A Taxonomy of Fixed point Computation Problems for Algebraically-Defined Functions and their Computational Complexity

Kousha Etessami

LFCS, School of Informatics University of Edinburgh

Based on joint works with:

Mihalis Yannakakis&Alistair StewartColumbia Uni.U. of Edinburgh

Workshop on "Solving Polynomial Equations" Simons Institute, Berkeley October 2014 Algorithms for Branching Markov Decision Processes and probabilistic min/max polynomial Bellman equations

Kousha Etessami

University of Edinburgh

Based on joint works with:

Alistair Stewart&Mihalis YannakakisU. of EdinburghColumbia Uni.

Workshop on "Solving Polynomial Equations" Simons Institute, Berkeley October 2014

Brouwer's fixed point theorem

Every continuous function $F : D \to D$ from a compact convex set $D \subseteq \mathbb{R}^m$ to itself has a fixed point, i.e., $\exists x^* \in D$ such that $F(x^*) = x^*$.

Brouwer's fixed point theorem

Every continuous function $F : D \to D$ from a compact convex set $D \subseteq \mathbb{R}^m$ to itself has a fixed point, i.e., $\exists x^* \in D$ such that $F(x^*) = x^*$.

Computation Task: "Given" F(x), compute/approximate a fixed point.

Brouwer's fixed point theorem

Every continuous function $F : D \to D$ from a compact convex set $D \subseteq \mathbb{R}^m$ to itself has a fixed point, i.e., $\exists x^* \in D$ such that $F(x^*) = x^*$.

Computation Task: "Given" F(x), compute/approximate a fixed point.

Two different notions of ϵ -approximation of a fixed point:

- (Almost) Given $F : D \to D$, compute $x' \in D \cap \mathbb{Q}^m$ such that: $\|F(x') - x'\|_{\infty} < \epsilon$
- (Near) Given $F : D \to D$, compute $x' \in D \cap \mathbb{Q}^m$ s.t. there exists $x^* \in D$ where $F(x^*) = x^*$ and:

$$\|x^* - x'\|_{\infty} < \epsilon$$

These two notions can have rather different complexity characteristics. In this talk, we are interested in Near.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日

FIXP ($FIXP_a$) is a class of real-valued (respectively, discrete) total search problems:

FIXP (FIXP_a)

Input: algebraic circuit, a.k.a., straight-line program, using gates
 { + , * , max } and rational constants, having *n* input variables
 x = (x₁,...,x_n), and *n* output gates, such that the circuit represents
 a continuous function *F* : [0,1]ⁿ → [0,1]ⁿ.

(We are also given an error parameter $\epsilon > 0$ as input for FIXP_a.)

• **Output:** Compute a (ϵ -near approximate) fixed point of *F*.

Close these search problems under suitable (P-time) reductions.

The resulting class is called FIXP (respectively, $FIXP_a$).

(near approximation of) Nash Equilibrium is FIXP_(a)-complete

Theorem ([E.-Yannakakis'07])

Computing a (ϵ -near approximation of) a Nash Equilibrium for a game Γ with 3 or more players, given Γ (and given $\epsilon > 0$), is FIXP-complete (respectively, FIXP_a-complete).

PPAD (**Papadimitriou (1992)**): given a succinctly represented directed graph with in-degree ≤ 1 & out-degree ≤ 1 , and given a source node (indegree = 0), find some other source or sink node. (Closing this search problem under P-time reductions yields PPAD.)

Let linear-FIXP denote the subclass of FIXP where the algebraic circuits are restricted to gates $\{+, \max\}$ and multiplication by rational constants.

Theorem ([E.-Yannakakis'07])

The following are all P-time equivalent:

- PPAD
- Iinear-FIXP
- **③** exact fixed point problem for "polynomial piecewise-linear functions".
- (cf. [Scarf'67]) ϵ -almost-fixed point computation for "polynomially computable" and "polynomially continuous" functions, $F_I(x)$, given instance I, and $\epsilon > 0$.
- Mehta, 2014]: 2-variable-linear-FIXP

By Scarf's algorithm, computing a ϵ -NE is in PPAD.

By the Lemke-Howson algorithm, computing a exact NE for 2-player games is in PPAD.

Theorem

1 [Daskalakis-Goldberg-Papadimitriou'06], [Chen-Deng'06]: Computing a ϵ -NE for a 3 player game is PPAD-complete.

2 [Chen-Deng'06]:

Computing an <u>exact</u> (rational) NE for a <u>2 player</u> game is PPAD-complete.

Note: Scarf's algorithm does <u>not</u> in general yield a point ϵ -near a fixed point.

[Allender, Bürgisser, Kjeldgaard-Pedersen, Miltersen, 2006]

PosSLP: Given an arithmetic circuit (Straight Line Program) with gates $\{+, *, -\}$, and with input 1, decide whether the output value is positive.

PosSLP captures the power of P-time in the unit-cost arithmetic RAM model of computation.

Theorem [ABKM'06]

PosSLP is decidable in the Counting Hierarchy: $P^{PP^{PP}^{PP}}$

(Nothing better is known.)

Theorem ([E.-Yannakakis'07])

Any non-trivial near approximation of an NE is PosSLP-hard.

More precisely: for every fixed $\epsilon > 0$,

PosSLP *is P*-time reducible to the following problem:

Given a 3-player normal form game, Γ , with the promise that:

1 Γ has a unique NE, x^* , which is fully mixed, and

2 In x^* , the probability that player 1 plays pure strategy α is either:

(a.) <
$$\epsilon$$
 , or (b.) $\geq (1-\epsilon)$

Decide which of (a.) or (b.) is the case.

What makes a fixed point problem "hard" or "easy"??

Note: These problems are in general not NP-hard, because existence of a solution (fixed point) is guaranteed.

What makes a fixed point problem "hard" or "easy"??

Note: These problems are in general not NP-hard, because existence of a solution (fixed point) is guaranteed.

 PPAD-hardness captures a combinatorial difficulty for computing, or even almost-approximating, a fixed point.

What makes a fixed point problem "hard" or "easy"??

Note: These problems are in general not NP-hard, because existence of a solution (fixed point) is guaranteed.

- PPAD-hardness captures a combinatorial difficulty for computing, or even almost-approximating, a fixed point.
- But there can also be an additional numerical, difficulty for near-approximating a fixed point, which is not captured by PPAD-hardness.

It is captured by PosSLP-hardness.

These two kinds of difficulties are somewhat "orthogonal".

FIXP_a-complete problems have both of these difficulties.

 $\nabla \circ \circ$

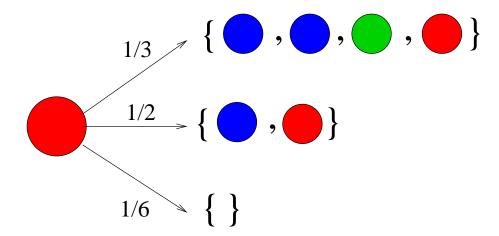
Rich landscape within FIXP:

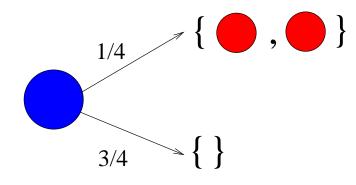
Numerical Difficulty

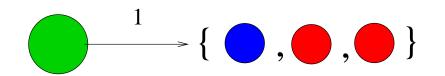
		1	
* PosSLP-hard	approx–Recursive Markov chains exact–Branching processes exact–Branching–MDPs	exact–Branch–simple–stoc–game approx–Unique–nonlinear Brouwer fixed point ??approx–Unique–3–player–Nash?? exact–concurrent–stocastic–game exact–Shapley–stocastic–game	approx-3-player-Nash approx-nonlinArrow-Debreu market equilibrium approx-nonlinear Brouwer fixed point FIXP-complete a
*	PIT / ACIT		
No	exact–linear–Arrow–Debreu market equilibrium approx–Branching–MDPs approx–Branching–process exact–MDPs	approx–Branch–simple–stoc–game approx–Shapley–stochastic–game exact–Unique–piecewise–linear Brouwer fixed point ??exact–Unique–2–player–Nash?? exact–Condon–simple–stoc–game exact–mean–payoff–game parity–game	exact-2-player-Nash exact-Arrow-Debreu market equilibrium with SPLC utilities exact-piecewise-linear Brouwer fixed point "Almost"- nonlinear-Brouwer fixed point "Almost"-(epsilon)-Nash for >= 3 players
	No	P.Ghard	PPAD-hard
Combinatorial Difficulty			

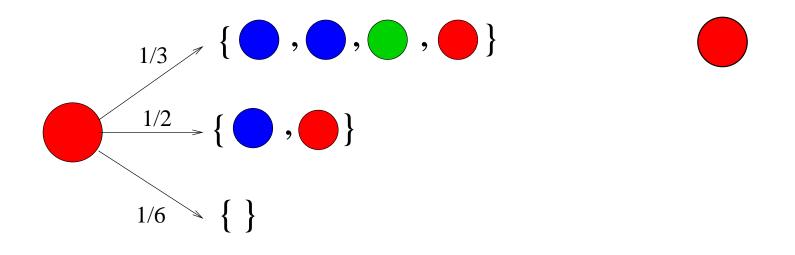
For the rest of this talk, our focus will be on fixed point problems for monotone algebraically-defined functions.

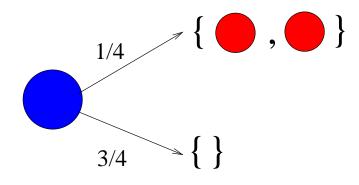
(These arise in many applications, as we shall see.)

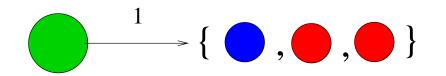


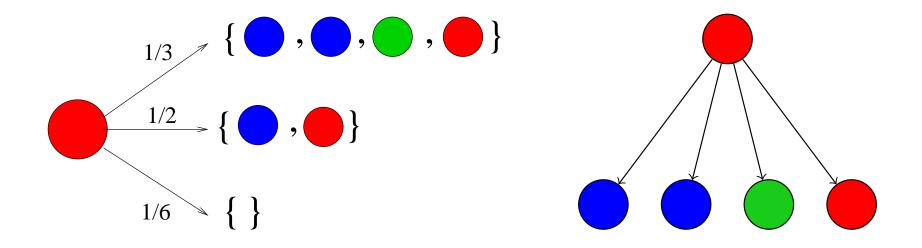


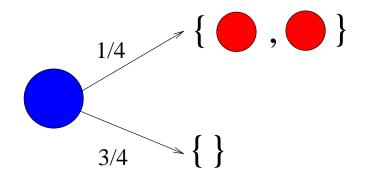


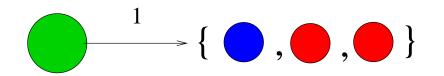


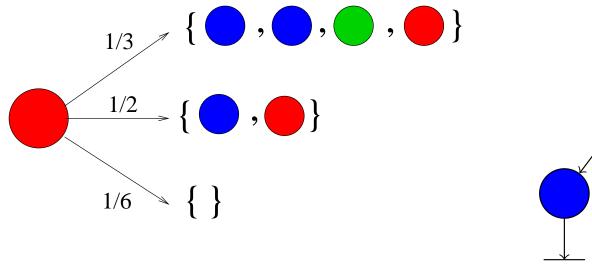


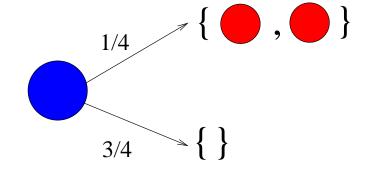


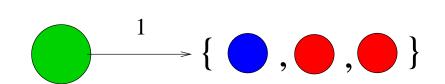


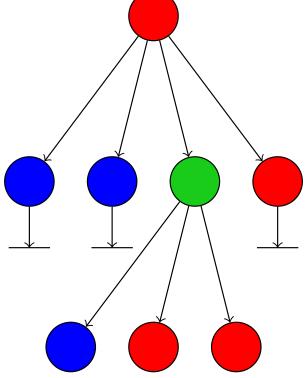




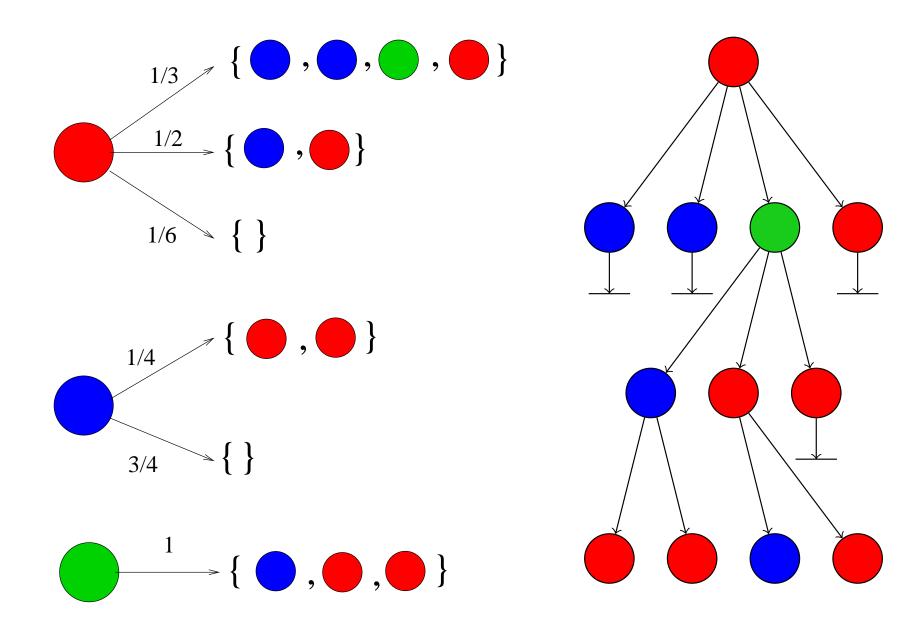


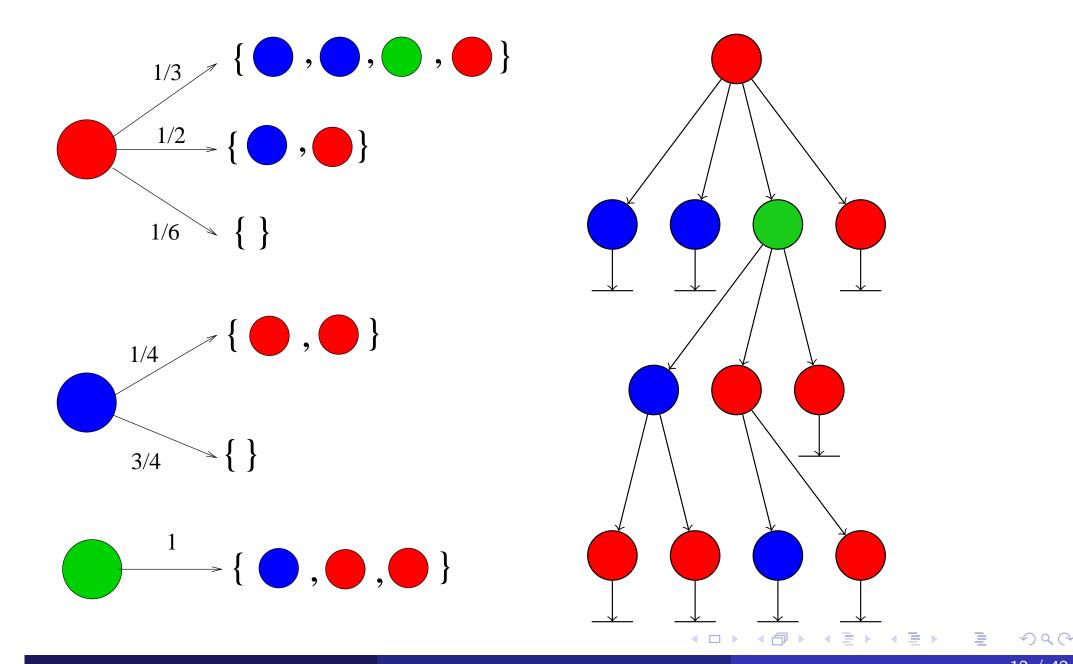




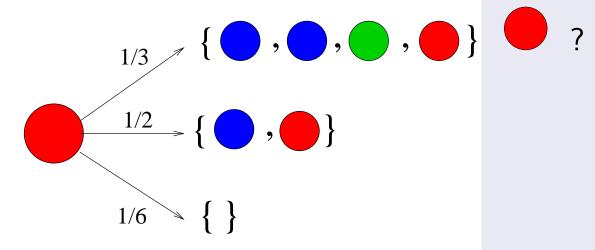


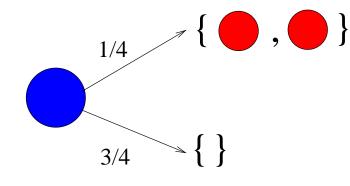
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

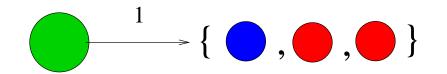




Question: What is the probability of eventual extinction, starting with one

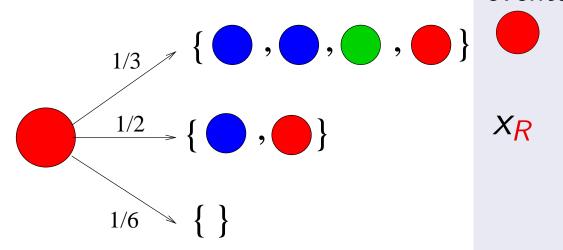


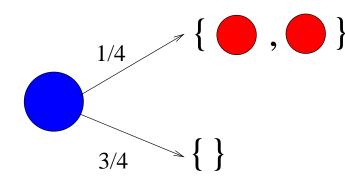


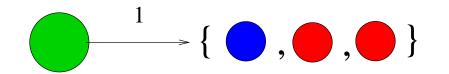


?

Question: What is the probability of eventual extinction, starting with one



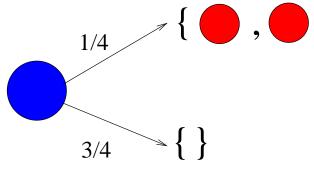


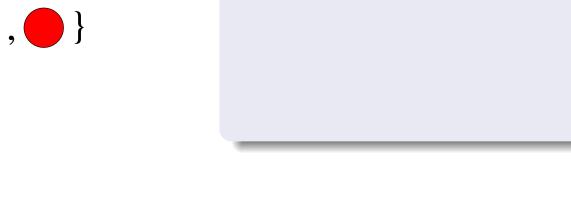


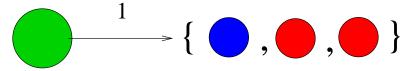
Question: What is the probability of eventual extinction, starting with one

 $x_{R} = \frac{1}{3} x_{B}^{2} x_{G} x_{R} + \frac{1}{2} x_{B} x_{R} + \frac{1}{6}$

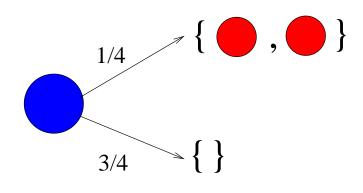
$$\begin{array}{c}
1/3 \\
1/2 \\
1/2 \\
1/6 \\
\end{array} \\
\end{array} \\
\begin{array}{c}
1/2 \\
1/6 \\
\end{array} \\
\end{array} \\
\begin{array}{c}
1/2 \\
1/6 \\
\end{array} \\
\end{array} \\
\begin{array}{c}
1/2 \\
1/6 \\
1/2 \\
1/6 \\
\end{array} \\
\begin{array}{c}
1/2 \\
1/6 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2$$



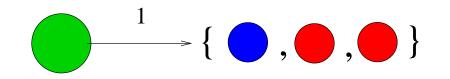




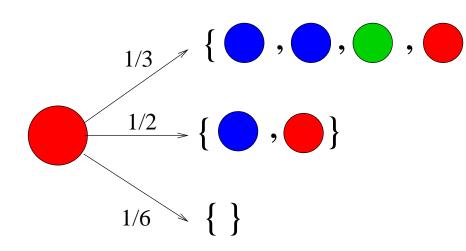
Question: What is the probability of eventual extinction, starting with one



 $x_{R} = \frac{1}{3} x_{B}^{2} x_{G} x_{R} + \frac{1}{2} x_{B} x_{R} + \frac{1}{6}$ $x_B = \frac{1}{4}x_R^2 + \frac{3}{4}$ $x_G = x_B x_R^2$



Question: What is the probability of eventual extinction, starting with one



?

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$

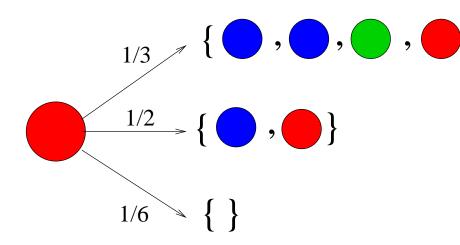
$$x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$$

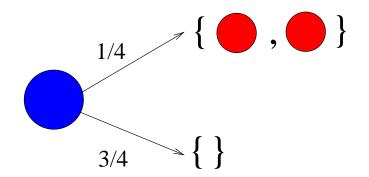
$$x_{G} = x_{B}x_{R}^{2}$$

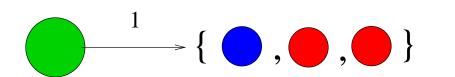
We get nonlinear fixed point equations: $\bar{\mathbf{x}} = P(\bar{\mathbf{x}}).$

?

Question: What is the probability of eventual extinction, starting with one







$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$
$$x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$$
$$x_{G} = x_{B}x_{R}^{2}$$

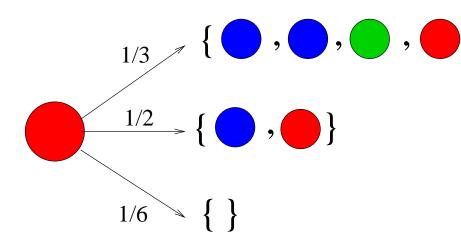
We get nonlinear fixed point equations: $\bar{\mathbf{x}} = P(\bar{\mathbf{x}}).$

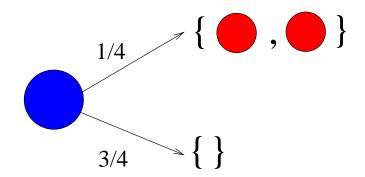
Fact

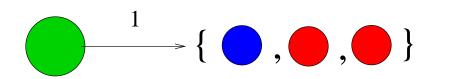
The extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0, 1]^3$, of $\mathbf{\bar{x}} = P(\mathbf{\bar{x}})$.

?

Question: What is the probability of eventual extinction, starting with one







$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$
$$x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$$
$$x_{G} = x_{B}x_{R}^{2}$$

We get nonlinear fixed point equations: $\bar{\mathbf{x}} = P(\bar{\mathbf{x}}).$

Fact

The extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0, 1]^3$, of $\mathbf{\bar{x}} = P(\mathbf{\bar{x}})$. $q_R^* = 0.276; q_B^* = 0.769; q_G^* = 0.059$.

$$\frac{1}{3}x_B^2 x_G x_R + \frac{1}{2}x_B x_R + \frac{1}{6}$$

is a Probabilistic Polynomial: the coefficients are positive and sum to 1.

A Probabilistic Polynomial System (PPS), is a system of *n* equations

$$\mathbf{x} = P(\mathbf{x})$$

in *n* variables where each $P_i(x)$ is a probabilistic polynomial.

Every multi-type Branching Process (BP) with n types corresponds to a PPS with n variables, and vice-versa.

$$5x_B^2 x_G x_R + 2x_B x_R + \frac{1}{6}$$

is a Monotone Polynomial: the coefficients are positive.

A Monotone Polynomial System (MPS), is a system of *n* equations

 $\mathbf{x} = P(\mathbf{x})$

in *n* variables where each $P_i(x)$ is a monotone polynomial.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Basic properties of PPSs and MPSs

For a PPS, $P : [0,1]^n \to [0,1]^n$ defines a monotone map on $[0,1]^n$. For a MPS, $P : [0,+\infty]^n \to [0,+\infty]^n$ defines monotone map on $[0,+\infty]^n$.

Proposition

A PPS, x = P(x) has a least fixed point (LFP), q^{*} ∈ [0,1]ⁿ.
 (q^{*} can be irrational.)

- A MPS x = P(x) has a LFP, $q^* \in [0, +\infty]^n$. (The MPS is called feasible if $q^* \in \mathbb{R}^n_{>0}$.)
- $q^* = \lim_{k \to \infty} P^k(\mathbf{0})$, for both PPSs and MPSs.
- For a PPS, **q**^{*} is the vector of extinction probabilities for the corresponding BP. (For a MPS, **q**^{*} is the partition function of the corresponding WCFG.)

Question: Can we compute q^* efficiently (in P-time)?

Newton's method

Newton's method

Seeking a solution to $F(\mathbf{x}) = 0$, we start at a guess $\mathbf{x}^{(0)}$, and iterate:

$$\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} - (F'(\mathbf{x}^{(k)}))^{-1}F(\mathbf{x}^{(k)})$$

Here $F'(\mathbf{x})$, is the **Jacobian matrix**:

$$\mathsf{F}'(\mathbf{x}) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} \cdots \frac{\partial F_1}{\partial x_n} \\ \vdots \vdots \vdots \\ \frac{\partial F_n}{\partial x_1} \cdots \frac{\partial F_n}{\partial x_n} \end{bmatrix}$$

For PPSs, $F(x) \equiv (P(x) - x)$; Newton iteration looks like this:

$$\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + (I - P'(\mathbf{x}^{(k)}))^{-1}(P(\mathbf{x}^{(k)}) - \mathbf{x}^{(k)})$$

where $P'(\mathbf{x})$ is the Jacobian of $P(\mathbf{x})$.

We can decompose $\mathbf{x} = P(\mathbf{x})$ into its strongly connected components (SCCs), based on variable dependencies, and eliminate "0" variables.

Theorem [E.-Yannakakis'05]

Decomposed Newton's method converges monotonically to the LFP \mathbf{q}^* , starting from $\mathbf{x}^{(0)} := \mathbf{0}$, for PPSs, and more generally for all feasible MPSs.

But...

- In [E.-Yannakakis'05,'09], we gave no upper bounds on # of iterations needed for PPSs or MPSs.
- We proved PosSLP-hardness for any nontrivial approximation of the LFP $\mathbf{q}^* \in [0, 1]^n$ of MPSs corresponding to Recursive Markov Chains.

[Allender, Bürgisser, Kjeldgaard-Pedersen, Miltersen, 2006]

PosSLP: Given an arithmetic circuit (Straight Line Program) with gates $\{+, *, -\}$, and with input 1, decide whether the output value is positive.

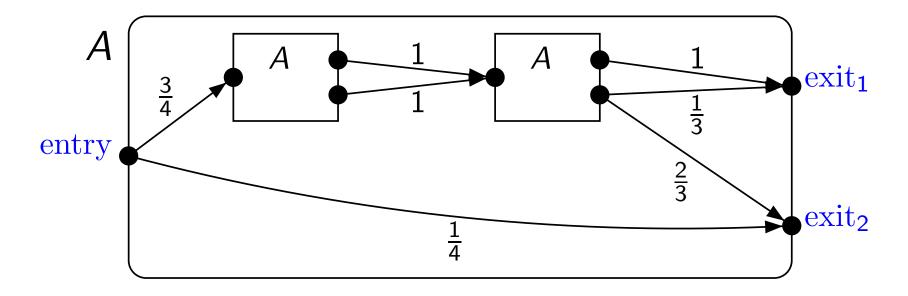
PosSLP captures the power of P-time in the unit-cost arithmetic RAM model of computation.

Theorem [ABKM'06]

PosSLP is decidable in the Counting Hierarchy: $P^{PP^{PP}^{PP}}$

(Nothing better is known.)

Recursive Markov Chains



What is the probability of terminating at $exit_2$, starting at entry?

 $x_2 =$

3

2 / 3

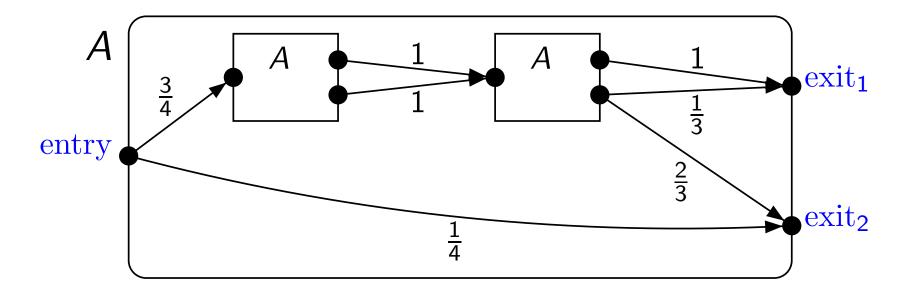
3

< □ ▶

4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4

-

Recursive Markov Chains



What is the probability of terminating at $exit_2$, starting at entry?

$$x_{2} = \frac{1}{4} + \frac{1}{2}x_{2}^{2} + \frac{1}{2}x_{1}x_{2} \quad \text{(Note: coefficients sum to > 1)}$$

$$x_{1} = \frac{3}{4}x_{1}^{2} + \frac{3}{4}x_{2}x_{1} + \frac{1}{4}x_{1}x_{2} + \frac{1}{4}x_{2}^{2}$$

Fact: ([EY'05]) The Least Fixed Point, $q^* \in [0, 1]^n$, gives the termination probabilities.

< □

Э

з.

500

Theorem

[EY'07]: Any non-trivial approximation of the termination probabilities q* of an RMC is PosSLP-hard:

Deciding whether (a.) $q_1^* = 1$ or (b.) $q_1^* < \epsilon$, is PosSLP-hard.

[ESY'12]: ε-approximation of q* is in FIXP_a.
 (It can be reduced to approximating a unique Brouwer fixed point, and to approximating an (actual) Nash equilibrium of a game.)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

・ 「 ・ ・ ミ ・ ・ 「 ・ ・

< □ ▶

[Esparza,Kiefer,Luttenberger,'07,'10] studied Newton's method on MPSs further:

- Gave bad examples of PPSs, x = P(x), where q* = 1, requiring exponentially many iterations, as a function of the encoding size |P| of the equations, to converge to within additive error < 1/2.
- For strongly-connected equation systems they gave an exponential upper bound in |P|.
- But they gave no upper bounds for arbitrary PPSs or MPSs in terms of |P|.

More recently, in [Stewart-E.-Yannakakis'13], we have established a matching exponential upper bound in |P| for arbitrary PPSs and feasible MPSs.

Theorem ([E.-Stewart-Yannakakis,2012])

Given a PPS, $\mathbf{x} = P(\mathbf{x})$, with LFP $\mathbf{q}^* \in [0, 1]^n$, we can compute a rational vector $\mathbf{v} \in [0, 1]^n$ such that

$$\|\mathbf{v}-\mathbf{q}^*\|_\infty \leq 2^{-j}$$

in time polynomial in both the encoding size |P| of the equations and in j (the number of "bits of precision").

We use Newton's method..... but how?

4)Q(

▲圖▶ ▲글▶ ▲글▶ _ 글

Theorem ([Kolmogorov-Sevastyanov'47,Harris'63])

For certain classes of strongly-connected PPSs, $q_i^* = 1$ for all *i* iff the spectral radius $\varrho(P'(1))$ for the moment matrix P'(1) is ≤ 1 , and otherwise $q_i^* < 1$ for all *i*.

Theorem ([E.-Yannakakis'05])

Given a PPS, $\mathbf{x} = P(\mathbf{x})$, deciding whether $q_i^* = 1$ is in P-time.

Theorem ([Kolmogorov-Sevastyanov'47,Harris'63])

For certain classes of strongly-connected PPSs, $q_i^* = 1$ for all *i* iff the spectral radius $\varrho(P'(1))$ for the moment matrix P'(1) is ≤ 1 , and otherwise $q_i^* < 1$ for all *i*.

Theorem ([E.-Yannakakis'05])

Given a PPS, $\mathbf{x} = P(\mathbf{x})$, deciding whether $q_i^* = 1$ is in P-time.

(It is even in strongly-P-time ([Esparza-Gaiser-Kiefer'10]).)

Theorem ([Kolmogorov-Sevastyanov'47,Harris'63])

For certain classes of strongly-connected PPSs, $q_i^* = 1$ for all *i* iff the spectral radius $\varrho(P'(\mathbf{1}))$ for the moment matrix $P'(\mathbf{1})$ is ≤ 1 , and otherwise $q_i^* < 1$ for all *i*.

Theorem ([E.-Yannakakis'05])

Given a PPS, $\mathbf{x} = P(\mathbf{x})$, deciding whether $q_i^* = 1$ is in P-time.

(It is even in strongly-P-time ([Esparza-Gaiser-Kiefer'10]).)

Deciding whether $q_i^* = 0$ is also easily in (strongly) P-time.

- Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$.
- On the resulting system of equations, run Newton's method starting from 0.

- Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$.
- On the resulting system of equations, run Newton's method starting from 0.

Theorem ([ESY'12])

Given a PPS $\mathbf{x} = P(\mathbf{x})$ with LFP $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, if we apply Newton starting at $\mathbf{x}^{(0)} = \mathbf{0}$, then

$$\|\mathbf{q}^* - \mathbf{x}^{(4|P|+j)}\|_{\infty} \le 2^{-j}$$

- Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$.
- On the resulting system of equations, run Newton's method starting from 0.
- 3 After each iteration, round down to a multiple of 2^{-h}

Theorem ([ESY'12])

If, after each Newton iteration, we round down to a multiple of 2^{-h} where h := 4|P| + j + 2, then after h iterations $\|\mathbf{q}^* - \mathbf{x}^{(h)}\|_{\infty} \le 2^{-j}$.

Thus, we obtain a P-time algorithm (in the standard Turing model) for approximating q^* .

High level picture of proof

• For a PPS, x = P(x), with LFP $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, $P'(q^*)$ is a non-negative square matrix, and (we show)

 $\varrho(P'(q^*)) < 1$

• So, $(I - P'(q^*))$ is non-singular, and $(I - P'(q^*))^{-1} = \sum_{i=0}^{\infty} (P'(q^*))^i$.

• We can show the # of Newton iterations needed to get within $\epsilon > 0$ is

$$pprox pprox \log \|(I-P'(q^*))^{-1}\|_\infty + \log rac{1}{\epsilon}$$

• $\|(I - P'(q^*))^{-1}\|_{\infty}$ is tied to the distance $|1 - \varrho(P'(q^*))|$, which in turn is related to $\min_i(1 - q_i^*)$, which we can lower bound.

• Uses lots of Perron-Frobenius theory, among other things...

The quantitative **decision** problem for PPSs is PosSLP-equivalent

Theorem ([E.-Yannakakis'07, E.-Stewart-Yannakakis'12])

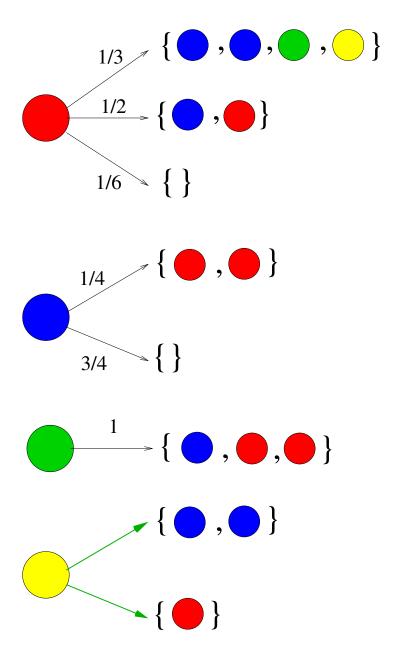
Given a PPS, x = P(x), and a probability p, deciding whether $q_i^* < p$ is PosSLP-equivalent.

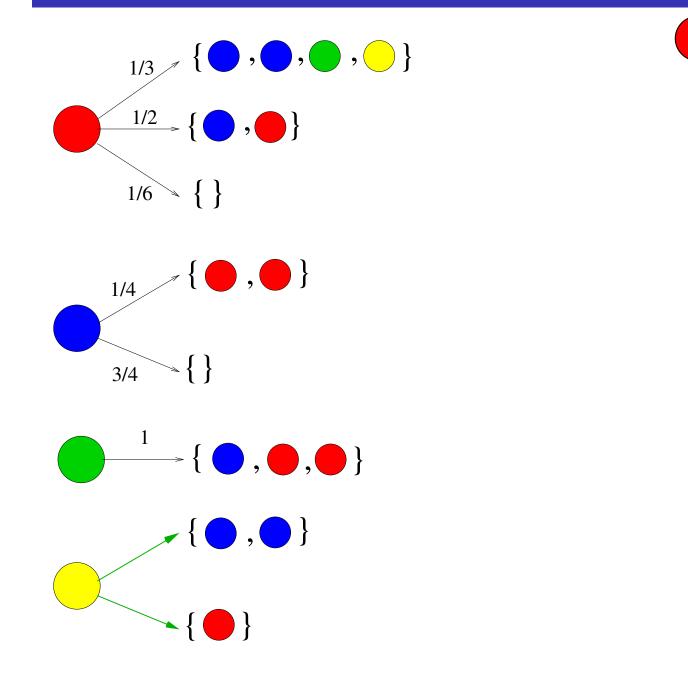
Reduction to PosSLP exploits quadratic convergence with explicit & "good" constants:

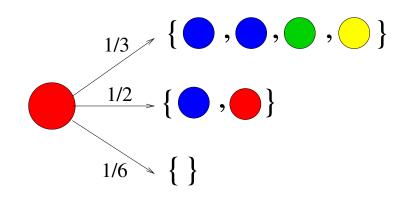
Theorem ([ESY'12])

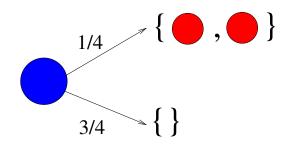
Given a PPS $\mathbf{x} = P(\mathbf{x})$ with LFP $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, if we apply Newton starting at $\mathbf{x}^{(0)} = \mathbf{0}$, then

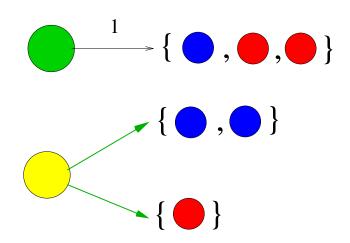
$$\mathbf{q}^* - \mathbf{x}^{(32|P|+2j+2)} \|_{\infty} \le 2^{-2^j}$$

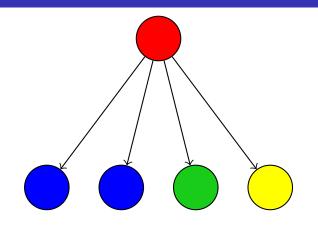


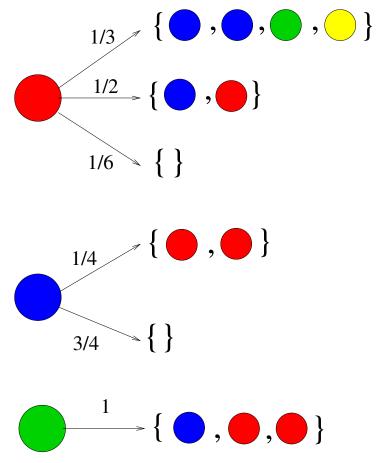


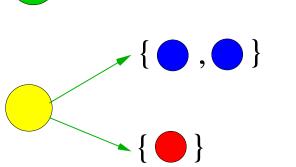


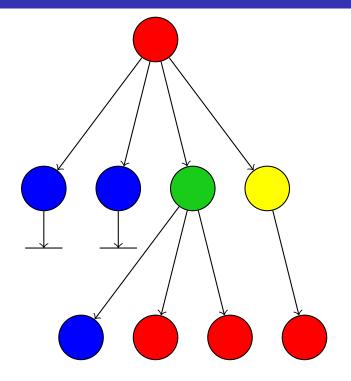




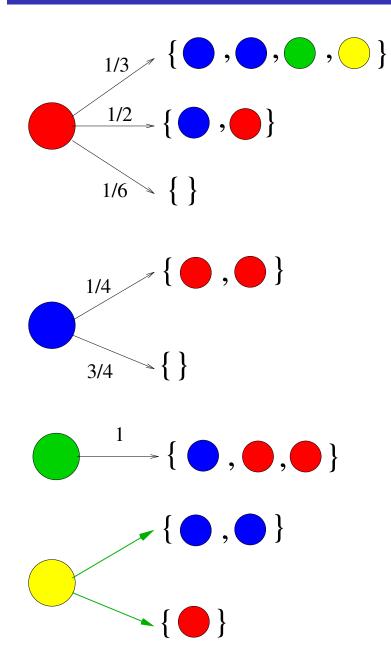


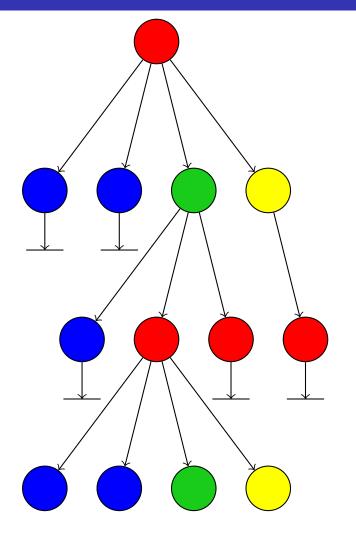


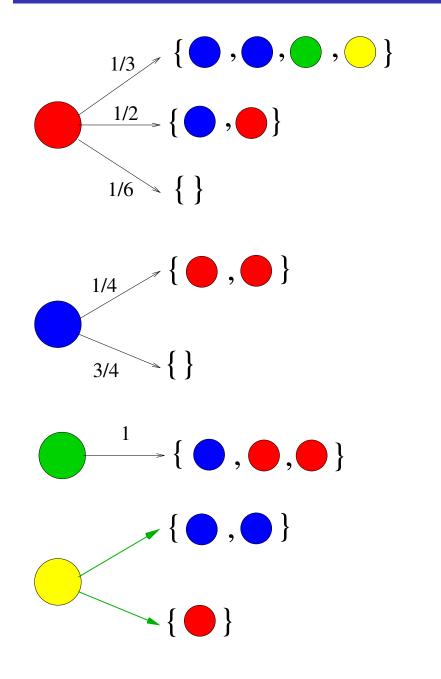


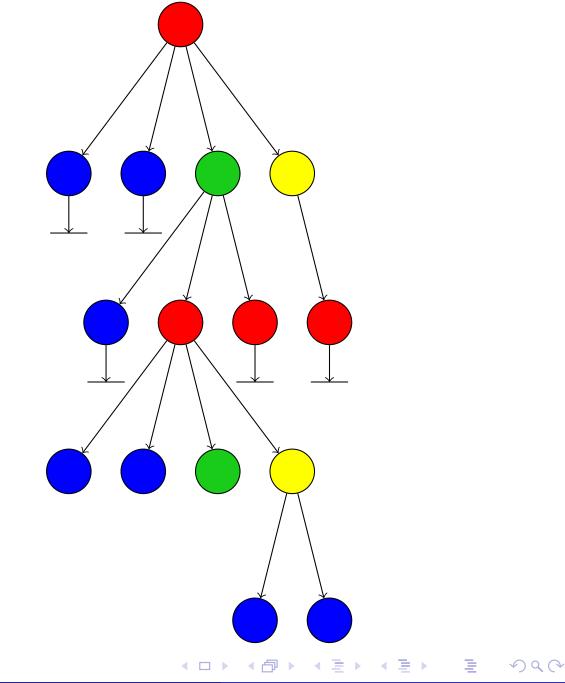


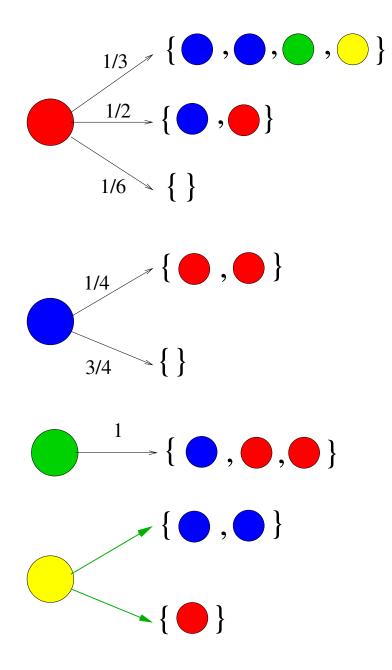
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□



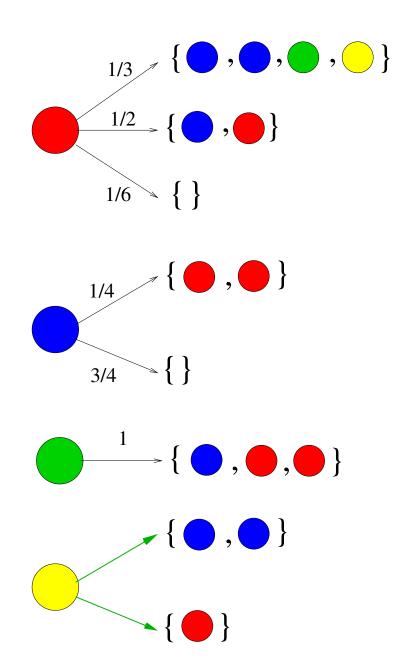








What is the maximum probability of ? extinction, starting with one



What is the maximum probability of extinction, starting with one $x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{Y} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$ $x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$ $x_G = x_B x_R^2$ Xy

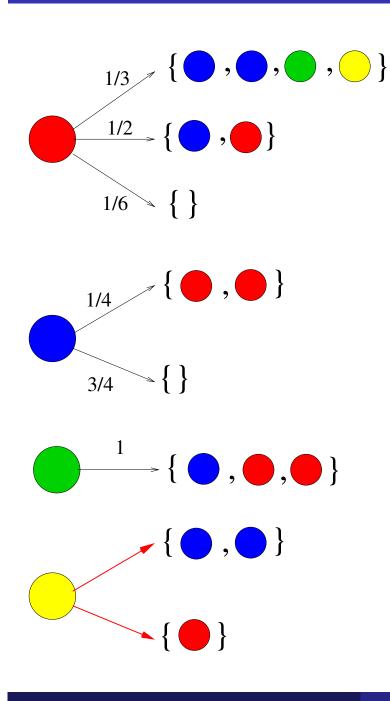


What is the maximum probability of extinction, starting with one $x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{Y} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$ $x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$ $x_G = x_B x_R^2$ $x_{\mathbf{Y}} = \max\{x_{\mathbf{B}}^2, x_{\mathbf{R}}\}$

We get fixed point equations, $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Fact [E.-Yannakakis'05]

The maximum extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0, 1]^3$, of $\mathbf{\bar{x}} = P(\mathbf{\bar{x}})$.



What is the minimum probability of extinction, starting with one $x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{Y} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$ $x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$ $x_G = x_B x_R^2$ $x_{\mathbf{Y}} = \min\{x_{\mathbf{R}}^2, x_{\mathbf{R}}\}$

We get fixed point equations, $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Fact [E.-Yannakakis'05]

The minimum extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0, 1]^3$, of $\mathbf{\bar{x}} = P(\mathbf{\bar{x}})$.

A Maximum Probabilistic Polynomial System (maxPPS) is a system

$$\mathbf{x}_i = \max\{p_{i,j}(\mathbf{x}) : j = 1, \dots, m_i\}$$
 $i = 1, \dots, n$

of *n* equations in *n* variables, where each $p_{i,j}(x)$ is a probabilistic polynomial. We denote the entire system by:

$$\mathbf{x} = P(\mathbf{x})$$

Minimum Probabilistic Polynomial Systems (minPPSs) are defined similarly.

These are **Bellman optimality equations** for maximizing (minimizing) extinction probabilities in a BMDP.

We use max/minPPS to refer to either a maxPPS or an minPPS.

 $P: [0,1]^n \rightarrow [0,1]^n$ defines a monotone map on $[0,1]^n$.

Proposition. [E.-Yannakakis'05]

- Every max/minPPS, x = P(x) has a least fixed point, $q^* \in [0, 1]^n$.
- $q^* = \lim_{k \to \infty} P^k(\mathbf{0}).$
- q^* is vector of optimal extinction probabilities for the BMDP.

Question

Can we compute the probabilities q^* efficiently (in P-time)?

Theorem ([E.-Stewart-Yannakakis,2012])

Given a max/minPPS, $\mathbf{x} = P(\mathbf{x})$, with LFP $\mathbf{q}^* \in [0, 1]^n$, we can compute a rational vector $\mathbf{v} \in [0, 1]^n$ such that

$$\|\mathbf{v} - \mathbf{q}^*\|_{\infty} \le 2^{-j}$$

in time polynomial in the encoding size |P| of the equations, and in j.

We establish this via a new Generalized Newton's Method that uses linear programming in each iteration.

An iteration of Newton's method on a PPS, applied on current vector $y \in \mathbb{R}^n$, solves the equation

$$P^{\mathbf{y}}(\mathbf{x}) = \mathbf{x}$$

where $P^{\mathbf{y}}(\mathbf{x}) \equiv P(\mathbf{y}) + P'(\mathbf{y})(\mathbf{x} - \mathbf{y})$ is a linear (first-order Taylor) approximation of P(x).

Generalised Newton's method

Linearisation

Given a maxPPS

$$(P(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{x}) : j = 1, \dots, m_i\} \qquad i = 1, \dots, n$$

We define the linearisation, $P^{y}(x)$, by:

$$(P^{\mathbf{y}}(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{y}) + \nabla p_{i,j}(\mathbf{y}).(\mathbf{x} - \mathbf{y}) : j = 1, \dots, m_i\} \qquad i = 1, \dots, n$$

Generalised Newton's method

Linearisation

Given a maxPPS

$$(P(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{x}) : j = 1, \dots, m_i\} \qquad i = 1, \dots, n$$

We define the linearisation, $P^{y}(x)$, by:

$$(P^{\mathbf{y}}(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{y}) + \nabla p_{i,j}(\mathbf{y}).(\mathbf{x} - \mathbf{y}) : j = 1, \dots, m_i\} \qquad i = 1, \dots, n$$

Generalised Newton's method: iteration applied at vector y

For a maxPPS, For a minPPS, For a minPPS, These can both be phrased as linear programming problems. Their optimal solution solves $P^{\mathbf{y}}(\mathbf{x}) = \mathbf{x}$, and yields one GNM iteration.

うてい

◀ ┌┦ ▶ ◀ 🖹 ▶

Algorithm for max/minPPSs

Find and remove all variables x_i such that q_i^{*} = 0 or q_i^{*} = 1.
 (q_i^{*} = 1 decidable in P-time using LP [E.-Yannakakis'06]: reduces to a spectral radius optimization problem for non-negative square matrices.)

Algorithm for max/minPPSs

- Find and remove all variables x_i such that q_i^{*} = 0 or q_i^{*} = 1.
 (q_i^{*} = 1 decidable in P-time using LP [E.-Yannakakis'06]: reduces to a spectral radius optimization problem for non-negative square matrices.)
- On the resulting system of equations, run Generalized Newton's Method, starting from 0. After each iteration, round down to a multiple of 2^{-h}.
 Each iteration of GNM can be computed in P-time by solving an LP.

Algorithm for max/minPPSs

Find and remove all variables x_i such that q_i^{*} = 0 or q_i^{*} = 1.
 (q_i^{*} = 1 decidable in P-time using LP [E.-Yannakakis'06]: reduces to a spectral radius optimization problem for non-negative square matrices.)

On the resulting system of equations, run Generalized Newton's Method, starting from 0. After each iteration, round down to a multiple of 2^{-h}.

Each iteration of GNM can be computed in P-time by solving an LP.

Theorem [ESY'12]

Given a max/minPPS $\mathbf{x} = P(\mathbf{x})$ with LFP $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, if we apply rounded GNM starting at $\mathbf{x}^{(0)} = \mathbf{0}$, using h := 4|P| + j + 1 bits of precision, then $\|\mathbf{q}^* - \mathbf{x}^{(4|P|+j+1)}\|_{\infty} \leq 2^{-j}$.

Thus, algorithm runs in time polynomial in |P| and j.

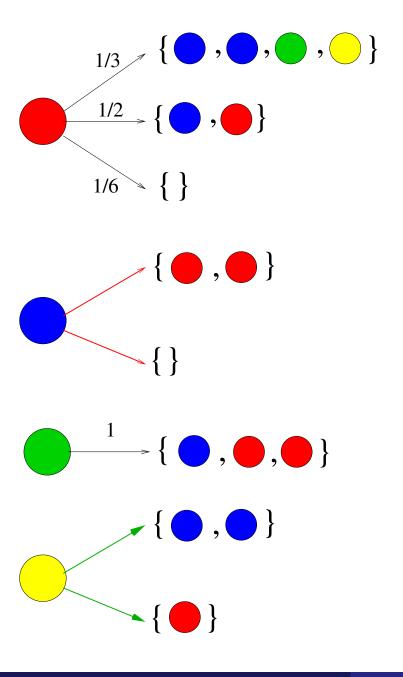
 $(1 - q^*)$ is the vector of pessimal survival probabilities.

Lemma

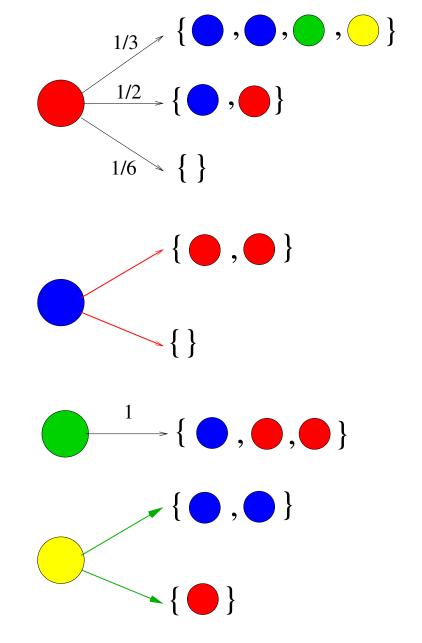
If
$$\mathbf{q}^* - \mathbf{x}^{(k)} \leq \lambda (\mathbf{1} - \mathbf{q}^*)$$
 for some $\lambda > 0$, then $\mathbf{q}^* - \mathbf{x}^{(k+1)} \leq \frac{\lambda}{2} (\mathbf{1} - \mathbf{q}^*)$.

Lemma

For any Max(Min) PPS with LFP \mathbf{q}^* , such that $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, for any *i*, $q_i^* \leq 1 - 2^{-4|P|}$.



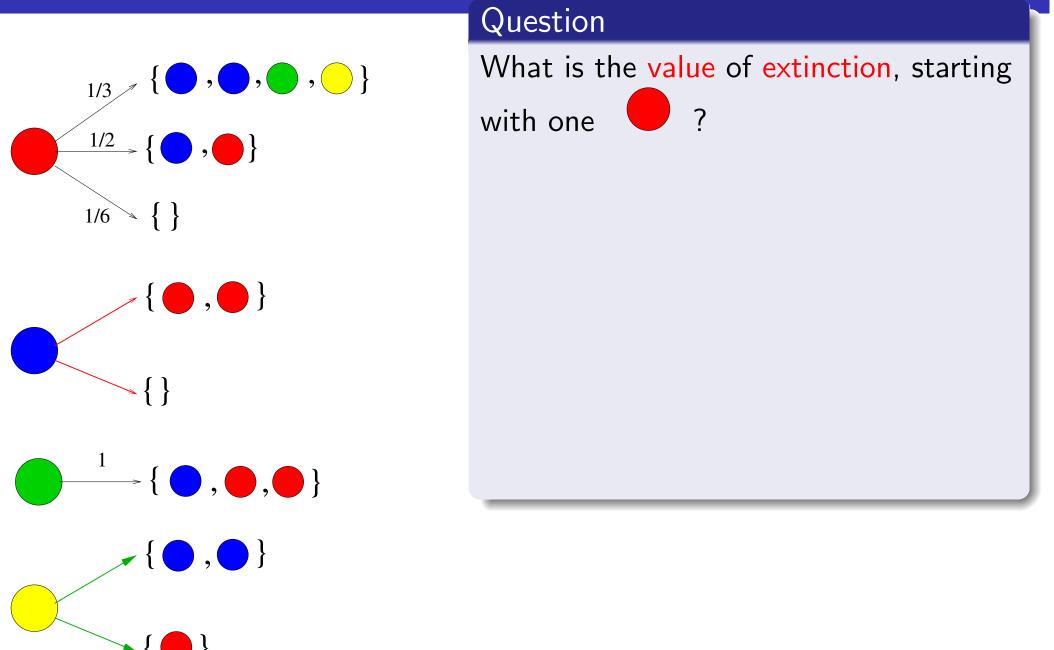
▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣�?

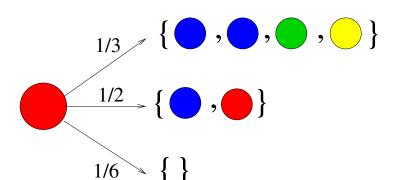


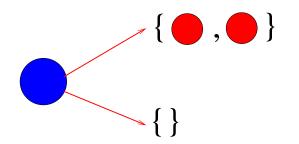
Types belonging to min:

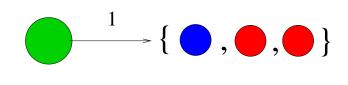
Types belonging to max:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めへぐ









Question

What is the value of extinction, starting with one ? $x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{Y} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$ $x_{B} = \min\{x_{R}^{2}, 1\}$ $x_{G} = x_{B}x_{R}^{2}$ $x_{Y} = \max\{x_{B}^{2}, x_{R}\}$

We get fixed point equations, $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Fact [E.-Yannakakis'05]

The extinction values are the LFP, $\mathbf{q}^* \in [0, 1]^3$ of $\mathbf{\bar{x}} = P(\mathbf{\bar{x}})$.

Theorem ([E.-Yannakakis'05])

For any BSSG, both players have static positional optimal strategies for maximizing (minimizing) extinction probability.

A static positional strategy is one that, for every type belonging to the player, always deterministically chooses the same single rule. (i.e., it is deterministic, memoryless, and "context-oblivious".)

Theorem ([E.-Yannakakis'06])

Given a BSSG, deciding if the extinction value is $q_i^* = 1$ is in NP \cap coNP, & is at least as hard as computing the exact value for a finite-state SSG.

Theorem ([ESY'12])

Given a BSSG, and given $\epsilon > 0$, we can compute a vector $v \in [0, 1]^n$, such that $||v - q^*||_{\infty} \le \epsilon$, in **FNP** (and in fact in **PLS**).

-22

- We have established P-time algorithms for a number of fundamental analysis problems for Multi-type Branching Processes and Branching MDPs.
- These algorithms also yield FNP (and in fact PLS) complexity upper bounds for approximating the value of Branching Simple Stochastic Games with the same objectives.
- Can we use GNM to solve other classes of $\{+, *, \max\}$ -equations??

Question: Can we obtain better complexity bounds for PosSLP?

・ロト ・ 白 ・ ・ 山 ト ・ ト ・ 日 ト ・ く 日 ト

Open problems

Question: Can we obtain better complexity bounds for **PosSLP**? **Here is a very basic approach:**

Given a $\{+, -, *\}$ -circuit, *C*, guess a monotone $\{+, *\}$ -circuit, *C'*, as a "witness of positivity", and verify C - C' = 0 in **co-RP**. (Checking equality to 0 is ACIT-equivalent ([ABKM'06]).) For $a \in \mathbb{N}$, let $\tau(a)$ denote size of smallest $\{+, *, -\}$ -circuit expressing *a*. Let $\tau_+(a)$ denote size of smallest monotone $\{+, *\}$ -circuit expressing *a*.

Conjecture. " τ vs. τ_+ -conjecture " ("this does not work")

There exists a family of positive integers, $\langle a_n \rangle_{n \in \mathbb{N}}$, with $\tau(a_n) \in O(n)$, but such that for some fixed c > 0: $\tau_+(a_n) \in 2^{\Omega(n^c)}$

Remark: [Valiant'79] proved an exponential lower bound for monotone polynomials. (This does not imply lower bounds in the integer setting.) Current state of knowledge for integers is abismal. ([Jindal-Saranurak'12]).

A better approach

Definition: call a circuit, *C*, quasi-monotone if it consists of some squared, $\{+, *, -\}$ -subcircuits, $(C_i)^2$, i = 1, ..., k, which are inputs to a monotone $\{+, *\}$ -circuit, *C'*, whose output is the output of *C*. (Note: these circuits generalize both monotone circuits and S.O.S..)

Better approach: Given a $\{+, -, *\}$ -circuit, *C*, guess a pair of quasi-monotone circuits C', C'' as a "witness of positivity" for *C*, & verify the equality ((C'' + 1) * C - C') = 0 in **co-RP**.

Here is a VERY optimistic conjecture:

Conjecture: "very effective Positivestellensatz for integers"

This works: there is a polynomial, $p(\cdot)$, such that for any $a \in \mathbb{N}$ with $\tau(a) = n$, there exist quasi-montone circuits $C'_a \& C''_a$, with $\operatorname{size}(C'_a) \le p(n) \& \operatorname{size}(C''_a) \le p(n)$, such that: $a = \frac{C'_a}{C''_a + 1}$.

This would of course imply $PosSLP \in MA$.

SQ (A

(日) (문) (문) (문) (문)