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Fixed Point Computation

Brouwer's fixed point theorem

Every continuous function F : D — D from a compact convex set D C R™
to itself has a fixed point, i.e., 3 x* € D such that F(x*) = x*.

Computation Task: “Given” F(x), compute/approximate a fixed point.

Two different notions of e-approximation of a fixed point:

@ (Almost) Given F: D — D, compute x’ € DN Q™ such that:
IF(x") = xfloc <€
@ (Near) Given F : D — D, compute x’ € D N Q™ s.t. there exists
x* € D where F(x*) = x* and:

Ix* = X[loo < €

These two notions can have rather different complexity
characteristics. In this talk, we are interested in Near.
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The complexity class and

FIXP ( FIXP, ) is a class of real-valued (respectively, discrete) total search
problems:

@ Input: algebraic circuit, a.k.a., straight-line program, using gates
{ +, %, max } and rational constants, having n input variables
x = (x1,.--,X%pn), and n output gates, such that the circuit represents
a continuous function F : [0,1]” — [0, 1]".

(We are also given an error parameter € > 0 as input for FIXP,.)

@ Output: Compute a (e-near approximate) fixed point of F.

Close these search problems under suitable (P-time) reductions.

The resulting class is called FIXP (respectively, FIXP,).




(near approximation of ) Nash Equilibrium is
FIXP,)-complete

Theorem ( )

Computing a (e-near approximation of) a Nash Equilibrium for a game I’

with 3 or more players, given I' (and given € > 0), is FIXP-complete
(respectively, FIXP ,-complete).




PPAD (Papadimitriou (1992)): given a succinctly represented directed
graph with in-degree < 1 & out-degree < 1, and given a source node
(indegree = 0), find some other source or sink node. (Closing this search
problem under P-time reductions yields PPAD.)

Let linear-FIXP denote the subclass of FIXP where the algebraic circuits
are restricted to gates {4+, max} and multiplication by rational constants.

Theorem (|E.-Yannakakis'07])

The following are all P-time equivalent:

@ PPAD

@ linear-FIXP

© exact fixed point problem for “polynomial piecewise-linear functions”.
Q (cf. [Scarf'67]) e-almost-fixed point computation for “polynomially

computable” and “polynomially continuous” functions, F;(x), given
instance |, and € > 0.

@ [Mehta, 2014]: 2-variable-linear-FIXP




By Scarf's algorithm, computing a e-NE is in PPAD. J

By the Lemke-Howson algorithm, computing a exact NE for 2-player
games is in PPAD. }

© |[Daskalakis-Goldberg-Papadimitriou’06], [Chen-Deng’'06]:
Computing a e-NE for a 3 player game is PPAD-complete.
@ [Chen-Deng’06]:
Computing an exact (rational) NE for a 2 player game is
PPAD-complete.

Note: Scarf's algorithm does not in general yield a point e-near a fixed
point.




A “hard” problem

[Allender, Biirgisser, Kjeldgaard-Pedersen, Miltersen,20006]

PosSLP: Given an arithmetic circuit (Straight Line
Program) with gates {+, %, —}, and with input 1, decide
whether the output value is positive.

PosSLP captures the power of P-time in the unit-cost
arithmetic RAM model of computation.

v

Theorem [ABKM'06]

ppPPFP

PosSLP is decidable in the Counting Hierarchy: P”

(Nothing better is known.)

Yy
7 /42




PosSLP <, near approximation of a 3-player NE

Theorem ([E.-Yannakakis'07])

Any non-trivial near approximation of an NE is PosSLP-hard.

More precisely: for every fixed € > 0,

PosSLP is P-time reducible to the following problem:

Given a 3-player normal form game, I', with the promise that:

© [ has a unique NE, x*, which is fully mixed, and
@ In x*, the probability that player 1 plays pure strategy « is either:

(a.) <e , or (b.) > (1—¢)

Decide which of (a.) or (b.) is the case.




What makes a fixed point problem “hard” or “easy” 7?7

Note: These problems are in general not NP-hard,
because existence of a solution (fixed point) is guaranteed.
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What makes a fixed point problem “hard” or “easy” 7?7

Note: These problems are in general not NP-hard,
because existence of a solution (fixed point) is guaranteed.

o PPAD-hardness captures a combinatorial difficulty for
computing, or even almost-approximating, a fixed
point.

o But there can also be an additional numerical,
difficulty for near-approximating a fixed point, which is
not captured by PPAD-hardness.

It is captured by PosSLP-hardness.

y

These two kinds of difficulties are somewhat “orthogonal”.

FIXP ,-complete problems have both of these difficulties.




Rich landscape within FIXP:

Numerical Difficulty

PosSIL.P—-hard

*

approx—Recursive Markov chains
exact—Branching processes

exact—Branching—MDPs

exact—Branch—simple—stoc—game

approx—Unique—nonlinear
Brouwer fixed point

??approx—Unique—3—player—Nash??

exact—concurrent—stocastic—game

exact—Shapley—stocastic—game

"/épprox—3—player—N as\fi\\

. approx—nonlin.—Arrow—Debreu

market equilibrium /

1
|

‘1 approx—nonlinear ’

\

Brouwer fixed point

FIXPa—complete

PIT / ACIT

exact—linear—Arrow—Debreu
market equilibrium

approx—Branching—MDPs
approx—Branching—process

exact—MDPs

-approx—Branch—simple—stoc—game

approx—Shapley—stochastic—game

exact—Unique—piecewise—linear
Brouwer fixed point

??exact—Unique—2—player—Nash??
exact—Condon—simple—stoc—game

exact—mean—payoff—game

parity—game

exact—2—player—Nash

exact—Arrow—Debreu
market equilibrium

with SPLC utilities

exact—piecewise—linear
Brouwer fixed point

"Almost"—

nonlinear—Brouwer fixed point

"Almost"-(epsilon)—Nash
for >= 3 players

P.G.—hard

PPAD-hard

Combinatorial Difficulty
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For the rest of this talk, our focus will be on fixed point
problems for monotone algebraically-defined functions.

(These arise in many applications, as we shall see.)




Multi-type Branching Processes
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Multi-type Branching Procg
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Multi-type Branching Procg
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We get nonlinear fixed point equations:

% = P(%).
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Multi-type Branching Procg
Question: What is the probability of
eventual extinction, starting with one

. 000 @ ©-

1, 1 1
1/2 {. .} Xp = § BXGXR §XBXR 6
\ 1, 3
= T
Xc = XpXh

v 1@ @

We get nonlinear fixed point equations:
X = P(x).

The extinction probabilities are the least

‘ { . ‘ .} fixed point, g* € [0, 1]°, of X = P(X).




Multi-type Branching Procg
Question: What is the probability of
eventual extinction, starting with one

. 000 @ ©-

1, 1 1
1/2 {. .} Xp = § BXGXR §XBXR 6
\ 1, 3
= T
Xc = XpXh
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We get nonlinear fixed point equations:
X = P(x).

The extinction probabilities are the least

‘ { . ‘ .} fixed point, g* € [0, 1]°, of X = P(X).

g% = 0.276; g% = 0.769; g% = 0.059.

v
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Probabilistic Polynomial Systems of Equations

1, 1 L1
— XGX —XRX —
3BGR 2BR 6

is a Probabilistic Polynomial: the coefficients are positive and sum to 1.

v

A Probabilistic Polynomial System (PPS), is a system of n equations
x = P(x)

in n variables where each P;(x) is a probabilistic polynomial.

PPS with n variables, and vice-versa.

Every multi-type Branching Process (BP) with n types corresponds to a }




Monotone Polynomial Systems of Equations

5X[23XGXR + 2xgXp + 6

iIs @ Monotone Polynomial: the coefficients are positive.

A Monotone Polynomial System (MPS), is a system of n equations

x = P(x)

in n variables where each P;j(x) is a monotone polynomial.




Basic properties of PPSs and MPSs

For a PPS, P :[0,1]” — [0, 1]” defines a monotone map on [0, 1]".
For a MPS, P : [0, 4+00]” — [0, +0oc]" defines monotone map on [0, —|—oo]”.J

@ A PPS, x = P(x) has a least fixed point (LFP), g* € [0, 1]".
(g* can be irrational.)

@ A MPS x = P(x) has a LFP, g* € [0, +00]".
(The MPS is called feasible if g* € RL,.)

o g = limy_,o P¥(0), for both PPSs and MPSs.

@ For a PPS, g* is the vector of extinction probabilities for the

corresponding BP. (For a MPS, q* is the partition function of the
corresponding WCFG.)

v

Question: Can we compute g efficiently (in P-time)? J




Newton's method

Newton's method

Seeking a solution to F(x) = 0, we start at a guess x(®), and iterate:

slk+1) . (k) _ (/:’(x(k)))—l /:(x(k))

Here F’(x), is the Jacobian matrix:

- OF OF1 T
8X1 e 8Xn
F'(x) = o
oF, OF,
L Oxy ° " Oxp -

For PPSs, F(x) = (P(x) — x); Newton iteration looks like this:

x(KF1) = x4 (1 — P/(xFIN) L (P(x(K)) — x(K))

where P’(x) is the Jacobian of P(x).




Newton on PPSs, and feasible MPSs

We can decompose x = P(x) into its strongly connected components
(SCCs), based on variable dependencies, and eliminate “0" variables.

Theorem [E.-Yannakakis'05]

Decomposed Newton’'s method converges monotonically to the LFP g™,
starting from x(®) := 0, for PPSs, and more generally for all feasible MPSs.

But...

@ In [E.-Yannakakis'05,'09], we gave no upper bounds on # of
iterations needed for PPSs or MPSs.

@ We proved PosSLP-hardness for any nontrivial approximation of the
LFP g* € [0, 1]" of MPSs corresponding to Recursive Markov Chains.
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A “hard” problem

[Allender, Biirgisser, Kjeldgaard-Pedersen, Miltersen,20006]

PosSLP: Given an arithmetic circuit (Straight Line
Program) with gates {+, %, —}, and with input 1, decide
whether the output value is positive.

PosSLP captures the power of P-time in the unit-cost
arithmetic RAM model of computation.

v

Theorem [ABKM'06]

ppPPFP

PosSLP is decidable in the Counting Hierarchy: P”

(Nothing better is known.)

Yy
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Recursive Markov Chains
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Recursive Markov Chains

4 )

A A 1
# 1

entry

exitq

Hlw
W] (=

WIN

exitz

I

N\ J

What is the probability of terminating at exit», starting at entry?
1 1 1

Xy = 2 + §x22 + §x1x2 (Note: coefficients sum to > 1)
X1 = §2—|—§XX —I—EXX —l—lxz
1 = 2717 2 X1 4 1X2 272

Fact: ([EY'05]) The Least Fixed Point, g* € [0, 1]", gives the termination
probabilities. }

Kousha Etessami (U. Edinburgh) probability, recursion, games, fixed points Horizons in TCS 2/3



approximation for Recursive Markov chains

Q [EY'07]: Any non-trivial approximation of the termination
probabilities q* of an RMC is PosSLP-hard:

Deciding whether (a.) gf =1 or (b.) qi < €, is PosSLP-hard.

Q [ESY'12]: e-approximation of q* is in FIXP,.

(It can be reduced to approximating a unique Brouwer fixed point,
and to approximating an (actual) Nash equilibrium of a game.)

Kousha Etessami (U. Edinburgh) probability, recursion, games, fixed points Horizons in TCS 3/3



What is Newton’'s worst case behavior for PPSs and MPSs?

|[Esparza,Kiefer,Luttenberger,’07,'10] studied Newton's method on MPSs
further:

@ Gave bad examples of PPSs, x = P(x), where g* = 1, requiring
exponentially many iterations, as a function of the encoding size |P|
of the equations, to converge to within additive error < 1/2.

@ For strongly-connected equation systems they gave an exponential
upper bound in |P|.

@ But they gave no upper bounds for arbitrary PPSs or MPSs in terms
of |P|.

More recently, in [Stewart-E.-Yannakakis'13], we have established a

matching exponential upper bound in |P| for arbitrary PPSs and feasible
MPSs.
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P-time approximation for PPSs

Theorem ( )

Given a PPS, x = P(x), with LFP q* € [0, 1]", we can compute a rational
vector v € [0, 1]" such that

v —a*fle <27

in time polynomial in both the encoding size |P| of the equations
and in j (the number of “bits of precision”).

We use Newton's method..... but how?




Qualitative decision problems for PPSs are in P-time

Theorem ( )

For certain classes of strongly-connected PPSs, g = 1 for all i iff the
spectral radius o(P'(1)) for the moment matrix P'(1) is <1,
and otherwise q: < 1 for all i.

Theorem ( )
Given a PPS, x = P(x), deciding whether q* =1 is in P-time.
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Qualitative decision problems for PPSs are in P-time

Theorem ( )

For certain classes of strongly-connected PPSs, g = 1 for all i iff the
spectral radius o(P'(1)) for the moment matrix P'(1) is <1,
and otherwise q: < 1 for all i.

Theorem ( )
Given a PPS, x = P(x), deciding whether q* =1 is in P-time.

(It is even in strongly-P-time ([Esparza-Gaiser-Kiefer'10]).)

Deciding whether q* = 0 is also easily in (strongly) P-time.




Algorithm for approximating the LFP for PPSs

© Find and remove all variables x; such that g =0 or g7 = 1.

@ On the resulting system of equations, run Newton's method starting
from 0.




Algorithm for approximating the LFP for PPSs

© Find and remove all variables x; such that g =0 or g7 = 1.

@ On the resulting system of equations, run Newton's method starting
from 0.

Theorem ( )

Given a PPS x = P(x) with LFP 0 < q* < 1, if we apply Newton starting
at x(0) = 0 then
lq* — x@PIH)| o <27




Algorithm

@ Find and remove all variables x; such that g© =0 or g7 = 1.
@ On the resulting system of equations, run Newton's method starting

from 0.
© After each iteration, round down to a multiple of 2="

If, after each Newton iteration, we round down to a multiple of 2=h where
h:= 4|P| + j + 2, then after h iterations ||q* — x(N | <277,

Thus, we obtain a P-time algorithm (in the standard Turing model) for

approximating g*.
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High level picture of proof

@ For a PPS, x = P(x), with LFP 0 < q* < 1, P'(g") is a non-negative
square matrix, and (we show)

o(P'(¢")) <1
o So, (I — P'(g*)) is non-singular, and (I — P'(g*))~! = >_22,(P'(g*))".
@ We can show the # of Newton iterations needed to get within € > 0 is

1

€

~= log ||(I — P'(q*)) oo + log

o [[(I — P'(g*)) !||o is tied to the distance |1 — o(P’(g*))],
which in turn is related to min;(1 — g7), which we can lower bound.

@ Uses lots of Perron-Frobenius theory, among other things...
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The quantitative problem for PPSs is
PosSLP-equivalent

Given a PPS, x = P(x), and a probability p, deciding whether qF < p is
PosSL P-equivalent.

Reduction to PosSLP exploits quadratic convergence with explicit &
“good” constants:

Theorem ( )

Given a PPS x = P(x) with LFP 0 < q* < 1, if we apply Newton starting
at x(0) = 0, then

*

Hq . x(32‘P|+2j+2)Hoo < 2—21'

y
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Branching Markov Decision Processes
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Branching Markov Decisior
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Branching Markov Decisior
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Branching Markov Decisior

(9@ -0}
(@ @}

o
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Question

What is the maximum probability of

extinction, starting with one . ?
1, 1 1

XR = 3XpXGXY T 5XBXR T 6
1, 3

TRy

Xc = XX

xy = max{x3,xr}

We get fixed point equations, X = P()'().J

The maximum extinction probabilities
are the least fixed point, q* € [0, 1]3, of
x = P(x).




Branching Markov Decisior

Question

What is the minimum probability of
(0060} extinction, starting with one . ?
' @) 1, 1 1
XR — =—XpXGXy — XBXR —
\ 3°°F 2 6
1, 3
XB = — —
(9.0 4R g
o % = xoxl
{} i [ U2
xy = min{xg, Xg}
F{ .00 We get fixed point equations, X = P(X).
(@.0)
©< The minimum extinction probabilities
(@) are the least fixed point, q* € [0, 1]3, of
X = P(x).




Maximum Probabilistic Polynomial Systems of Equations

A Maximum Probabilistic Polynomial System (maxPPS) is a system
X; = max{p;(x):j=1,...,m} i=1,...,n

of n equations in n variables, where each p; j(x) is a probabilistic
polynomial. We denote the entire system by:

x = P(x)
Minimum Probabilistic Polynomial Systems (minPPSs) are defined
similarly.

These are Bellman optimality equations for maximizing (minimizing)
extinction probabilities in a BMDP.

We use max/minPPS to refer to either a maxPPS or an minPPS.




Basic properties of max/minPPSs, x = P(x)

P :]0,1]" — [0,1]" defines a monotone map on [0, 1]". ]

o Every max/minPPS, x = P(x) has a least fixed point, g* € [0, 1]".
o g = limk_00 PX(0).

@ q* Is vector of optimal extinction probabilities for the BMDP.

v

Can we compute the probabilities g* efficiently (in P-time)? l




P-time approximation for BMDPs and max/minPPSs

Theorem ( )

Given a max/minPPS, x = P(x), with LFP q* € [0,1]", we can compute a
rational vector v € [0, 1]" such that

v —a*||os < 27

in time polynomial in the encoding size |P| of the equations, and in j.

We establish this via a new Generalized Newton’'s Method that uses linear
programming in each iteration.




Newton iteration as a first-order (Taylor) approximation

An iteration of Newton's method on a PPS, applied on current vector
y € R", solves the equation

PY(x) = x

where PY(x) = P(y) + P'(y)(x — y) is a linear (first-order Taylor)
approximation of P(x).




Generalised Newton’'s method

| inearisation

Given a maxPPS

(P(x))i = max{pij(x):j=1,...,m;} i=1,...,n

We define the linearisation, PY(x), by:

(PY(x))i = max{pi(y) +Vpijly)(x—y):j=1,....mi}  i=1...,n

y




Generalised Newton’'s method

| inearisation

Given a maxPPS

(P(x))i = max{pij(x):j=1,...,m;} i=1,...,n

We define the linearisation, PY(x), by:

(PY(x))i = max{pij(y) + Vpij(y)-(x=y):j=1,....mi}  i=1,...,n

Generalised Newton's method: iteration applied at vector y
For a maxPPS,

For a minPPS,

minimize ) . x; subject to PY(x) < x;

maximize ) . x; subject to PY(x) > x;

These can both be phrased as linear programming problems. Their optimal
solution solves PY(x) = x, and yields one GNM iteration.

v
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Algorithm for max/minPPSs

© Find and remove all variables x; such that g© =0 or g = 1.
(g7 = 1 decidable in P-time using LP [E.-Yannakakis'06]: reduces to a
spectral radius optimization problem for non-negative square
matrices. )
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multiple of 27"

Each iteration of GNM can be computed in P-time by solving an LP. )




Algorithm for max/minPPSs

© Find and remove all variables x; such that g© =0 or g = 1.
(g7 = 1 decidable in P-time using LP [E.-Yannakakis'06]: reduces to a
spectral radius optimization problem for non-negative square
matrices.)

@ On the resulting system of equations, run Generalized Newton's
Method, starting from 0. After each iteration, round down to a
multiple of 27"

Each iteration of GNM can be computed in P-time by solving an LP. )

Theorem [ESY'12]

Given a max/minPPS x = P(x) with LFP 0 < g* < 1, if we apply rounded

GNM starting at x(9) = 0, using h := 4|P| 4 j + 1 bits of precision, then
lq* — x(4|P|+J'+1)HOO < 2,

Thus, algorithm runs in time polynomial in |P| and .

4
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Proof outline: some key lemmas

(1 — q*) is the vector of pessimal survival probabilities.

If q* — x9) < \(1 — q*) for some X > 0, then q* — x(kt1) < 2(1 — q*).

For any Max(Min) PPS with LFP q*, such that 0 < q* < 1, for any i,
gr <1-—274PI




Branching Simple Stochastic Games

1/3 {.’.’.’Q}
gi{o,o}

16~ {}

'<{.,.}
U




Branching Simple Stochastic Games

1/3 {.’.’.’Q}
Qi{om

16~ {}

T N 3 Types belonging to min: ‘

Types belonging to max: Q




Branching Simple Stochastic Games
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Branching Simple Stochastic Games
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Question
What is the value of extinction, starting

with one . 7

1, 1 1
XR = 3 BXGXy + §XBXR + 6
xg = min{x3,1}
Xc = XBXh
xy = max{x3,xr}

We get fixed point equations, X = P(X).

The extinction values are the LFP,
q* € [0,1]3 of x = P(x).




Qualitative and Quantitative problems for BSSGs

Theorem ([E.-Yannakakis'05])

For any BSSG, both players have static positional optimal strategies for
maximizing (minimizing) extinction probability.

A static positional strategy is one that, for every type belonging to the
player, always deterministically chooses the same single rule.
(i.e., it is deterministic, memoryless, and “context-oblivious”.)

Theorem ([E.-Yannakakis'06])

Given a BSSG, deciding if the extinction value is q© = 1 is in NP N coNP,
& is at least as hard as computing the exact value for a finite-state SSG.

Theorem (|[ESY'12])

Given a BSSG, and given e > 0, we can compute a vector v € [0, 1]", such
that |[v — q*||cc < €, in FNP (and in fact in PLS).




Conclusion

@ We have established P-time algorithms for a number of fundamental

analysis problems for Multi-type Branching Processes and Branching
MDPs.

@ These algorithms also yield FNP (and in fact PLS) complexity upper
bounds for approximating the value of Branching Simple Stochastic
Games with the same objectives.

@ Can we use GNM to solve other classes of {+, ¥, max}-equations??




Open problems

Question: Can we obtain better complexity bounds for PosSLP?




Open problems

Question: Can we obtain better complexity bounds for PosSLP?
Here is a very basic approach:

Given a {+, —, x}-circuit, C, guess a monotone {+, x}-circuit, C’, as a
“witness of positivity”, and verify C — C’ = 0 in co-RP.

(Checking equality to 0 is ACIT-equivalent ([ABKM'06]).)

For a € N, let 7(a) denote size of smallest {+, *, — }-circuit expressing a.
Let 7, (a) denote size of smallest monotone {4, *x}-circuit expressing a.

Conjecture. “ " ("“this does not work’)

There exists a family of positive integers, (a,)nen, with 7(a,) € O(n), but
such that for some fixed ¢ > 0: v (ay) € H(n)

Remark: [Valiant'79] proved an exponential lower bound for monotone
polynomials. (This does not imply lower bounds in the integer setting.)

Current state of knowledge for integers is abismal. ([Jindal-Saranurak’'12]).
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A better approach

Definition: call a circuit, C, quasi-monotone if it consists of some

squared, {4, *, — }-subcircuits, (C;)?, i = 1,..., k, which are inputs to a

monotone {+, x}-circuit, C’, whose output is the output of C.
(Note: these circuits generalize both monotone circuits and S.0.S..)

Better approach: Given a {4, —, x}-circuit, C, guess a pair of
quasi-monotone circuits C’, C” as a “witness of positivity” for C, & verify
the equality ((C”" +1)* C — C’) =0 in co-RP.

Here is a VERY optimistic conjecture:

This works: there is a polynomial, p(-), such that for any a € N with
7(a) = n, there exist quasi-montone circuits C! & C, with
size(C.) < p(n) & size(C.) < p(n), such that:

a—= d

41
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This would of course imply PosSLP € MA.
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