
A Taxonomy of Fixed point Computation Problems for
Algebraically-Defined Functions and their Computational

Complexity

Kousha Etessami

LFCS, School of Informatics
University of Edinburgh

Based on joint works with:

Mihalis Yannakakis & Alistair Stewart
Columbia Uni. U. of Edinburgh

Workshop on “Solving Polynomial Equations”
Simons Institute, Berkeley

October 2014

Algorithms for Branching Markov Decision Processes
and probabilistic min/max polynomial Bellman equations

Kousha Etessami

University of Edinburgh

Based on joint works with:

Alistair Stewart & Mihalis Yannakakis
U. of Edinburgh Columbia Uni.

Workshop on “Solving Polynomial Equations”
Simons Institute, Berkeley

October 2014

Fixed Point Computation

Brouwer’s fixed point theorem

Every continuous function F : D → D from a compact convex set D ⊆ Rm

to itself has a fixed point, i.e., ∃ x∗ ∈ D such that F (x∗) = x∗.

Computation Task: “Given” F (x), compute/approximate a fixed point.

Two different notions of ε-approximation of a fixed point:

(Almost) Given F : D → D, compute x ′ ∈ D ∩Qm such that:

‖F (x ′)− x ′‖∞ < ε

(Near) Given F : D → D, compute x ′ ∈ D ∩Qm s.t. there exists
x∗ ∈ D where F (x∗) = x∗ and:

‖x∗ − x ′‖∞ < ε

These two notions can have rather different complexity
characteristics. In this talk, we are interested in Near.

2 / 42

Fixed Point Computation

Brouwer’s fixed point theorem

Every continuous function F : D → D from a compact convex set D ⊆ Rm

to itself has a fixed point, i.e., ∃ x∗ ∈ D such that F (x∗) = x∗.

Computation Task: “Given” F (x), compute/approximate a fixed point.

Two different notions of ε-approximation of a fixed point:

(Almost) Given F : D → D, compute x ′ ∈ D ∩Qm such that:

‖F (x ′)− x ′‖∞ < ε

(Near) Given F : D → D, compute x ′ ∈ D ∩Qm s.t. there exists
x∗ ∈ D where F (x∗) = x∗ and:

‖x∗ − x ′‖∞ < ε

These two notions can have rather different complexity
characteristics. In this talk, we are interested in Near.

2 / 42

Fixed Point Computation

Brouwer’s fixed point theorem

Every continuous function F : D → D from a compact convex set D ⊆ Rm

to itself has a fixed point, i.e., ∃ x∗ ∈ D such that F (x∗) = x∗.

Computation Task: “Given” F (x), compute/approximate a fixed point.

Two different notions of ε-approximation of a fixed point:

(Almost) Given F : D → D, compute x ′ ∈ D ∩Qm such that:

‖F (x ′)− x ′‖∞ < ε

(Near) Given F : D → D, compute x ′ ∈ D ∩Qm s.t. there exists
x∗ ∈ D where F (x∗) = x∗ and:

‖x∗ − x ′‖∞ < ε

These two notions can have rather different complexity
characteristics. In this talk, we are interested in Near.

2 / 42

The complexity class FIXP and FIXPa

FIXP (FIXPa) is a class of real-valued (respectively, discrete) total search
problems:

FIXP (FIXPa)

Input: algebraic circuit, a.k.a., straight-line program, using gates
{ + , ∗ , max } and rational constants, having n input variables
x = (x1, . . . , xn), and n output gates, such that the circuit represents
a continuous function F : [0, 1]n 7→ [0, 1]n.

(We are also given an error parameter ε > 0 as input for FIXPa.)

Output: Compute a (ε-near approximate) fixed point of F .

Close these search problems under suitable (P-time) reductions.

The resulting class is called FIXP (respectively, FIXPa).

3 / 42

(near approximation of) Nash Equilibrium is
FIXP(a)-complete

Theorem ([E.-Yannakakis’07])

Computing a (ε-near approximation of) a Nash Equilibrium for a game Γ
with 3 or more players, given Γ (and given ε > 0), is FIXP-complete
(respectively, FIXPa-complete).

4 / 42

PPAD (Papadimitriou (1992)): given a succinctly represented directed
graph with in-degree ≤ 1 & out-degree ≤ 1, and given a source node
(indegree = 0), find some other source or sink node. (Closing this search
problem under P-time reductions yields PPAD.)

Let linear-FIXP denote the subclass of FIXP where the algebraic circuits
are restricted to gates {+,max} and multiplication by rational constants.

Theorem ([E.-Yannakakis’07])

The following are all P-time equivalent:

1 PPAD

2 linear-FIXP

3 exact fixed point problem for “polynomial piecewise-linear functions”.

4 (cf. [Scarf’67]) ε-almost-fixed point computation for “polynomially
computable” and “polynomially continuous” functions, FI (x), given
instance I , and ε > 0.

5 [Mehta, 2014]: 2-variable-linear-FIXP

5 / 42

By Scarf’s algorithm, computing a ε-NE is in PPAD.

By the Lemke-Howson algorithm, computing a exact NE for 2-player
games is in PPAD.

Theorem
1 [Daskalakis-Goldberg-Papadimitriou’06], [Chen-Deng’06]:

Computing a ε-NE for a 3 player game is PPAD-complete.

2 [Chen-Deng’06]:
Computing an exact (rational) NE for a 2 player game is

PPAD-complete.

Note: Scarf’s algorithm does not in general yield a point ε-near a fixed
point.

6 / 42

A “hard” problem

[Allender, Bürgisser, Kjeldgaard-Pedersen, Miltersen,2006]

PosSLP: Given an arithmetic circuit (Straight Line
Program) with gates {+, ∗,−}, and with input 1, decide
whether the output value is positive.

PosSLP captures the power of P-time in the unit-cost
arithmetic RAM model of computation.

Theorem [ABKM’06]

PosSLP is decidable in the Counting Hierarchy: PPPPPPP

.

(Nothing better is known.)

7 / 42

PosSLP ≤p any near approximation of a 3-player NE

Theorem ([E.-Yannakakis’07])

Any non-trivial near approximation of an NE is PosSLP-hard.

More precisely: for every fixed ε > 0,

PosSLP is P-time reducible to the following problem:

Given a 3-player normal form game, Γ, with the promise that:

1 Γ has a unique NE, x∗, which is fully mixed, and

2 In x∗, the probability that player 1 plays pure strategy α is either:

(a.) < ε , or (b.) ≥ (1− ε)

Decide which of (a.) or (b.) is the case.

8 / 42

What makes a fixed point problem “hard” or “easy”??

Note: These problems are in general not NP-hard,
because existence of a solution (fixed point) is guaranteed.

PPAD-hardness captures a combinatorial difficulty for
computing, or even almost-approximating, a fixed
point.

But there can also be an additional numerical,
difficulty for near-approximating a fixed point, which is
not captured by PPAD-hardness.

It is captured by PosSLP-hardness.

These two kinds of difficulties are somewhat “orthogonal”.

FIXPa-complete problems have both of these difficulties.

9 / 42

What makes a fixed point problem “hard” or “easy”??

Note: These problems are in general not NP-hard,
because existence of a solution (fixed point) is guaranteed.

PPAD-hardness captures a combinatorial difficulty for
computing, or even almost-approximating, a fixed
point.

But there can also be an additional numerical,
difficulty for near-approximating a fixed point, which is
not captured by PPAD-hardness.

It is captured by PosSLP-hardness.

These two kinds of difficulties are somewhat “orthogonal”.

FIXPa-complete problems have both of these difficulties.

9 / 42

What makes a fixed point problem “hard” or “easy”??

Note: These problems are in general not NP-hard,
because existence of a solution (fixed point) is guaranteed.

PPAD-hardness captures a combinatorial difficulty for
computing, or even almost-approximating, a fixed
point.

But there can also be an additional numerical,
difficulty for near-approximating a fixed point, which is
not captured by PPAD-hardness.

It is captured by PosSLP-hardness.

These two kinds of difficulties are somewhat “orthogonal”.

FIXPa-complete problems have both of these difficulties.

9 / 42

Rich landscape within FIXP:

PPAD−hardP.G.−hardNo

exact−piecewise−linear
Brouwer fixed point

exact−Branching−MDPs

exact−Branching processes

approx−Recursive Markov chains

exact−linear−Arrow−Debreu

PIT / ACIT

market equilibrium

Combinatorial Difficulty

with SPLC utilities

market equilibrium
exact−Arrow−Debreu

P
o
sS

L
P

−
h
ar

d
*

N
u

m
er

ic
al

D

if
fi

cu
lt

y

*

for >= 3 players

(epsilon)−Nash"Almost"−

nonlinear−Brouwer fixed point

"Almost"−
exact−mean−payoff−game

exact−Condon−simple−stoc−game

approx−Shapley−stochastic−game

approx−Branch−simple−stoc−game

exact−Branch−simple−stoc−game

approx−nonlinear

Brouwer fixed point

approx−3−player−Nash

market equilibrium
approx−nonlin.−Arrow−Debreu

FIXP−complete
a

exact−MDPs

exact−2−player−Nash

parity−game

N
o

exact−concurrent−stocastic−game

exact−Shapley−stocastic−game

approx−Unique−nonlinear

??approx−Unique−3−player−Nash??

Brouwer fixed point

exact−Unique−piecewise−linear
Brouwer fixed point

??exact−Unique−2−player−Nash??

approx−Branching−MDPs

approx−Branching−process

10 / 42

For the rest of this talk, our focus will be on fixed point
problems for monotone algebraically-defined functions.

(These arise in many applications, as we shall see.)

11 / 42

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

12 / 42

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

12 / 42

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

12 / 42

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

12 / 42

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

12 / 42

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

12 / 42

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question: What is the probability of
eventual extinction, starting with one

?

xR =
1

3
x2

BxGxR +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx

2
R

We get nonlinear fixed point equations:
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.

13 / 42

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question: What is the probability of
eventual extinction, starting with one

?

xR =

1

3
x2

BxGxR +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx

2
R

We get nonlinear fixed point equations:
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.

13 / 42

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question: What is the probability of
eventual extinction, starting with one

?

xR =
1

3
x2

BxGxR +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx

2
R

We get nonlinear fixed point equations:
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.

13 / 42

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question: What is the probability of
eventual extinction, starting with one

?

xR =
1

3
x2

BxGxR +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx

2
R

We get nonlinear fixed point equations:
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.

13 / 42

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question: What is the probability of
eventual extinction, starting with one

?

xR =
1

3
x2

BxGxR +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx

2
R

We get nonlinear fixed point equations:
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.

13 / 42

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question: What is the probability of
eventual extinction, starting with one

?

xR =
1

3
x2

BxGxR +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx

2
R

We get nonlinear fixed point equations:
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).

q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.

13 / 42

Multi-type Branching Processes (Kolmogorov,1940s)

{ , , }
1

1/2 , }

}

{}

{ , }

{

{

{ , , , }
1/3

1/6

1/4

3/4

Question: What is the probability of
eventual extinction, starting with one

?

xR =
1

3
x2

BxGxR +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx

2
R

We get nonlinear fixed point equations:
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.

13 / 42

Probabilistic Polynomial Systems of Equations

1

3
x2
BxGxR +

1

2
xBxR +

1

6

is a Probabilistic Polynomial: the coefficients are positive and sum to 1.

A Probabilistic Polynomial System (PPS), is a system of n equations

x = P(x)

in n variables where each Pi (x) is a probabilistic polynomial.

Every multi-type Branching Process (BP) with n types corresponds to a
PPS with n variables, and vice-versa.

14 / 42

Monotone Polynomial Systems of Equations

5x2
BxGxR + 2xBxR +

1

6

is a Monotone Polynomial: the coefficients are positive.

A Monotone Polynomial System (MPS), is a system of n equations

x = P(x)

in n variables where each Pi (x) is a monotone polynomial.

15 / 42

Basic properties of PPSs and MPSs

For a PPS, P : [0, 1]n → [0, 1]n defines a monotone map on [0, 1]n.

For a MPS, P : [0,+∞]n → [0,+∞]n defines monotone map on [0,+∞]n.

Proposition

A PPS, x = P(x) has a least fixed point (LFP), q∗ ∈ [0, 1]n.

(q∗ can be irrational.)

A MPS x = P(x) has a LFP, q∗ ∈ [0,+∞]n.

(The MPS is called feasible if q∗ ∈ Rn
≥0.)

q∗ = limk→∞ Pk(0), for both PPSs and MPSs.

For a PPS, q∗ is the vector of extinction probabilities for the
corresponding BP. (For a MPS, q∗ is the partition function of the
corresponding WCFG.)

Question: Can we compute q∗ efficiently (in P-time)?

16 / 42

Newton’s method

Newton’s method

Seeking a solution to F (x) = 0, we start at a guess x(0), and iterate:

x(k+1) := x(k) − (F ′(x(k)))−1F (x(k))

Here F ′(x), is the Jacobian matrix:

F ′(x) =




∂F1
∂x1

. . . ∂F1
∂xn

...
...

...
∂Fn
∂x1

. . . ∂Fn
∂xn




For PPSs, F (x) ≡ (P(x)− x); Newton iteration looks like this:

x(k+1) := x(k) + (I − P ′(x(k)))−1(P(x(k))− x(k))

where P ′(x) is the Jacobian of P(x).

17 / 42

Newton on PPSs, and feasible MPSs

We can decompose x = P(x) into its strongly connected components
(SCCs), based on variable dependencies, and eliminate “0” variables.

Theorem [E.-Yannakakis’05]

Decomposed Newton’s method converges monotonically to the LFP q∗,
starting from x(0) := 0, for PPSs, and more generally for all feasible MPSs.

But...

In [E.-Yannakakis’05,’09], we gave no upper bounds on # of
iterations needed for PPSs or MPSs.

We proved PosSLP-hardness for any nontrivial approximation of the
LFP q∗ ∈ [0, 1]n of MPSs corresponding to Recursive Markov Chains.

18 / 42

A “hard” problem

[Allender, Bürgisser, Kjeldgaard-Pedersen, Miltersen,2006]

PosSLP: Given an arithmetic circuit (Straight Line
Program) with gates {+, ∗,−}, and with input 1, decide
whether the output value is positive.

PosSLP captures the power of P-time in the unit-cost
arithmetic RAM model of computation.

Theorem [ABKM’06]

PosSLP is decidable in the Counting Hierarchy: PPPPPPP

.

(Nothing better is known.)

19 / 42

Recursive Markov Chains

entry

exit1

exit2

A A A
3
4

1
4

1 1

1
3

2
3

1

What is the probability of terminating at exit2, starting at entry?

x2 =

Kousha Etessami (U. Edinburgh) probability, recursion, games, fixed points Horizons in TCS 2 / 3

Recursive Markov Chains

entry

exit1

exit2

A A A
3
4

1
4

1 1

1
3

2
3

1

What is the probability of terminating at exit2, starting at entry?

x2 =
1

4
+

1

2
x22 +

1

2
x1x2 (Note: coefficients sum to > 1)

x1 =
3

4
x21 +

3

4
x2x1 +

1

4
x1x2 +

1

4
x22

Fact: ([EY’05]) The Least Fixed Point, q∗ ∈ [0, 1]n, gives the termination
probabilities.

Kousha Etessami (U. Edinburgh) probability, recursion, games, fixed points Horizons in TCS 2 / 3

approximation for Recursive Markov chains

Theorem
1 [EY’07]: Any non-trivial approximation of the termination

probabilities q∗ of an RMC is PosSLP-hard:

Deciding whether (a.) q∗1 = 1 or (b.) q∗1 < ǫ, is PosSLP-hard.

2 [ESY’12]: ǫ-approximation of q∗ is in FIXPa.

(It can be reduced to approximating a unique Brouwer fixed point,
and to approximating an (actual) Nash equilibrium of a game.)

Kousha Etessami (U. Edinburgh) probability, recursion, games, fixed points Horizons in TCS 3 / 3

What is Newton’s worst case behavior for PPSs and MPSs?

[Esparza,Kiefer,Luttenberger,’07,’10] studied Newton’s method on MPSs
further:

Gave bad examples of PPSs, x = P(x), where q∗ = 1, requiring
exponentially many iterations, as a function of the encoding size |P|
of the equations, to converge to within additive error < 1/2.

For strongly-connected equation systems they gave an exponential
upper bound in |P|.
But they gave no upper bounds for arbitrary PPSs or MPSs in terms
of |P|.

More recently, in [Stewart-E.-Yannakakis’13], we have established a
matching exponential upper bound in |P| for arbitrary PPSs and feasible
MPSs.

20 / 42

P-time approximation for PPSs

Theorem ([E.-Stewart-Yannakakis,2012])

Given a PPS, x = P(x), with LFP q∗ ∈ [0, 1]n, we can compute a rational
vector v ∈ [0, 1]n such that

‖v − q∗‖∞ ≤ 2−j

in time polynomial in both the encoding size |P| of the equations
and in j (the number of “bits of precision”).

We use Newton’s method..... but how?

21 / 42

Qualitative decision problems for PPSs are in P-time

Theorem ([Kolmogorov-Sevastyanov’47,Harris’63])

For certain classes of strongly-connected PPSs, q∗i = 1 for all i iff the
spectral radius %(P ′(1)) for the moment matrix P ′(1) is ≤ 1,
and otherwise q∗i < 1 for all i .

Theorem ([E.-Yannakakis’05])

Given a PPS, x = P(x), deciding whether q∗i = 1 is in P-time.

(It is even in strongly-P-time ([Esparza-Gaiser-Kiefer’10]).)

Deciding whether q∗i = 0 is also easily in (strongly) P-time.

22 / 42

Qualitative decision problems for PPSs are in P-time

Theorem ([Kolmogorov-Sevastyanov’47,Harris’63])

For certain classes of strongly-connected PPSs, q∗i = 1 for all i iff the
spectral radius %(P ′(1)) for the moment matrix P ′(1) is ≤ 1,
and otherwise q∗i < 1 for all i .

Theorem ([E.-Yannakakis’05])

Given a PPS, x = P(x), deciding whether q∗i = 1 is in P-time.

(It is even in strongly-P-time ([Esparza-Gaiser-Kiefer’10]).)

Deciding whether q∗i = 0 is also easily in (strongly) P-time.

22 / 42

Qualitative decision problems for PPSs are in P-time

Theorem ([Kolmogorov-Sevastyanov’47,Harris’63])

For certain classes of strongly-connected PPSs, q∗i = 1 for all i iff the
spectral radius %(P ′(1)) for the moment matrix P ′(1) is ≤ 1,
and otherwise q∗i < 1 for all i .

Theorem ([E.-Yannakakis’05])

Given a PPS, x = P(x), deciding whether q∗i = 1 is in P-time.

(It is even in strongly-P-time ([Esparza-Gaiser-Kiefer’10]).)

Deciding whether q∗i = 0 is also easily in (strongly) P-time.

22 / 42

Algorithm for approximating the LFP q∗ for PPSs

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

2 On the resulting system of equations, run Newton’s method starting
from 0.

Theorem ([ESY’12])

Given a PPS x = P(x) with LFP 0 < q∗ < 1, if we apply Newton starting
at x(0) = 0, then

‖q∗ − x(4|P|+j)‖∞ ≤ 2−j

23 / 42

Algorithm for approximating the LFP q∗ for PPSs

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

2 On the resulting system of equations, run Newton’s method starting
from 0.

Theorem ([ESY’12])

Given a PPS x = P(x) with LFP 0 < q∗ < 1, if we apply Newton starting
at x(0) = 0, then

‖q∗ − x(4|P|+j)‖∞ ≤ 2−j

23 / 42

Algorithm with rounding

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

2 On the resulting system of equations, run Newton’s method starting
from 0.

3 After each iteration, round down to a multiple of 2−h

Theorem ([ESY’12])

If, after each Newton iteration, we round down to a multiple of 2−h where
h := 4|P|+ j + 2, then after h iterations ‖q∗ − x(h)‖∞ ≤ 2−j .

Thus, we obtain a P-time algorithm (in the standard Turing model) for
approximating q∗.

24 / 42

High level picture of proof

For a PPS, x = P(x), with LFP 0 < q∗ < 1, P ′(q∗) is a non-negative
square matrix, and (we show)

%(P ′(q∗)) < 1

So, (I −P ′(q∗)) is non-singular, and (I −P ′(q∗))−1 =
∑∞

i=0(P ′(q∗))i .

We can show the # of Newton iterations needed to get within ε > 0 is

≈≈ log ‖(I − P ′(q∗))−1‖∞ + log
1

ε

‖(I − P ′(q∗))−1‖∞ is tied to the distance |1− %(P ′(q∗))|,
which in turn is related to mini (1− q∗i), which we can lower bound.

Uses lots of Perron-Frobenius theory, among other things...

25 / 42

The quantitative decision problem for PPSs is
PosSLP-equivalent

Theorem ([E.-Yannakakis’07, E.-Stewart-Yannakakis’12])

Given a PPS, x = P(x), and a probability p, deciding whether q∗i < p is
PosSLP-equivalent.

Reduction to PosSLP exploits quadratic convergence with explicit &
“good” constants:

Theorem ([ESY’12])

Given a PPS x = P(x) with LFP 0 < q∗ < 1, if we apply Newton starting
at x(0) = 0, then

‖q∗ − x(32|P|+2j+2)‖∞ ≤ 2−2j

26 / 42

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

27 / 42

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

27 / 42

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

27 / 42

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

27 / 42

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

27 / 42

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

27 / 42

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Question

What is the maximum probability of

extinction, starting with one ?

xR =
1

3
x2

BxGxY +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx

2
R

xY = max{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Fact [E.-Yannakakis’05]

The maximum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).

28 / 42

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Question

What is the maximum probability of

extinction, starting with one ?

xR =
1

3
x2

BxGxY +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx

2
R

xY =

max{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Fact [E.-Yannakakis’05]

The maximum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).

28 / 42

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Question

What is the maximum probability of

extinction, starting with one ?

xR =
1

3
x2

BxGxY +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx

2
R

xY = max{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Fact [E.-Yannakakis’05]

The maximum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).

28 / 42

Branching Markov Decision Processes

{}

{ , }
1/4

3/4

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Question

What is the minimum probability of

extinction, starting with one ?

xR =
1

3
x2

BxGxY +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx

2
R

xY = min{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Fact [E.-Yannakakis’05]

The minimum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).

29 / 42

Maximum Probabilistic Polynomial Systems of Equations

A Maximum Probabilistic Polynomial System (maxPPS) is a system

xi = max{pi ,j(x) : j = 1, . . . ,mi} i = 1, . . . , n

of n equations in n variables, where each pi ,j(x) is a probabilistic
polynomial. We denote the entire system by:

x = P(x)

Minimum Probabilistic Polynomial Systems (minPPSs) are defined
similarly.

These are Bellman optimality equations for maximizing (minimizing)
extinction probabilities in a BMDP.

We use max/minPPS to refer to either a maxPPS or an minPPS.

30 / 42

Basic properties of max/minPPSs, x = P(x)

P : [0, 1]n → [0, 1]n defines a monotone map on [0, 1]n.

Proposition. [E.-Yannakakis’05]

Every max/minPPS, x = P(x) has a least fixed point, q∗ ∈ [0, 1]n.

q∗ = limk→∞ Pk(0).

q∗ is vector of optimal extinction probabilities for the BMDP.

Question

Can we compute the probabilities q∗ efficiently (in P-time)?

31 / 42

P-time approximation for BMDPs and max/minPPSs

Theorem ([E.-Stewart-Yannakakis,2012])

Given a max/minPPS, x = P(x), with LFP q∗ ∈ [0, 1]n, we can compute a
rational vector v ∈ [0, 1]n such that

‖v − q∗||∞ ≤ 2−j

in time polynomial in the encoding size |P| of the equations, and in j.

We establish this via a new Generalized Newton’s Method that uses linear
programming in each iteration.

32 / 42

Newton iteration as a first-order (Taylor) approximation

An iteration of Newton’s method on a PPS, applied on current vector
y ∈ Rn, solves the equation

Py(x) = x

where Py(x) ≡ P(y) + P ′(y)(x− y) is a linear (first-order Taylor)
approximation of P(x).

33 / 42

Generalised Newton’s method

Linearisation

Given a maxPPS

(P(x))i = max{pi ,j(x) : j = 1, . . . ,mi} i = 1, . . . , n

We define the linearisation, Py (x), by:

(Py(x))i = max{pi ,j(y) +∇pi ,j(y).(x− y) : j = 1, . . . ,mi} i = 1, . . . , n

Generalised Newton’s method: iteration applied at vector y

For a maxPPS,
minimize

∑
i xi subject to Py(x) ≤ x;

For a minPPS,
maximize

∑
i xi subject to Py(x) ≥ x;

These can both be phrased as linear programming problems. Their optimal
solution solves Py(x) = x, and yields one GNM iteration.

34 / 42

Generalised Newton’s method

Linearisation

Given a maxPPS

(P(x))i = max{pi ,j(x) : j = 1, . . . ,mi} i = 1, . . . , n

We define the linearisation, Py (x), by:

(Py(x))i = max{pi ,j(y) +∇pi ,j(y).(x− y) : j = 1, . . . ,mi} i = 1, . . . , n

Generalised Newton’s method: iteration applied at vector y

For a maxPPS,
minimize

∑
i xi subject to Py(x) ≤ x;

For a minPPS,
maximize

∑
i xi subject to Py(x) ≥ x;

These can both be phrased as linear programming problems. Their optimal
solution solves Py(x) = x, and yields one GNM iteration.

34 / 42

Algorithm for max/minPPSs

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.
(q∗i = 1 decidable in P-time using LP [E.-Yannakakis’06]: reduces to a
spectral radius optimization problem for non-negative square
matrices.)

2 On the resulting system of equations, run Generalized Newton’s
Method, starting from 0. After each iteration, round down to a
multiple of 2−h.
Each iteration of GNM can be computed in P-time by solving an LP.

Theorem [ESY’12]

Given a max/minPPS x = P(x) with LFP 0 < q∗ < 1, if we apply rounded
GNM starting at x(0) = 0, using h := 4|P|+ j + 1 bits of precision, then

‖q∗ − x(4|P|+j+1)‖∞ ≤ 2−j .
Thus, algorithm runs in time polynomial in |P| and j .

35 / 42

Algorithm for max/minPPSs

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.
(q∗i = 1 decidable in P-time using LP [E.-Yannakakis’06]: reduces to a
spectral radius optimization problem for non-negative square
matrices.)

2 On the resulting system of equations, run Generalized Newton’s
Method, starting from 0. After each iteration, round down to a
multiple of 2−h.
Each iteration of GNM can be computed in P-time by solving an LP.

Theorem [ESY’12]

Given a max/minPPS x = P(x) with LFP 0 < q∗ < 1, if we apply rounded
GNM starting at x(0) = 0, using h := 4|P|+ j + 1 bits of precision, then

‖q∗ − x(4|P|+j+1)‖∞ ≤ 2−j .
Thus, algorithm runs in time polynomial in |P| and j .

35 / 42

Algorithm for max/minPPSs

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.
(q∗i = 1 decidable in P-time using LP [E.-Yannakakis’06]: reduces to a
spectral radius optimization problem for non-negative square
matrices.)

2 On the resulting system of equations, run Generalized Newton’s
Method, starting from 0. After each iteration, round down to a
multiple of 2−h.
Each iteration of GNM can be computed in P-time by solving an LP.

Theorem [ESY’12]

Given a max/minPPS x = P(x) with LFP 0 < q∗ < 1, if we apply rounded
GNM starting at x(0) = 0, using h := 4|P|+ j + 1 bits of precision, then

‖q∗ − x(4|P|+j+1)‖∞ ≤ 2−j .
Thus, algorithm runs in time polynomial in |P| and j .

35 / 42

Proof outline: some key lemmas

(1− q∗) is the vector of pessimal survival probabilities.

Lemma

If q∗ − x(k) ≤ λ(1− q∗) for some λ > 0, then q∗ − x(k+1) ≤ λ
2 (1− q∗).

Lemma

For any Max(Min) PPS with LFP q∗, such that 0 < q∗ < 1, for any i ,
q∗i ≤ 1− 2−4|P|.

36 / 42

Branching Simple Stochastic Games

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

{}

{ , }

Types belonging to min:

Types belonging to max:

37 / 42

Branching Simple Stochastic Games

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

{}

{ , } Types belonging to min:

Types belonging to max:

37 / 42

Branching Simple Stochastic Games

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

{}

{ , }

Question

What is the value of extinction, starting

with one ?

xR =
1

3
x2

BxGxY +
1

2
xBxR +

1

6
xB = min{x2

R , 1}
xG = xBx

2
R

xY = max{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Fact [E.-Yannakakis’05]

The extinction values are the LFP,
q∗ ∈ [0, 1]3 of x̄ = P(x̄).

38 / 42

Branching Simple Stochastic Games

1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

{}

{ , }

Question

What is the value of extinction, starting

with one ?

xR =
1

3
x2

BxGxY +
1

2
xBxR +

1

6
xB = min{x2

R , 1}
xG = xBx

2
R

xY = max{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Fact [E.-Yannakakis’05]

The extinction values are the LFP,
q∗ ∈ [0, 1]3 of x̄ = P(x̄).

38 / 42

Qualitative and Quantitative problems for BSSGs

Theorem ([E.-Yannakakis’05])

For any BSSG, both players have static positional optimal strategies for
maximizing (minimizing) extinction probability.

A static positional strategy is one that, for every type belonging to the
player, always deterministically chooses the same single rule.
(i.e., it is deterministic, memoryless, and “context-oblivious”.)

Theorem ([E.-Yannakakis’06])

Given a BSSG, deciding if the extinction value is q∗i = 1 is in NP ∩ coNP,
& is at least as hard as computing the exact value for a finite-state SSG.

Theorem ([ESY’12])

Given a BSSG, and given ε > 0, we can compute a vector v ∈ [0, 1]n, such
that ‖v − q∗‖∞ ≤ ε, in FNP (and in fact in PLS).

39 / 42

Conclusion

We have established P-time algorithms for a number of fundamental
analysis problems for Multi-type Branching Processes and Branching
MDPs.

These algorithms also yield FNP (and in fact PLS) complexity upper
bounds for approximating the value of Branching Simple Stochastic
Games with the same objectives.

Can we use GNM to solve other classes of {+, ∗,max}-equations??

40 / 42

Open problems

Question: Can we obtain better complexity bounds for PosSLP?

Here is a very basic approach:
Given a {+,−, ∗}-circuit, C , guess a monotone {+, ∗}-circuit, C ′, as a
“witness of positivity”, and verify C − C ′ = 0 in co-RP.
(Checking equality to 0 is ACIT-equivalent ([ABKM’06]).)

For a ∈ N, let τ(a) denote size of smallest {+, ∗,−}-circuit expressing a.
Let τ+(a) denote size of smallest monotone {+, ∗}-circuit expressing a.

Conjecture. “ τ vs. τ+-conjecture ” (“this does not work”)

There exists a family of positive integers, 〈an〉n∈N, with τ(an) ∈ O(n), but
such that for some fixed c > 0:

τ+(an) ∈ 2Ω(nc)

Remark: [Valiant’79] proved an exponential lower bound for monotone
polynomials. (This does not imply lower bounds in the integer setting.)

Current state of knowledge for integers is abismal. ([Jindal-Saranurak’12]).

41 / 42

Open problems

Question: Can we obtain better complexity bounds for PosSLP?

Here is a very basic approach:
Given a {+,−, ∗}-circuit, C , guess a monotone {+, ∗}-circuit, C ′, as a
“witness of positivity”, and verify C − C ′ = 0 in co-RP.
(Checking equality to 0 is ACIT-equivalent ([ABKM’06]).)

For a ∈ N, let τ(a) denote size of smallest {+, ∗,−}-circuit expressing a.
Let τ+(a) denote size of smallest monotone {+, ∗}-circuit expressing a.

Conjecture. “ τ vs. τ+-conjecture ” (“this does not work”)

There exists a family of positive integers, 〈an〉n∈N, with τ(an) ∈ O(n), but
such that for some fixed c > 0:

τ+(an) ∈ 2Ω(nc)

Remark: [Valiant’79] proved an exponential lower bound for monotone
polynomials. (This does not imply lower bounds in the integer setting.)

Current state of knowledge for integers is abismal. ([Jindal-Saranurak’12]).

41 / 42

A better approach

Definition: call a circuit, C , quasi-monotone if it consists of some
squared, {+, ∗,−}-subcircuits, (Ci)

2, i = 1, . . . , k , which are inputs to a
monotone {+, ∗}-circuit, C ′, whose output is the output of C .
(Note: these circuits generalize both monotone circuits and S.O.S..)

Better approach: Given a {+,−, ∗}-circuit, C , guess a pair of
quasi-monotone circuits C ′,C ′′ as a “witness of positivity” for C , & verify
the equality ((C ′′ + 1) ∗ C − C ′) = 0 in co-RP.

Here is a VERY optimistic conjecture:

Conjecture: “ very effective Positivestellensatz for integers ”

This works: there is a polynomial, p(·), such that for any a ∈ N with
τ(a) = n, there exist quasi-montone circuits C ′a & C ′′a , with
size(C ′a) ≤ p(n) & size(C ′′a) ≤ p(n), such that:

a =
C ′a

C ′′a + 1
.

This would of course imply PosSLP ∈MA.
42 / 42

