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Stochastic Context-Free Grammars

R
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R
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Leftmost derivation

R
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1/4−→ bceeRRfbR
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probability of this derivation: 1
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4 ·
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3

Total “inside” probability of generating
string bceefb is the sum of the
probabilities of all its (left-most)
derivations.
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Some basic computational questions for SCFGs

Given an unrestricted SCFG, G , what is the complexity of these tasks?

1. Compute the probability, pG , that G generates a finite parse tree, i.e.,
the probability that a random derivation of G eventually terminates.

2. Given also a string, w , compute the “inside” probability, pG ,w , that a
derivation of G generates the finite string w .

3. Given also a string, w , compute the maximum parse tree/probability,
pmax
G ,w of w , i.e., the maximum probability (left-most) derivation of w

by G . And, decide if pmax
G ,w ≥ q, for a given rational probability q.

4. Given also a DFA, D, compute the probability, pG ,D that G generates
a string in the regular language, L(D).

5. Convert G to normal form (e.g., CNF), G ′, such that G and G ′ are
suitably “equivalent” (also in terms of probabilities of strings).

It may surprise you to know: until recently, for arbitrary (unrestricted)
SCFGs, the complexity of all of these problems was open.
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1/4−→ bbRRc

B
3/4−→ a

G
1−→ aBcRRb

Question

What is the probability of termination,
i.e., eventually generating a finite string,
starting with one non-terminal, R ?
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1

3
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BxGxR +
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xBxR +

1

6
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1

4
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R +
3

4
xG = xBx2

R

We get nonlinear fixed point equations,
x̄ = P(x̄).

Fact: Termination probabilities (also
called the partition function of the
SCFG) are the least fixed point,
q∗ ∈ [0, 1]3, of x̄ = P(x̄).
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Multi-type Branching Processes (Kolmogorov,1940s)
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Question: What is the probability of
eventual extinction, starting with one

?

xR =
1

3
x2

BxGxR +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx2

R

We get the same fixed point equations:
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.
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The “inside” probability of a string.

S
1/3−→ “Hello”R

R
1/3−→ BBGR

R
1/2−→ BR

R
1/6−→ ε

B
1/4−→ RR

B
3/4−→ ε

G
1−→ BRR

Question

What is the inside probability of
generating the string “Hello”, starting
at S?

Again, it is the same termination
probability, q∗R , as before.

In general, computing/approximating
inside probabilities is more involved than
just computing termination probabilities.
(But we will show it can be reduced in
P-time to computing termination
probabilities.)

In NLP terminination probabilities are
also called the partition function of the
SCFG. They have lots of applications
(see, e.g., [Nederhof-Satta,2008]).
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at S?

Again, it is the same termination
probability, q∗R , as before.

In general, computing/approximating
inside probabilities is more involved than
just computing termination probabilities.
(But we will show it can be reduced in
P-time to computing termination
probabilities.)

In NLP terminination probabilities are
also called the partition function of the
SCFG. They have lots of applications
(see, e.g., [Nederhof-Satta,2008]).
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Probabilistic Polynomial Systems of Equations and SCFGs

1

3
x2
BxG xR +

1

2
xBxR +

1

6

is a Probabilistic Polynomial: the coefficients are positive and sum to 1.

A Probabilistic Polynomial System (PPS), is a system of n equations

x = P(x)

in n variables where each Pi (x) is a probabilistic polynomial.

Every multi-type Branching Process (BP) with n types, and every SCFG
with n nonterminals, corresponds to a PPS, and vice-versa.
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Weighted Context-Free Grammars (WCFGs)

R
3−→ aBBcGdR

R
1/2−→ bcBbR

R
5−→ ε

B
4−→ eeRRf

B
3/4−→ g

G
2−→ aBcRRb

Leftmost derivation

R
1/2−→ bcBbR
4−→ bceeRRfbR
5−→ bcee RfbR
5−→ bcee fbR
5−→ bceefb

weight of this derivation: 1
2 · 4 · 5

3

Total weight of string bceefb is the sum
of the weights of all its (left-most)
derivations. (This may in general be ∞.)
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Monotone Polynomial Systems of Equations and WCFGs

3 x2
BxG xR +

2

3
xBxR + 5

is a Monotone Polynomial: the coefficients are positive (but they don’t
necessarily sum to one).

A Monotone Polynomial System (MPS), is a system of n equations

x = P(x)

in n variables where each Pi (x) is a monotone polynomial.

Every Weighted-CFG (WCFG) with n nonterminals, corresponds to a
MPS, and vice-versa.
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Basic properties of PPSs, x = P(x) for SCFGs

For every PPS, P : [0, 1]n → [0, 1]n defines a monotone map on [0, 1]n.

Proposition

A PPS, x = P(x) has a least fixed point, q∗ ∈ [0, 1]n.
(q∗ can be irrational.)

q∗ = limk→∞ Pk(0).

q∗ is vector of extinction/termination probabilities (the partition
function) for the BP (SCFG).

Question

Can we compute the probabilities q∗ efficiently (in P-time)?

First considered by Kolmogorov & Sevastyanov (1940s).
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Basic properties of MPSs, x = P(x), for WCFGs

For every MPS, P : [0,∞]n → [0,∞]n defines a monotone map on [0,∞]n.

Proposition

A MPS, x = P(x) has a least fixed point, q∗ ∈ [0,+∞]n.
(q∗ can be irrational.)

q∗ = limk→∞ Pk(0).

q∗ is the (generalized) “partition function” for the WCFG.

Question

Can we compute q∗ efficiently (in P-time) for MPSs and WCFGs?
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Value iteration can require exponentially many iterations, already for

simple PPSs and SCFGs

Why not just do value iteration?
I.e., start with x0 := 0, and let x i+1 := P(x i ) = P i (0), i = 1, 2, 3, . . .

Question

How many iterations, m, is required for xm := Pm(0) to be within i bits of
precision (i.e., to within additive error 1/2i ) of the solution q∗?

Answer

In the worst case, at least exponentially many iterations in i , even for a
fixed univariate PPS:

Univariate PPS: x = (1/2)x2 + 1/2

Fact ([E.-Yannakakis’05]) : q∗ = 1, but for all m ≤ 2i ,

|1− Pm(0)| ≥ 1/2i
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two “hard” problems

Sqrt-Sum: the square-root sum problem is the following decision problem:
Given (d1, . . . , dn) ∈ Nn and k ∈ N, decide whether

∑n
i=1

√
di ≤ k .

Solvable in PSPACE.
Open problem ([GareyGrahamJohnson’76]) whether it is in NP (or even
the polynomial time hierarchy).

PosSLP: Given an arithmetic circuit (Straight Line Program) with gates
{+, ∗,−} with integer inputs, decide whether the output is > 0.
PosSLP captures all of polynomial time in the unit-cost arithmetic RAM
model of computation.

[Allender, Bürgisser, Kjeldal-Petersen, Miltersen,2006] Gave a (Turing)
reduction from Sqrt-Sum to PosSLP and showed both can be decided in

the Counting Hierarchy: PPPPPPP

. Nothing better is known.
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some bad news

Theorem ([E.-Yannakakis’05,’07])

Both Sqrt-Sum and PosSLP are P-time reducible to both of the following
problems:

1 Given a PPS, x = P(x), decide whether q∗1 ≥ 1/2.
(Or, decide whether q∗1 ≥ p for any given rational p ∈ (0, 1).)

2 Given a MPS, x = P(x), even one that has an LFP, q∗ ∈ [0, 1]n,
compute any non-trivial approximation of q∗. More precisely:

For any fixed ε > 0, given a MPS with the promise that either
(a) q∗1 = 1, or (b) q∗1 ≤ ε; decide which of (a) or (b) is the case.
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toward some good news

Newton’s method

Seeking a solution to F (x) = 0, we start at initial guess vector x(0), and
compute the sequence, x (k) , k →∞, where:

x(k+1) := x(k) − (F ′(x(k)))−1F (x(k))
Here F ′(x), is the Jacobian matrix, of partial derivatives, given by

F ′(x) =


∂F1
∂x1

. . . ∂F1
∂xn

...
...

...
∂Fn
∂x1

. . . ∂Fn
∂xn


For PPSs, Newton iteration looks like:

x(k+1) := x(k) + (I − P ′(x(k)))−1(P(x(k))− x(k))
where P ′(x) is the Jacobian matrix of P(x). For z ∈ [0, 1]n, let:

NP(z) := z + (I − P ′(z))−1(P(z)− z)
define the Newton operator on x = P(x).
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Newton on PPSs and MPSs

Let F (x) = P(x)− x.
We can decompose x = P(x) into its strongly connected components
(SCCs), based on variable dependencies, and eliminate “0” variables.

Theorem (Decomposed Newton’s method for MPSs [E.-Yannakakis’05])

Starting at x0 := 0, and working “bottom-up” on the SCCs of the
decomposition DAG of x = P(x), Newton’s method “monotonically
converges” to the LFP q∗ ∈ [0,∞)n, i.e., limk→∞ xk ↑ q∗.

Implemented in PReMo (http://groups.inf.ed.ac.uk/premo/ ),
by D. Wojtczak [Wojtczak-E.,’07]. Also implemented by
[Nederhof-Satta,’08]. Experiments show some good performance.
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What is Newton’s worst case behavior for PPSs and MPSs?

[Esparza,Kiefer,Luttenberger,’10] subsequently studied the convergence of
Newton’s method on PPSs and MPSs in greater detail.

They gave simple examples of PPSs, x = P(x), requiring
exponentially many iterations (as a function of the encoding size |P|
of the equations) to converge to within additive error < 1/2.
Example ([SEY’13]): xi = 1

2x2
i + 1

2xi−1, for i = 1, . . . , n; x0 = 1;

For strongly-connected equation systems they gave an exponential
upper bound, as a function of the size of the system, and linear in the
number of bits of precision required.

They gave no upper bounds on the number of iterations, as a
function of the system size, for arbitrary PPSs (or MPSs).

Recently [Stewart-E.-Yannakakis’2013], we have given worst-case upper
bounds for Newton on arbitrary PPSs and MPSs, as a function of both |P|
and log(1/ε), to converge to within error ε > 0.
Our bounds are essentially optional in several parameters.
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P-time approximation for PPSs

Theorem ([E.-Stewart-Yannakakis,STOC’12])

Given a PPS, x = P(x), with LFP q∗ ∈ [0, 1]n, we can compute a rational
vector v ∈ [0, 1]n such that

‖v − q∗‖∞ ≤ 2−j

in time polynomial in both the encoding size |P| of the equations
and in j (the number of “bits of precision”).

We use Newton’s method..... but how?
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Qualitative problems for PPSs are in P-time

Proposition

For a PPS or MPS, x = P(x), deciding whether q∗i = 0 is in P-time.

Proof: Easy AND-OR graph reachability.

Theorem ([E.-Yannakakis’05])

For PPSs, x = P(x), deciding whether q∗i = 1 is in P-time.

Proof: combines eigenvalue methods and graph-theoretic methods.
After “decomposition”, key problem can be reduced to deciding whether
certain moment matrices (Jacobian of P(x) evaluated at the all 1 vector)
have spectral radius > 1. ([Kolmogorov-Sevastyanov,’47,Harris’63]).

This is closely related to old work on checking consistency of SCFGs by
[Booth-Thompson,1973].
However, warning: [Booth-Thompson,’73] make some mis-statements.
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Algorithm for deciding if a SCFG is consistent ([EY’05])

An SCFG, G , is called consistent if the termination probabilitity starting
from the start nonterminal, S , is 1.

Input: An SCFG, G, with start non-terminal S .
Output: YES if G is consistent, NO if it is not.

1. Remove all nonterminals unreachable from S .

2. If there are any useless nonterminals left (i.e., nonterminals that do
not derive any terminal string), return NO.

3. Otherwise, for the remaining SCFG, let x = P(x) be the associated
PPS, and let λ = %(P ′(1)) be the spectral radius of the moment
matrix P ′(1) (Jacobian of P(x), evaluated at the all 1-vector).
If λ > 1 then return NO; otherwise (i.e., if λ ≤ 1) return YES.

For a non-negative matrix M, checking whether %(M) ≤ 1 can be done
easily using linear programming ([E.-Yannakakis’05]), and it can even be
done by solving a linear system of equations [Esparza-Gaiser-Kiefer,2010].
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Algorithm for approximating the LFP q∗ for PPSs

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

2 On the resulting system of equations, run Newton’s method starting
from 0.

Theorem ([ESY’12])

Given a PPS x = P(x) with LFP 0 < q∗ < 1, if we apply Newton starting
at x(0) = 0, then

‖q∗ − x(4|P|+j)‖∞ ≤ 2−j

Theorem ([ESY’12])

Given a PPS x = P(x) with LFP 0 < q∗ < 1, if we apply Newton starting
at x(0) = 0, then

‖q∗ − x(32|P|+2j+2)‖∞ ≤ 2−2j
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Algorithm with rounding

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

2 On the resulting system of equations, run Newton’s method starting
from 0.

3 After each iteration, round down to a multiple of 2−h

Theorem ([ESY’12])

If, after each Newton iteration, we round down to a multiple of 2−h where
h := 4|P|+ j + 2, then after h iterations ‖q∗ − x(h)‖∞ ≤ 2−j .

Thus, we obtain a P-time algorithm (in the standard Turing model) for
approximating q∗.
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High level picture of proof

For a PPS, x = P(x), with LFP 0 < q∗ < 1, P ′(q∗) is a non-negative
square matrix, and (we show)

(spectral radius of P ′(q∗) ) ≡ %(P ′(q∗)) < 1

So, (I −P ′(q∗)) is non-singular, and (I −P ′(q∗))−1 =
∑∞

i=0(P ′(q∗))i .

We can show the # of Newton iterations needed to get within ε > 0 is

≈≈ log ‖(I − P ′(q∗))−1‖∞ + log
1

ε

‖(I − P ′(q∗))−1‖∞ is tied to the distance |1− %(P ′(q∗))|,
which in turn is related to mini (1− q∗i ), which we can lower bound.

Uses lots of Perron-Frobenius theory.
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Proof outline: some key lemmas

(1− q∗) is the vector of survival probabilities.

Lemma

If q∗ − x(k) ≤ λ(1− q∗) for some λ > 0, then q∗ − x(k+1) ≤ λ
2 (1− q∗).

Lemma

For any PPS with LFP q∗, such that 0 < q∗ < 1, for any i ,
q∗i ≤ 1− 2−4|P|.
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Complexity of quantitative decision problems for SCFGs

Proposition

Given a PPS, x = P(x), and a probability p, deciding whether q∗i ≤ p is in
PSPACE.

Proof.
∃x(x = P(x) ∧ xi ≤ p)

is expressible in the existential theory of reals. There are PSPACE decision
procedures for ∃R ([Canny’89,Renegar’92]).

Recall:

Theorem ([E.-Yannakakis,’05,’07])

Given a PPS, x = P(x), deciding whether q∗i ≤ 1/2 (or q∗i ≤ p for any
p ∈ (0, 1)), is both Sqrt-Sum-hard and PosSLP-hard.
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The quantitative decision problem for SCFG termination
probability is PosSLP-equivalent

Theorem ([E.-Stewart-Yannakakis’12])

Given a PPS, x = P(x), and a probability p, deciding whether q∗i < p is
P-time (many-one) reducible to PosSLP. (And thus PosSLP-equivalent.)

Thus the quanitative decision problem for the partition function of
SCFGs captures the full power of polynomial time in the unit-cost
arithmetic RAM model of computation.

By [Allender, et. al.’06], it is solvable in the Counting Hierarchy, and
that is the best complexity we know in the standard (Turing) model
of computation.
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Applications: inside probabilities and CNF

Theorem

There is a P-time algorithm that, given as input a SCFG G , a string w and
a rational δ > 0 in binary, approximates the inside probability pG ,w within
δ, i.e., computes a rational v such that |v − pG ,w | < δ.

To prove this, we first show, using approximated termination probabilities,
that any SCFG, G , can be tranformed in P-time to an approximately
equivalent SCFG, G ′, in Chomsky Normal Form.
Note: There may not exist any CNF form SCFG, with rational rule
probabilities, that is exactly equivalent to G , i.e., that generates the same
probability distribution on strings.

Theorem

There is a P-time algorithm that, given a SCFG G , a natural number N in
unary, and a rational δ > 0 in binary, computes a new SCFG G in CNF
such that |pG ,w − pG ,w | < δ for all strings w of length at most N.
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Tranforming a SCFG to CNF: “conditioned” SCFG

For a nonterminal A, let E (A) be the probability that A generates the
empty string. Let NE (A) = 1− E (A). We can compute E (A) and NE (A)
in P-time: E (A) is the termination probability of A after we remove all
rules with terminals on the RHS.
For removing ε-rules: transform each rule r of the form A

p→ BC , to the
following three rules:

r(1) : A
p∗NE(B)∗NE(C)

NE(A)−−−−−−−→ BC

r(2) : A
p∗NE(B)∗E(C)

NE(A)−−−−−−−→ B

r(3) : A
p∗E(B)∗NE(C)

NE(A)−−−−−−−→ C

NOTE: we can’t compute the new rule probabilities exactly: they can be
irrational. But we can approximate them “sufficiently well”.
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Rest of the construction of approximate CNF SCFG

After removing ε-rules, one has to remove all remaining linear rules,
A

p→ B.

This can be done by solving certain linear systems of equations.

However, the rule probabilities p are approximated, and thus so are
the coefficients of the linear system of equations.

We have to prove that these linear systems are well-conditioned
enough so that solving the approximate linear system yields a good
enough approximation of the (unique) solution to the actual system
of equations (which has irrational coefficients).
We prove this.
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Using approximate CNF SCFG to approximate inside
probabilities

Once we have the approximate CNF SCFG, G ′, we apply the standard
CKY dynamic programming algorithm to compute the inside
probability of w on G ′.

To prove this provides a P-time approximation of the inside
probability pG ,w for the original SCFG, G , we have to show that the
approximation errors do not blow up.
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SCFGs and regular languages

Given an SCFG, G , and a deterministic finite automaton, D, our aim is to
compute (approximate), the probability that G generates a string accepted
by D, i.e., in L(D).
This problem has many applications in NLP. Special cases (which have
been studied extensively in NLP) include:

prefix probability

infix probability
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Theorem

Given an SCFG G and a DFA D, we can compute an approximation
to the probability PrG (L(D)) that G generates a string accepted by
D, to within additive error 2−j in time polynomial in j, |G | and |D|,
as long as G is non-critical.
(In fact, it suffices if G has bounded critical depth.)

Every SCFG, G , generated by the EM (inside-outside) algorithm (i.e.,
learned by EM from a corpus of strings) is non-critical. Thus, on such
SCFGs, we can always approximate PrG (L(D)) in P-time.
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Towards a proof: Product (Intersection) of SCFG and DFA

The classic “product/intersection” construction of CFGs and regular
languages [Bar-Hillel, Perles, Shamir, 1964], generalized to SCFGs
(see, e.g., [Nederhof-Satta’03]):
given a SCFG, G , and a DFA, D, construct a product WCFG, G ⊗ D,
whose nonterminals are of the form (sAt) where A is a nonterminal of
G and s, t are states of D.

The rules of G ⊗ D inherit their probabilities from the rules of G .

If s0 is the start state of D and f is the (unique) final state, if S is
the start nonterminal of G , then PrG (L(D)) is the termination
probability starting at nonterminal (s0Sf ) of G ⊗ D.

Unfortunately, the rule weights for a nonterminal (sAt) in the resulting
WCFG, G ⊗ D no longer add up to 1 (so it is a WCFG, not a SCFG).

Question: Can we nevertheless use Newton’s method on the MPS for
G ⊗ D, to get a P-time algorithm for approximating PrG (L(D))?

Yes.
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The MPS for the product G ⊗ D is special.

Consider the PPS, x = PG (x) associated with SCFG G ,
Consider also the MPS, y = PG⊗D(y) associated with the WCFG
G ⊗ D.

Lemma

If we perform Newton’s method on both these systems starting at x (0) = 0
and y (0) = 0, then

∀A∀s x
(k)
A =

∑
t

y
(k)
(sAt)

∀A∀s (q∗G − x (k))A =
∑

t

(q∗G⊗D − y (k))(sAt)

‖q∗G − x (k)‖∞ ≥ ‖q∗G⊗D − y (k)‖∞

In other words, Newton converges “at the same rate” on x = PG (x) and
y = PG⊗D(y) to their respective LFPs, q∗G and q∗G⊗D .
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Critical SCFGs, and critical depth of SCFGs

A SCFG G is called critical if the associated PPS, x = PG (x) has
%(P ′G (q∗G )) = 1.

Example

S
1
2→ SS

S
1
2→ a

Fact: We can detect whether or not x = PG (x) is critical in P-time.
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Critical Depth of an SCFG

The critical depth of an SCFG G is the maximum number of critical
strongly-connected components of x = PG (x) in any path through the
dependency graph of variables of x = PG (x).

We can compute the critical depth of a given SCFG in P-time.

Note that a non-critical SCFG has critical depth 0.
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Newton on the product MPS, y = PG⊗D(y)

Algorithm:

Find and remove all variables yz such that q∗z = 0.

On the resulting system, apply Newton’s method starting from 0.

Theorem

Given a non-critical SCFG, G , and a DFA, D, with product MPS
y = PG⊗D(y), with LFP 0 < q∗ ≤ 1, if we apply Newton staring at
y (0) = 0, then after k ≥ 14|G |+ j + log d + 3 iterations,
‖q∗G⊗D − y (k)‖∞ ≤ 2j .

And, we can do this with suitable rounding, to approximate q∗G⊗D in
P-time. In fact, more generally:

Theorem

Given an SCFG, G , and DFA, D, we can (by applying Newton) compute a
rational vector v such that ‖q∗G⊗D − v‖∞ ≤ 2−j , in time polynomial in
|G |, |D|, j , and 2cG , where cG is the critical-depth of G .
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EM always produces non-critical SCFGs

It is a well-known fact that the EM algorithm always produces consistent
SCFGs, i.e., with termination probability = 1. (See, e.g., [Chi-Geman’98],
[Sanchez-Benedi,’97], [Nederhof-Satta,’06].)
In fact:

Theorem

Any SCFG learned by standard supervised or unsupervised (i.e., EM,
inside-outside) maximum likelihood estimation methods from a corpus of
parse trees or strings, respectively, is non-critical.

Thus, on SCFGs learned via EM, we can compute PrG (L(D)) in P-time.
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Maximum probability parsing

Consider the following SCFG:

Ai
1→ Ai−1Ai−1 ; i = 1, . . . , n

A0

1
2→ b ; A0

1
2→ ε

Question: What is the maximum probability of a parse tree for string “b”?

Answer(easy): pmax
G ,b = 1/22n

, and any parse tree for “b” has 2n nodes.

Question

Can we nevertheless compute the (exact) maximum parse probability of
string w , and a maximum probability parse tree for w (if it exists), in
polynomial time, given any SCFG, G , and string w?

Answer: Yes, if we assume deep conjectures in number theory, and
unconditionally if a bounded number of distinct probabilities label the rules
of G .
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Succinct representation of small/large numbers

Numbers can be respresented succinctly in Product of Exponentials (PoE)
notation, by giving a list of rational numbers (in binary):

〈a1, . . . , an〉

and another list of integers (in binary):

〈b1, . . . , bn〉

such that together the two lists denote the number:

ab1
1 ab2

2 . . . abn
n

Note: such numbers can be very small or very large, e.g., in O(n) bits we
can denote the number 22n

.

Question

Can we nevertheless compare two numbers given in PoE, and decide
whether one is ≥ another in P-time?

Yes!...
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maximum probability parsing and the ABC conjecture

Theorem

Given any SCFG, G , and any terminal string w ∈ Σ∗:

A. If either the Lang-Waldschmidt Conjecture holds or Baker’s
refinement of the ABC conjecture holds,

B. or else, if the number of distinct probabilities labeling the rules of G is
bounded by a fixed constant, c,

then the following all hold:

1. There is a P-time algorithm (in the standard Turing model) for
computing the exact probability pmax

G ,w in succinct product of
exponentials notation (PoE), and for computing (if pmax

G ,w > 0) a
maximum probability parse tree tmax

w for w where tmax
w is represented

succinctly as a DAG (straight-line program).

2. Given another string w ′ ∈ Σ∗, there is a P-time algorithm (in the
Turing model), to decide whether pmax

G ,w ≥ pmax
G ,w ′ .
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Key to proof

We can use variations of methods (based on Knuth’s extension of
Dijkstra’s shortest path algorithm to WCFGs), in order to compute
pmax
G ,w in P-time in the unit-cost arithmetic RAM model of

computation, where the only arithemtic operations used are {∗, /}.
We then see that P-time in this model of computation can be
simulated in P-time in the standard Turing model, precisely if we can
compare numbers given in PoE in P-time.

It turns out that deep number theoretic conjectures about linear forms
in logarithms, like Lang-Waldschmidt and Baker’s refinement of the
ABC conjecture, imply that we can compare PoE numbers in P-time.

Furthermore, if the number of bases of the two PoE numbers is
bounded by a constant, a deep Theorem [Baker-Wüstholz’93], implies
we can compare such PoE numbers in P-time.
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Conclusion

The partition function (termination probabilities) for arbitrary SCFGs
can be computed in P-time, using Newton’s method (and some
spectral preprocessing).

Building on this, many of the familiar computational problems on
SCFGs that are needed regularly in NLP have more sophisticated but
efficient (P-time) algorithms for arbitrary SCFGs, not only for SCFGs
in a normal form like CNF, and not only for SCFGs that lack ε-rules.

Furthermore, computing the probability that an SCFG generates a
string in a regular language can be done efficiently for arbitrary regular
languages, not just for special cases like prefix probabilities. (As long
as the SCFG is learned by maximum likelihood estimation, e.g., by
EM or by supervised learning, or as long as it is not (deeply) critical.)

Kousha Etessami (U. Edinburgh) complexity of analyzing SCFGs FSMNLP’13 44 / 45



Conclusion

The partition function (termination probabilities) for arbitrary SCFGs
can be computed in P-time, using Newton’s method (and some
spectral preprocessing).

Building on this, many of the familiar computational problems on
SCFGs that are needed regularly in NLP have more sophisticated but
efficient (P-time) algorithms for arbitrary SCFGs, not only for SCFGs
in a normal form like CNF, and not only for SCFGs that lack ε-rules.

Furthermore, computing the probability that an SCFG generates a
string in a regular language can be done efficiently for arbitrary regular
languages, not just for special cases like prefix probabilities. (As long
as the SCFG is learned by maximum likelihood estimation, e.g., by
EM or by supervised learning, or as long as it is not (deeply) critical.)

Kousha Etessami (U. Edinburgh) complexity of analyzing SCFGs FSMNLP’13 44 / 45



Conclusion

The partition function (termination probabilities) for arbitrary SCFGs
can be computed in P-time, using Newton’s method (and some
spectral preprocessing).

Building on this, many of the familiar computational problems on
SCFGs that are needed regularly in NLP have more sophisticated but
efficient (P-time) algorithms for arbitrary SCFGs, not only for SCFGs
in a normal form like CNF, and not only for SCFGs that lack ε-rules.

Furthermore, computing the probability that an SCFG generates a
string in a regular language can be done efficiently for arbitrary regular
languages, not just for special cases like prefix probabilities. (As long
as the SCFG is learned by maximum likelihood estimation, e.g., by
EM or by supervised learning, or as long as it is not (deeply) critical.)

Kousha Etessami (U. Edinburgh) complexity of analyzing SCFGs FSMNLP’13 44 / 45



For more details see.... (for other related papers see Etessami’s web page)

I K. Etessami and M. Yannakakis.

Recursive Markov Chains, Stochastic Grammars, and Monotone Systems of
Nonlinear Equations.

Journal of the ACM, 56(1), 2009.

I K. Etessami, A. Stewart, and M. Yannakakis.

Polynomial time algorithms for multi-type branching processes and stochastic
context-free grammars. STOC 2012: 579-588.

Proceedings of STOC, pp. 579-588, 2012. Full version: arXiv:1201.2374

I A. Stewart, K. Etessami, and M. Yannakakis.

Upper Bounds for Newton’s Method on Monotone Polynomial Systems, and
P-Time Model Checking of Probabilistic One-Counter Automata.

Proceedings of CAV, pp. 495-510, 2013. Full version: arXiv:1302.3741

I K. Etessami, A. Stewart, and M. Yannakakis.

Stochastic Context-Free Grammars, Regular Languages, and Newton’s Method.

Proceedings of ICALP, pp. 199-211, 2013. Full version: arXiv:1302.6411

I K. Etessami, A. Stewart, and M. Yannakakis.

A note on the complexity of comparing succinctly represented integers, with an
application to maximum probability parsing.

Unpublished manuscript. Preprint available at arXiv:1304.5429, 2013.

Other full/journal versions are accessible on my web page.

Kousha Etessami (U. Edinburgh) complexity of analyzing SCFGs FSMNLP’13 45 / 45


