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Overview

Over last ∼ 15 years, there’s been a substantial body of research
in verification & TCS on algorithms & complexity of analyzing &
model checking infinite-state (but finitely-presented) Markov
chains, Markov decision processes (MDPs), and stochastic games.

Many of these models add probabilistic/control/game behavior
to some classic automata-theoretic or process-algebraic model
(e.g., context-free grammars, pushdown automata, one-counter
automata, BPPs, BPAs).

These models are also intimately related to some classic
stochastic processes.

In this tutorial I hope to give you a flavor of this research.

(I can’t be comprehensive: it is by now a very rich body of work.)
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I will focus mainly on a series of results I have been involved with,
on algorithms & complexity of analyzing the following models:

Multi-type Branching Processes (≈ PCFGs ≈ pBPPs/pBPA), and
their generalization to:
Branching MDPs and Branching Stochastic Games.

One-counter Markov Chains(≈Quasi-Birth Death processes(QBDs)),
and one-counter MDPs/stochastic games.

Recursive Markov Chains (≈ prob. Pushdown Systems (pPDSs)),
and Recursive MDPs/stochastic games.

A key aspect of some of these results: new algorithms & complexity
bounds for computing the least fixed point solution for
monotone/probabilistic systems of (min/max)-polynomial
equations.

Such equations arise for various stochastic models, MDPs (as their
Bellman optimality equations), and stochastic games.



Multi-type Branching Processes (BPs) (Kolmogorov,1940s)
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BPs are classic stochastic processes, studied for decades in probability
theory, with many applications, eg.:
population biology, nuclear chain reactions, cancer tumor models,
random graph theory, . . .

BPs are also “intimately related” to:

probabilistic (stochastic) context-free grammars (PCFGs)

probabilistic BPPs, and probablistic BPAs

1-exit recursive Markov chains

1-state probabilistic pushdown systems.

Nevertheless, some basic algorithmic questions about BPs remained
open until recent years.



Probabilistic Context-Free Grammars (PCFGs)

R
1/3−→ aBBcG aabR

R
1/2−→ bcBbR

R
1/6−→ ε

B
1/4−→ bbRRc

B
3/4−→ a

G
1−→ aBcRRb

Question

What is the probability of termination,
i.e., eventually generating a finite string,
starting with non-terminal, R ?

(These probabilities are also known as
the partition function of the PCFG.)
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Multi-type Branching Processes (Kolmogorov,1940s)
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eventual extinction, starting with one

?

xR =
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3
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2
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1

6
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1

4
x2

R +
3

4
xG = xBx2

R

We get nonlinear fixed point equations:
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
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Branching Markov Decision Processes
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xY = max{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Theorem [E.-Yannakakis’05]

The maximum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).
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Branching Simple Stochastic Games
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q∗ ∈ [0, 1]3 of x̄ = P(x̄).
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Branching Concurrent Stochastic Games
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BMDPs again: this time optimizing exptected tree size
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We get max/min-linear fixed point
equations, x̄ = P(x̄).

Prop [E.-Wojtczak-Yannakakis’09]

The maximum expected tree sizes are
the LFP, r∗ ∈ [0,+∞]3, of x̄ = P(x̄).
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is a Probabilistic Polynomial: the coefficients are positive and sum to ≤ 1.

A Probabilistic Polynomial System (PPS) of equations, is a system of n

equations in n variables, written

x = P(x)

where each right-hand-side, Pi (x), is a probabilistic polynomial.



A Maximum Probabilistic Polynomial System (maxPPS) is a system

xi = max{pi ,j(x) : j = 1, . . . ,mi} i = 1, . . . , n

of n equations in n variables, where each pi ,j(x) is a probabilistic
polynomial. We denote the entire system by:

x = P(x)

Minimum Probabilistic Polynomial Systems (minPPSs) defined similarly.

These are Bellman optimality equations for maximizing (minimizing)
extinction probabilities in a BMDP.

We use max/minPPS to refer to either a maxPPS or an minPPS.
We use max-minPPS to refer to combined max and min PPS equations.



5x2
BxGxR + 2xBxR +

1

6

is a Monotone Polynomial: the coefficients are positive.

A Monotone Polynomial System (MPS), is a system of n equations

x = P(x)

in n variables where each Pi (x) is a monotone polynomial.

We similiarly define max/minMPSs.



Basic properties of max-minPPSs, x = P(x)

P : [0, 1]n → [0, 1]n defines a monotone function on [0, 1]n :
x ≤ y ⇒ P(x) ≤ P(y)

Proposition.

[Tarski’55] Every max-minPPS, x = P(x) has a least fixed point,
q∗ ∈ [0, 1]n, and a greatest fixed point, g∗ ∈ [0, 1]n.

q∗ = limk→∞ Pk(0) and g∗ = limk→∞ Pk(1).

[E.-Yannakakis’05,’06]: q∗ is the vector of optimal extinction
probabilities (values) for the BMDP (BSSG/BCSG).

Key Question

Can we compute the probabilities q∗ efficiently (in P-time for BMDPs)?

Fact: value iteration is too slow (double-exponentially slow) in worst cases.



Basic properties of (max-min)MPSs

For a max-minMPS, x = P(x),

P : [0,∞]n → [0,∞]n defines a monotone map on [0,∞]n.

Proposition

[Tarski’55] Every max-minMPS x = P(x) has a LFP, q∗ ∈ [0,∞]n,
and a GFP, t∗ ∈ [0,∞]n.

(We call a (max-min)MPS feasible if LFP q∗ ∈ [0,∞)n. )

For a (max-min)MPS, q∗ is the partition function of the
corresponding (max-min) Weighted Context-Free Grammar.



P-time approximation for BMDPs and max/minPPSs

Theorem ([E.-Stewart-Yannakakis,2012])

Given a max/minPPS, x = P(x), with LFP q∗ ∈ [0, 1]n, we can compute a
rational vector v ∈ [0, 1]n such that

‖v − q∗||∞ ≤ 2−j

in time polynomial in the encoding size |P| of the equations, and in j.

We establish this via a new Generalized Newton’s Method that uses linear
programming in each iteration.

Theorem ([E.-Stewart-Yannakakis,2012])

Moreover, we can compute an ε-optimal static strategy for maximizing or
minimizing extinction probabilities for a BMDP, B, in time polynomial in
|B| and log(1/ε).



Newton’s method

Newton’s method

Seeking a solution to differentiable F (x) = 0, we start at a guess
x(0) ∈ Rn, and iterate:

x(k+1) := x(k) − (F ′(x(k)))−1F (x(k))

Here F ′(x), is the Jacobian matrix:

F ′(x) =




∂F1
∂x1

. . . ∂F1
∂xn

...
...

...
∂Fn
∂x1

. . . ∂Fn
∂xn




For PPSs, F (x) ≡ (P(x)− x), and Newton iteration looks like this:

x(k+1) := x(k) + (I − P ′(x(k)))−1(P(x(k))− x(k))

where P ′(x) is the Jacobian of P(x).



Newton’s method on PPSs and MPSs

We can easily decompose x = P(x) into its strongly connected components
(SCCs), based on variable dependencies, and eliminate “0” variables.

Theorem [E.-Yannakakis’05]

Decomposed Newton’s method, starting at x (0) = 0 converges
monotonically to the LFP q∗ for any feasible MPS.

But...

In [E.-Yannakakis’05] we gave no upper bounds for Newton.

[Esparza,Kiefer,Luttenberger’10] gave bad examples of PPSs,
x = P(x), where q∗ = 1, but requiring exponentially many Newton
iterations, as a function of the encoding size |P| of the equations, to
converge to within additive error < 1/2.



P-time approximation for PPSs

Theorem ([E.-Stewart-Yannakakis,2012])

Given a PPS, x = P(x), with LFP q∗ ∈ [0, 1]n, we can compute a rational
vector v ∈ [0, 1]n such that

‖v − q∗‖∞ ≤ 2−j

in time polynomial in both the encoding size |P| of the equations
and in j (the number of “bits of precision”).

We use Newton’s method..... but how?



Qualitative decision problems for PPSs are in P-time

Theorem ([Kolmogorov-Sevastyanov’47,Harris’63])

For certain classes of strongly-connected PPSs, q∗i = 1 for all i iff the
spectral radius %(P ′(1)) for the moment matrix P ′(1) is ≤ 1,
and otherwise q∗i < 1 for all i .

Theorem ([E.-Yannakakis’05])

Given a PPS, x = P(x), deciding whether q∗i = 1 is in P-time.

(It is even in strongly-P-time ([Esparza-Gaiser-Kiefer’10]).)

Deciding whether q∗i = 0 is also easily in (strongly) P-time.
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Algorithm for approximating the LFP q∗ for PPSs

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

2 On the resulting system of equations, run Newton’s method starting
from 0.

Theorem ([E.-Stewart-Yannakakis’12])

Given a PPS x = P(x) with LFP 0 < q∗ < 1, if we apply Newton starting
at x(0) = 0, then

‖q∗ − x(4|P|+j)‖∞ ≤ 2−j
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Algorithm with rounding

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

2 On the resulting system of equations, run Newton’s method starting
from 0.

3 After each iteration, round down to a multiple of 2−h

Theorem ([E.-Stewart-Yannakakis’12])

If, after each Newton iteration, we round down to a multiple of 2−h where
h := 4|P|+ j + 2, then after h iterations ‖q∗ − x(h)‖∞ ≤ 2−j .

Thus, we obtain a P-time algorithm (in the standard Turing model) for
computing q∗ to any desired accuracy.



High level picture of proof

For a PPS, x = P(x), with LFP 0 < q∗ < 1, P ′(q∗) is a non-negative
square matrix with spectral radius %(P ′(q∗)) < 1.

So, (I −P ′(q∗)) is non-singular, and (I −P ′(q∗))−1 =
∑∞

i=0(P ′(q∗))i .

We can show the # of Newton iterations needed to get within ε > 0 is

≈ log ‖(I − P ′(q∗))−1‖∞ + log
1

ε

‖(I −P ′(q∗))−1‖∞ is inversely related to the distance |1− %(P ′(q∗))|,
which in turn is related to mini (1− q∗i ), which we can lower bound!

Uses lots of Perron-Frobenius theory, among other things...
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Towards Generalized Newton’s Method:
Newton iteration as a first-order (Taylor) approximation

An iteration of Newton’s method on a PPS, applied on current vector
y ∈ Rn, solves the equation

Py(x) = x

where
Py(x) ≡ P(y) + P ′(y)(x− y)

is the linear (first-order Taylor) approximation of P(x) at the point y.

Kousha Etessami (U. Edinburgh) BMDPs LICS’17 26 / 42



Generalized Newton’s method

Linearization of max/minPPSs

Given a maxPPS

(P(x))i = max{pi ,j(x) : j = 1, . . . ,mi} i = 1, . . . , n

We define the linearization, Py (x), by:

(Py(x))i = max{pi ,j(y) +∇pi ,j(y).(x− y) : j = 1, . . . ,mi} i = 1, . . . , n

Generalised Newton’s method: iteration applied at vector y

Solve Py(x) = x. Specifically:

For a maxPPS, minimize
∑

i xi subject to Py(x) ≤ x;

For a minPPS, maximize
∑

i xi subject to Py(x) ≥ x;

These can both be phrased as linear programming problems. Their optimal
solution solves Py(x) = x , and yields one GNM iteration.
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Algorithm for max/minPPSs

1) Find and remove all variables xi such that q∗i = 0 or q∗i = 1. Checking
q∗i = 0 is again easy. Checking q∗ = 1 is harder:

Theorem ([E.-Yannakakis’06]) Checking q∗i = 1 is decidable in
P-time using linear programming.

Reduces to spectral radius optimization for non-negative square
matrices: given k choices for each row of a n × n matrix M ≥ 0, can
we choose the rows to make %(M) > 1? Solvable by LP.

2) On the resulting equations, run Generalized Newton’s Method, starting
from 0. After each iteration, round down to a multiple of 2−h.
Each iteration of GNM can be computed in P-time by solving an LP.

Theorem [E.-Stewart-Yannakakis’12]: Given a max/minPPS x = P(x)
with LFP 0 < q∗ < 1, if we apply rounded GNM starting at x(0) = 0,
using h := 4|P|+ j + 1 bits of precision, then ‖q∗ − x(4|P|+j+1)‖∞ ≤ 2−j .
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Qualitative & quantitative extinction for BSSGs

Theorem ([E.-Yannakakis’06])

Given a BSSG, deciding whether the extinction value is q∗i = 1 is in
NP ∩ coNP.

And is at least as hard as computing the value of a finite-state SSG.

Theorem ([E.-Stewart-Yannakakis’12])

Given a BSSG extinction game, and given ε > 0, we can compute a
vector v ∈ [0, 1]n, such that ‖v − q∗‖∞ ≤ ε, and we can compute
ε-optimal static strategies in FNP
(and in PLS, using an approximate strategy improvement method).



Optimal Reachability problem for BMDPs
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Optimal Reachability problem for BMDPs
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Same Question (rephrased)

What is the infimum probability of not

reaching , starting with one ?

yR =
2

3
yY yY +

1

3

yG =
2

3
yY = min{yG , yR}

We get fixed point equations, ȳ = Q(ȳ).

Thm. [E.-Stewart-Yannakakis’15]

The supremum reachability probabilities
are 1− g∗, where g∗ ∈ [0, 1]3 is the
Greatest Fixed Point, of ȳ = Q(ȳ).
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Thm. [E.-Stewart-Yannakakis’15]

The supremum reachability probabilities
are 1− g∗, where g∗ ∈ [0, 1]3 is the
Greatest Fixed Point, of ȳ = Q(ȳ).
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Optimal Reachability problem for BMDPs

{}

{ }

{}

1/3

2/3
, }{

2/3
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}{

1/3

Question

What is the maximum probability of not

reaching , starting with one ?

yR =
2

3
yY yY +

1

3

yG =
2

3
yY = max{yG , yR}

We get fixed point equations, ȳ = Q(ȳ).

Thm. [E.-Stewart-Yannakakis’15]

The minimum reachability probabilities
are 1− g∗, where g∗ ∈ [0, 1]3 is the
Greatest Fixed Point of ȳ = Q(ȳ).



P-time approximation of optimal reachability probability for
BMDPs

Theorem ([E.-Stewart-Yannakakis, 2015])

Given a max/minPPS, y = Q(y), with GFP g∗ ∈ [0, 1]n, we can compute
a rational vector v ∈ [0, 1]n such that

‖v − g∗||∞ ≤ 2−j

in time polynomial in the encoding size |Q| of the equations, and in j.

We again establish this via the Generalized Newton’s Method, but with a
subtly different preprocessing step, which results in convergence to the
GFP g∗, instead of the LFP q∗.



Qualitative/ quantitative reachability problems for BSSGs

Theorem [E.-Stewart-Yannakakis’15]

The value of a BSSG reachability game is captured by the GFP of a
max-minPPS.

We can approximate the value, and compute ε-optimal stratgies, for a
BSSG reachability game in FNP.
(For BMDPs, we can compute ε-optimal strategies in P-time.)

For BSSG reachability games, limit-sure = almost-sure, and we can
decide all qualitative questions in P-time.

(Note: This contrasts sharply with BSSG extinction games.)
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one-counter Markov chains ( discrete-time QBDs)
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Question: What is the probability of
terminating (reaching counter value = 0
for the first time) in state s2, if we start
with counter value = 1 in state s1?
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2
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∑

j

x4,jxj ,2

x4,3 =
3

4
+

1

4

∑

j

x4,kxk,2

· · · = · · ·

Fact (cf., [Neuts,1970s])

The termination probabilities are the
LFP, q∗ ∈ [0, 1]4×4.
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Theorem [E.-Wojtczak-Yannakakis’08], [Stewart-E.-Yannakakis’13]

The termination probabilities of a QBD, Q, can be computed to desired
accuracy ε > 0 in time polynomial in both the encoding size |Q| and
log(1/ε) (in the standard Turing model of computation).

Proof analyzes Newton’s method on the very particular feasible MPSs
arising for 1-counter Markov Chains (QBDs).

[Stewart-E.-Yannakakis,’13] gives upper bounds for Newton’s method
on arbitrary feasible MPSs. Result for QBPs follows as a special case.
(Worst-case bound, arising already for the feasible MPSs of Recursive
Markov Chains, is exponential.)

[Esparza-Kiefer-Luttenberger’10] earlier gave exponential upper
bounds on Newton iterations for “strongly-connected”-MPSs.



one-counter Markov Decision Processes
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Question: What is the optimal (supremum
or infimum) probability of termination
(reaching counter value = 0) in any state,
starting with counter value = 1 in state s1?

Unfortunately, we do not know any
max/min-MPS equations that capture these
optimal probabilities.

But we do have algorithms to compute
them.....
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Theorem [Brazdil-Brózek-E.-Kucera,2011]

Given a OC-MDP, M, we can compute the optimal (supremum/infimum)
termination probability to accuracy ε > 0 in time polynomial in log(1/ε),
and (unfortunately) exponential in |M|.

Algorithm involves solving exponentially large finite-state (mean-payoff)
MDPs. Proof uses an intriguing martingale derived from LPs associated
with optimizing mean-payoff MDPs, and the Azuma inequality.

Theorem [Brazdil-Brózek-E.-Kucera-Wojtzak,2010]

Given a OC-MDP, we can decide almost-sure = limit-sure termination in
any state in P-time.

Proof uses LPs, and limit theorems for sums of i.i.d. random variables.

Theorem [Brazdil-Brózek-E.-Kucera-Wojtzak,2010]

Given a OC-MDP, deciding almost-sure termination in a specific state is
PSPACE-hard, and in EXPTIME.



Recursive Markov Chains (≈ pPDSs ≈ tree-like-QBDs)

entry

exit1

exit2

A A A
3
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1
4
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What is the probability of terminating at exit2, starting at entry?

x2 =



Recursive Markov Chains (≈ pPDSs ≈ tree-like-QBDs)

entry

exit1

exit2

A A A
3
4

1
4

1 1

1
3

2
3

1

What is the probability of terminating at exit2, starting at entry?

x2 =
1

4
+

1

2
x22 +

1

2
x1x2 (Note: coefficients sum to > 1)

x1 =
3

4
x21 +

3

4
x2x1 +

1

4
x1x2 +

1

4
x22

Fact: ([E.-Yannakakis’05]) The Least Fixed Point, q∗ ∈ [0, 1]n, gives the
termination probabilities.



approximation for Recursive Markov chains is “hard”

Theorem [E.-Yannakakis’05,’09]

Any non-trivial approximation of the termination probabilities q∗ of an
RMC (with 2 or more exits) is SqrtSum-hard and PosSLP-hard.

In fact, deciding whether (a.) q∗1 = 1 or (b.) q∗1 < ǫ, given the promise
that one of the two is the case, is PosSLP-hard.

(Thus, even approximation in NP would yield a major breakthrough on the
complexity of the BSS model and exact numerical computation; and
P-time approximation is very unlikely.)

Note: this is despite the fact that Newton’s method converges
monotonically, starting from 0, to the LFP q∗, for all feasible MPSs.

Theorem [E.-Yannakakis’05]

For Recursive Markov Decision Processes (with ≥ 10 exits), any non-trivial
apporoximation of the optimal termination probabilities is not computable
at all!



Model checking

Algorithms & complexity of many model-checking questions have also
been addressed, for these infinite-state MCs, MDPs, and SSGs, often by
building on termination/reachability analysis.

But still may open questions remain. For example:

Quantitative CTL model checking of BMDPs:
Given BMDP, M, start color c , and CTL formula ϕ over the color
alphabet, can we compute/approximate:
supσ∈Strategy Pr(Treeσc (M) |= ϕ).

(We only know approximation computability for fragments of CTL.)
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Many embarrassing open questions

The complexity, or even decidability, of optimizing the expected tree
depth for a given BMDP. Optimizing expected tree size is in P-time
([E.-Wojtczak-Yannakakis’08]).

The complexity, or even decidability, of optimizing reachability
probability in 1-exit RMDPs (equivalently, BPA-MDPs).
Even deciding limit-sure reachability for 1-exit RMDPs is open,
although almost-sure reachability was shown decidable in P-time by
[Brazdil-Brózek-Forejt-Kucera,2006].

The previous question is a special case of optimizing termination
probability in 2-exit RMDPs (which is also wide open).
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More open questions

The complexity, or even decidability, of limit-sure termination in a
specific state, for a given OC-MDP.
(We know almost-sure termination is in EXPTIME & PSPACE-hard.)

Can we approximate the optimal probability of termination in any
state for a given OC-MDP in P-time? (We only know EXPTIME
upper bounds.)

[Esparza-Kiefer-Luttenberger’2010] (“Newtonian program analysis”)
studied analogs of Newton’s method applied to MPSs for other
(ω-continuous) semi-rings, beyond [0, 1] or [0,∞].
Question: Can some version of Generalized Newton’s Method for
max/minPPSs be adapted to other semi-rings?
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