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Abstract. We introduce Recursive Markov Decision Processes (RMDPs) and Recur-
sive Simple Stochastic Games (RSSGs), and study the decidability and complexity of
algorithms for their analysis and verification. These models extend Recursive Markov
Chains (RMCs), introduced in [EY05a,EY05b] as a natural model for verification of
probabilistic procedural programs and related systems involving both recursion and
probabilistic behavior. RMCs define a class of denumerable Markov chains with a rich
theory generalizing that of stochastic context-free grammars and multi-type branch-
ing processes, and they are also intimately related to probabilistic pushdown systems.
RMDPs & RSSGs extend RMCs with one controller or two adversarial players, re-
spectively. Such extensions are useful for modeling nondeterministic and concurrent
behavior, as well as modeling a system’s interactions with an environment.
We provide a number of upper and lower bounds for deciding, given an RMDP (or
RSSG) A and probability p, whether player 1 has a strategy to force termination at
a desired exit with probability at least p. We also address “qualitative” termination
questions, where p = 1, and model checking questions.

1 Introduction

Markov Decision Processes (MDPs) are a fundamental formalism for modeling control op-
timization problems in sequential stochastic environments. They have found widespread
applications in many fields (see, e.g., [Put94,FS02]). They have also been studied exten-
sively in recent years for verification of probabilistic systems. Stochastic games generalize
MDPs with multiple players, and in their 2-player zero-sum version are also known as Com-
petitive MDPs (see [FV97]). Simple Stochastic Games (SSGs) [Con92] are a special class of
2-player zero-sum stochastic games, where the goal of one player is to reach a given terminal
state, while the other aims to avoid it. SSGs generalize parity games and other important
games for model checking, and the termination problem for finite SSGs already presents a
well-known algorithmic challenge: it is in NP ∩ coNP, but no P-time algorithm is known
(see, e.g., [Con92,EJ91,ZP96]).

Recursive Markov Chains (RMCs) were introduced and studied in our earlier work
([EY05a,EY05b]) as a natural model of probabilistic procedural programs and systems ex-
hibiting both recursion and probabilistic behavior. There we provided strong upper and
lower bounds for both reachability and ω-regular model checking questions for RMCs. In-
formally, a RMC consists of a (finite) collection of finite state Markov chains that can call
each other in a potentially recursive manner. RMCs define a class of denumerable Markov
chains with a rich theory generalizing that of Stochastic Context-Free Grammars (SCFGs)
(see, e.g., [MS99]) and Multi-Type Branching Processes ([Har63]), both of which correspond
to 1-exit RMCs: RMCs in which each component Markov chain has 1 terminating exit state



where it can return control back to a component that called it. RMCs are also intimately
related to probabilistic Pushdown Systems (pPDSs), which have also been studied recently
in connection to verification of probabilistic programs ([EKM04,BKS05]).

In the context of verification, it is quite natural and useful to extend RMCs with
nondeterministic choice, where some states are controlled by the system while others ex-
hibit probabilistic behavior. Indeed, finite MDPs have been studied extensively for veri-
fication of probabilistic systems, and optimized verification tools already exist for them
(see, e.g.,[CY98,CY95,Var85,HSP83,BK98,dAKN+00], and see [Kwi03] for a recent survey).
SSGs extend MDPs further with a second (adversarial) player. Like non-probabilistic game
graphs, they can also be used to model and analyze the interactions between a controlled
(but probabilistic) system and an (adversarial) environment.

In this paper we focus on precisely such extensions of RMCs: we introduce Recursive
Markov Decision Processes (RMDPs) and Recursive Simple Stochastic Games (RSSGs),
which define natural classes of countable MDPs and SSGs, respectively. In the stochastic
dynamic programming literature, MDPs are studied under many different reward criteria,
such as average reward, discounted reward, etc. Our focus here is on verification of prob-
abilistic systems, and for this purpose we study RMDPs and RSSGs under reachability
criteria which are central to any analysis like model checking. In particular, we ask the
quantitative termination question: given an RMDP (or RSSG) A and a probability p, is
there a strategy for the controller where (regardless of the strategy used by the adversary,
in the case of RSSGs) the process terminates at a desired exit with probability at least p
(or at most p)? We also ask the qualitative question of whether the controller has a strategy
to force termination with probability 1. Lastly, we address model checking questions.

Our positive results apply primarily to 1-exit RMDPs and 1-exit RSSGs, which cor-
respond to controlled and game extensions, respectively, of both SCFGs and Multi-Type
Branching Processes (MT-BPs). Branching processes are an important class of stochastic
processes, dating back to the early work of Galton and Watson in the 19th century (they
studied the single-type case, a subcase of 1-exit 1-entry 1-component RMCs), and continuing
in the 20th century in the work of Kolmogorov, Sevastianov, Harris and others for MT-BPs
and beyond (see, e.g., [Har63]). These have been used to model a wide variety of applica-
tions, including in population genetics ([Jag75]), nuclear chain reactions ([EU48]), and RNA
modeling in computational biology (based on SCFGs) ([SBH+94]). SCFGs are also funda-
mental models in statistical natural language processing (see, e.g., [MS99]). 1-exit RMDPs
correspond to a controlled version of MT-BPs (and SCFGs): the reproduction of some types
can be controlled, while the dynamics of other types is probabilistic as in ordinary MT-BPs.
This model would also be suitable for analysis of evolutionary dynamics under worst-case
(or best-case) assumptions for some types and probabilistic assumptions for others. Such
controlled MT-BPs can be readily translated to 1-entry, 1-exit RMDPs, where the number
of components is bounded by the number of types (a reverse translation is possible, but
will not in general preserve the number of components, i.e., 1-entry, 1-exit RMDPS with a
bounded number of components are more general than MT-BPs with a bounded number of
types). Thus, our results on 1-exit RMDPs apply, among other things, to such controlled
MT-BPs; these do not appear to have been studied in the rich Branching Process literature.
Indeed, even some basic algorithmic problems about SCFGs and MT-BTs had received lim-
ited attention prior to our work in [EY05a,EY05b].
We now outline our main results in this paper:

– We first show that the Least Fixed Point solution of certain systems of nonlinear
min/max equations capture optimal termination probabilities for 1-exit RMDPs & 1-exit



RSSGs. These equations generalize linear Bellman’s equations for finite MDPs (see, e.g.,
[Put94,FV97]) and they also generalize the monotone systems of nonlinear polynomial
equations for RMCs that we studied in ([EY05a]).

– We show a quite nontrivial Stackless & Memoryless (S&M) Determinacy result for 1-exit
RSSG termination, whereas we observe this fails badly even for 2-exit RMDPs (namely,
we observe that optimal strategies, of any kind, do not always exist for 2-exit RMDP
termination, and one must make do with ǫ-optimal strategies).

– Using the equations, we show that quantitative termination for 1-exit RMDPs and 1-exit
RSSGs is decidable in PSPACE. This matches our PSPACE upper bound for the special
case of 1-exit RMCs in [EY05a] and, as shown there, it can not be improved without
resolving a long standing open problem in the complexity of numerical computation,
namely the square-root sum problem.

– Using S&M-determinacy, we show the qualitative termination problem (where p = 1) for
1-exit RMDPs can be decided in NP, and for 1-exit RSSGs can be decided in ΣP

2 ∩ΠP
2 .

– Lastly, and unfortunately, we show that for multi-exit RMDPs and RSSGs the situation
is far worse. Even qualitative termination for general RMDPs is undecidable, even when
the number of exits in bounded by a fixed constant. And it is even undecidable, for
any fixed ǫ > 0, to distinguish whether the optimal value is 1 or is less than ǫ. So
the optimal probabilities can not even be approximated in a strong sense, with any
amount of resources. Furthermore, we show, also unfortunately, that the undecidability
results apply already to qualitative model checking of 1-exit RMDPs, against regular, ω-
regular, or LTL properties. Our undecidability results are derived from classic and recent
undecidability results for Probabilistic Finite Automata (PFA) [Paz71,CL89,BC03]. We
show that PFAs can be viewed as essentially a special case of multi-exit RMDPs.

Related work. Both MDPs and Stochastic Games have a vast literature, dating back to
Bellman and Shapley (see, e.g., [Put94,FS02,FV97]). MDPs are studied in both finite state
and infinite state variants. Verification of finite state MDPs, also called concurrent Markov
chains, has been studied for a long time (see, e.g., [CY98,CY95,Var85,HSP83]). [CY98]
provides efficient algorithms for ω-regular model checking of finite MDPs. Model checking
tools like PRISM contain optimized implementations of branching-time model checkers for
finite MDPs (see, e.g., [BK98,dAKN+00,Kwi03]).

Our earlier work [EY05a,EY05b] developed the basic theory of RMCs and studied effi-
cient algorithms for both their reachability analysis and model checking. We showed, among
many results, that qualitative model checking of ω-regular properties for 1-exit RMCs can
be decided in polynomial time in the size of the RMC, and that quantitative model checking
of RMCs can be done in PSPACE in the size of the RMC. As mentioned, 1-exit RMCs corre-
spond to both MT-BPs and SCFGs (see, e.g., [Har63] and [MS99]), while general RMCs are
intimately related to probabilistic Pushdown Systems (pPDSs). Model checking questions
for pPDSs, for both linear and branching time properties, have also been recently studied in
[EKM04,BKS05]. [EE04] is an early survey paper which summarizes the results in only the
papers [EKM04,EY05a,BKS05]. RMDPs and RSSGs are natural extensions of RMCs, intro-
ducing nondeterministic and game behavior. Countable state MDPs are studied extensively
in the MDP literature (see, e.g., [Put94,FS02]), but the concise representations afforded by
RMDPs and its algorithmic properties, appear not to have been studied.



2 Basics

A Recursive Simple Stochastic Game (RSSG), A, is a tuple A = (A1, . . . , Ak), where each
component graph Ai = (Ni, Bi, Yi, Eni, Exi, pli, δi) consists of:

– A set Ni of nodes . Let N = ∪k
i=1Ni be the (disjoint) union of all nodes of A.

– A distinguished subset of entry nodes Eni ⊆ Ni, and a disjoint subset of exit nodes
Exi ⊆ Ni. Let En = ∪k

i=1Eni and Ex = ∪k
i=1Exi.

– A set Bi of boxes . Let B = ∪k
i=1Bi be the (disjoint) union of all boxes of A.

– A mapping Yi : Bi 7→ {1, . . . , k} that assigns to every box (the index of) of a component.
Let Y = ∪k

i=1Yi be the map Y : B 7→ {1, . . . , k} where Y |Bi
= Yi, for 1 ≤ i ≤ k.

– To each box b ∈ Bi, we associate a set of call ports, Callb = {(b, en) | en ∈ EnY (b)}, and

a set of return ports, Returnb = {(b, ex) | ex ∈ ExY (b)}. Let Calli = ∪b∈Bi
Callb and let

Call = ∪k
i=1Calli denote all calls in A. Similarly, define Returni and Return.

– We let Qi = Ni ∪ Calli ∪ Returni, denote collectively the nodes, call ports, and return
ports, We will use the term vertex of Ai to refer to elements of Qi. We let Q =

⋃k
i=1Qi

be the set of all vertices of the RSSG A.
– A mapping pli : Qi 7→ {0, 1, 2} that assigns to every vertex a player (Player 0 represents

“chance” or “nature”). We assume pli(ex) = 0 for all ex ∈ Exi. Let pl = ∪k
i=1pli

denote the map pl : Q 7→ {0, 1, 2} where pl|Qi
= pli, for 1 ≤ i ≤ k.

– A transition relation δi ⊆ (Qi × (R∪ {⊥})×Qi), where for each tuple (u, x, v) ∈ δi, the
source u ∈ (Ni \ Exi) ∪ Returni, the destination v ∈ (Ni \ Eni) ∪ Calli, and x is either
(i) a real number pu,v ∈ [0, 1] (the transition probability) if pl(u) = 0, or (ii) x = ⊥
if pl(u) = 1 or 2. For computational purposes we assume that the given probabilities
pu,v are rational. Furthermore they must satisfy the consistency property: for every
u ∈ pl−1(0),

∑
{v′|(u,pu,v′ ,v′)∈δi}

pu,v′ = 1, unless u is a call port or exit node, neither of

which have outgoing transitions, in which case by default
∑

v′ pu,v′ = 0.
Let δ = ∪iδi be the set of all transitions of A.

An RSSG A defines a global denumerable Simple Stochastic Game (SSG) MA = (V =
V0 ∪ V1 ∪ V2, ∆, pl) as follows. The global states V ⊆ B∗ ×Q of MA are pairs of the form
〈β, u〉, where β ∈ B∗ is a (possibly empty) sequence of boxes and u ∈ Q is a vertex of A.
More precisely, the states V ⊆ B∗ ×Q and transitions ∆ are defined inductively as follows:

1. 〈ǫ, u〉 ∈ V , for u ∈ Q. (ǫ denotes the empty string.)
2. if 〈β, u〉 ∈ V & (u, x, v) ∈ δ, then 〈β, v〉 ∈ V and (〈β, u〉, x, 〈β, v〉) ∈ ∆.
3. if 〈β, (b, en)〉 ∈ V , with (b, en) ∈ Callb, then 〈βb, en〉 ∈ V & (〈β, (b, en)〉, 1, 〈βb, en〉) ∈ ∆.
4. if 〈βb, ex〉 ∈ V , & (b, ex) ∈ Returnb, then 〈β, (b, ex)〉 ∈ V & (〈βb, ex〉, 1, 〈β, (b, ex)〉) ∈ ∆.

Item 1 corresponds to the possible initial states, item 2 corresponds to control staying within
a component, item 3 is when a new component is entered via a box, item 4 is when control
exits a box and returns to the calling component. The mapping pl : V 7→ {0, 1, 2} is given
as follows: pl(〈β, u〉) = pl(u) if u is in Q \ (Call ∪Ex), and pl(〈β, u〉) = 0 if u ∈ Call ∪Ex.
The set of vertices V is partitioned into V0, V1, and V2, where Vi = pl−1(i).

We consider MA with various initial states of the form 〈ǫ, u〉, denoting this by Mu
A. Some

states of MA are terminating states and have no outgoing transitions. These are states
〈ǫ, ex〉, where ex is an exit node. If we wish to view MA as a non-terminating SSG, we can
consider the terminating states as absorbing states of MA, with a self-loop of probability 1.

An RSSG where V2 = ∅ is called a Recursive Markov Decision Process (RMDP); an
RSSG where V1 ∪ V2 = ∅ is called a Recursive Markov Chain ([EY05a,EY05b]); an RSSG



where V0 ∪ V2 = ∅ is called a Recursive Graph ([AEY01]); an RSSG where V0 = ∅ is called
a Recursive Game Graph (see [ATM03,Ete04]).

We use 1-exit RSSG to refer to RSSGs where every component has 1 exit. Without loss
of generality, we can assume that every component has 1 entry, because multi-entry RSSGs
can be transformed to equivalent 1-entry RSSGs with at most polynomial blowup (similar
to RSM transformations, see [AEY01]). However, this is decidedly not the case for exits:
indeed 1-exit RSSGs form an important sub-class of RSSGs and are the main focus of our
upper bounds in this paper.

Our most basic goal is to answer termination questions for RSSGs of the form: “Does
player 1 have a strategy to force the game to terminate (i.e., reach node 〈ǫ, ex〉), starting at
〈ǫ, u〉, with probability ≥ p, regardless of how player 2 plays?”.

First, some definitions: a strategy σ for player i, i ∈ {1, 2}, is a function σ : V ∗Vi 7→ V ,
where, given the history ws ∈ V ∗Vi of play so far, with s ∈ Vi (i.e., it is player i’s turn to
play a move), σ(w) = s′ determines the next move of player i, where (s,⊥, s′) ∈ ∆.

Let Ψi denote the set of all strategies for player i. Given a start node u, a strategy σ ∈ Ψ1

for player 1, and a strategy τ ∈ Ψ2 for player 2, we define a new Markov chain (with initial
state u) Mu,σ,τ

A = (S, ∆′). The states S ⊆ 〈ǫ, u〉V ∗ of Mu,σ,τ
A are non-empty sequences of

states of MA, which must begin with 〈ǫ, u〉. Inductively, if ws ∈ S, then: (0) if s ∈ V0 and
(s, ps,s′ , s′) ∈ ∆ then wss′ ∈ S and (ws, ps,s′ , wss′) ∈ ∆′; (1) if s ∈ V1 and σ(ws) = s′

(where (s,⊥, s′) ∈ ∆) then wss′ ∈ S and (ws, 1, wss′) ∈ ∆′; (2) if s ∈ V2 and τ(ws) = s′

(where (s,⊥, s′) ∈ ∆) then wss′ ∈ S and (ws, 1, wss′) ∈ ∆′.
Given initial vertex u, and final exit ex in the same component, and given strategies

σ ∈ Ψ1 and τ ∈ Ψ2, for k ≥ 0, let qk,σ,τ

(u,ex) be the probability that, in Mu,σ,τ
A , starting at

initial state 〈ǫ, u〉, we will reach a state w〈ǫ, ex〉 in at most k “steps” (i.e., where |w| ≤ k).

Let q∗,σ,τ

(u,ex) = limk→∞ qk,σ,τ

(u,ex) be the probability of ever terminating at ex, i.e., reaching

〈ǫ, ex〉. (Note, the limit exists: it is a monotonically non-decreasing sequence bounded by 1).

Let qk
(u,ex) = maxσ∈Ψ1

minτ∈Ψ2
qk,σ,τ

(u,ex) and let q∗
(u,ex) = supσ∈Ψ1

infτ∈Ψ2
q∗,σ,τ

(u,ex). Next, for a

strategy σ ∈ Ψ1, let qk,σ

(u,ex) = minτ∈Ψ2
qk,σ,τ

(u,ex), and let q∗,σ

(u,ex) = infτ∈Ψ2
q∗,σ,τ

(u,ex). Lastly, given

instead a strategy τ ∈ Ψ2, let qk,·,τ
(u,ex) = maxσ∈Ψ1

qk,σ,τ

(u,ex), and let q∗,·,τ
(u,ex) = supσ∈Ψ1

q∗,σ,τ

(u,ex).

From very general determinacy results (Martin’s “Blackwell determinacy” [Mar98] is one
such result which applies to all two-player zero-sum stochastic games with countable state
spaces) it follows that the games MA are determined, meaning that supσ∈Ψ1

infτ∈Ψ2
q∗,σ,τ

(u,ex) =

infτ∈Ψ2
supσ∈Ψ1

q∗,σ,τ

(u,ex). Of course, finite SSGs are even memorylessly determined ([Con92]),

meaning that the strategies of either player can be restricted to memoryless strategies which
ignore the history prior to the current position, without harming the optimal outcome for
that player. As we shall see, 1-exit RSSGs exhibit memoryless determinacy in an even
stronger sense, namely, the strategy is also independent of the call stack. This fails badly
for multi-exit RMDPs, as we will see. We are interested in the following questions:

(1) The qualitative termination problem: Is q∗
(u,ex) = 1?

(2) The quantitative termination problems: Given r ∈ [0, 1], is q∗(u,ex) ≥ r? Is q∗(u,ex) = r?
We may also wish to compute or approximate the exact probabilities q∗(u,ex).

More generally, we can ask model checking questions, where, given a Σ-labeling of vertices,
and e.g., an ω-automaton B over Σ, we ask what is the supremum probability with which
player 1 can force the satisfaction of property B? We refrain from formal definitions due to
space (see,e.g., [CY98,EY05b]). Our results for model checking will be negative: undecid-
ability, stemming from the undecidability of termination problems for general RMDPs.



3 The System of Nonlinear Min-Max Equations for 1-exit RSSGs

We generalize the monotone nonlinear systems of equations for RMCs ([EY05a]) to mono-
tone nonlinear min-max systems for 1-exit RSSGs. If we consider the values q∗(u,ex) as un-
knowns, we can set up a system of nonlinear min-max equations, such that the termination
probabilities must be a solution of the system, and in fact the Least Fixed Point solution.
Let us use a variable x(u,ex) for each unknown q∗(u,ex). We will often find it convenient to

index the variables x(u,ex) according to a fixed order (say lexicographical), so we can refer
to them also as x1, . . . , xn, with each x(u,ex) identified with xj for some j. In this way we
obtain a vector of variables: x = (x1 x2 . . . xn)T .

Definition 1. Given 1-exit RSSG A = (A1, . . . , Ak), we define a system of polynomial/min-
max equations, SA, over the variables x(u,ex), where u ∈ Qi and ex ∈ Exi, for 1 ≤ i ≤ k.
The system contains one equation of the form x(u,ex) = P(u,ex)(x), for each variable x(u,ex).
Here P(u,ex)(x) denotes a multivariate min-max/polynomial with positive coefficients over
the variables in x. There are 5 cases to distinguish, based on what “type” of vertex u is:

1. Type I: u = ex. In this case: x(ex,ex) = 1.

2. Type II: pl(u) = 0 & u ∈ (Ni\{ex})∪Returni. Then x(u,ex) =
∑

{v|(u,pu,v ,v)∈δ} pu,vx(v,ex).

(If u has no outgoing transitions, this equation is by definition x(u,ex) = 0.)

3. Type III: u = (b, en) is a call port. In this case x((b,en),ex) = x(en,ex′) ·x((b,ex′),ex), where
ex′ ∈ ExY (b) is the unique exit of AY (b).

4. Type IV: pl(u) = 1 and u ∈ (Ni\{ex})∪Returni. Then x(u,ex) = max{v|(u,⊥,v)∈δ} x(v,ex).
(If u has no outgoing transitions, we define the maximum of an empty set to be 0.)

5. Type V: pl(u) = 2 and u ∈ (Ni \{ex})∪Returni. Then x(u,ex) = min{v|(u,⊥,v)∈δ} x(v,ex).
(If u has no outgoing transitions, we define the minimum of an empty set to be 0.)

Using vector notation, we can denote SA = (xj = Pj(x) | j = 1, . . . , n) by: x = P (x).

Given 1-exit RSSG A, we can easily construct x = P (x) in linear time. We now identify a
particular solution to x = P (x), called the Least Fixed Point (LFP) solution, which gives
precisely the termination game values. For vectors x,y ∈ R

n, define the partial-order x � y

to mean xj ≤ yj for every coordinate j. For D ⊆ R
n, we call a mapping H : R

n 7→ R
n

monotone on D, if: for all x,y ∈ D, if x � y then H(x) � H(y). Define P 1(x) = P (x), and
define P k(x) = P (P k−1(x)), for k > 1. Let q∗ ∈ R

n denote the n-vector q∗(u,ex) (using the

same indexing as used for x). For k ≥ 0, let qk denote, similarly, the n-vector qk
(u,ex). Let 0

(1) denote the n-vector consisting of 0 (respectively, 1) in every coordinate. Define x0 = 0,
and for k ≥ 1, define xk = P (xk−1) = P k(0).

Theorem 1. Let x = P (x) be the system SA associated with 1-exit RSSG A.

1. The map P : R
n 7→ R

n is monotone on R
n
≥0. Hence, for all k ≥ 0, 0 � xk � xk+1.

2. For all k ≥ 0, qk � xk+1 � q2k

.

3. q∗ = P (q∗). In other words, q∗ is a fixed point of the map P .

4. For all k ≥ 0, xk � q∗.

5. For all q′ ∈ R
n
≥0, if q′ = P (q′), then q∗ � q′.

In other words, q∗ is the Least Fixed Point, LFP(P ), of P : R
n
≥0 7→ R

n
≥0.

6. q∗ = limk→∞ xk = limk→∞ qk.



All assertions are proved in the appendix. Their proofs are similar to those of an analogous
theorem in [EY05a] for nonlinear systems associated with RMCs, but some parts are more
tricky because of the players. We sketch here the idea for part (5). Consider any fixpoint
q′ of the equations, i.e., q′ = P (q′). Let τ ′ be the (S&M) strategy for player 2 that always
picks, at any state 〈β, u〉, for vertex u ∈ pl−1(2), the particular successor v of u such that
v = argmin{v|(u,⊥,v)∈δ} q′

(v,ex) (breaking ties, say, lexicographically). Then we prove a lemma

stating that, for all strategies σ ∈ Ψ1 of player 1, and for all k ≥ 0, qk,σ,τ ′

� q′. The lemma
is proved by induction on k, for each entry (u, ex), going through the 5 type cases of the
vertex u. The lemma implies that q∗,σ,τ ′

= limk→∞ qk,σ,τ ′

� q′. This holds for any strategy

σ ∈ Ψ1. Therefore, supσ∈Ψ1
q∗,σ,τ ′

(u,ex) ≤ q′
(u,ex), for every vertex u. Thus, by the determinacy

of RSSG games, it follows that q∗
(u,ex) = infτ∈Ψ2

supσ∈Ψ1
q∗,σ,τ

(u,ex) ≤ supσ∈Ψ1
q∗,σ,τ ′

(u,ex) ≤ q′
(u,ex),

for all vertices u. In other words, q∗ � q′. ⊓⊔

4 S&M Determinacy

We now identify a very restricted kind of strategy that suffices as an optimal strategy in
1-exit RSSGs. Call a strategy Stackless & Memoryless (S&M) if it is not only independent of
the history of the game, but also independent of the current call stack, i.e., only depends on
the current vertex. (See also [ATM03], where such strategies are called modular strategies.)

Corollary 1. In every 1-exit RSSG termination game, player 2 (the minimizer) has an
optimal S&M strategy.

Proof. Consider the strategy τ ′ in the proof of part (5) of Theorem 1, chosen not for just
any fixed point q′, but for q∗ itself. ⊓⊔

Far less trivially, we establish next that player 1 (the maximizer) also has an optimal
S&M strategy and thus the game is S&M-determined, meaning both players have optimal
S&M strategies. (Note that the game is not symmetric with respect to the two players.)

Theorem 2. Every 1-exit RSSG termination game is S&M-determined.

Although the statement is intuitive, the proof is quite nontrivial and delicate; the full
proof is given in the appendix. We sketch the approach here. By Corollary 1, we only need
to show that player 1 has an optimal S&M strategy. Let σ be any S&M strategy for player
1, and let q∗,σ = infτ∈Ψ2

q∗,σ,τ . If q∗,σ is a fixpoint of the equations then it follows that it is
the least fixpoint and σ is optimal. On the other hand, it can be shown that q∗,σ satisfies all
the equations except possibly for some type IV equations. We argue that if u is such a vertex
(belonging to player 1) whose equation is violated, then switching to another strategy σ′

where u picks another successor leads to a strictly better strategy than σ (for any strategy of
player 2). This is the heart of the proof. We parameterize the game with respect to the value
t at vertex u, and we express the optimal values of the other vertices z (for all strategies τ
of player 2) as functions fz(t). We then analyze carefully the properties of these functions
and their fixpoints, and conclude that switching the choice at vertex u leads to a strategy σ′

that has at least as great value as σ at every vertex, and strictly better at u. We repeat the
process until we arrive at a S&M strategy σ∗ whose probabilities satisfy all the equations,
and hence it is optimal. We refer to the appendix for the details. ⊓⊔

We remark that already for the 2-exit RMDP termination problem, not only are there
no optimal S&M strategies for player 1, there are in general no optimal strategies at all!
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Fig. 1. Maximizing termination probability at ex1 in a 2-exit RMDP: no optimal strategy exists.

This is illustrated by Figure 1. In this 2-exit RMDP with one component containing a box
mapped to the same component, it can easily be verified that the supremum probability
of terminating at exit ex1 starting from en is 1. However, there is no optimal strategy for
player 1 that actually achieves this. The deeper the call stack is made by player 1, the higher
the probability of termination at ex1. However, at some depth, player 1 finally has to decide
to come out, otherwise it will never terminate. Specifically, for n ≥ 0, the strategy LnR
terminates at ex1 with probability (1 − 1

2n ). Note also that any S&M strategy for player 1
would yield probability 0 of terminating at ex1, so such strategies are all the worst possible.

5 Qualitative & Quantitative termination: 1-exit RMDPs & RSSGs

Using Corollary 1 and Theorem 2, and results from [EY05a], we can show the following
results for qualitative termination of 1-exit RMDPs and 1-exit RSSGs:

Theorem 3.

1. We can decide in polynomial time if the value of a 1-exit RSGG termination game (or
the optimal termination probability of a maximizing or minimizing RMDP) is 0.

2. We can decide in NP whether the maximum probability of termination in a maximizing
1-exit RMDP is exactly 1, and in coNP whether the minimum probability of termination
in a minimizing 1-exit RMDP is exactly 1.

3. Deciding whether a 1-exit RSSG termination game has value exactly 1 is in ΣP
2 ∩ΠP

2 .

Part (1) is done via a fixpoint algorithm. Parts (2) and (3) involve guessing the optimal
S&M strategy (or strategies) and verifying the optimality with the appropriate complexity;
see the appendix. ⊓⊔

We next show that the central quantitative termination questions for 1-exit RMDPs
and 1-exit RSSGs can be answered in PSPACE by appealing to algorithms for deciding
the Existential Theory of the Reals, ExTh(R). A first-order sentence in the theory of reals
is formed from quantifiers and boolean connectives over a vocabulary with “atomic predi-
cates” of the form: fi(x)∆0, where fi, i = 1, . . . ,m, are m distinct multi-variate polynomials
with rational coefficients over the variables x = x1, . . . , xn, and where ∆ is any comparison
operator among =, 6=,≥,≤, <,>. The fragment that we will be concerned with is the ex-
istential theory of reals, ExTh(R). These consist of sentences in prenex form of the form:
∃x1, . . . , xnR(x1, . . . , xn), where R is a boolean combination of “atomic predicates”. Be-
ginning with Tarski, algorithms for deciding the first-order theory of reals, Th(R), and its



fragments such as ExTh(R), have been deeply investigated. In the current state of the art,
it is known that ExTh(R) can be decided in PSPACE [Can88,Ren92,BPR96]. Furthermore,
it can be decided in exponential time where the exponent depends (linearly) only on the
number of variables; hence for a fixed number of variables the time is polynomial.

Suppose we want to decide whether a vector c = [c1, . . . , cn]T of rational numbers is
LFP (P ), where P is the system of fixpoint equations for a given 1-exit RSSG. Consider the
sentence:

ϕ ≡ ∃x1, . . . , xn

n∧

i=1

(Pi(x1, . . . , xn) = xi) ∧
n∧

i=1

(xi = ci)

ϕ is true iff c = P (c). For type I, II, and III nodes, Pi is a polynomial. It remains to
show how to encode, in arithmetic, the predicate “Pi(x1, . . . , xn) = xi” in the case (IV)
where Pi(x1, . . . , xn) = maxj∈J xj , and in the case (V) where Pi(x1, . . . , xn) = minj∈J xj ,
for some subset J ⊆ {1, . . . , n}. For type IV nodes, note that xi = maxj∈J xj iff

∧
j∈J xi ≥

xj∧(
∨

j∈J xi ≤ xj). Likewise, for type V nodes, xi = minj∈J xj iff
∧

j∈J xi ≤ xj∧(
∨

j∈J xi ≥
xj). Thus, we can encode the predicates xi = Pi(x1, . . . , xn) as a boolean combination of
quantifier-free predicates, and we can encode the sentence ϕ in ExTh(R). To guarantee that
c = LFP(P ), we need in addition to check the following sentence:

ψ ≡ ∃x1, . . . , xn

n∧

i=1

(Pi(x1, . . . , xn) = xi) ∧
n∧

i=1

(0 ≤ xi) ∧
n∨

i=1

(xi < ci)

ψ is false iff there is no solution z ∈ R
n
≥0 to x = P (x) such that c 6� z. Hence, to decide

whether c = LFP(P ), we only need two queries to a decision procedure for ExTh(R).
Namely, we check that ϕ is true, and hence c = P (c), and that ψ is false, and hence
c = LFP(P ).

If we only want to check an inequality q∗
j ≤ cj , then let ϕ′ be ϕ with the last conjunction

of equations replaced by
∧n

i=1(0 ≤ xi)∧(xj ≤ cj). Note that all multi-variate polynomials in
our systems x = P (x) have (multivariate) degree d ≤ 2. Applying the result on ExTh(R),
we obtain the following:

Theorem 4. Given a 1-exit RSSG A and a vector of rational probabilities c, there is a
PSPACE algorithm to decide whether q∗ = c, as well as to decide whether q∗

j ∆cj , for any

comparison operator ∆. Moreover, the running time is O(|A|O(1) · 2O(n)) where n is the
number of variables in x = P (x). Hence the running time is polynomial if n is bounded.

As we have seen, ExTh(R) gives us a way to ask questions like: “Is there a solution to
x = P (x) where a ≤ xi ≤ b ?”, for any rational numbers a and b, and if we wish, with either
inequality replaced by strict inequality. Since 0 ≤ LFP(P ) ≤ 1, we can use such queries in
a “binary search” to “narrow in” on the value of each coordinate of LFP(P ). Via obvious
modifications of sentences like ψ, we can gain one extra bit of precision on the exact value of
ci with each extra query to ExTh(R). So, if we want j bits of precision for each ci, i = 1, ...n,
we need to make j · n queries. The sizes of the queries do not vary by much: only with an
additive factor of at most j-bits, to account for the constants a and b. This discussion yields:

Theorem 5. Given 1-exit RSSG A and a number j in unary, there is an algorithm that
approximates every coordinate of q∗ to within j bits of precision in PSPACE. Moreover, the
running time is O(j · |A|O(1) · 2O(n)), where n is the number of variables in x = P (x).



6 Multi-exit RMDP termination and 1-exit RMDP model

checking: undecidability

In this section we show that the qualitative termination problem for multi-exit RMDPs is
already undecidable, and that this is so even when the number of exits is bounded by a con-
stant. We also show that for 1-exit RMDPs the qualitative model checking problem, against
ω-regular or LTL properties (specified, say, by a Büchi automaton) is also undecidable. It
obviously follows that the same questions for the more general RSSGs are also undecidable.

Theorem 6. Given a multi-exit RMDP, A, entry en and exit ex, it is undecidable whether
q∗(en,ex) = 1. This is so even when the number of exits in each component of A is bounded
by a fixed constant. Furthermore, there is no algorithm that approximates the probability
q∗(en,ex) within any constant (multiplicative) factor. In particular:
1. For any fixed rational ǫ with 0 < ǫ < 1, given RMDP A with only one component such
that either q∗(en,ex) > 1 − ǫ or q∗(en,ex) < ǫ, it is undecidable to distinguish which is the case.
2. For any fixed rational ǫ with 0 < ǫ < 1, given a RMDP A with only two components such
that either q∗(en,ex) = 1 or q∗(en,ex) < ǫ, it is undecidable to distinguish which is the case.

We have two proofs: one is a direct reduction from the halting problem for 2-counter
machines (see, e.g., [HU79]), and the second is a reduction from the emptiness problem for
Probabilistic Finite Automata (PFAs) [Paz71]. The latter reduction is simpler and has the
advantage that it connects the well-studied area of PFAs to RMDPs (we show that PFAs can
be seen, in effect, as a special case of RMDPs) and also allows us to leverage the extensive
research in that area. We sketch this reduction here. A PFA, M = (Q,Σ, T, q1, qn), has a
(finite) set Q of n states, a (finite) input alphabet Σ, a function T which maps every input
letter a ∈ Σ to a stochastic n × n matrix Ta, an initial state q1, and an accepting state
qn. The automaton starts at the initial state q1 and operates as follows for an input string
w ∈ Σ∗: at each step, if the automaton is in state qi and the next input letter is a, the
automaton transitions to state qj with probability equal to Ta[i, j]. The probability PM (w)
that M accepts the string w is defined as the probability that the automaton is at the
accepting state qn after reading w. The language of a PFA is defined with respect to a given
threshold λ: The language is L(M,λ) = {w ∈ Σ∗|PM (w) > λ}. The PFA emptiness problem
is to decide, given a PFA M and a threshold λ, whether L(M,λ) = ∅. This problem was
shown to be undecidable originally in [Paz71]; subsequent proofs have established stronger
undecidability properties [CL89,MHC03,BC03]. (The undecidability holds both whether we
use strict or weak inequality in the definition of L(M,λ).)

Let M = (Q,Σ, T, q1, qn) be a PFA with n states, and let p∗M = sup{PM (w)|w ∈ Σ∗}.
Define a RMDP A that has one component (call it also A) with a single entry en, and n exits
ex1, . . . , exn, one for each state of M . The entry en is a player 1 (max) node and has edges to
the call ports of a set of |Σ| boxes ba, a ∈ Σ; all the boxes are of course mapped to the single
component A. In addition en has an edge to the exit ex1. The return ports of the boxes
ba are probabilistic vertices. Each return port (ba, exi) has an edge to each exit exj with
probability Ta[i, j]. This concludes the definition of the RMDP A. Starting from the entry
en of A, the max player wants to maximize the probability q∗(en,exn) of terminating at exit

exn. We can show that q∗(en,exn) is precisely p∗M = sup{PM (w)|w ∈ Σ∗} (see the appendix).

Thus, for a threshold λ, the language L(M,λ) = ∅ iff q∗(en,ex) ≤ λ; this establishes the
undecidability of the quantitative problem for RMDPs.

In [BC03] it is shown that the PFA emptiness problem is undecidable even for PFAs
with only 2 letters and 46 states. It follows that the quantitative problem is undecidable



for RMDPs with one component and 46 exits. A smaller number of exits, namely 10, can
be obtained using our alternative 2-counter proof (although the number of components in
that reduction is not fixed). Note incidentally that it is open whether the PFA emptiness
problem for two-state PFAs is decidable or not [BC03,MHC03]. If it is undecidable, it would
follow that the termination problem for RMDPs with two exits is also undecidable.

The inapproximability result (1.) follows from our reduction combined with a result of
[CL89,MHC03] for PFAs. The number of exits in this reduction (which is the number of
states of the PFA of [CL89,MHC03]) is unbounded. With a more involved construction
(omitted from this extended abstract) we can make the number of exits in (1.) bounded
(the bound depends on ǫ), while letting the number of components be unbounded.

For the qualitative problem (is q∗(en,ex) = 1?) we embed the RMDP A that is constructed

above from a PFA M into another RMDP A′. (Note that the qualitative problem for PFAs,
i.e. determining whether p∗M = 1, is decidable; this follows from a result of [ACY95].) The
RMDP A′ has one more component, and the embedding has the property that it turns the
termination probability from 1 − ǫ into 1; see the appendix for details. ⊓⊔

We next show undecidability of the model checking problem for 1-exit RMDPs with
respect to regular (ω-regular or finite) properties specified by a property automaton B.

Theorem 7. The qualitative and quantitative model checking problems for 1-exit RMDPs
are undecidable, and in fact there is a fixed property for which this holds. Furthermore, the
maximum probability cannot be approximated within any constant factor.

Sketch: The reductions are similar to the previous theorem. One difference is that instead
of using the exits of the components to keep track of the states of the PFA, we have the
states of the property automaton B simulate the PFA. The only catch is that B does not
have probabilities and thus the transition probabilities of the PFA have to be reflected in
the RMDP. The reduction incorporates these probabilities inside the RMDP in a manner
that does not use the state of the PFA (since the RMDP does not track the PFA state). ⊓⊔
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A Proofs

A.1 Proof of Theorem 1

Proof. We prove each assertion in turn.

1. That P is monotone on R
n
≥0 follows immediately from the fact that all coefficients in

the polynomials Pj defining P are non-negative, and the fact that, if x � y, then clearly
mini∈I xi ≤ mini∈I(yi), and maxi∈I xi ≤ maxi∈I yi, for any subset I ⊆ {1, . . . , n}. Thus,
if 0 � x � y then 0 � P (x) � P (y). By induction on k ≥ 0, 0 � xk � xk+1.

2. By induction on k ≥ 0. For k = 0: x1 = P (0) is an n-vector where P(u,ex)(0) = 1
if u = ex, and P(u,ex)(0) = 0 otherwise. Hence, for each (u, ex), x1

(u,ex) = q0
(u,ex),

the probability of reaching 〈ǫ, ex〉 from 〈ǫ, u〉 in at most 0 steps. Hence, also clearly,

x1
(u,ex) � q20

(u,ex).

Inductively, suppose qk � xk+1 � q2k

. Consider xk+2
(u,ex). There are 5 cases, based on

what type of vertex u is:
(a) Type I. If u = ex, then clearly qk

(u,e) = qk+1
(u,ex) = 1. Note that since P(ex,ex)(x) = 1,

xk
(ex,ex) = P k

(ex,ex)(0) = 1, for all k ≥ 1. Thus qk+1
(u,ex) = xk+2.

(b) Type II. In this case, qk+1
(u,ex) =

∑
v pu,v qk

(v,ex). Thus, by inductive hypothesis

xk+2
(u,ex) = P(u,ex)(x

k+1) =
∑

v

pu,v xk+1
(v,ex) ≥

∑

v

pu,v qk
(v,ex) = (qk+1)(u,ex)

Likewise, by inductive hypothesis

xk+2
(u,ex) =

∑

v

pu,v xk+1
(v,ex) ≤

∑

v

pu,v q2k

(v,ex) ≤ (q2k+1

)(u,ex)

(c) Type III. Here, u = (b, en) ∈ Callb, and qk+1
(u,ex) ≤ qk

(en,ex′) · q
k
((b,ex′),ex) ≤ q2k

(u,ex),

where ex′ ∈ ExY (b) is the unique exit node of AY (b). To see the two inequalities
hold, first note that in order to get to 〈ex〉 from 〈u〉 in at most k+ 1 steps, we must
first get from the entry en of the component labeling box b to exit ex′ in at most
some number m ≤ k steps, and then get from that box-exit 〈(b, ex′)〉 to 〈ex〉 in at
most m′ ≤ k steps, such that, m+m′ ≤ k + 1. In the formula for the upper bound,
we have relaxed the requirements and only require that each of m and m′ is ≤ k.
Hence the first inequality. For the second inequality, qk

(en,ex′) ·q
k
((b,ex′),ex) ≤ q2k

(u,ex),

observe that one way to get from 〈u〉 to 〈ex〉 in at most 2k steps is to get from
〈en〉 to 〈ex′〉 in at most k steps, and then to get from 〈(b, ex′)〉 to 〈ex〉 in at most
k steps. Thus qk

(en,ex′) · q
k
((b,ex′),ex) ≤ q2k

(u,ex). Now, by the inductive assumption,

q2k

� xk+1 � qk. Hence, using the inequality, and substituting, we get

qk+1
(u,ex) ≤ xk+1

(en,ex′) xk+1
((b,ex′),ex) = P (xk+1)(u,ex) = xk+2

(u,ex).

We also get

xk+2
(u,ex) = xk+1

(en,ex′) xk+1
((b,ex′),ex) ≤ q2k

(ex,ex′)q
2k

((b,ex′),ex) ≤ q2k+1

((b,ex′),ex).

(d) Type IV: In this case, it is easy to see that qk+1
(u,ex) = max{v|(u,⊥,v)∈δ} qk

(v,ex). Thus, by

inductive hypothesis, qk+1
(u,ex) = max{v|(u,⊥,v)∈δ} qk

(v,ex) ≤ max{v|(u,⊥,v)∈δ} xk+1
(v,ex) =

xk+2
u,ex. Likewise, xk+2

u,ex = max{v|(u,⊥,v)∈δ} xk+1
(v,ex) ≤ max{v|(u,⊥,v)∈δ} q2k

(v,ex) ≤ q2k+1

(u,ex).



(e) Type V: Same as IV: qk+1
(u,ex) = min{v|(u,⊥,v)∈δ} qk

(v,ex) ≤ min{v|(u,⊥,v)∈δ} xk+1
(v,ex) =

xk+2
u,ex. Again, like case IV, xk+2

u,ex ≤ q2k+1

(u,ex).

We have established assertion (2).
3. Assertion (3) follows from the definition of q∗. Suppose q∗ 6= P (q∗). The equations for

vertices u of type I, II, and III, can be used to define precisely the probabilities q∗
(u,ex)

in terms of other probabilities q∗
(v,ex). Thus, the only possibility is that q∗

(u,ex) 6=

P(u,ex)(q
∗) for some vertex u of Type IV or V .

Suppose u is of Type IV , i.e. a “max” vertex. Then, clearly, q∗
(u,ex) ≥ q∗

(v,ex) for any

neighbor of u, with (u,⊥, v) ∈ δ, because if q∗
(u,ex) < q∗

(v,ex), then player 1 could play the

transition (u,⊥, v) at the beginning of the gameMA starting at u and improve its payoff.
Likewise, q∗

(u,ex) ≤ q∗
(v,ex), for some neighbor v, because otherwise, no matter what

initial move player 1 makes from u, its payoff would be less than the purported q∗
(u,ex).

Similarly, suppose u is of Type V , i.e., a “min” vertex. Then, again, q∗
(u,ex) ≤ q∗

(v,ex)

for any neighbor of u, with (u,⊥, v) ∈ δ, because if q∗
(u,ex) > q∗

(v,ex), then player 2 can
switch to a strategy which, starting at u, moves initially to v, and then regardless of how
player 1 plays, player 2 would have a strategy to limit the payoff to q∗

(v,ex) < q∗
(u,ex),

a contradiction. Likewise, q∗
(u,ex) ≥ q∗

(v,ex), for some neighbor v, because otherwise, no
matter what initial move player 2 makes from u, player 1 can play in such a way that,
no matter what player 2 does 1’s ultimate payoff would be strictly greater than the
purported q∗

(u,ex). Hence q∗ is a fixed-point of P .

4. Note that P is monotonic, and that q∗ is a fixed-point of P . Since x0 = 0 � q∗, it
follows, by induction on k ≥ 0, that xk � q∗, for all k ≥ 0.

5. Consider any fixpoint q′ of the equations, i.e., where q′ = P (q′). We shall argue that
q∗ � q′. Let τ ′ be the (stationary) strategy for player 2 that always picks, at any
state 〈β, u〉, for vertex u ∈ pl−1(2), the particular successor v of u such that v =
arg min{v|(u,⊥,v)∈δ} q′

(v,ex) (breaking ties, say, lexicographically).

Lemma 1. For all strategies σ ∈ Ψ1 of player 1, and for all k ≥ 0, qk,σ,τ ′

� q′.

Proof. By induction, similar to the proof of assertion (2). The base case q0,σ,τ ′

� q′ is
trivial.
(a) Type I. If u = ex, then for all k ≥ 0, clearly q

k,σ,τ ′

(ex,ex) = q′
(ex,ex) = 1.

(b) Type II. Let σ′ be the strategy defined by σ′(β) = σ(〈ǫ, u〉β) for all β ∈ V ∗. Then,

q
k+1,σ,τ ′

(u,ex) =
∑

v

pu,v q
k,σ′,τ ′

(v,ex) ≤
∑

v

pu,v q
′

(v,ex) = (q
′

)(u,ex).

(c) Type III. In this case, u = (b, en) ∈ Callb, and q
k+1,σ,τ ′

(u,ex) ≤ maxρq
k,ρ,τ ′

(en,ex′)·maxρq
k,ρ,τ ′

((b,ex′),ex),

where ex′ ∈ ExY (b) is the unique exit node of AY (b). Now, by the inductive assump-

tion, qk,ρ,τ ′

� q′ for all ρ. Moreover, since q′ = P (q′), q
′

(u,ex) = q
′

(en,ex′) ·q
′

((b,ex′),ex)

Hence, using these inequalities and substituting, we get

qk+1,σ,τ ′

(u,ex) ≤ q
′

(en,ex′) q
′

((b,ex′),ex) = q
′

(u,ex).

(d) Type IV: In this case, starting at 〈ǫ, u〉, whatever player 1’s strategy σ is, initially it
has to move to some neighbor 〈ǫ, v〉 from which the probability of termination in at

most k steps is precisely q
k,σ′,τ ′

(v,ex) . Thus q
k+1,σ,τ ′

(u,ex) ≤ max{v|(u,⊥,v)∈δ} q
k,σ′,τ ′

(v,ex) . By the

inductive hypothesis q
k,σ′,τ ′

(v,ex) ≤ q
′

(v,ex), so we are done by induction.



(e) Type V: Since q′ = P (q′), we know that q′
(u,ex) = min{v|(u,⊥,v)∈δ} q

′

(v,ex). We also

know that τ ′(u) = v, where v = argmin{v|(u,⊥,v)∈δ} q
′

(v,ex). But then, by the induc-

tive hypothesis, q
k+1,σ,τ ′

(u,ex) = q
k,σ′,τ ′

(v,ex) ≤ q′
(v,ex) = min{v|(u,⊥,v)∈δ} q′

(v,ex) = q′
(u,ex).

⊓⊔

Now, by the lemma, q∗,σ,τ ′

= limk→∞ qk,σ,τ ′

� q′. This holds for any strategy σ ∈ Ψ1.

Therefore, supσ∈Ψ1
q∗,σ,τ ′

(u,ex) ≤ q′
(u,ex), for every vertex u. Thus, by the determinacy of

RSSG games, we have established that q∗
(u,ex) = infτ∈Ψ2

supσ∈Ψ1
q∗,σ,τ

(u,ex) ≤ q′
(u,ex), for all

vertices u. In other words, q∗ � q′.
6. Finally, observe that limk→∞ xk exists and is bounded within [0, 1]n. The sequence xk,
k → ∞ is monotonically non-decreasing, and by definition limk→∞ xk is a fixed point
of x = P (x). By part (4), limk→∞ xk � q∗. Thus, by part (5), limk→∞ xk = q∗. On the

other hand, since qk � xk+1 � q2k

, we have limk→∞ xk = limk→∞ qk.
⊓⊔

A.2 Proof of Theorem 2

Proof. By Corollary 1, we only need to show that player 1 has an optimal S&M strategy.
Let σ be any S&M strategy for player 1. Consider q∗,σ = infτ∈Ψ2

q∗,σ,τ . First, let us note
that if q∗,σ = P (q∗,σ) then q∗,σ = q∗. This is so because, by Theorem 1, q∗ � q∗,σ, and
on the other hand, σ is just one strategy for player 1, and for every vertex u, q∗

(u,ex) =

supσ′∈Ψ1
q
∗,σ′

(u,ex) ≥ q
∗,σ

(u,ex). Now, we claim that, for all vertices u that do not belong to player

1 (i.e., such that u is not of type IV) q
∗,σ

(u,ex) satisfies its equation in x = P (x). In other

words, q
∗,σ

(u,ex) = P(u,ex)(q
∗,σ). To see this, note that for vertices u of types I,II, and III,

no choice of either player is involved, thus the equation holds by definition of q∗,σ. For
nodes of Type V, which belong to player 2 (the minimizer), we have the equation x(u,ex) =
min{v|(u,⊥,v)∈δ} x(v,ex). But note that the best player 2 can do against strategy σ, starting
at 〈ǫ, u〉, is to move to a neighboring vertex v such that v = argmin{v|(u,⊥,v)∈δ} q

∗,σ

(v,ex).

Thus, the only equations that may fail are those of Type IV, of the form x(u,ex) =
max{v|(u,⊥,v)∈δ} x(v,ex). Suppose σ(u) = v, for some neighbor v. Clearly then, q

∗,σ

(u,ex) =

q
∗,σ

(v,ex). Thus, q
∗,σ

(u,ex) ≤ max{v′|(u,⊥,v′)∈δ} q
∗,σ

(v′,ex). Thus equality fails iff there is another

vertex w 6= v, with (u,⊥, w) ∈ δ, such that q
∗,σ

(v,ex) < q
∗,σ

(w,ex). Consider such a vertex w, and

consider now a revised S&M strategy σ′, which is identical to σ, except that σ′(u) = w.
Next, consider a parameterized 1-exit RSSG, A(t), which is identical to A, except that

all edges out of vertex u are removed, and replaced by a single edge labeled by probability
variable t to the exit of the same component. Fixing the value t determines an RSSG, A(t).

Note that if we restrict the S&M strategies σ or σ′ to all vertices other than u, then they
both define the same S&M strategy for the RSSG A(t). Define q∗,σ,τ,t

(z,ex) to be the probability

of eventually reaching 〈ǫ, ex〉 starting from 〈ǫ, z〉 in the Markov chain M z,σ,τ

A(t) . Now, for each

vertex z, define the function fz(t) = infτ∈Ψ2
q∗,σ,τ,t

(z,ex) . In other words, fz(t) is the infimum of

probabilities, over all strategies of player 2, that from 〈ǫ, z〉 we terminate in z’s corresponding
exit 〈ǫ, ex〉 in A(t). This probability is parameterized by t.

Now, letting t1 = q
∗,σ

(u,ex), observe that fz(t1) = q
∗,σ

(z,ex) for every z. This is so because,

any strategy for minimizing the probability of exiting from z would, upon hitting a state
〈β, u〉, be best off minimizing the probability of exiting from 〈β, u〉, i.e., reaching 〈β, ex′〉,



regardless the context (for, without exiting from this context, it could not hope to terminate
in the empty context).

Note that, by Corollary 1, in the RSSG termination game on A(t), for any value of
t, and any start vertex z, player 2 has an optimal S&M strategy τz,t, such that τz,t =
arg minτ∈Ψ2

q∗,σ,τ

(z,ex). Let g(z,τ)(t) = q∗,σ,τ

(z,ex). Note that fz(t) = minτ gz,τ (t), where the min-

imum is over S&M strategies. Now, note that the function gz,τ (t) is the probability of
reaching an exit in an RMC starting from a particular vertex. Thus, by [EY05a], gz,τ (t) =
(limk→∞Rk(0))(z,ex) for a polynomial system x = R(x) with non-negative coefficients, but
with the additional feature that the variable t appears as one of the coefficients. Since this
limit can be described by a power series in the variable t with non-negative coefficients,
gz,τ (t) has the following properties: it is a continuous, differentiable, and nondecreasing
function of t ∈ [0, 1], with continuous and nondecreasing derivative, g′z,τ (t) and since the
limit defines probabilities we also know that for t ∈ [0, 1], gz,τ (t) ∈ [0, 1]. Thus gz,τ (0) ≥ 0
and gz,τ (1) ≤ 1.

Hence, since g′z,τ (t) is non-decreasing, if for some t ∈ [0, 1], gz,τ (t) > t, then for all t′ < t,
gz,τ (t′) > t′. (To see this, note that if gz,τ (t) > t and g′z,τ (t) ≥ 1, then for all t′′ > t,
gz,τ (t′′) > t′′, which contradicts the fact that gz,τ (1) = 1. Thus g′z,τ (t′) < 1 for all t′ ≤ t,
and since gz,τ (t) > t, we also have gz,τ (t′) > t′ for all t′ < t. Similarly, if gz,τ (t) < t for
some t, then gz,τ(t′′) < t′′ for all t′′ ∈ [t, 1). To see this, note that if for some t′′ > t, t′′ < 1,
gz,τ (t′′) = t′′, then since g′z,τ is non-decreasing and gz,τ (t) < t, it must be the case that
g′z,τ (t′′) > 1. But then gz,τ (1) > 1, which is a contradiction.

It follows that fz(t) also has the same properties, namely: if fz(t) > t at some point
t ∈ [0, 1] then gz,τ (t) > t for all τ , and hence for all t′ < t and for all τ , gz,τ (t′) > t′, and
thus also fz(t

′) > t′ for all t′ ∈ [0, t]. On the other hand, if fz(t) < t at t ∈ [0, 1], then there
must be some τ ′ such that gz,τ ′(t) < t. Hence gz,τ ′(t′′) < t′′, for all t′′ ∈ [t, 1), and hence
also fz(t

′′) < t′′ for all t′′ ∈ [t, 1).

Let t2 = q∗,σ

(w,ex). We know t2 = q∗,σ

(w,ex) = fw(t1) > t1 = q∗,σ

(v,ex). Therefore fw(t) > t

for all t < t1 by the above property. And in fact, fw(t) > t for all t < t2, because fw is
nondecreasing. Therefore, the least fixed point (i.e., least solution) of fw(t) = t is ≥ t2.

Now if we switch strategy σ to σ′, where σ′(u) = w, then q∗,σ′

(w,ex) is a fixed point, t3, of

fw(t) = t , so t3 ≥ t2 > t1 and q∗,σ′

(z,ex) = fz(t3) ≥ q∗,σ

(z,ex) for all z, with strict inequality for u:

q∗,σ′

(u,ex) = t3 > q∗,σ

(u,ex) = t1. Thus, switching to the new S&M strategy σ′, we get q∗,σ′

which

dominates q∗,σ, and is strictly greater in some coordinate. But there are only a finite number
of S&M strategy, thus repeating this process we must eventually get to S&M strategy σ∗

that can’t be improved in this way. Thus q∗,σ∗

= P (q∗,σ∗

), and hence by our earlier claim
q∗,σ∗

= q∗. Thus, player 1 has an optimal S&M strategy. ⊓⊔

A.3 Proof of Theorem 3

Proof. For part 1, we compute the set T of vertices u for which q∗(u,ex) = 0 as follows.
Initialize set S := Ex. Repeat the following until there is no change in the set S:

– If a probabilistic vertex or a player 1 vertex u has a successor in S then add u to S.

– If a player 2 vertex u has all successors in S then add u to S.

– If u = (b, en) is a call port of box b and both en (the entry of the corresponding
component) and the return port (b, ex′) of the box are in S then add u to S.



When the process finishes, we let T = Q−S. This is the set of vertices that have value 0.
Player 2’s strategy is to pick for each u ∈ T a successor that is also in T . Then the vertices
that are in T have no way of reaching their exits, and these are all such vertices.

The proof of parts 2 and 3 follows from the S&M determinacy of 1-exit RSSG termina-
tion games. For 1-exit RMDPs, for maximization, we guess the S&M strategy which gives
probability 1. This leaves us to check termination with probability 1 in a 1-exit RMC. In
[EY05a] it was shown that this can be achieved in polynomial time. For minimization, we
can guess the S&M strategy that gives probability < 1, and verify that this is the case using
the algorithm of [EY05a]. Note that we cannot guess the probabilities themselves (the least
fixpoint of the equations) because they may not even be rational.

For 1-exit RSSGs, since the game is S&M determined, we can check whether the value
of the game is 1 both in ΣP

2 and in ΠP
2 . To check that the value is 1 in ΣP

2 , guess a S&M
strategy σ for the max player, and then verify that for every S&M strategy τ of the min
player the termination probability in the RMC G[σ, τ ] obtained from the given game G by
fixing the strategies to σ and τ is 1. Note that this guarantees that the min player has no
strategy whatsoever (even no strategy with memory) that achieves value less than 1 against
σ. To check that the value is 1 in ΠP

2 , or equivalently to check that the value is < 1 in ΣP
2 ,

guess a S&M strategy τ for the min player and verify that for every strategy σ of the max
player, the probability of termination in the RMC G[σ, τ ] is less than 1. ⊓⊔

A.4 Proof-sketch of Theorem 6

We will reduce from the emptiness problem for PFA. Given a PFAM , let p∗M = sup{PM (w)|w ∈
Σ∗}. We will construct a RMDP A with entry en and exit ex such that p∗M = q∗(en,ex). Thus,

for a threshold λ, the language L(M,λ) = ∅ iff q∗(en,ex) ≤ λ; this establishes the undecid-

ability of the quantitative problem for RMDPs. For the qualitative problem (q∗(en,ex) = 1?)

we will embed A into another RMDP A′. (Note that the qualitative problem for PFAs, i.e.
determining whether p∗M = 1, is decidable; this follows from a result of [ACY95].)

Let M = (Q,Σ, T, q1, qn) be a PFA with n states. Define a RMDP A that has one
component (call it also A) with a single entry en, and n exits ex1, . . . , exn, one for each
state of M . The entry en is a max node and has edges to the call ports of a set of |Σ| boxes
ba, a ∈ Σ; all the boxes are of course mapped to the single component A. In addition en has
an edge to the exit ex1. The return ports of the boxes ba are probabilistic vertices. Each
return port (ba, exi) has an edge to each exit exj with probability Ta[i, j]. This concludes
the definition of the RMDP A. Starting from the entry en of A, the max player wants to
maximize the probability q∗(en,exn) of terminating at exit exn. We claim that q∗(en,exn) is

precisely p∗M = sup{PM (w)|w ∈ Σ∗}.
For any word w ∈ Σ∗, consider the strategy σw of the max player which at the i-th

step chooses the edge to the box corresponding to the ith letter of the reverse word wR for
i = 1, . . . , |w|; at step |w| + 1, the max player chooses the edge to the exit ex1. From that
point on, all the actions are probabilistic. It is easy to see then that by the construction,
the sequence of probabilistic actions corresponds to a run of the PFA M on the input string
w, and the run ends at the accepting state qn iff the RMDP terminates at the exit exn of
the top component. Thus, the probability q∗,σw

(en,exn) of termination at exn under strategy σ

is PM (w). It follows that p∗M ≤ q∗(en,exn).
Conversely, consider a strategy σ of the max player. At each step, when the process is

at an entry of a box, the max player has to either choose a letter of Σ and transition to
the call port of the corresponding box or decide to exit the current box. In the latter case,



the control passes to the probabilistic player and stays with him for the remainder of the
game until the process reaches an exit of the top component. If q∗,σ

(en,exn) > 0, then the max

player has to choose the edge to the exit at some point (otherwise the process will never
terminate). Let w be the reverse of the sequence of actions of the max player. Then σ = σw

and q∗,σ

(en,exn) = PM (w). Therefore, q∗(en,exn) ≤ p∗M and the two quantities are equal.

In [BC03] it is shown that the PFA emptiness problem is undecidable even for PFAs
with only 2 letters and 46 states. It follows that the quantitative problem is undecidable for
RMDPs with one component and 46 exits. A smaller number of exits, namely 10, can be
obtained using our alternative 2-counter proof, although the number of components in that
reduction is not fixed.

In [CL89,MHC03] it is shown that for every ǫ > 0 it is undecidable for a given PFA M
to distinguish between the case that M accepts some word with probability > 1− ǫ and the
case that M accepts no word with probability < ǫ. This fact together with our reduction
implies statement (1.) of the theorem. The number of exits in this reduction is unbounded.
With a more involved construction (omitted from this extended abstract) we can make the
number of exits bounded (the bound depends on ǫ), while letting the number of components
be unbounded.

For the qualitative RMDP problem, given a PFA M and threshold λ define a RMDP
A′ as follows. Assume that λ ≤ 1/2; a similar construction applies if λ > 1/2. The RMDP
A′ has two components A1, A2. Component A2 is the same as A of the above construction.
A1 has a single entry en and exit ex. The entry en is probabilistic and has an edge with
probability p = 1/(2 − 2λ) to a box b2 mapped to A2 and an edge with probability 1 − p
to the exit ex. The return port (b2, exn) of b2 has a probability 1 edge to the exit ex, while
all the other return ports (b2, exi) have probability 1 edges to the entry of a box b1 mapped
to A1. The return port (b1, ex) has a probability 1 edge to another box b′1 mapped also to
A1 and the return port (b′1, ex) of b′1 has a probability 1 edge to the exit ex of A1. This
concludes the definition of A′. It can be shown that the supremum termination probability
q∗(en,ex) in A′ (over all strategies of the max player) is 1 if and only if p∗M ≥ λ. For the

inapproximability result, set λ = 1/2 (i.e. p = 1) in the above construction. If p∗M ≥ 1/2
then q∗(en,ex) = 1, while if p∗M < δ = ǫ/(1 + ǫ) then q∗(en,ex) < δ/(1 − δ) = ǫ. ⊓⊔


