
Verifying Probabilistic Procedural Programs

Javier Esparza1 and Kousha Etessami2

1 Institute for Formal Methods in Computer Science,
University of Stuttgart
2 School of Informatics,
University of Edinburgh

Abstract. Monolithic finite-state probabilistic programs have been ab-
stractly modeled by finite Markov chains, and the algorithmic verifi-
cation problems for them have been investigated very extensively. In
this paper we survey recent work conducted by the authors together
with colleagues on the algorithmic verification of probabilistic procedu-
ral programs ([BKS, EKM04, EY04]). Probabilistic procedural programs
can more naturally be modeled by recursive Markov chains ([EY04]),
or equivalently, probabilistic pushdown automata ([EKM04]). A very rich
theory emerges for these models. While our recent work solves a num-
ber of verification problems for these models, many intriguing questions
remain open.

1 Introduction

The topic of this paper is the decidability and computational complexity of
verification problems for models of probabilistic programs. Loosely speaking, a
program is probabilistic if it can flip a coin in order to decide the next execution
step. Probabilistic models of programs are of interest for at least two reasons.
First, we may wish to model and analyze randomized algorithms, which are in-
trinsically probabilistic. Second, sometimes when we model a program’s behavior
we may wish to replace a deterministic branching choice by a probabilistic one in
order to obtain information about the induced probability of certain behaviors,
e.g., that the program terminates in a certain state. The probabilities chosen
for the branches may either be subjective choices or be based, e.g., on statistics
accumulated from profiling data.

As usual, in the area of automated software verification we assume that the
variables of the program have a finite domain, either because the program was
so designed, or because it is an abstraction of another program. The complex-
ity of probabilistic verification has been extensively studied for finite-state flat-
programs, where the program consists of one procedure containing no procedure
calls, and the control mechanisms are only the basic if-then-else instructions
and while loops.

In this case, the program has a finite number of states, and can be modeled
abstractly by a finite Markov Chain. There is already an extensive literature on
analysis of such models (see, e.g., [Var85, CY95, Kwi03]). Since last year, both

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 16–31, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verifying Probabilistic Procedural Programs 17

authors, together with colleagues, have initiated a study of verification problems
for programs with multiple (possibly recursive) procedures, called procedural
programs in this paper [EKM04, EY04]. Since the state of such a program must
contain information about the stack of calls that have not yet been completed,
the state space is potentially infinite, and so these programs are more naturally
modeled by countably infinite Markov chains of a certain kind. As we will see,
verification questions related to these models lead to very interesting algorithmic
and mathematical problems.

In this paper we survey our published results and report on our work in
progress [EKM04, EY04, BKS]. While a number of interesting algorithmic ques-
tions have been answered, many questions remain. We use this opportunity to
emphasize the intuition behind the results and avoid the technicalities.

2 Models of Probabilistic Programs

The state of a running program, as usual, consists of the contents of memory
together with the location of the program’s control. This defines a state transition
system, whose transitions are from a state s to a state t whenever the program
can move in one step from s to t.

In the case of probabilistic programs we assume that transitions are labelled
with a positive probability, i.e., a number in the interval (0, 1], and that the sum
of the probabilities attached to the transitions leaving a state is 1, or 0 if the
state is a halting state. This transforms the state space into a Markov chain.

A state of a flat-program contains information about the current control point
and the current values of the variables. If we assume that variables have a finite
domain, as we always do in this paper, the state space of the program is finite,
and so probabilistic flat-programs can be modelled as finite Markov chains.

Let us now discuss formal models for probabilistic programs with procedures.
When a procedure or function Q is called from another procedure or function
P , with parameter values v passed from P to Q,

(1) the return address (i.e. the point of P to control has to return after comple-
tion of the call) and the current values of the local variables of P are stored
as an activation record on the call stack;

(2) control is transferred to an initial control point of Q, and the passed param-
eter values v can be treated as a value of a local variable of Q.

(3) upon completion of the call, control is transferred to the return address,
and the values of the local variables of P are restored according to the top
activation record on the call stack, and if the procedure Q returned a value
r, the value r is passed back to P in a local variable.

Thus, the state of a program with procedures contains information about the
current control point, the current values of the variables, and the current contents
of the call stack. We may represent a state by a triple (g, l, r), where g represents
the current values of the global variables, l the control point and values of the
local variables of the current procedure (which may include parameters passed

18 J. Esparza and K. Etessami

to it, or values returned to it), and r is a sequence of activation records, with
the top of the stack as first element of the sequence. Since the stack size is not
bounded a priori, the program may have an infinite state space, and the Markov
chain associated with a program with procedures may be infinite.

As in the case of finite flat-programs, we assume that transitions are labelled
with a positive probability. We also assume that the probability of a transi-
tion (q1, l1, r1) → (g2, l2, r2) depends only on g1, l1 and g2, l2. Intuitively, this
means that the probability of executing a particular instruction of the program
code only depends on the current program control point and the current values
of the program variables, and not on the contexts of the call stack. There are
some special situations in which one might like to weaken this condition (for
instance, some methods of the Java Development Kit inspect the stack of ac-
tivation records [BJMT01]), but even in this case, using coding tricks, one can
construct equivalent Markov chains satisfying it.

When the number of control points and the domains of program variables are
finite, such probabilistic procedural programs induce a particular family of infi-
nite Markov chains. We can not work directly with infinite Markov chains, but
need to work with finite representations of them. We consider two equivalent
finitely presented models of these Markov chains: Probabilistic Pushdown Au-
tomata (PPDAs) (studied in [EKM04]) and Recursive Markov Chains (RMCs)
(studied in [EY04]). These models have non-probabilistic counterparts which
have been studied extensively in recent research on verification and program
analysis: for Pushdown Systems (PDAs) see, e.g., [BEM97, EHRS00], and for
Recursive State Machines (RSMs) see [AEY01, BGR01].

2.1 Recursive Markov Chains

A recursive Markov chain is a tuple (A1, . . . , Ak), where each Ai is a component.
Each component models a procedure of the program and consists of:
– A set of nodes, with two distinguished subsets of entry and exit nodes.
– A set of boxes. A box b is labelled with an integer Y (b) ∈ {1, .., k}, and has a

call port, or just a call (en, b) for each entry node en of AY (b), and a return
port, or just a return (ex, b) for each exit node ex of AY (b).

– A set of transitions u x−→ v where
• u is either a non-exit node or a call port,
• v is either non-entry node, or a return port, and
• x is a positive probability, with the condition that the sum of the prob-

abilities of all the transitions having source u is 1 or 0, if the vertex u is
an exit node or call port, which has no outgoing edges in Ai.

Recursive Markov chains reflect the structure of a program with procedures.
Each procedure is modelled by a component. A node corresponds to a local state
of the procedure, i.e., to one of its control points and a valuation of its local
variables, plus the values of the global variables, if any. Entry nodes correspond
to the possible initial states of the procedures, which also reflect the parameter
values passed to it, and exit nodes correspond to local states from which control
is returned to the caller and the returned value. A transition to a call port (en, b)

Verifying Probabilistic Procedural Programs 19

of a box b labeled by Y (b) = i models a call with particular parameter values
reflected by the node en, to the procedure modelled by Ai. Similarly, a transition
from a return port corresponds to a return, with particular return values.

A RMC A = (A1, . . . , Ak) defines a (possibly infinite) Markov chain MA as
follows. Let a vertex be either a node, a call, or a return. The states of MA,
which we call global states, are pairs 〈u,B〉, where u is a vertex and B = b1 . . . bn
is a sequence of boxes. M has the following transitions:

– a transition 〈u,B〉 x−→〈u′, B〉 for every transition u x−→u′ and every sequence
of boxes B;

– a transition 〈(en, b), B〉 1−→〈en, bB〉 for every call port (b, en), and every se-
quence of boxes B; and

– a transition 〈ex, bB〉 1−→〈(ex, b), B〉 for every return port (ex, b), and every
sequence of boxes B.

RMCs can be depicted visually in a natural way. An example RMC is in
Figure 1. This RMC has only one component, A1. It contains two nodes: entry
en and exit ex, and two boxes, b1, and b2, both of which are labeled by the same
component, A1, i.e., Y (b1) = Y (b2) = 1. Each box bi has a call port (en, bi),
and a return port (ex, bi). (In this example, it so happens that the probability
of reaching the state 〈ex, ε〉 from 〈en, ε〉 is 1/2. We will see why this is the case
later.)

en ex
2/3

1/3

b1: A1 b2: A11 1

A1

Fig. 1. An example RMC, A

2.2 Probabilistic Pushdown Automata

A probabilistic pushdown automaton (pPDA) consists of
– a finite set of control states,
– a finite stack alphabet, and
– a finite set of rules of the form pX

x−→ qα, where p and q are control states, X
is a stack symbol, α is a word of stack symbols, and x is a positive probability.
The left hand side pX of a rule is the rule’s head, or just a head, for short.
A pPDA defines a Markov chain M : the states of M are pairs 〈p, S〉, where

p is a control state and S is a sequence of stack symbols. M has a transition
〈p,Xβ〉 x−→〈q, αβ〉 for every rule pX x−→ qα and sequence of stack symbols β.

20 J. Esparza and K. Etessami

We can easily transform a RMC into a pPDA. It suffices to take the set of
vertices as control states, boxes as stack symbols, and the following set of rules:
– a rule ub x−→u′ for every transition u x−→u′ and every box b,
– a rule (en, b)b′ 1−→ en bb′ for every call port (b, en) and every box b′, and
– a rule ex b 1−→(ex, b) for every exit node ex and every box b.

In this paper we assume that pPDA are in the following normal form:
– for every rule pX x−→ qα, α has length at most 2, and
– for every p and every X at least one rule has pX as left hand side.

Note that the pPDAs obtained from RMCs by the translation above are in
normal form. Normal form pPDAs can also be transformed to RMCs of the same
size, by mimicking a translation of PDAs to RSMs given in [AEY01]. Thus RMCs
have a tight correspondence to normal form pPDAs.1 Every pPDA can also be
put in normal form in linear time while preserving all properties of interest.

3 Reachability

Given two states s0, sf of a probabilistic sequential program, let [s0, sf] denote
the probability of eventually reaching sf starting from s0. We wish to answer
the following questions:
(1) The qualitative reachability problem: Is [s0, sf] = 1?
(2) The quantitative reachability problem: Given ρ ∈ (0, 1], is [s0, sf] ≥ ρ?

We may also wish to compute or approximate the probability [s0, sf].

3.1 Flat Programs

In the case of flat-programs, s0 and sf are states of a finite Markov chain M .
The answers to (1) and (2) are well-known, but we quickly recall them in order
to compare them with the answers in the procedural case.

In a finite Markov chain [s0, sf] = 1 holds if and only if either (a) there is a
single Bottom Strongly Connected Component (BSCC) of M that is reachable
from s0 and sf belongs to that component, or (b) sf belongs to every path
from s0 to any BSCC, i.e., removing sf makes all BSCC’s unreachable from s0.
These properties can be checked in linear time using standard graph algorithms.
Observe that whether [s0, sf] = 1 or not depends only on the topology of the
Markov chain, and not on the probabilities labelling the transitions.

Let us consider now the quantitative problem. Assume that the transitions
leaving s0 are s0

p1−−→ s1, . . . , s0
pk−−→ sk. We have the following equation:

[s0, sf] = p1 · [s1, sf] + . . .+ pk[sk, sf]

If we write down the same equation for every pair s, s′, and look at the
terms [s, s′] as unknowns, we obtain a linear system of equations x = L(x),

1 There is a minor loss of information of the structure of the RMC when going from
an RMC to a pPDA (see [AEY01]).

Verifying Probabilistic Procedural Programs 21

in m unknowns x = (x1, . . . , xm), where each variable xi corresponds to some
unknown probability [s, s′]. It can be show that the probabilities we wish to
compute are given by the least non-negative solution for this system, by which
we mean a vector q = (q1, . . . , qm) ∈ R

m
≥0, such that q = L(q), and such that

if v ∈ R
m
≥0 is another solution then qi ≤ vi for all i, 1 ≤ i ≤ m. We will see a

generalization of this when we study RMCs and pPDAs.
There are a number of ways to compute this least solution. Since the system

is linear, the least solution is rational, and one could use, e.g., linear program-
ming methods to compute it. More efficiently, it turns out the system can be
transformed into another one such that the least solution of the old system is the
unique solution of the new system. The new system can then be solved using,
e.g., Gaussian elimination, or its solution can be approximated efficiently using
iterative numerical procedures like Jacobi or Gauss-Seidel, etc.

3.2 Procedural Programs

When we try to generalize the answers for probabilistic flat programs to the
procedural case, we quickly encounter a number of obstacles. To begin with, the
answer to the qualitative problem is no longer independent of the values of the
probabilities, as shown by the following example. Consider the pPDA given by
the rules.

pX x−→ pXX

pX 1−x−−−→ pε

(We could also take the RMC A depicted in Figure 1, with the probabilities 2/3
and 1/3 replaced by x and 1−x, respectively.) The infinite Markov chain defined
by this pPDA corresponds to a ‘truncated’ Bernoulli walk, depicted in Figure
2, and a standard result states that [pX, pε] = 1 if and only if x ≤ 1/2. So the
answer to the qualitative problem “is [pX, pε] = 1 ?” depends not only on the
topology of the RMC, but also on the value of x.

. . .
x x x

1 − x 1 − x 1 − x

〈p, ε〉 〈p,XX〉〈p,X〉

Fig. 2. The Markov chain of a pPDA

For computing these probabilities we can not simply proceed as in the finite
case to write down one linear equation for each probability [s, s′], for every pair
s, s′, because the Markov chain is in general infinite and this would lead us to
an infinite system of linear equations in infinitely many variables.

For the moment, let us consider a simpler problem: given a vertex u and an
exit node ex of the same component Ai, what is the probability of starting at
the global state 〈u, ε〉, eventually reaching the state 〈ex, ε〉? Let us denote this

22 J. Esparza and K. Etessami

probability by [u, ex]. Although we do not expand on it in this survey, com-
puting(or approximating) these probabilities is sufficient to allow us to compute
(approximate) reachability probabilities between other pairs of states s, s′.

Consider three cases of what [u, ex] might be, based on the vertex u:

– u = ex. Then [u, ex] = 1.
– If u is a node or a return port, and the transitions leaving u are
u

p1−−→ v1, . . . , v
pn−−→ vn. Then, as in the case of a finite Markov chain,

[u, ex] = p1 · [v1, ex] + . . .+ pn · [vn, ex]

– u = (b, en) is a call port of a box b corresponding to a component Aj . Then,
in order to reach 〈ex, ε〉 from 〈(b, en), ε〉, we must follow a path of the form

〈(en, b), ε〉 1−→〈en, b〉 · · · 〈ex′, b〉 1−→〈(ex′, b), ε〉
If the exit nodes of the component Aj are ex′

1, . . . , ex
′
n, then, since the

probability of eventually reaching 〈ex′, b〉 from 〈en, b〉 is equal to the proba-
bility of eventually reaching 〈ex′, ε〉 from 〈en, ε〉, we get

[(en, b), ex] = [en, ex′
1] · [(ex′

1, b), ex] + . . .+ [en, ex′
n] · [(ex′

n, b), ex]

We thus have a finite system of non-linear multi-variate polynomial equations
for the unknowns [u, ex], ranging over every pair u, ex, where u is a vertex of the
RMC and ex is an exit node of the same component. Lets associate each unknown
probability [u, ex] with a corresponding variable x[u,ex]. For convenience we index
these variables x1, . . . , xm, obtaining a vector x, and we have m multi-variate
polynomial equations, xj = Pj(x), which we write together as

x = P (x) (1)

Consider the partial order on m-vectors given by x � y if and only if xi ≤ yi

for all i, 1 ≤ i ≤ m. The mapping P : R
m �→ R

m defines a monotone operator
on a compact and downward-closed (with respect to �) subspace D of [0, 1]m.
Let P r(x) denote P (x) if r = 1, and P (P r−1(x)), for r > 1. It is clear, by the
non-negativity of coefficients of P (·), that P r(0) � P r+1(0), for r ≥ 1.

Theorem 1. (see [EY04] and see [EKM04] for an equivalent result for pPDAs)
x = P (x) has a (unique) Least Fixed Point (LFP) solution q ∈ [0, 1]m, given by
q = limr→∞ P r(0). I.e., q = P (q), and q � v for any solution v. Moreover the
vector q gives precisely the probabilities [u, ex], i.e.: [u, ex] = q[u,ex].

Now, how do we compute this LFP? Well, we can’t compute it exactly, and
there are several other nasty features to the systems x = P (x) that distinguish
them from the linear systems for finite Markov chains:

Theorem 2. ([EY04])
1. Irrational probabilities: There is an RMC for which the probability [en,ex] is

irrational, and in fact not “solvable by radicals”.

Verifying Probabilistic Procedural Programs 23

2. Slow convergence: There is an RMC for which |[en, ex] − P 2i

[en,ex](0)| ≥ 1
2i .

In other words, we need 2i applications of the operator P to get within i bits
of precision of the LFP.

3. Very small & large probabilities: There is a family of hierarchical (i.e., no
recursion) RMCs, A(n), parameterized by their size cn, for which [en, ex] =

1
22n in A(n). And a family, A′(n), of size cn, for which [en, ex] = 1 − 1

22n .

We can still ask whether a probability is exactly 1, or at least ρ for some
rational number ρ, and we can still try to efficiently approximate the probabilities
to within a desired number of bits of precision.

RMCs and the Existential Theory of Reals. Given a system x = P (x) as-
sociated with an RMC, and a vector q ∈ [0, 1]n, consider the following existential
first-order sentence in the theory of reals:

ϕ ≡ ∃x1, . . . , xm

m∧

i=1

Pi(x1, . . . , xm) = xi ∧
m∧

i=1

0 ≤ xi ∧
m∧

i=1

xi ≤ qi

ϕ holds true precisely when there is some solution 0 � z � q, with z = P (z).
Thus, if we had a way to decide the truth of this sentence, we would be
able to tell whether [u, ex] ≤ qi, for some rational qi, by using the vector
q = (1, 1, . . . , qi, 1, . . . , 1). Now consider the sentence ψ, obtained from ϕ by
replacing

∧m
i=1 xi ≤ qi with

∨m
i=1 xi < qi. ψ is false precisely when there is no

solution z � 0, such that q
� z. Thus, to decide whether q is the LFP, we need to
check the truth of ϕ and the falsehood of ψ. Furthermore, by a straightforward
“binary search”, we could use j “queries” to the existential theory of reals to
obtain a probability [u, ex] to within j bits of precision (see [EY04]).

Happily, beginning with Tarski, the decidability and complexity of the first-
order theory of real and its fragments has been deeply investigated. The current
state of the art (see e.g. [Can88, Ren92, BPR96]) provides a PSPACE algorithm
that decides whether an existential sentence with rational coefficients is true for
the real numbers. The algorithm’s running time is exponential only in the number
of variables of the sentence. Using these results one can obtain the following:

Theorem 3. ([EY04]) Given RMC A and rational value ρ, there is a PSPACE
algorithm to decide whether [u, ex] ≤ ρ, with running time O(|A|O(1) · 2O(m))
where m is the number of variables in the system x = P (x) for A. Moreover
[u, ex] can be approximated to within j bits of precision within PSPACE and
with running time at most j times the above.

Single-Exit RMCs and Stochastic Context-Free Grammars. Stochastic
Context-Free Grammars (SCFGs) have rules N x→ α, labeled with a probability
x, where N is a non-terminal, and α a string of terminals and nonterminals. The
probabilities of the rules associated with each non-terminal N must sum to 1.

It can be shown that SCFGs are “equivalent” in a precise sense to single-
exit RMCs where each component can have only a single exit (see [EY04]). In
particular, the probability [u, ex] of the RMC is the same as the probability

24 J. Esparza and K. Etessami

of termination starting at the corresponding non-terminal N[u,ex] in the corre-
sponding SCFG. They are also equivalent to pPDAs with a single control state,
also known as pBPAs: just write pN x→ pα instead of N x→ α.

SCFGs have been studied extensively since the 1970s in connection with
Natural Language Processing (see, e.g., [MS99]), and their theory is intimately
connected with that of multi-type Branching Processes. Based on results on
branching processes (see, e.g., [Har63]), one can “characterize” questions of
almost sure termination for SCFGs based on eigenvalues of certain matrices
associated with the SCFG (see, e.g., [BT73]). These characterizations unfor-
tunately often omit special uncovered cases, or, worse, contain errors (e.g., the
often cited [BT73] contains errors). In [EY04], a detailed treatment of these char-
acterizations is given together with their algorithmic implications, establishing
the following:

Theorem 4. ([EY04]) There is polynomial-time algorithm that for a 1-exit
RMC A, and every vertex u and exit ex, determines which of the following
three cases hold: (1) [u, ex] = 0, (2) [u, ex] = 1, or (3) 0 < [u, ex] < 1.

RMCs and Newton’s Method. Although we can not compute the probabil-
ities associated with an RMC exactly, because as we saw they can be irrational,
we can nevertheless aim to efficiently approximate the probabilities numerically
within a desired number of bits of precision. Given that the LFP for equation
system x = P (x) is given by limr→∞ P r(0), and P r(0) grows monotonically with
r, one way to try to do this would be to calculate P r(0) for a “large enough” r.
Unfortunately, as we saw in Theorem 2, there are RMCs for which this approach
fails terribly, requiring 2i iterations to obtain i bits of precision.

A powerful numerical method for obtaining roots of equations is Newton’s
method. In its n-dimensional version (see, e.g., [SB93]), given a suitably differ-
entiable map F : R

n �→ R
n we wish to find a solution to the system F (x) = 0.

Starting at some x0 ∈ R
n, the method works by iterating

xk+1 := xk − (F ′(xk))−1F (xk)

where F ′(x) is the Jacobian matrix of partial derivatives given by

F ′(x) =

⎡

⎢⎣

∂f1
∂x1

. . . ∂f1
∂xn

...
...
...

∂fn

∂x1
. . . ∂fn

∂xn

⎤

⎥⎦

The method is not even defined if for some iterate xk the matrix F ′(xk)
is not invertible, and when defined it may not converge. In practice, however,
if it converges then it typically converges very fast. Remarkably, in [EY04] it
is shown that for a decomposed version of the monotone non-linear systems
x = P (x) arising from an RMC, Newton’s method started at x0 = 0 not only
converges to the LFP, but does so monotonically:

Verifying Probabilistic Procedural Programs 25

Theorem 5. ([EY04]) Starting at x0 = 0, Newton’s method converges mono-
tonically to the LFP, q, of the system x = P (x) (appropriately decomposed) of
an RMC. In other words, limk→∞ xk = q, and xk � xk+1, for all k ≥ 0.

Moreover, from the proof it follows that, for all k ≥ 0, xk ≥ P k(0), and that
Newton’s method corresponds to a clever “acceleration” of the standard iteration
P k(·) which will typically be much faster than iterating P k(·). In particular, on
the examples known to require exponentially many iterations of P (·) to achieve
a given number of bits of precision, Newton’s method converging in only a linear
number of iterations (see [EY04] for an expanded explanation of these remarks).

Lower Bounds for Reachability. We have seen that basic questions about
reachability probabilities can be answered in PSPACE by using the existential
theory of reals, and that for the special case of single-exit RMCs (SCFGs),
the qualitative reachability problem, whether [u, ex] = 1, can be answered in
polynomial time. Can we provide any lower bounds for the remaining questions?
Hardness for standard complexity classes, such as NP or PSPACE, remains open.
However, we have the following strong evidence of “difficulty”. The square-root
sum problem is the following decision problem: given (d1, . . . , dn) ∈ N

n and
k ∈ N, decide whether

∑n
i=1

√
di ≤ k. It is known to be solvable in PSPACE, but

it has been a major open problem in the complexity of numerical computation
since the 1970’s (see, e.g., [GGJ76, Tiw92]) whether it is solvable even in NP,
with important consequences in subjects like computational geometry.

Theorem 6. ([EY04]) The square-root sum problem is polynomial-time re-
ducible to the problem of determining, given a single-exit RMC, a vertex u and
exit ex, and a rational value r, whether [u, ex] ≥ r.

A simple modification of this reduction shows that the square-root sum prob-
lem is polynomial-time reducible to problem of determining, given a 2-exit RMC,
a vertex u and exit ex, whether [u, ex] = 1.

4 Repeated Reachability

Let a run of a Markov chain be either an infinite path or a finite path ending at
a halting state without successors. Given an initial state s0 and a set of states
S, we are interested in the probability that the runs starting at s0 repeatedly
visit states of S, i.e., that they visit S infinitely often. (For a formal definition
of this probability and a proof that it exists, see for instance [Var85, EKM04].)
If the case of flat-programs, both the qualitative and the quantitative repeated
reachability problems can be solved by slight modifications of the algorithms
for the reachability problems, with the same complexity. Let us now consider
procedural programs. For convenience, we model the program as a pushdown
automaton with an initial configuration c0 = 〈p0, X0〉. To simplify the presenta-
tion we assume that the set of configurations that should be repeatedly visited,
denoted by Cr, is the set of configurations with head prXr for some control state
pr and some stack symbol Xr (see [EKM04] for a more general case).

26 J. Esparza and K. Etessami

We define a new finite Markov chain MH such that the repeated reachabil-
ity problem for c0 and Cr can be reduced to a repeated reachability problem
for MH , which we already know how to solve. The key notion we need are the
minima of an infinite run, defined inductively as follows. The first minimum
of an infinite run c0

x1−−→ c1
x2−−→ . . ., where ci = 〈pi, αi〉, is the smallest index j

such that |αk| ≥ |αj | for every k ≥ j. For every i > 1, if j is the i-th mini-
mum of the run, then the (i+ 1)-th minimum is the first minimum of the suffix
cj+1

xj+2−−−−→ cj+2 In words, the first minimum is the index of the first con-
figuration having minimal stack length and the (i+ 1)-th minimum is obtained
by chopping off the prefix of the run up to the i-minimum, and taking the first
minimum of the rest. Now, what is the probability that the (i+ 1)-th minimum
has head qY , if the i-th minimum has head pX? It is proved in [EKM04] that
this probability depends only on pX and qY . Intuitively, if 〈p,Xα〉 is the config-
uration at the i-th minimum, all its successor configurations in the run have α at
the bottom of the stack. So α plays no rôle in determining the head of the next
minimum, because from 〈p,Xα〉 onward all stack operations “happen above α”.

This result allows us to define a Markov chain whose states are the heads
of the pPDA plus two special states Init and Ter , and whose transitions are as
follows, where PMin(pX, qY) denotes the probability that a minimum has head
pY assuming that the previous minimum has head pX:

– Init x−→Ter , where x is the probability that a run starting at c0 terminates,
i.e., reaches a configuration of the form 〈p, ε〉;

– Ter 1−→Ter ;
– Init x−→ pX for every head pX such that x = PMin(p0X0, pX) > 0; and
– pX

x−→ qY for every two heads pX and qY such that x = PMin(pX, qY) > 0.

How can we decide if PMin(pX, qY) > 0? Using the results of the previous
section, we can compute for every p, q,X the probability [pXq] of reaching 〈q, ε〉
from 〈p,X〉 (these are essentially the probabilities [u, ex] of the previous section),
and the probability [pX]↑ of never emptying the stack from 〈p,X〉 (i.e., of never
reaching a configuration of the form 〈q, ε〉 for any control state q). Consider now
a run starting at 〈p,X〉. In order to reach the next minimum at 〈q, Y β〉 for some
β, the pPDA has the following possibilities:

– Apply the rule pX x−→ qY , if it exists, and then, from 〈q, Y 〉, never empty
the stack.

– Apply a rule pX x−→ qY Z for some Z, and then keep Z forever at the bottom
of the stack.

– Apply a rule pX x−→ rZY for some r, Z, from 〈r, ZY 〉 reach the configuration
〈q, Y 〉, and then never empty the stack.

It is easy to compute the probability of each case. Adding them we obtain:

PMin(pX, qY) =
∑

pX
x−→ qY

x · [qY]↑ +
∑

pX
x−→ qY Z

x · [qY]↑ +
∑

pX
x−→ rZY

x · [rZq] · [qY]↑

Verifying Probabilistic Procedural Programs 27

Since [pX]↑ +
∑

q∈Q[pXq] = 1, where Q is the set of control states of the
pPDA, deciding if PMin(pX, qY) > 0 reduces to deciding if [qY]↑> 0 for each
head qY . By the results of the previous section, this can be done in PSPACE,
and in PTIME for pBPAs or 1-exit RMCs.

Using this finite chain we can decide if a run repeatedly visits configurations
of Cr at minima with probability 1 (at least ρ). But, what happens if the con-
figurations of Cr occur between minima? To solve this problem, we split each
state pX into (pX, 0) and (pX, 1), and assign transition probabilities as follows.
For a transition (pX, f) x1−−→(qY, 1), where f ∈ {0, 1}, we set x1 to the prob-
ability that a run starting at 〈p,X〉 hits the second minimum (〈p,X〉 itself is
the first) at a configuration with head qY and visits some configuration of Cr

in-between. For a transition (pX, f) x0−−→(qY, 0) we set x0 = PMin(pX, qY) − x1.
The Markov chain MH mentioned at the beginning of the section is the result
of performing this modification. A run of the pPDA repeatedly visits configura-
tions of Cr if and only if it corresponds to a run of MH that repeatedly visits
states of the form (pX, 1). In order to solve the qualitative repeated reachability
problem, we construct MH and then apply the algorithm for the finite state
case. Notice, however, that we do not need the exact values of the transition
probabilities of MH , we only have to decide if they are positive. This yields
a PSPACE-algorithm for the qualitative repeated reachability problem, and a
PTIME-algorithm for pBPA or 1-exit RMC, the same status as for reachability.
A lower bound for the general case is open, but the remarks in section 3 on lower
bounds for reachability apply also to repeated reachability.

For the quantitative repeated reachability problem we need to solve a linear
system of equations whose coefficients are the probabilities of the transitions of
MH . Complexity questions have not been studied in detail yet.

5 Model Checking PCTL

The syntax of PCTL, the probabilistic extension of CTL proposed in [HJ94] is
given by:

ϕ ::= tt | A | ¬ϕ | ϕ1 ∧ ϕ2 | X ≥ρϕ | ϕ1 U ≥ρϕ2

where A is an atomic proposition, ρ is a probability, and X and U are the
next and until operators of LTL. Formulas with operators ≤,=, <,> can be
‘simulated’ by boolean combinations. A state of a Markov chain satisfies X ≥ρϕ
or ϕ1 U ≥ρϕ2 if the probability that a run starting at it satisfies Xϕ or ϕ1 U ϕ2,
respectively, is at least ρ. The qualitative fragment of PCTL is obtained by
requiring ρ ∈ {0, 1}.

Given a Markov chain M and a PCTL formula ϕ, let [[ϕ]] denote the set of
states of M satisfying ϕ. As in the case of CTL, the key to a model-checking
algorithm for PCTL consists of, given [[ϕ1]], [[ϕ2]], computing [[ϕ1 U ≥ρϕ2]]. In
the case of flat-programs, [[φ]] is computed bottom-up, i.e., computing first [[φ′]]
for all subformulas φ′ of φ. This can be done using well-known graph algorithms
if ρ ∈ {0, 1}, and solving linear systems of equations otherwise [HJ94].

28 J. Esparza and K. Etessami

In the procedural case, we face an obstacle: Since the Markov chain is infinite,
the set [[ϕ]] may be infinite, and cannot be computed by explicit enumeration
of its elements. Let us see the implications of this.

A valuation is regular if [[A]] is a regular set for every atomic proposition A,
where ‘regular’ is used in the language-theoretic sense: A configuration 〈p, α〉 is
seen as the word pα. It is shown in [EKM04] that if a valuation is effectively
regular, then [[ϕ]] is effectively regular for every PCTL formula ϕ. This provides
a solution to the infinity problem: Compute a finite automaton recognizing [[ϕ]].

We sketch the proof of this regularity result for a particular case. We
show that [[ϕ1 U ≥1ϕ2]] is regular if [[ϕ1]] is the set of all configurations, and
[[ϕ2]] = {〈q, ε〉} for some given control state q. Let a head pX be almost surely
terminating (a.s.t.) if a run starting at 〈p,X〉 empties the stack with probability
1. Given an a.s.t. pX, let Emp(pX) be the set of states r such that the prob-
ability of reaching 〈r, ε〉 from 〈p,X〉 is non-zero. Then [[ϕ1 U ≥1ϕ2]] is the least
set C containing 〈q, ε〉 and satisfying: If pX is a.s.t. and 〈r, α〉 ∈ C for every
r ∈ Emp(pX), then 〈p,Xα〉 ∈ C. Consider now the automaton having the set of
stack symbols as alphabet, all subsets of control states as states, all singletons
{p} as initial states, the set {q} as final state, and a transition P1

X−−→P2 if and
only if the head pX is a.s.t. for every p ∈ P1 , and P2 =

⋃
p∈P1

Emp(pX). This
automaton accepts α ∈ Γ ∗ from the state p if and only if 〈p, α〉 ∈ C, and so
[[ϕ1 U ≥1ϕ2]] is regular.

The exact complexity of the model checking problem for pPDAs and the
qualitative fragment of PCTL with regular valuations is still open. Using results
of [Wal00] it is easy to show that the problem is EXPTIME-hard, even for pPBAs
or 1-exit RMCs [May04]. We also know that the problem can be solved in triple
exponential time [Kuč04].

If ϕ does not belong to the qualitative fragment, the set [[ϕ]] may not be
regular, even for a regular valuation. Consider the pPDA

pX
1/2−−−→ qX qX

1/2−−−→ qε rX 1−→ rε sX 1−→ sX

pX
1/2−−−→ rX qX

1/2−−−→ sX rY
1/2−−−→ rε sY 1−→ sY

qY 1−→ qε rY
1/2−−−→ qY

and atomic propositions A1, A2 together with the regular valuation in which
[[A1]] is the set of all configurations, and [[A2]] = {〈q, ε〉}. It is easy to see that

{〈p,XnY m〉 | n,m > 0} ∩ [[A1 U =1/2A2]] = {〈p,XnY n〉 | n > 0}

which, since {〈p,XnY m〉 | n,m ≥ 0} is regular and {〈p,XnY n〉 | n ≥ 0} is not,
implies that [[A1 U =1/2A2]] is not regular. In [BKS], the pPDA above is used as
a building block in a reduction from the halting problem for 2-counter machines
to the model checking problem for pPDA’s and PCTL, which shows that the
latter is undecidable.

Verifying Probabilistic Procedural Programs 29

6 Model Checking Büchi Automata Specifications

Let M be a Markov chain modelling a program. We formalize the specification as
a Büchi automaton B. A word accepted by B is seen as a ‘good behaviour’ of the
program. (Recall that B accepts a word a1a2 . . . if it has a run q0

a1−−→ q1
a2−−→ . . .

and an accepting state q that the run visits infinitely often.) The verification
problem is to decide if a run of M is accepted by B (i.e., is ‘a good behaviour’)
with probability 1, or with probability at least ρ for a given ρ ∈ [0, 1].

For flat-programs, the alphabet of B is the set of states of M , which is finite.
For procedural programs, we take as alphabet the set of heads of P. This means
that specifications can refer to the control points and variables of the program,
but not to the stack of activation records (see [BKS] for a generalization).

The verification problem for flat-programs is solved (in two ways) in [Var85,
CY95]. For the procedural case, assume first that B is deterministic, as done in
[EKM04]. We construct the pPDA P × B having pairs (p, b) as states, where p
is a control state of P and b is a state of B, and rules (p, b)X x−→(p′, b′)α, where
pX

x−→ p′α is a rule of P and q
pX−−−→ q′ is a transition of B. We construct the

Markov chain MH having states of the form ((p, b)X, f), where f = 1 denotes
that some configuration 〈(q, b′), α〉 with b′ accepting has been visited since the
last minimum. A run of P is accepted by B with probability 1 (at least ρ) if and
only if a run of MH repeatedly visits states satisfying f = 1 with probability
1 (at least ρ). So the verification problem reduces to the repeated reachability
problem.

The nondeterministic case was left open in [EKM04]. The following solution is
from [BKS]. In a first step, B is transformed into a deterministic Muller automa-
ton B′ with acceptance sets Q1, . . . , Qn. (Recall that B′ accepts a word a1a2 . . . if
it has a run q0

a1−−→ q1
a2−−→ . . . and an acceptance set Qi such that the set of states

visited by the run infinitely often is exactly Qi.) The product P ×B′ is defined as
above. However, we redefine the states of the Markov chain MH so that they not
only reflect whether some accepting state was visited since the last minimum,
but also which states of B′ were visited. More formally, we replace the boolean
f by a set of states of B′, and in a transition ((p1, b1)X1, S1)

x−→((p2, b2)X2, S2)
we set x to the probability of, starting at 〈(p1, b1), X1〉, hitting the next min-
imum at a configuration with head (p2, b2)X2, and visiting exactly the states
of S2 in-between. With this definition of MH , the runs of P are accepted by
B′ with probability 1 if and only if every bottom strongly connected compo-
nent of MH satisfies the following property: if the states of the component are
((p1, b1)X1, S1), . . . ((pn, bn)Xn, Sn), then S1 ∪ . . .∪Sn is an acceptance set of B′.
While this shows that the problem of checking Büchi automata specifications is
decidable, the exact complexity of the problem is open.

Acknowledgments. This survey is based on joint work by the first author
together with Tomáš Brázdil, Antońın Kučera, Richard Mayr and Oldřich
Stražovský [BKS, EKM04], and on joint work by the second author together
with Mihalis Yannakakis [EY04]. We would both like to acknowledge and thank
our collaborators.

30 J. Esparza and K. Etessami

References

[AEY01] R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state ma-
chines. In Proceedings of CAV’01, volume 2102 of LNCS, pages 304–313,
2001.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: Applications to model checking. In Proceedings of CONCUR’97,
volume 1243 of LNCS, pages 135–150, 1997.

[BGR01] M. Benedikt, P. Godefroid, and T. Reps. Model checking of unrestricted
hierarchical state machines. In Proceedings of ICALP’01, volume 2076 of
LNCS, pages 652–666, 2001.

[BJMT01] F. Besson, T. Jensen, D.L. Métayer, and T. Thorn. Model checking security
properties of control flow graphs. Journal of Computer Security, 9:217–250,
2001.

[BKS] T. Brázdil, A. Kučera, and O. Stražovský. Decidability of temporal proper-
ties of probabilistic pushdown automata. Technical report. In preparation.

[BPR96] S. Basu, R. Pollack, and M. F. Roy. On the combinatorial and algebraic
complexity of quantifier elimination. Journal of the ACM, 43(6):1002–1045,
1996.

[BT73] T. L. Booth and R. A. Thompson. Applying probability measures to ab-
stract languages. IEEE Transactions on Computers, 22(5):442–450, 1973.

[Can88] J. Canny. Some algebraic and geometric computations in pspace. In Pro-
ceedings of 20th ACM STOC, pages 460–467, 1988.

[CY95] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic veri-
fication. Journal of the ACM, 42(4):857–907, 1995.

[EHRS00] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms
for model checking pushdown systems. In Proceedings of CAV’00, volume
1855 of LNCS, pages 232–247, 2000.

[EKM04] J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic
pushdown automata. In Proceedings of LICS’04, pages 12–21. IEEE
Computer Society, 2004. Full version: Tech. report FIMU-RS-2004-
03, Masaryk University, Brno, available online at http://www.fmi.uni-
stuttgart.de/szs/publications/info/esparza.EKM04rep.shtml.

[EY04] K. Etessami and M. Yannakakis. Recursive markov chains, stochastic gram-
mars, and monotone systems of non-linear equations. Technical report,
2004. School of Informatics, University of Edinburgh.

[GGJ76] M. R. Garey, R. L. Graham, and D. S. Johnson. Some NP-complete geo-
metric problems. In Proceedings of 8th ACM STOC, pages 10–22, 1976.

[Har63] T. E. Harris. The Theory of Branching Processes. Springer-Verlag, 1963.
[HJ94] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.

Formal Aspects of Computing, 6:512–535, 1994.
[Kuč04] A. Kučera. Private communication, 2004.
[Kwi03] M. Kwiatkowska. Model checking for probability and time: From theory

to practice. In Proceedings of LICS’03, pages 351–360. IEEE Computer
Society Press, 2003.

[May04] R. Mayr. Private communication, 2004.
[MS99] C. Manning and H. Schütze. Foundations of Statistical Natural Language

Processing. MIT Press, 1999.
[Ren92] J. Renegar. On the computational complexity and geometry of the first-

order theory of the reals. Parts I,II, III. Journal of Symbolic Computation,
pages 255–352, 1992.

Verifying Probabilistic Procedural Programs 31

[SB93] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-
Verlag, 1993.

[Tiw92] P. Tiwari. A problem that is easier to solve on the unit-cost algebraic RAM.
Journal of Complexity, pages 393–397, 1992.

[Var85] M. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In Proceedings of FOCS’85, pages 327–338. IEEE Computer
Society Press, 1985.

[Wal00] I. Walukiewicz. Model checking CTL properties of pushdown systems. In
Proceedings of FST&TCS’00, volume 1974 of Lecture Notes in Computer
Science, pages 127–138. Springer, 2000.

	Introduction
	Models of Probabilistic Programs
	Recursive Markov Chains
	Probabilistic Pushdown Automata

	Reachability
	Flat Programs
	Procedural Programs

	Repeated Reachability
	Model Checking PCTL
	Model Checking B¨uchi Automata Specifications

