the reachable bottom
SCCs of H′

A ,B and determine which ones are accepting and which are rejecting. The
dependence of the time complexity on the size of the given RMC A is polynomial except
for the identification of the vertices u for which ne(u) > 0. The dependence on |B| is
exponential because of the subset construction. If B is deterministic to begin with,
we avoid the exponential blowup and thus have polynomial complexity in B. Thus we
have:

THEOREM 16. Given a RMC A and a Büchi automaton B, we can decide whether
PA (L(B)) = 0, PA (L(B)) = 1, or 0 < PA (L(B)) < 1 in PSPACE in A, and EXPTIME
in B. If the given RMC A is a linear, or a bounded, or a 1-exit RMC then the time
complexity is polynomial in A. Furthermore, if B is deterministic, the dependence of
the time complexity on |B| is also polynomial.

4.2. Lower Bounds

We show conversely that the exponential time complexity of qualitative model checking
for a nondeterministic Büchi automaton is in general unavoidable.

THEOREM 17. The qualitative problem of determining whether a given RMC A
satisfies a property specified by a Büchi automaton B with probability = 1, (i.e., whether
PA (L(B)) = 1)) is EXPTIME-complete. Furthermore, this holds even if the RMC is fixed
and each component has one entry and one exit. Moreover, the qualitative “emptiness”
problem, namely determining whether PA (L(B)) = 0, is also EXPTIME-complete, again
even when the RMC is fixed and each component has one entry and one exit.

(The proof has been moved to the electronic appendix, due to space constraints.)

5. THE UNIQUE FIXED POINT THEOREM

As we have mentioned, the transition probabilities of the chain M′
A ,B are in general

irrational and cannot be computed exactly, but instead have to be determined implic-
itly. To do quantitative model checking in polynomial space in |A|, it will be crucial to
use ExTh(R) to uniquely identify these probabilities. For this, we need first to have a
set of constraints that uniquely identify the termination probabilities of a RMC. These
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probabilities are the least fixed point of the system x = P(x). However, the system has
in general multiple fixed points. We will show in this section that adding a certain set
of additional constraints ensures a unique fixed point, the desired LFP(P).

Consider a RMC A. First, we can determine in polynomial time the vertex-exit pairs
(u, ex) for each component such that the probability q∗

(u,ex) = 0. Introduce variables xu,ex

only for the remaining pairs. (Alternatively, we could include also variables x(u,ex) for
the pairs with 0 probability, and include the equation x(u,ex) = 0.) Note that if a vertex
u cannot exit its component, in other words, if q∗

(u,ex) = 0 for all ex, then there is no
variable involving u. Consider the set of fixed point equations x = P(x), where we omit
the terms that involved “missing” variables. The least fixed point q∗ is the true vec-
tor of probabilities of each vertex u reaching exit ex (with empty stack). Recall that a
vertex u is called deficient (or a survivor) if

∑
ex q∗

(u,ex) < 1, that is, ne(u) > 0; otherwise
u is full. Note that by the qualitative analysis, we can determine which vertices are
deficient and which are full in PSPACE. The vector q∗ = LFP(P) of termination prob-
abilities satisfies clearly the following set of constraints: q∗ ≥ 0;

∑
ex q∗

(u,ex) ≤ 1 for all
vertices u ∈ Q, and furthermore

∑
ex q∗

(u,ex) < 1 for all deficient vertices u ∈ Def (A). We
will show that P has a unique (exactly one) fixed point in the region defined by these
constraints, and that fixed point is of course the vector q∗.

THEOREM 18 (THE UNIQUE FIXED POINT THEOREM). The set of equations x =
P(x), restricted to the domain {x|x ≥ 0,

∑
ex x(u,ex) ≤ 1 for all u ∈ Q, and

∑
ex x(u,ex) < 1

for all u ∈ Def (A)}, has a unique fixed point. This fixed point, of course, is q∗ = LFP(P).

PROOF. Suppose that there is another nonnegative fixed point y, besides the least
fixed point, that satisfies the constraints on

∑
ex x(u,ex). Since q∗ is the least fixed point

we have q∗ ≤ y. If u is a full vertex then
∑

ex y(u,ex) ≤ 1 =
∑

ex q∗
(u,ex) and q∗ ≤ y imply

that y(u,ex) = q∗
(u,ex) for every ex.

We will show below that y agrees with q∗ also on the deficient vertices. Let (u, ex)
be a pair such that y(u,ex) > q∗

(u,ex). We will derive a contradiction.
Let x(u,ex) = f1(x) be the equation for variable x(u,ex) in the system x = P(x). The

right-hand side f1(x) is a sum of monomials and possibly a constant term. If u is not
a call port then each monomial is of the form pu,vx(v,ex), where v is a successor of u. If
u = (b , en) is a call port of a box b then each monomial is of the form xen,ex′ x(b ,ex′),ex where
ex′ is an exit of the component corresponding to box b ; in the latter case we consider
the variables of the monomial as ordered. We will rewrite iteratively the right-hand
side f1(x) as follows. In the ith iteration we have an expression fi(x) which is the
sum of a constant term (possibly 0) and of a set of ordered monomials; that is, each
monomial has a constant coefficient and the product of a sequence of variables (with
possible repetitions allowed) in a specific order. We take every nonconstant monomial
and replace the leftmost variable of the monomial by the right hand side of its equation
in the system x = P(x). We combine like terms (treated again as ordered monomials)
and let fi+1(x) be the resulting expression.

Observe first that both fixed points, q∗ and y satisfy the equation x(u,ex) = fn(x)
for all n. Second, we claim that fn(x) is related to the (infinite) Markov chain MA
corresponding to the RMC A in the following way. Let Z n be the state at time n of the
chain MA with initial state 〈ε, u〉. Note that if the chain hits 〈ε, ex〉 at some time t then
it stays there forever, that is, Z n = 〈ε, ex〉 for all n ≥ t.

LEMMA 19. The constant term of fn(x) is equal to Prob (Z n = 〈ε, ex〉). Furthermore,
for each state 〈β, v〉 where β = b1 . . . b j is a sequence of boxes and v is a vertex
such that Prob (Z n = 〈β, v〉) > 0, and for every sequence γ = w1, . . . , w j of exits
of the components corresponding to the boxes such that the variables with indices
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(v,w j), ((b j, w j), w j−1), . . . ((b2, w2), w1), ((b1, w1), ex) exist, the expression fn(x) has an
ordered monomial

Prob (Z n = 〈β, v〉)x(v,w j)x((b j,w j),w j−1) . . . x((b2,w2),w1)x((b1,w1),ex).

If β is the empty string ε then the monomial is simply Prob (Z n = 〈ε, v〉)x(v,ex). These are
all the monomials of fn(x).

PROOF. By induction, starting with f0(x) = x(u,ex). The basis is trivial: Prob (Z 0 =
〈ε, u〉) = 1. For the induction step, consider a monomial of fn(x) corresponding to the
state 〈β, v〉 and a sequence γ of exits to the boxes (if β is nonempty). If v is an exit and
β = ε, then v must be ex (because for other exits the variable does not exist since it
is 0), and xv,ex will be replaced by 1, increasing the constant term. If v is an exit and
β �= ε, then v must be w j (again because otherwise the variable does not exist). In this
case we will replace also x(v,w j) by 1, which corresponds to the chain MA moving from
state 〈b1 . . . b j, v〉 to state 〈b1 . . . b j−1, (b j, w j)〉, in other words, returning from the call
of box b j to the return port (b j, w j).

If v is not a call port (or an exit) then the equation for the leftmost variable x(v,w j)

is
∑

v′ pv,v′ x(v′,w j) where the sum ranges over all successors v′ of v for which the vari-
able x(v′,w j) exists. In particular, if β = ε, then x(v,ex) =

∑
v′ pv,v′ x(v,ex). Note also that

Prob (Z n+1 = 〈β, v′〉|Z n = 〈β, v〉) = pv,v′ .
Finally, if v = (b ′, v′) is a call port of a box b ′ corresponding to some compo-

nent Ak with an entry v′, then we will replace the leftmost variable x(v,w j) with∑
w′ x(v′,w′)x((b ′,w′),w j) where the sum ranges over all exits w′ of Ak for which both vari-

ables x(v′,w′), x((b ′,w′),w j) exist. This corresponds to the chain moving with probability 1
from state 〈β, v〉 to state 〈βb ′, v′〉, and including all feasible extensions w′γ of γ .

Let N be any fixed positive integer and consider n going to infinity. We can write
fn(x) as the sum of three terms cn, gn(x), hn(x), where cn = Prob (Z n = 〈ε, ex〉) is the
constant term. A monomial

Prob (Z n = 〈β, v〉)x(v,w j)x((b j,w j),w j−1) . . . x((b2,w2),w1)x((b1,w1),ex)

corresponding to a state 〈β, v〉, and a sequence γ = w1, . . . , w j of exits is included in the
second term gn(x) iff at most N of the vertices v, (b j, w j) . . . (b2, w2)(b1, w1) are deficient;
otherwise it is included in hn(x). Clearly, as n → ∞, the first term cn → q∗

(u,ex). For q∗,
the second and third term gn(q∗), hn(q∗) tend to 0 as n → ∞, because by definition
q∗

(u,ex) = cn + gn(q∗) + hn(q∗). Now, consider the two terms gn(y) and hn(y).
Let r be the minimum component in q∗ (recall, r is positive, because we have

removed variables x(u,ex) where q∗
(u,ex) = 0). Then clearly y ≤ 1 ≤ q∗/r (coordinate-wise

inequality). Since in every monomial of the second term, gn(x), at most N of the
vertices are deficient, and since q∗ and y have the same value for each index pair
whose first component is a full vertex, it follows that the value of each monomial of
gn(x) evaluated at y is bounded from above by the value of the monomial evaluated at
q∗ divided by rN. Hence gn(y) ≤ gn(q∗)/rN. Since N is fixed and gn(q∗) → 0 as n → ∞,
it follows that also gn(y) → 0 as n → ∞.

Consider all the monomials in the third term hn(y) corresponding to a state 〈β, v〉 of
MA , and let β = b1 · · · b j. Let G be the following (ordinary) layered Markov chain: G
has a source node v, then it has j layers (numbered from j down to 1) and finally it has
a sink node ex. Each layer i contains a node labeled wi for each exit wi of the component
corresponding to the box bi. In addition there is a dead state d. Nodes ex and d have
self-loops with probability 1. There is a transition from v to a node w j in layer j with
probability y(v,w j) iff the corresponding variable x(v,w j) exists. For each pair of nodes
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wi, wi−1 in successive layers, i, i − 1 there is a transition from node wi of layer i to node
wi−1 of layer i − 1 with probability y((bi,wi),wi−1) if the corresponding variable exists.
Finally there is a transition from each node w1 of layer 1 to the sink ex with probability
y((b1,w1),ex) (if the variable exists). Note that the probabilities of these transitions out
of a node of G sum to less than 1 iff the corresponding vertex v or (bi, wi) of the RMC
is deficient. Let D be the set of these “deficient” nodes of G. For every deficient node
add a transition to the dead state d with the missing probability. Let U be the set of
deficient vertices of the RMC, and let p = min{1 − ∑

ex′ y(u′,ex′)|u′ ∈ U}. Note that p > 0.
Each deficient node of G has a transition to d with probability at least p. We need the
following fact about (ordinary) finite Markov chains.

LEMMA 20. Let G be a finite Markov chain, and let D be a subset of states such that
each state u ∈ D has a transition with probability at least p > 0 to a dead (absorbing)
state d. Then for every positive integer N, the probability that, a trajectory of G starting
at any state visits at least N times a state of D and is not absorbed in the dead state d,
is at most (1 − p)N.

PROOF. Every time the chain visits a state in D it has probability at least p of
transitioning to d, and probability at most 1 − d of surviving (continuing without
being absorbed in d). Hence if it visits D N times then the probability that it is
still surviving is at most (1 − p)N. We can give a formal proof of this by induction
on N. The basis, N = 0, is trivial. For the induction step, suppose the claim
holds for N − 1. Let Ei(s) be the event that G starting from state s survives i
visits to D. Then P(EN(s)) =

∑
u∈D P(u is the first visited state of D)P(EN(u)). Now,

P(EN(u)) =
∑

v �=d pu,v P(EN−1(v)). By the induction hypothesis P(EN−1(v)) ≤ (1 − p)N−1

for all v, and
∑

v �=d pu,v ≤ 1 − p since u ∈ D. Therefore, P(EN(u)) ≤ (1 − p)N, and hence
P(EN(s)) ≤ (1 − p)N.

By our construction of G, every monomial of hn(y) involving the state 〈β, v〉
corresponds to a path in G from v to ex that goes through at least N deficient nodes;
the value of the monomial is equal to Prob (Z n = 〈β, v〉) times the probability of the path
in G. The lemma implies then that the contribution to hn(y) of the set of monomials
for state 〈β, v〉 is at most Prob (Z n = 〈β, v〉)(1 − p)N. Therefore, hn(y) ≤ (1 − p)N. Since
(1 − p) < 1 and N is an arbitrary integer, the right-hand side can be made arbitrarily
small.

Recall the earlier established facts that cn → q∗
(u,ex) and gn(y) → 0, as n → ∞. Note

also that we must have, for all n, y(u,ex) = fn(y) = cn + gn(y) + hn(y). Thus note that, for
any ε > 0, we can pick N and n large enough, with N ≤ n, such that fn(y) ≤ q∗

(u,ex) + ε.
But if 0 < ε < y(u,ex) − q∗

(u,ex), then fn(y) < y(u,ex), which contradicts the fact that
y(u,ex) = fn(y) for all n. Hence q∗

(u,ex) = limn→∞ fn(y) = y(u,ex).

6. QUANTITATIVE MODEL CHECKING FOR BÜCHI AUTOMATA

We now provide algorithms for the quantitative model checking of an RMC A with
respect to a given Büchi automaton B. The algorithms extend the analysis and
algorithms of Section 4. Recall that, from the RMC A and the automaton B, we can
construct a finite Markov chain M′

A ,B and classify the bottom SCCs of M′
A ,B into

accepting and rejecting, with the property that the desired probability PA (L(B)) that
a trace of A is accepted by B is equal to the probability that a trajectory of the finite
chain M′

A ,B reaches an accepting bottom SCC. The overall approach for the quanti-
tative analysis is as follows. We will construct a set of constraints in the existential
theory of the reals, whose variables include among others a certain variable t for the
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desired probability PA (L(B)), such that the set of constraints has a unique solution,
and the value of the variable t in the unique solution is precisely PA (L(B)). Thus, we
can solve the quantitative decision and approximation problems using a procedure for
the ExTh(R) on the constructed set of constraints.

THEOREM 21. Given a Recursive Markov Chain, A, and Büchi automaton, B, and
a rational value p ∈ [0, 1], we can decide whether PA (L(B)) ≥ p in space that is polyno-
mial in |A| and exponential in |B|, specifically in space O(|A|c12c2|B|) for some constants
c1, c2. Furthermore, if B is deterministic we can decide this in polynomial space in both
A and B.

PROOF. We make crucial use of Theorem 18, and we combine this with use of the
summary chain M′

A ,B, and queries to ExTh(R). Observe that by Theorem 15, all we
need to do is “compute” the probability that a trajectory of M′

A ,B, starting from the
initial state (v0, {q0}) reaches an accepting bottom SCC. We can not compute M′

A ,B
exactly, since it is irrational. However, we will be able to identify the transition proba-
bilities uniquely inside a ExTh(R) query, and will, inside the same query identify the
probability of reaching an accepting bottom SCC.

Let q∗ = LFP(P) be the solution vector of probabilities for the system x = P(x)
associated with RMC A. Recall that by Proposition 9, we can compute in polynomial
space in |A| the set Q′ = {u ∈ Q | ne(u) > 0} of deficient vertices. We do this as a first
step. Consider next the following quantifier-free formula, where c(u) is the index of the
component of a vertex u:

ϕ1(x) ≡ (x = P(x)) ∧ (0 � x) ∧
∧

u∈Q′

⎛
⎝ ∑

ex∈Exc(u)

x(u,ex) < 1

⎞
⎠ ∧

∧
u∈Q\Q′

∑
ex∈Exc(u)

(x(u,ex) = 1).

By Theorem 18, the only solution vector x in R
n for which ϕ1(x) holds true is q∗. In

other words, ϕ1 uniquely identifies LFP(P).
Recall that ne(u) = 1 − ∑

ex∈Exc(u)
q∗

(u,ex). Now, let y be a vector of variables indexed by
vertices of A, and let ϕ2(x, y) ≡ ∧

u∈Q(yu = 1 − ∑
ex∈Exc(u)

x(u,ex)). The only vector of reals
(x, y) that satisfies ϕ1 ∧ ϕ2 is the one where x(u,ex) = q∗

(u,ex) and yu = ne(u).
Recall the construction of M′

A ,B. The states of M′
A ,B are pairs (v, T), where v ∈ Q′,

and T ⊆ S is a set of states of B. The transitions of M′
A ,B come in three varieties.

Case 1: v is not a call port, and (v, p′
v,v′ , v′) ∈ δM′

A
. Then we have a corresponding

transition ((v, T), p′
v,v′ , (v′, R′(T, v′))) ∈ δM′

A ,B
, where p′

v,v′ = pv,v′ ne(v′)/ ne(v), and thus
p′

v,v′ ne(v) = pv,v′ ne(v′). Associate a variable zv,v′ with each such probability p′
v,v′ , and

define the formula: ϕ3(y, z) ≡ ∧
(v,v′)∈Case1(zv,v′ yv = pv,v′ yv′).

Case 2: v is a call port, v = (b , en) where v is vertex in component Ai and box b is
mapped to component A j, and v′ = en, and there is a nesting transition (v, p′

v,v′ , v′) ∈
δM′

A
. Then there is a nesting transition ((v, T), p′

v,v′ , (v′, R′(T, v′)) ∈ δM′
A ,B

with the same
probability. Here p′

v,v′ = ne(v′)/ ne(v), and thus p′
v,v′ ne(v) = ne(v′). Associate a variable

zv,v′ with each such probability p′
v,v′ , and define: ϕ4(y, z) ≡ ∧

(v,v′)∈Case2(zv,v′ yv = yv′ ).
Case 3: v is a call port that has a summary transition (v, p′

v,v′ , v′) in M′
A to a vertex

v′ = (b , ex). Then we have summary transitions of the form ((v, T), p′′, (v′, T ′)) in M′
A ,B

to the following set of states of the form (v′, T ′): If there exists a path of MA that starts
at the entry en of A j and ends at the exit ex (with empty call stack) which, viewed
as a string drives B′ from T to T′, then we include the edge ((v, T), p′

(v,T),(v′,T′), (v′, T ′))
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in δM′
A ,B

, where p′
(v,T),(v′,T′) = q∗

((en,T),(ex,T′)) · ne(v′)/ne(v), and where q∗
((en,T),(ex,T′)) is the

probability of reaching 〈ε, (ex, T′)〉 from 〈ε, (en, T)〉 in the product RMC A ⊗ B′. First,
compute A ⊗ B′ and its associated equations w = P⊗(w) explicitly. Note that |A ⊗ B′| =
O(|A||B′|). Let Q⊗ be the set of vertices of A ⊗ B′. We can compute the set Q′⊗ of
vertices v of A ⊗ B′, for which ne(v) > 0 in polynomial space in |A ⊗ B′|. Consider now
the quantifier-free formula:

ϕ5(w) ≡ (w = P⊗(w)) ∧ (0 � w) ∧
∧

u∈Q′⊗

⎛
⎝ ∑

ex∈Exc(u)

w(u,ex) < 1

⎞
⎠ ∧

∧
u∈Q⊗\Q′⊗

⎛
⎝ ∑

ex∈Exc(u)

w(u,ex) = 1

⎞
⎠ .

By Theorem 18, LFP(P⊗), is the only vector in R
n for which ϕ5(w) holds true. In

other words, ϕ5 uniquely identifies LFP(P⊗). Now, associate a variable z(v,T),(v′,T′) with
each probability p′

(v,T),(v′,T′), where v = (b , en) and v′ = (b , ex), and define: ϕ6(y, w, z) ≡∧
((v,T),(v′,T′))∈Case3(z(v,T),(v′,T′)yv = w((en,T),(ex,T′))yv′ ).
Observe that

∧6
j=1 ϕ j has a unique solution, and the values of variables z in this so-

lution identify the probabilities p′ on transitions of M′
A ,B. By the qualitative methods

of section 4.1, we compute the underlying graph H′
A ,B of M′

A ,B, and we compute the
SCCs of H′

A ,B that contain either an accepting node or an accepting edge.
Let us define a revised finite Markov chain, M′′

A ,B, in which we remove all bottom
SCCs in M′

A ,B that contain an accepting node or edge, and replace them by a new
absorbing node v∗, with a probability 1 transition to itself. Transitions that were di-
rected into these accepting bottom SCCs are now directed to v∗. Furthermore, in M′′

A ,B
we also remove all nodes that can not reach v∗, and all transitions into those nodes.
(Technically, some nodes of M′′

A ,B may no longer have full probability on the transitions
leaving them, but that is ok for our purposes.)

Now, recall from standard Markov chain theory [Billingsley 1995] that for such a
finite (sub)Markov chain M′′

A ,B, there is a linear system of equations t = F(t), over
variables tu,v∗ , where u is any node of M′′

A ,B, and where the coefficients in the linear
system F(t) are the probabilities p′ on transitions of M′′

A ,B, such that the least fixed
point solution, LFP(F), of t = F(t) assigns to variable tu,v∗ the probability that v∗ is
reachable from u. (In particular, one of the linear equations is tv∗,v∗ = 1.) Moreover,
because we have eliminated from M′′

A ,B all nodes that can not reach v∗, LFP(F) is the
unique solution to this linear system. Thus consider the formula: ϕ7(w, t) ≡ (t = F(t)).
Thus the quantifier-free formula

∧7
j=1 ϕ j has a unique solution in the reals, and the

values assigned to variables t(u,v∗) in this solution identify the probability of reaching
an accepting SCC from node u in M′

A ,B. Thus, for the initial node u∗ = (v0, {q0}) of
M′

A ,B, the value of the corresponding variable t(u∗,v∗) in the unique solution of
∧7

j=1 ϕ j

is equal to PA (L(B)).
For a given rational p ∈ [0, 1], the following ExTh(R) sentence, ψ , is true in R iff

PA (L(B)) ≥ p: ψ ≡ ∃x, y, z, w, t
∧7

j=1 ϕ j ∧ ( tu∗,v∗ ≥ p).

Better complexity bounds can be obtained for the class of linear RMCs and for
bounded RMCs.

THEOREM 22. For a linear RMC A and Büchi automaton B, the probability
PA (L(B)) is rational and can be computed exactly in polynomial time in |A|, and
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exponential time in |B|. If B is deterministic then the time is polynomial in both |A|
and |B|.

PROOF. Use subset construction on B to construct the deterministic automaton B′,
and take the product with A to obtain the RMC A ⊗ B′. If the given RMC A is linear,
then the product RMC A ⊗ B′ is also a linear RMC and obviously can be constructed
in time polynomial in |A| and |B′|. As shown in Etessami and Yannakakis [2009], the
exit probabilities of a linear RMC are rational and can be computed in time polynomial
in the size of the RMC. Applying that algorithm on A ⊗ B′ we can compute explicitly
the conditioned summary Markov chain of A ⊗ B′, which is M′

A ,B, including the exact
transition probabilities, in time polynomial in |A|, |B′|. We can identify the accepting
bottom SCCs with the same complexity, and then solve a linear system to compute the
probability that a trajectory of M′

A ,B starting at the initial state u∗ = (v0, {q0}) hits an
accepting bottom SCC.

For bounded RMCs we can achieve polynomial time if the size of the Büchi
automaton is bounded (though the time bound is very impractical).

THEOREM 23. For a fixed Büchi automaton B, given a bounded RMC, A, and a ra-
tional value p ∈ [0, 1], we can decide whether PA (L(B)) ≥ p in time polynomial in |A|.

(The proof has been moved to the electronic appendix, due to space constraints.)

7. QUALITATIVE MODEL CHECKING FOR LINEAR TEMPORAL LOGIC

We build on both the techniques developed in the previous sections for model checking
of RMCs with respect to automata specifications, as well as the techniques developed
for LTL model checking of flat Markov Chains in Courcoubetis and Yannakakis [1995].
The algorithm of Courcoubetis and Yannakakis [1995] for model checking LTL proper-
ties of flat Markov chains employs an iterative approach, whereby the chain is refined
in each iteration and the formula is simplified by elimination of temporal operators,
until at the end the formula becomes propositional and can be verified directly. There
are serious technical obstacles however for effectively extending this approach to the
recursive setting, and this is not what we do. Instead, we follow a different approach
which is more global in nature. We use an idea from another method of Courcoubetis
and Yannakakis [1995], used there for another purpose (for Extended Temporal Logic),
and we extend it with other techniques to handle recursion and LTL.

We are given RMC A and an LTL formula ϕ. We assume wlog that the RMC starts at
the entry node eninit of component A0 of A, which has no exit. First, we construct from
A (the graph of) the summary Markov chain M′

A ; we only need the nodes and edges
of M′

A and not the precise transition probabilities. We identify the formula ϕ with
its parse tree T. The leaves of the tree are labeled with atomic propositions and its
nonleaf nodes are labeled with temporal or Boolean connectives. Let n be the number
of propositions and internal nodes of T; number the propositions and internal nodes
from 1 to n bottom-up: first the propositions and then the internal nodes. For each i,
let ϕi be the subformula of ϕ corresponding to the tree Ti rooted at node i.

Let MA be the (infinite) Markov chain represented by the RMC A. Let X = x0x1x2 . . .
be an infinite trajectory of MA starting at some state x0 = 〈β, u〉. We define the type of
the trajectory to be a Boolean vector t of length n, where for each i, ti = 1 iff X satisfies
the formula ϕi. From the definition of the satisfaction of LTL formulas it follows that
the pair (u, t) satisfies the following properties:

(1) If ϕi is a proposition p, then ti = 1 if p holds at u, else ti = 0.
(2) If i is an internal node of the parse tree labeled with a Boolean connective ¬ (resp.

∨, ∧) and has child j (resp. children j, l), then ti = ¬tj (resp. ti = tj ∨ tl, ti = tj ∧ tl).
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(3) If i is labeled with a temporal connective U and has children j, l, in other words,
ϕi = ϕ jUϕl, then (a) if tl = 1 then also ti = 1, and (b) if tj = tl = 0 then also ti = 0.

We call any pair (u, t) consisting of a vertex u of the RMC A and a Boolean n-vector
t consistent if it satisfies these three properties. Similarly we say that the pair (x0, t)
consisting of a state x0 = 〈β, u〉 of MA and a vector t is consistent if the pair (u, t) is
consistent. Observe that if (u, t) is consistent then the temporal coordinates of t (those
corresponding to nodes of ϕ labeled with a temporal connective) determine uniquely
the rest of the coordinates of t because of properties (1), (2).

Consider a trajectory X = x0x1x2 . . . and suppose we know the type s of its suffix
x1x2 . . .. Then we can determine uniquely the type t of X from s and the state x0 (more
precisely, the vertex u of x0) as follows: The coordinates ti corresponding to propositions
are determined from u by property (1). For the internal nodes of the parse tree, proceed
bottom-up in the tree. Let i be an internal node and suppose that we have determined
the coordinates corresponding to the children of i. If i is labeled by a Boolean connec-
tive then ti is determined by property (2) of consistency. If i is labeled by a temporal
connective then ti is determined by property (3) unless i is labeled (i) © (Next) or (ii) it
is labeled U (Until) with children j, l and tj = 1, tl = 0. In case (i), if i has child j, in other
words, ϕi = ©ϕ j then ti = sj; in case (ii) we must have ti = si. Thus, these two properties
(i), (ii) and the consistency conditions (1–3) given earlier determine uniquely t from u
and s. We will say t is the type backwards implied for the vertex u and the state x0
from type s.

The backward implication extends to finite paths: If π = x0x1 . . . xk is a finite path of
MA and s is a type consistent with the final state xk, then there is a unique type t that
is backwards implied from s and π for the initial state x0 of the path and its vertex.

We construct a graph G as follows. The nodes of G are all pairs (u, t) where u is a
node of the summary chain M′

A and t is a Boolean n-vector such that the pair (u, t) is
consistent. We include an edge (u, t) → (v, s) between two nodes of G if M′

A has an edge
u → v and (a) either the edge is not a summary edge and t is the type that is backwards
implied from s for the node u, or (b) u → v is a summary edge, in other words, u =
(b , en), v = (b , ex) for some box b , and there is a path π in the RMC corresponding to
the summary edge (i.e., a path π in MA from 〈ε, u〉 to 〈ε, v〉) such that t is the type that
is backwards implied from π and s.

We can check in case (b) whether there exists a path π in the RMC from u to v
satisfying the requirement that was just described, as follows: Construct a Recursive
State Machine (RSM) Â, called the augmented RSM, which has a component Âi for
each component Ai of the RMC A. There is a node (u, t) for each vertex u of A and
each type t that is consistent with u; if u is an entry or exit of a component Ai, then
(u, t) is an entry or exit of the corresponding component Âi. If b is a box of Ai mapped
to A j, then there is a corresponding box b̂ in Âi that is mapped to Â j; for every entry
en of A j and consistent tuple t, the box b̂ has a corresponding call port which we will
denote ((b̂ , en), t) (the vertex is labeled with the same propositions as en), and we define
similarly the return ports of b̂ . Note that the vertices of the form (u, t), where u = (b , en)
or u = (b , ex) was a call port or return port of box b of A, are now ordinary nodes of
Â. We include an edge (u, t) → (v, s) for each pair of vertices (u, t), (v, s) of Â such that
t is the type backwards implied from s for u, and either A contains an edge u → v, or
u = (b , en) and v = (b̂ , en) for some box b of A, or u = (b̂ , ex) and v = (b , ex). (Note: The
reason that we introduced new call ports and return ports is that the trajectories of
the Markov chain MA contain explicit steps corresponding to the recursive calls and
returns from the calls. This is a small technical detail.) It is easy to see now that there
is a path π in the RMC A from u = (b , en) to v = (b , ex) (with empty context) that
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corresponds to the summary edge u → v and such that t is the type that is backwards
implied from π and s iff the RSM Â contains a path from (u, t) to (v, s) with empty
context (i.e., MÂ has a path from 〈ε, (u, t)〉 to 〈ε, (v, s)〉). We can check this by applying
the RSM reachability algorithm of Alur et al. [2005] to the augmented RSM Â.

Consider again a trajectory X = x0x1x2 . . . of MA . For each j, let tj be the type
of the path x jx j+1 . . .. By our previous remarks, the pair (x j, tj) is consistent. Also,
note that tj is the type backwards implied by tj+1 and xi. Let X̂ be the sequence
(x0, t0), (x1, t1), (x2, t2) . . .; we call this the augmented trajectory corresponding to X . It
corresponds to a trajectory of the RSM Â.

Recall that there is a mapping ρ from trajectories X of the original Markov chain
MA to a trajectory of the summary chain M′

A , or to the symbol �, with the property
that PA (ρ−1(�)) = 0. Suppose that ρ(X ) �= �. Then ρ(X ) consists of the vertex parts
u0ui1ui2 . . . of a subsequence x0xi1xi2 . . . of X obtained by shortcutting subpaths of X
by summary edges. The mapping ρ can be extended to the augmented trajectory
X̂ : ρ(X̂ ) = (u0, t0), (ui1, ti1) . . . is obtained from the corresponding subsequence of X̂
by keeping only the vertex parts and the types. By our construction of the graph G,
ρ(X̂ ) is a path of G.

If (v0, s0), (v1, s1), (v2, s2) . . . is a sequence of vertex-type pairs, then the projection of
the sequence on the first component is the sequence v0, v1, v2 . . . of vertices.

LEMMA 24. 1. Every finite or infinite path of G projected on the first component
yields a path of M′

A.
2. Conversely, every path of M′

A is the projection of at least one path in G.

PROOF. (1) follows directly from the construction of G. (2) is obvious for finite paths
by construction. For infinite paths, note that every path of M′

A is the image ρ(X ) of
some trajectory X of MA . Let X̂ be the augmented trajectory. Then ρ(X̂ ) is a path of
G whose projection is ρ(X ).

Recall that a vertex u of A is included in summary chain M′
A iff ne(u) > 0. Call a pair

(u, t) probable if there is positive probability that a trajectory of A starting at u does
not exit the component of u (does not terminate) and has type t. We denote by P′(u, t)
the probability that a trajectory from u has type t conditioned on the event that it does
not exit u’s component.

LEMMA 25. 1. If G contains an edge (u, t) → (v, s) and (v, s) is probable then (u, t) is
also probable.
2. In particular, in every strongly connected component C of G, either all nodes are
probable or none is.

PROOF. With nonzero probability, a trajectory starting at u will go to v following the
edge u → v (if it is an ordinary edge or a nesting edge) or following some path π (if
u → v is a summary edge) such that t is the type implied back by s and π . There is
positive probability that the trajectory from v does not exit v’s component and has type
s. If this happens, then the trajectory from u will also not exit its component and will
have type t. This proves claim 1. Claim 2 follows immediately from 1.

Let H be the subgraph of G consisting of probable nodes. By the previous lemma, in
order to compute H, it suffices to identify which strongly connected components of G
are the bottom SCCs of H. Then H consists of all the nodes that are ancestors of these
bottom SCCs. Once we compute the graph H, we can answer the qualitative model
checking problem: The trajectories of the given RMC A satisfy the given formula ϕ
almost surely if and only if H does not include any node of the form (eninit, t), where
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eninit is the initial node of A (the entry node of the top component) and t is a type with
tn = 0. Note that n corresponds to the root of the parse tree of ϕ, in other words, ϕn = ϕ,
so (eninit, t) probable with tn = 0 would mean that there is positive probability that a
trajectory starting at eninit does not satisfy ϕ. (Recall that the top component has no
exit, so all the trajectories from eninit do not exit its component.)

A trajectory X of the RMC (i.e., of the infinite chain MA ) maps with probability 1
to a trajectory X ′ = ρ(X ) of the summary chain M′

A , and the augmented trajectory
X̂ maps to an augmented trajectory X̂ ′ = ρ(X̂ ) that is a path in G. Call a trajectory
X of MA typical if X ′ = ρ(X ) is defined and all pairs of X̂ ′ = ρ(X̂ ) are probable, in
other words, if X̂ ′ is a path of the subgraph H. It follows easily from the Markov
property that the set of typical trajectories of the RMC starting at the initial state has
probability 1. More generally it is easy to show the following:

LEMMA 26. For every vertex u of the RMC A with ne(u) > 0, the probability that
a trajectory starting at u does not exit its component and is typical with type t is
ne(u)P′(u, t).

We wish to find the improbable nodes of G and remove them to obtain H. As we
noted, it suffices to identify the bottom SCCs of H. From the definition of G, if G
contains a path from (u, t) to (v, s) then M′

A contains a path from u to v. Therefore, for
every SCC C of G, the first components of all the nodes of C belong to the same SCC K
of M′

A . We will say that the SCC C corresponds to K.

LEMMA 27. If C is a bottom SCC of H, then it corresponds to a bottom SCC K of M′
A.

PROOF. Let (u, t) be a node of C. A trajectory X of the RMC starting at u does not exit
u’s component with probability ne(u), and conditioned on this event, with probability 1
it is typical and its summary image ρ(X ) is absorbed in a bottom SCC of the summary
chain M′

A . Since (u, t) is probable, the summary image ρ(X ) of such a typical trajectory
of type t must be the projection of a path in H starting at (u, t). Since C is a bottom
SCC of H, it follows that its corresponding SCC K of M′

A must be also a bottom SCC.

We will now give a necessary condition for a node of G to be probable. Consider a
summary edge (u, t) → (v, s) of G. We say that the edge is probable if the nodes are
probable. We label the edge with a subset of {1, . . . n} as follows. A label l ∈ {1, . . . n} is
included in the subset iff the infinite chain MÂ of the augmented RMC Â has a path
from 〈ε, (u, t)〉 to 〈ε, (v, s)〉 that goes through some node 〈β, (z, r)〉 with rl = 1. This can
be determined in polynomial time in the size of Â using the algorithm for Recursive
State Machines of Alur et al. [2005].

LEMMA 28. If (u, t) is probable, then it satisfies the following condition. For every
node i of (the parse tree of) ϕ labeled U , with corresponding subexpression ϕi = ϕ jUϕl, if
ti = 1 then node (u, t) can reach in H (and in G) some probable node (v, s) with sl = 1 or
some probable summary edge whose label set includes l.

PROOF. Consider a typical trajectory X = 〈ε, u〉x1x2 . . . starting at u that does not
exit its component and has type t. Its summary image Y = ρ(X ) = uvi1vi2 . . ., con-
sists of the vertex parts of a subsequence 〈ε, u〉xi1xi2 of X . Some suffix xkxk+1 . . .

of X satisfies ϕl. Since X is typical, its augmented trajectory X̂ maps to a path
Ŷ = ρ(X̂ ) = (u, t)(vi1, ti1) . . . in H. If vk is included in the summary path Y , then the
node (vk, tk) is in the path Ŷ of H, hence it is a probable node with tkl = 1. If vk is not
included in the summary path Y , then let vp, vr be the nodes that are included with
p the maximum index less than k and r the minimum index greater than k. Then
(vp, tp), (vr, tr) is a probable summary edge with label l.
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It is convenient for the purposes of the analysis to refine the summary graph M′
A

into a multigraph M′′
A as follows. For each summary edge u = (b , en) → v = (b , ex)

consider all paths of the RMC that give rise to the edge, in other words, paths of the
form 〈ε, u〉 → 〈b , en〉 → . . . 〈b , ex〉 → 〈ε, v〉. For every type s for the final state, each
path implies backwards a type t for u. Let us call two paths equivalent if they induce
the same mapping from types s at v to types t at u. This gives us a partition of the
paths into equivalence classes. Replace the summary edge u → v with a set of parallel
edges, one for each equivalence class. Do the same for all summary edges of M′

A and
let M′′

A be the resulting multigraph. We can view M′′
A also as a (refined) Markov chain

where the probability of the summary edges is divided among the parallel edges that
replaced it according to the total probability of all paths in each equivalence class. (We
do not actually perform this transformation; it is only for the purposes of the analysis.)
The multigraph M′′

A has the property that for every edge u → v (whether an ordinary,
a summary, or a nesting edge) and every type s for v there is a unique type t that is
implied for u by s and the edge. Note that, by construction, the graph G contains an
edge (u, t) → (v, s); we will say that the edge u → v of M′′

A is a projection of the edge
(u, t) → (v, s) of G. (More than one parallel summary edges of M′′

A from u to v may be
the projection of the same edge of G.) We can extend the notion of projection to paths of
G. Obviously M′

A and M′′
A have the same SCCs (replacing an edge by a set of parallel

edges does not change the SCCs).

LEMMA 29. Let C be a SCC of G and let K be the corresponding SCC of M′′
A. The

following are equivalent.

(1) For every node (v, s) of C, every edge u → v of K is a projection of some edge (u, t) →
(v, s) of C into (v, s).

(2) Every finite path in K is a projection of some path in C.
(3) No other SCC of G corresponding to K is ancestor of C.

The proof is nontrivial but it is very similar to the proof of Lemma 5.10 of Courcoubetis
and Yannakakis [1995], so we will omit it and refer to that paper.

The characterization of bottom SCCs of H is given by the following theorem.

THEOREM 30. A SCC C of G is a bottom SCC of H if and only if the following three
conditions are satisfied.

(1) C corresponds to a bottom SCC K of M′
A.

(2) No other SCC of G corresponding to K is ancestor of C.
(3) For every subexpression ϕi = ϕ jUϕl of ϕ, either all nodes (u, t) of C have ti = 0 or

there is a node (v, s) ∈ C with sl = 1 or there is a summary edge of C whose label set
includes l.

PROOF. Suppose that C is a bottom SCC of H. Then C satisfies conditions 1 and
3 by Lemmas 27 and 28 respectively. Suppose that it does not satisfy (2). Then
from Lemma 29 there is a finite path β of K that is not the projection of any path
in C. Let (u, t) be any node of C. A trajectory of M′′

A starting at u contains with
probability 1 the path β (in fact the path occurs infinitely often in the trajectory).
Such a trajectory is not the projection of any path in C. It follows that (u, t) is not
probable.

Conversely, suppose C satisfies the three conditions. We show that C contains all
probable pairs (u, t) whose first component u is in K. From this it follows that C is
the only SCC of H that corresponds to K, and C is a bottom SCC of H because any
descendant SCC must then also correspond to K. To prove the claimed fact we show
the following lemma. The converse of the theorem follows once we prove the lemma.
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LEMMA 31. Suppose that C satisfies the three conditions of Theorem 30. For every
probable pair (u, t) with u ∈ K, the following are true for each i = 1, . . . , n.

(1) There is a node (u, t′) of C such that t and t′ agree in the first i coordinates.
(2) There is a finite path α(u, t, i) of M′′

A starting at u such that the type of almost all
trajectories of the RMC from u that do not exit u’s component, whose summary image
has prefix α(u, t, i), agrees with t in the first i coordinates.

(The proof has been moved to the electronic appendix, due to space constraints.)

Summarizing, the qualitative model checking algorithm for a RMC A and a LTL
formula ϕ works as follows.

(1) Construct the graph of the summary chain M′
A .

(2) Generate all consistent pairs (u, t), u ∈ M′
A , t a type.

(3) Construct the graph G on the consistent pairs.
(4) Find the strongly connected components of G, and construct the DAG of SCCs.
(5) While there is a bottom SCC that violates one of the conditions of Theorem 30,

remove it from G.
(6) If the final graph H contains a node (eninit, t) with tn = 0 then reject, else accept.

By our analysis, the final graph is the subgraph H of G induced by the probable
pairs.

Step 1 (which depends only on the RMC A, not on formula ϕ) can be done in poly-
nomial space in A. The rest of the steps can be done in polynomial time in the size
of the graph G and the RSM Â, both of which are polynomial in |A| and exponential
in |ϕ| (specifically, the exponent only depends on the number of temporal operators in
ϕ). If A is a 1-exit RMC, or bounded RMC, or linear RMC, then Step 1 can be done in
polynomial time in A. Thus:

THEOREM 32. Given RMC A and LTL formula ϕ, we can check whether A satisfies
ϕ with probability 1 in polynomial space in A and exponential time in ϕ. If A is a 1-exit
RMC or a bounded RMC or linear RMC then the time complexity is polynomial in A.

Conversely, we can show that qualitative model checking of LTL formulas requires
exponential time.

THEOREM 33. The qualitative problem of determining whether a given RMC A
satisfies a LTL formula ϕ with probability 1 (i.e., whether PA (ϕ) = 1) is EXPTIME-hard
(thus EXPTIME-complete). Furthermore, this holds even if the RMC is fixed and each
component has one entry and one exit.

(The proof is in the electronic appendix, due to space constraints.) The proof is
similar to the proof of Theorem 17 for Büchi automata, and to the proof of a theorem
in Bouajjani et al. [1997] which shows that LTL model checking for (nonprobabilistic)
Pushdown Systems (equivalent to RSMs) is EXPTIME-hard. The latter proof encodes
a finite accepting computation tree of an alternating linear space Turing Machine as
a finite path in a RSM, and uses LTL formulas to check that the path is consistent
with an accepting sequence of configurations of the alternating Turing machine. Since
all finite paths have nonzero probability in an RMC, we can in principle use the same
proof and ignore probabilities on transitions to get EXPTIME-hardness for RMCs. In
fact, using a construction similar to that of Theorem 17, together with a suitable LTL
formula, we can show that the result holds even for a fixed RMC (and for a fixed
RSM), with each component having 1 entry and 1 exit. See the proof in the electronic
appendix for details.
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8. QUANTITATIVE MODEL CHECKING OF LTL PROPERTIES

We are given a Recursive Markov Chain A and an a LTL formula ϕ. We are also given
a rational number p, and we want to determine whether the probability PA (ϕ) that a
trajectory of A satisfies ϕ is at least (or at most) p. As mentioned in Section 2, the
probability PA (ϕ) is in general irrational and thus it cannot be computed explicitly.
We will construct a system of polynomial equations and inequalities in a set of real
variables, one of which stands for the desired probability PA (ϕ). The system will be
constructed in such a way that it has a unique solution. Then we will attach the
inequality PA (ϕ) ≥ p (or PA (ϕ) ≤ p) and invoke a procedure for the existential theory
of the reals to check whether the resulting system is satisfiable.

First we set up the system (1a) x = P(x) of fixed point equations for the RMC A
which contains one variable x(u,ex) for every vertex u and exit ex of u’s component.
Recall that we can compute in polynomial space in |A| the set Q′ = {u ∈ Q | ne(u) > 0} of
deficient vertices. We add to (1a) the constraints (1b) x ≥ 0; (1c) yu = 1−∑

ex∈Exc(u)
x(u,ex)

for every vertex u; (1d) yu > 0 for every vertex u in Q′; and (1e) yu = 0 for every vertex
u in Q − Q′. Let (1) be the system of constraints (1a)-(1e). From the Unique Fixed
Point Theorem for RMCs, Theorem 18, system (1) has a unique solution (x, y), and
this solution is x(u,ex) = q∗

(u,ex) and yu = ne(u).
Now, we carry out the algorithm for the qualitative model checking. As a result we

compute all probable pairs (u, t). For a deficient vertex u and a type t, let P′(u, t) be the
probability that a trajectory X starting at u has type t conditioned on the event that X
does not exit u’s component. We have a corresponding variable z(u, t) (we only need to
include the probable pairs, since the others have probability 0). These variables satisfy
several constraints:
(2a)

∑
t z(u, t) = 1 for all u ∈ Q′.

(2b) If u is not a call port, then z(u, t) =
∑

(v,s) p′
u,vz(v, s), where p′

u,v is the probability
of transition u → v in the summary Markov chain M′

A , and the sum ranges over all
probable pairs (v, s) such that H contains an edge (u, t) → (v, s).
(2c) If u = (b , en) is a call port, then z(u, t) = p′

u,en
∑

s z(en, s) +
∑

(v,s) p′
u,v fu,v,t,sz(v, s),

where the first sum ranges over all types s such that H contains an edge (u, t) → (en, s),
and the second sum ranges over all exits v = (b , ex) of the box b and types s such that
H contains an edge (u, t) → (v, s) and fu,v,t,s is the fraction of the probability of u − v
paths of the RMC for which the type s at v implies backwards the type t at u.

These constraints are justified by the following lemma.

LEMMA 34. Probabilities P′(u, t) satisfy constraints 2a–2c.

(The proof has been moved to the electronic appendix, due to space constraints.)
The transition probabilities p′

u,v of M′
A are rational functions of the probabilities

captured by the variables (x, y) of system (1). The quantities fu,v,t,s are in general irra-
tional, so we cannot compute them explicitly; however, we will later present a system
of constraints with a unique solution that gives precisely these quantities. Suppose
for now that we have also determined the parameters fu,v,t,s. Then the constraints (2)
form a linear system in the variables z(u, t). It turns out that this system has a unique
solution.

LEMMA 35. The system (2) of linear equations in the variables z(u, t) has a unique
solution.

(The proof has been moved to the electronic appendix, due to space constraints.)

We will now construct a system of constraints that determines uniquely the parame-
ters fu,v,t,s. Recall the augmented Recursive State machine Â that we constructed. We
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add weights to its edges and convert it to a weighted RSM; it will not necessarily be a
RMC because the weights out of a node may not sum to 1. The edges of Â are of the
form (u, t) → (v, s). If A contains the edge u → v then we let the weight of (u, t) → (v, s)
be the probability of the edge u → v. The other cases are that u = (b , en) and v = (b̂ , en),
or u = (b̂ , ex) and v = (b , ex); in these cases we give these edges weight 1.

Let u = (b , en), v = (b , ex) be a call port and a return port of a box b , and let π
be a path in the RMC corresponding to the summary edge u → v in the summary
graph, in other words, π is a path 〈ε, u〉 → 〈b , en〉 → . . . 〈b , ex〉 → 〈ε, v〉, where all
the intermediate nodes include b in the context. For every type s for the final vertex
v, we can infer uniquely types for the vertices along the path, and in particular a
type t for the initial vertex u. Thus, the augmented RSM Â contains for every type s a
unique path π̂s corresponding to π which goes from a vertex (u, t) for some t (with empty
context) to (v, s) and that path π̂s has the same weight as the probability of the path π .
The path π̂s is composed of an edge from (u, t) to an entry ((b̂ , en), t′) of the box b̂ , then
a path that eventually reaches an exit ((b̂ , ex), s′) of the box b̂ and finally an edge from
the exit to (v, s). Suppose that we have at hand for each entry (en, t′) and exit (ex, s′) of
each component Âi of the weighted RSM Â the sum h(en, t′, ex, s′) of the weights of all
the paths from the entry to the exit. Then we can use them to compute the quantity
xen,ex · fu,v,t,s which is the sum of the probabilities of all the paths π corresponding to
summary edges u → v for which type s at v is mapped back to type t at u. Namely, (3a)
xen,ex · fu,v,t,s =

∑
h(en, s′, ex, t′) where the summation ranges over all s′, t′ such that Â

has edges (u, t) → ((b̂ , en), t′) and ((b̂ , ex), s′) → (v, s).
We introduce a variable h(u, t, ex, s) for every pair consisting of a vertex (u, t) of Â

and an exit (ex, s) of its component, to represent the sum of the weights of all the
paths from (u, t) that exit at (ex, s). We will construct a set of fixed point equations,
whose solution will be the desired weights. The fixed point equations are similar to
the system of equations for an RMC, given in Section 2. The only difference now is
that the weights on the edges out of a vertex may not sum to 1. Let (3b) h = P̂(h)
be this system of equations. We add the constraints (3c): h ≥ 0. Finally we add the
following constraints (3d):

∑
t h(u, t, ex, s) = x(u, ex) for every triple u, ex, s where u is

a vertex of component Ai of the RMC A, ex is an exit of the same component and
s is a type. Note that (u, t) is a vertex of component Âi and (ex, s) is an exit of the
component. The justification for these constraints is the following. For every path π
from u to ex (with empty context) and every type s there is a unique corresponding
path in Â to (ex, s), and this path starts at a vertex (u, t) for some t and has weight
equal to the probability of the path π . Summing over all such paths π gives the
constraint (3d).

We claim now that having fixed the x variables (from constraints (1)), the system
(3b-d) has a unique solution. First, note that the intended solution h representing
the weights of the vertex-exit paths is the least fixed point solution of the system (3b-
c). This can be shown in the same way as it is shown for Recursive Markov Chains.
Namely, if we start with h = 0 and apply repeatedly the operator P̂ then the vector will
converge to the least fixed point solution and this coincides with the desired vector of
weights. If we pick a fixed point solution that is strictly greater in some component
h(u, t, ex, s) than the correct weights, then the solution will violate a constraint (3d).
We conclude that the system (3b-d) has a unique solution. It follows then that (3a)
determine uniquely the parameters fu,v,t,s.

To summarize, we have three sets of constraints (1),(2),(3). The quantities p′
u,v in

constraints (2) (the transition probabilities of the summary chain) are ratios, so we first
rewrite (2) to clear the denominators so that they become also polynomial equations.
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If we want to check whether the probability PA (ϕ), that a trajectory of A satisfies ϕ, is
at least a given threshold p, then we add the constraint (4)

∑
z(eninit, t) ≥ p, where the

summation ranges over all t with tn = 1. Then we call a procedure for the existential
theory of the reals on the system (1-4). Similarly we can determine if the probability
is less than p. We can also approximate the probability PA (ϕ) within any number k of
bits of precision by doing a binary search using the previously described procedure k
times.

The size of the system of constraints is polynomial in |A| and exponential in |ϕ|. It
follows that the complexity is polynomial space in |A| and exponential in |ϕ|. For linear
RMCs, we can solve the constraints explicitly by solving a series of linear systems of
equations.

THEOREM 36. Given RMC A, LTL formula ϕ and rational value p, we can deter-
mine whether the probability PA (ϕ) that a trajectory of A satisfies ϕ is ≥ (or ≤) p
in space polynomial in A and exponential in ϕ. If A is a linear RMC, then we can
compute PA (ϕ) exactly in time polynomial in A and exponential in ϕ.

9. CONCLUSIONS

We presented algorithms and lower bounds for the model checking of Recursive
Markov chains against ω-regular specifications, given by Büchi automata or LTL
formulas. The complexity results for the two formalisms turn out to be similar, though
they require different algorithms because of the difference of the two formalisms
in expressiveness and succinctness. We studied both the qualitative problem, that
is, testing whether the specification is satisfied with probability 1 or 0, and the
quantitative problem, that is, determining whether the probability of satisfaction
meets a given threshold, or approximating the probability to a desired precision. For
a given RMC A and property (Büchi automaton B or LTL formula ϕ) we showed that
the qualitative problem can be solved in polynomial space in the size of the RMC and
exponential time in the size of the property, and on the other hand it is EXPTIME-
complete even for fixed RMC A. We saw that the bottleneck with respect to the RMC
is the computation of the deficient (survivor) vertices u of the RMC, in other words,
the vertices that have positive probability ne(u) > 0 of not terminating. We showed
that once we identify these vertices, then the rest of the qualitative model checking
problem involves an intricate combinatorial analysis which depends polynomially on
the size of the RMC. As a consequence, for several important classes of RMCs (linear,
bounded, and 1-exit RMCs) the complexity is polynomial in the size of the RMC. Also
if the property is given by a deterministic Büchi automaton B, then the complexity
in |B| is polynomial. For the quantitative problem we showed that it can be solved
in polynomial space in the size of the RMC and exponential space in the size of the
property.

In the nonrecursive case, there has been algorithmic work on the model check-
ing of systems that have both probabilistic and nonprobabilistic actions, modeled by
a Markov Decision Process (or equivalently a Concurrent Markov Chain) (see, e.g.,
Courcoubetis and Yannakakis [1995]; Vardi [1985]) resulting in algorithms and tight
complexity results. In the recursive case, this is in general not possible: as shown in
Etessami and Yannakakis [2005b], there are ω-regular properties whose model check-
ing problem already for Recursive Markov Decision Processes (even for 1-exit linear
RMDPs) is undecidable.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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