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@ Over last ~ 15 years, there's been a substantial body of research
in verification & TCS on algorithms & complexity of analyzing &
model checking infinite-state (but finitely-presented) Markov
chains, Markov decision processes (MDPs), and stochastic games.

o Many of these models add probabilistic/control /game behavior
to some classic automata-theoretic or process-algebraic model
(e.g., context-free grammars, pushdown automata, one-counter

automata, BPPs, BPAs).

@ [hese models are also intimately related to some classic
stochastic processes.

@ In this tutorial | hope to give you a flavor of this research.

(I can't be comprehensive: it is by now a very rich body of work.)

A




@ | will focus mainly on a series of results | have been involved with,
on algorithms & complexity of analyzing the following models:

o Multi-type Branching Processes (~ PCFGs ~ pBPPs/pBPA), and
their generalization to:
Branching MDPs and Branching Stochastic Games.

o One-counter Markov Chains(~Quasi-Birth Death processes(QBDs)),
and one-counter MDPs/stochastic games.

o Recursive Markov Chains (=~ prob. Pushdown Systems (pPDSs)),
and Recursive MDPs/stochastic games.

@ A key aspect of some of these results: new algorithms & complexity
bounds for computing the least fixed point solution for
monotone/probabilistic systems of (min/max)-polynomial
equations.

Such equations arise for various stochastic models, MDPs (as their
Bellman optimality equations), and stochastic games.
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BPs are classic stochastic processes, studied for decades in probability
theory, with many applications, eg.:

population biology, nuclear chain reactions, cancer tumor models,
random graph theory, ...

BPs are also “intimately related” to:

e probabilistic (stochastic) context-free grammars (PCFGs)
e probabilistic BPPs, and probablistic BPAs
o l-exit recursive Markov chains

e 1l-state probabilistic pushdown systems.

Nevertheless, some basic algorithmic questions about BPs remained
open until recent years.



Probabilistic Context-Free Grammars (PCFGs)
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What is the probability of termination,
I.e., eventually generating a finite string,
starting with non-terminal, R ?

(These probabilities are also known as
the partition function of the PCFG.)

Kousha Etessami (U. Edinburgh)
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Multi-type Branching Processes

Question: What is the probability of
eventual extinction, starting with one

s @ @@ @ @ ,
2 {@ @

NS

14

{ @ @)

1, 1 1
Xp = §XBXGXR+§XBXR+6
1, 3
PR
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We get nonlinear fixed point equations:

— P(x).

The extinction probabilities are the least
fixed point, q* € [0,1]3, of X = P(x).




Branching Markov Decision Processes
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Branching Markov Decisior Praraccac
Question

What is the maximum probability of
173 extinction, starting with one . ?
2 (@.@) 1 , 1 1
\ XR = ZXpXGXy + =XBXR + ~
/6~ {} 3 2 9
1,3
X — —X —
1/4 {‘ "} 4 & 4
Xc = XpXh
a1 Xy = max{x3, xr}
(9.0.09} We get fixed point equations, X = P(X).

The maximum extinction probabilities
(@) are the least fixed point, q* € [0, 1]3, of
X = P(x).

o
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Branching Markov Decisior Praraccac
Question

What is the minimum probability of
73 extinction, starting with one . ?
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(9.0.09} We get fixed point equations, X = P(X).

The minimum extinction probabilities
(@) are the least fixed point, g* € [0, 1]3, of
X = P(x).
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Branching Simple Stochastic Games
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What is the value of extinction, starting

with one . 7

1, 1 1
XR = ZXBXGXY + 5XBXR + 6
xg = min{x3,1}
Xc = XgXp
Xy = max{xa,Xr}

We get fixed point equations, X = P(X).

The extinction values are the LFP,
q* € [0,1]3 of x = P(x).




Branching Concurrent Stochastic Games
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Branching Concurrent Stochastic Games
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Branching Concurrent Stochastic Games
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Branching Concurrent Stochastic Games

/3 {Q ,Q} What is the value of extinction, starting
with one . 7
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BMDPs again: this time optimizing
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Tak ' ' timizina
BMDPs again: this time OPQuestion
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BMDPs again: this time PQuestion
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BMDPs again: this time optimizina
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Question

What is the maximum expected size of

the tree, starting with one . 7

xp = 1+ %(2XB + x¢ + xv)
+ %(XB + XR)

xg = 1+ %(QXR)

xc = 14+ xg+2xp

xy = 1+ max{2xg,xr}

We get max/min-linear fixed point
equations, X = P(X).

The maximum expected tree sizes are
the LFP, r* € [0, +00]3, of x = P(X).
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Is a Probabilistic Polynomial: the coefficients are positive and sum to < 1.

v

A Probabilistic Polynomial System (PPS) of equations, is a system of n
equations in n variables, written

x = P(x)

where each right-hand-side, P;(x), is a probabilistic polynomial.




A Maximum Probabilistic Polynomial System (maxPPS) is a system
X; = max{p;(x):j=1,...,m} i=1,...,n

of n equations in n variables, where each p; j(x) is a probabilistic
polynomial. We denote the entire system by:

X = P(x)
Minimum Probabilistic Polynomial Systems (minPPSs) defined similarly.

These are Bellman optimality equations for maximizing (minimizing)
extinction probabilities in a BMDP.

We use max/minPPS to refer to either a maxPPS or an minPPS.
We use max-minPPS to refer to combined max and min PPS equations.




5X£23XGXR + 2xpxXp + 6

Is a Monotone Polynomial: the coefficients are positive.

A Monotone Polynomial System (MPS), is a system of n equations
x = P(x)

in n variables where each P;j(x) is a monotone polynomial.

We similiarly define max/minMPSs.




Basic properties of max-minPPSs, x = P(x)

P :[0,1]" — [0,1]" defines a monotone function on [0, 1]" :
x<y = P(x)<Ply) }

o [Tarski'55] Every max-minPPS, x = P(x) has a least fixed point,
g* € [0,1]", and a greatest fixed point, g* € [0, 1]".

o g° = limy_so0 PX(0) and g* = limy_, P*(1).

o [E.-Yannakakis'05,'06]: q* is the vector of optimal extinction
probabilities (values) for the BMDP (BSSG/BCSG).

Key Question

Can we compute the probabilities g* efficiently (in P-time for BMDPs)?

Fact: value iteration is too slow (double-exponentially slow) in worst cases.



Basic properties of (max-min)MPSs

For a max-minMPS, x = P(x), J

P : [0, 00]" — [0, o0]” defines a monotone map on [0, co]”.

o [Tarski'b5] Every max-minMPS x = P(x) has a LFP, g* € [0, oc]",
and a GFP, t* € [0, o]".

(We call a (max-min)MPS feasible if LFP g* € [0,00)". )

o For a (max-min)MPS, q* is the partition function of the
corresponding (max-min) Weighted Context-Free Grammar.




P-time approximation for BMDPs and max/minPPSs

Theorem ([E.-Stewart-Yannakakis,2012])

Given a max/minPPS, x = P(x), with LFP q* € [0,1]", we can compute a
rational vector v € [0, 1]" such that

Iv—aq*lo <27

in time polynomial in the encoding size |P| of the equations, and in j.

We establish this via a new Generalized Newton's Method that uses linear
programming in each iteration.

Theorem ([E.-Stewart-Yannakakis,2012])

Moreover, we can compute an e-optimal static strategy for maximizing or
minimizing extinction probabilities for a BMDP, B, in time polynomial in
|B| and log(1/¢).




Newton's method

Newton’'s method

Seeking a solution to differentiable F(x) = 0, we start at a guess
x(0) ¢ R” and iterate:

x(KF1) .= x(K) — (F/(x)) =L F(x (k)

Here F’(x), is the Jacobian matrix:

- O0F OF1 7
ox1 * " Oxp
F'(x) = 5
oF oF,
L Oxy ° " Ox, -

For PPSs, F(x) = (P(x) — x), and Newton iteration looks like this:

x(k+1) . — y (k) 4 (I — p/(x(k)))—l(p(x(k)) _ x(k))

where P’(x) is the Jacobian of P(x).




Newton's method on PPSs and MPSs

We can easily decompose x = P(x) into its strongly connected components
(SCCs), based on variable dependencies, and eliminate “0" variables.

Theorem [E.-Yannakakis'05]

Decomposed Newton's method, starting at x(9) = 0 converges
monotonically to the LFP q* for any feasible MPS.

But...
@ In [E.-Yannakakis'05] we gave no upper bounds for Newton.
@ [Esparza,Kiefer,Luttenberger'10] gave bad examples of PPSs,
x = P(x), where g* = 1, but requiring exponentially many Newton
iterations, as a function of the encoding size |P| of the equations, to
converge to within additive error < 1/2.




P-time approximation for PPSs

Theorem ( )

Given a PPS, x = P(x), with LFP q* € [0, 1]", we can compute a rational
vector v € [0, 1]" such that

v —a*flec <277

in time polynomial in both the encoding size |P| of the equations
and in j (the number of “bits of precision”).

We use Newton's method..... but how?



Qualitative decision problems for PPSs are in P-time

Theorem ( )

For certain classes of strongly-connected PPSs, g = 1 for all i iff the
spectral radius o(P'(1)) for the moment matrix P'(1) is <1,
and otherwise q: < 1 for all i.

Theorem ( )

Given a PPS, x = P(x), deciding whether q* =1 is in P-time.
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Qualitative decision problems for PPSs are in P-time

Theorem ( )

For certain classes of strongly-connected PPSs, g = 1 for all i iff the
spectral radius o(P'(1)) for the moment matrix P'(1) is <1,
and otherwise q: < 1 for all i.

Theorem ( )

Given a PPS, x = P(x), deciding whether q* =1 is in P-time.
(It is even in strongly-P-time ([Esparza-Gaiser-Kiefer'10]).)

Deciding whether g = 0 is also easily in (strongly) P-time.
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@ Find and remove all variables x; such that ¢ =0 or g7 = 1.

@ On the resulting system of equations, run Newton's method starting
from 0.




Algorithm for approximating the LFP for PPSs

@ Find and remove all variables x; such that ¢ =0 or g7 = 1.

@ On the resulting system of equations, run Newton's method starting
from 0.

Theorem ( )

Given a PPS x = P(x) with LFP 0 < q* < 1, if we apply Newton starting
at x(0) = 0, then

lq* — X(4IP|+J')HOO <27




Algorithm

© Find and remove all variables x; such that g° =0 or g7 = 1.
@ On the resulting system of equations, run Newton's method starting

from 0.
© After each iteration, round down to a multiple of p—h

If, after each Newton iteration, we round down to a multiple of 2~" where
h = 4|P| + j + 2, then after h iterations ||q* — x{" ||, < 277,

Thus, we obtain a P-time algorithm (in the standard Turing model) for
computing g* to any desired accuracy.



High level picture of proof

@ For a PPS, x = P(x), with LFP 0 < q* < 1, P/(g") is a non-negative

square matrix with spectral radius o(P'(g*)) < 1.

o So, (I — P'(g*)) is non-singular, and (I — P'(g*))~! = Y_22,(P'(g*))".

@ We can show the # of Newton iterations needed to get within € > 0 is

1

€

~ log ||(I — P'(g%)) *||oo + log

o [|[(I — P'(g*))!|s is inversely related to the distance |1 — o(P’'(g*))],
which in turn is related to min;(1 — g7), which we can lower bound!

@ Uses lots of Perron-Frobenius theory, among other things...

LICS'17
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Towards Generalized Newton's Method:

Newton iteration as a first-order (Taylor) approximation

An iteration of Newton's method on a PPS, applied on current vector
y € R", solves the equation

PY(x) = x

where
PY(x) = P(y) + P/(y)(x —y)
is the linear (first-order Taylor) approximation of P(x) at the point y.

Kousha Etessami (U. Edinburgh) LICS'17 26 / 42



Generalized Newton's method

Linearization of max/minPPSs

Given a maxPPS

(P(x)),-:max{p,-,j(x):j:1,...,m,-} i:1,...,n

We define the linearization, P¥(x), by:

(PY(x))i = max{pij(y) + Vpij(y)-(x—y):j=1,....mi}  i=1,...,n
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Generalized Newton's method

Linearization of max/minPPSs

Given a maxPPS

(P(x))i = max{p;j(x) :j=1,..., m} i=1,...,n

We define the linearization, P¥(x), by:

(PY(x))i = max{pij(y) + Vpij(y)-(x—y):j=1,....mi}  i=1,...,n

Generalised Newton's method: iteration applied at vector y

Solve PY(x) = x. Specifically:
For a maxPPS, minimize ). x; subject to PY(x) < x;
For a minPPS,  maximize ) . x; subject to PY(x) > x;

These can both be phrased as linear programming problems. Their optimal
solution solves PY(x) = x , and yields one GNM iteration.

y

Kousha Etessami (U. Edinburgh) LICS'17 27 / 42



Algorithm for max/minPPSs

1) Find and remove all variables x; such that gF = 0 or g7 = 1. Checking
q: = 0 is again easy. Checking ¢ = 1 is harder:

@ Theorem ([E.-Yannakakis'06]) Checking g7 = 1 is decidable in
P-time using linear programming.
Reduces to spectral radius optimization for non-negative square

matrices: given k choices for each row of a n x n matrix M > 0, can
we choose the rows to make o(M) > 17 Solvable by LP.
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Each iteration of GNM can be computed in P-time by solving an LP.




Algorithm for max/minPPSs

1) Find and remove all variables x; such that gF = 0 or g7 = 1. Checking
q: = 0 is again easy. Checking ¢ = 1 is harder:

@ Theorem (|E.-Yannakakis'06]) Checking g = 1 is decidable in
P-time using linear programming.
Reduces to spectral radius optimization for non-negative square
matrices: given k choices for each row of a n x n matrix M > 0, can
we choose the rows to make o(M) > 17 Solvable by LP.

2) On the resulting equations, run Generalized Newton's Method, starting
from 0. After each iteration, round down to a multiple of 2—h
Each iteration of GNM can be computed in P-time by solving an LP.

Theorem [E.-Stewart-Yannakakis'12]: Given a max/minPPS x = P(x)
with LFP 0 < q* < 1, if we apply rounded GNM starting at x(9) = 0,
using h := 4|P| + j + 1 bits of precision, then ||q* — x(4IPIH+1)|| <27/,




Qualitative & quantitative extinction for BSSGs

Theorem ( )
Given a BS5G, deciding whether the extinction value is g7 =1 is in
NP N coNP.

And is at least as hard as computing the value of a finite-state SSG.

y

Theorem ( )

Given a BSSG extinction game, and given ¢ > 0, we can compute a
vector v € [0, 1]", such that ||v — q*|| < €, and we can compute
e-optimal static strategies in FNP

(and in PLS, using an approximate strategy improvement method).

y




Optimal problem for BMDPs
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Optimal

problem for BMDPs

Same Question (rephrased)
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Optimal problem for BMDPs

Same Question (rephrased)

What is the infimum probability of not

o {00} reaching . starting with one . ?
B 2 1

Yr = §YY)/Y‘|‘§
2
n 1@} —
/ ye 3
‘\ Yy = min{)/GayR}

We get fixed point equations, y = Q(Y).

(@ Thm.
©< The supremum reachability probabilities
@ are 1 — g*, where g* € [0, 1]° is the

Greatest Fixed Point, of y = Q(Y).




Optimal problem for BMDPs

Question
What is the maximum probability of not

23 {(0>O) reaching . starting with one . 7
5 ) 2 1

Yr = §YY)/Y‘|‘§
2
1/3 {‘} —
/ /6 3
‘\ Yy = maX{YGa)/R}

We get fixed point equations, ¥y = Q(Y).

(@) Thm.
@< The minimum reachability probabilities
@) are 1 — g*, where g* € [0, 1]3 Is the

Greatest Fixed Point of y = Q(¥).




P-time approximation of optimal probability for

BMDPs

Theorem ( )

Given a max/minPPS, y = Q(y), with GFP g* € [0,1]", we can compute
a rational vector v € [0,1]" such that

v —g"lloc < 27

in time polynomial in the encoding size |Q| of the equations, and in j.

We again establish this via the Generalized Newton's Method, but with a

subtly different preprocessing step, which results in convergence to the
GFP g*, instead of the LFP q*.



Qualitative/ quantitative reachability problems for BSSGs

@ The value of a BSSG reachability game is captured by the GFP of a
max-minPPS.
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Qualitative/ quantitative reachability problems for BSSGs

@ The value of a BSSG reachability game is captured by the GFP of a
max-minPPS.

@ We can approximate the value, and compute e-optimal stratgies, for a
BSSG reachability game in FNP.

(For BMDPs, we can compute e-optimal strategies in P-time.)

@ For BSSG reachability games, limit-sure = almost-sure, and we can
decide all qualitative questions in P-time.

(Note: This contrasts sharply with BSSG extinction games.)
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one-counter Markov chains ( discrete-time QBDs)

Question: What is the probability of
terminating (reaching counter value =0
for the first time) in state sy, if we start
with counter value = 1 in state s17?
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The termination probabilities are the
LFP, q* € [0, 1]**%.




Theorem [E.-Wojtczak-Yannakakis'08], [Stewart-E.-Yannakakis'13]

The termination probabilities of a QBD, @, can be computed to desired
accuracy € > 0 in time polynomial in both the encoding size |Q| and
log(1/€) (in the standard Turing model of computation).

v

@ Proof analyzes Newton's method on the very particular feasible MPSs
arising for 1-counter Markov Chains (QBDs).

@ [Stewart-E.-Yannakakis, 13| gives upper bounds for Newton's method
on arbitrary feasible MPSs. Result for QBPs follows as a special case.
(Worst-case bound, arising already for the feasible MPSs of Recursive
Markov Chains, is exponential.)

@ [Esparza-Kiefer-Luttenberger'10] earlier gave exponential upper
bounds on Newton iterations for “strongly-connected”-MPSs.
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Question: What is the optimal (supremum
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starting with counter value = 1 in state s;7
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Unfortunately, we do not know any
max/min-MPS equations that capture these
optimal probabilities.

But we do have algorithms to compute



Theorem [Brazdil-Brézek-E.-Kucera,2011]

Given a OC-MDP, M, we can compute the optimal (supremum /infimum)
termination probability to accuracy € > 0 in time polynomial in log(1/¢),
and (unfortunately) exponential in |M|.

Algorithm involves solving exponentially large finite-state (mean-payoff)
MDPs. Proof uses an intriguing martingale derived from LPs associated
with optimizing mean-payoff MDPs, and the Azuma inequality.

Theorem [Brazdil-Brézek-E.-Kucera-Wojtzak,2010]

Given a OC-MDP, we can decide almost-sure = limit-sure termination in
any state in P-time.

Proof uses LPs, and limit theorems for sums of i.i.d. random variables.

Theorem [Brazdil-Brézek-E.-Kucera-Wojtzak,2010]

Given a OC-MDP, deciding almost-sure termination in a specific state is
PSPACE-hard, and in EXPTIME.




Recursive Markov Chains (=~ pPDSs = tree-like-QBDs)
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Recursive Markov Chains (=~ pPDSs = tree-like-QBDs)
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Fact: ([E.-Yannakakis'05]) The Least Fixed Point, g* € [0, 1]", gives the
termination probabilities. J




approximation for Recursive Markov chains is “

Theorem [E.-Yannakakis'05,'09]

Any non-trivial approximation of the termination probabilities g* of an
RMC (with 2 or more exits) is SqrtSum-hard and PosSLP-hard.

In fact, deciding whether (a.) g; = 1 or (b.) g; < €, given the promise
that one of the two is the case, is PosSLP-hard.

(Thus, even approximation in NP would yield a major breakthrough on the
complexity of the BSS model and exact numerical computation; and
P-time approximation is very unlikely.)

Note: this is despite the fact that Newton's method converges
monotonically, starting from 0, to the LFP g*, for all feasible MPSs.

Theorem [E.-Yannakakis'05]

For Recursive Markov Decision Processes (with > 10 exits), any non-trivial
apporoximation of the optimal termination probabilities is not computable
at alll

i YaW




Model checking

Algorithms & complexity of many model-checking questions have also
been addressed, for these infinite-state MCs, MDPs, and SSGs, often by
building on termination/reachability analysis.

But still may open questions remain. For example:

Quantitative CTL model checking of BMDPs:
Given BMDP, M, start color ¢, and CTL formula ¢ over the color
alphabet, can we compute/approximate:

SUPseStrategy Pr(Treeg(M) ‘: 90)'
(We only know approximation computability for fragments of CTL.)
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Many embarrassing open questions

@ The complexity, or even decidability, of optimizing the expected tree
depth for a given BMDP. Optimizing expected tree size is in P-time
([E.-Wojtczak-Yannakakis'08]).

@ The complexity, or even decidability, of optimizing reachability
probability in 1-exit RMDPs (equivalently, BPA-MDPs).
Even deciding limit-sure reachability for 1-exit RMDPs is open,
although almost-sure reachability was shown decidable in P-time by
[Brazdil-Brézek-Forejt-Kucera,2006].

@ The previous question is a special case of optimizing termination
probability in 2-exit RMDPs (which is also wide open).
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More open questions

@ The complexity, or even decidability, of limit-sure termination in a
specific state, for a given OC-MDP.

(We know almost-sure termination is in EXPTIME & PSPACE-hard.)

@ Can we approximate the optimal probability of termination in any
state for a given OC-MDP in P-time? (We only know EXPTIME
upper bounds.)

@ [Esparza-Kiefer-Luttenberger'2010] ( “Newtonian program analysis’

studied analogs of Newton's method applied to MPSs for other
(w-continuous) semi-rings, beyond [0, 1] or [0, co].

Question: Can some version of Generalized Newton's Method for
max/minPPSs be adapted to other semi-rings?

)
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