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Abstract

We reexamine what it means to compute Nash equilibria and, more generally, what it means
to compute a fixed point of a given Brouwer function, and we investigate the complexity of the
associated problems. Specifically, we study the complexity of the following problem: given a
finite game, Γ, with 3 or more players, and given ε > 0, compute an approximation within ε of
some (actual) Nash equilibrium. We show that approximation of an actual Nash Equilibrium,
even to within any non-trivial constant additive factor ε < 1/2 in just one desired coordinate,
is at least as hard as the long standing square-root sum problem, as well as a more general
arithmetic circuit decision problem that characterizes P-time in a unit-cost model of computation
with arbitrary precision rational arithmetic; thus placing the approximation problem in P, or
even NP, would resolve major open problems in the complexity of numerical computation.

We show similar results for market equilibria: it is hard to estimate with any nontrivial
accuracy the equilibrium prices in an exchange economy with a unique equilibrium, where the
economy is given by explicit algebraic formulas for the excess demand functions.

We define a class, FIXP, which captures search problems that can be cast as fixed point
computation problems for functions represented by algebraic circuits (straight line programs)
over basis {+, ∗,−, /,max,min} with rational constants. We show that the (exact or approx-
imate) computation of Nash equilibria for 3 or more players is complete for FIXP. The price
equilibrium problem for exchange economies with algebraic demand functions is another FIXP-
complete problem. We show that the piecewise linear fragment of FIXP equals PPAD.

Many other problems in game theory, economics, and probability theory, can be cast as
fixed point problems for such algebraic functions. We discuss several important such problems:
computing the value of Shapley’s stochastic games, and the simpler games of Condon, extinc-
tion probabilities of branching processes, probabilities of stochastic context-free grammars, and
termination probabilities of Recursive Markov Chains. We show that for some of them, the
approximation, or even exact computation, problem can be placed in PPAD, while for others,
they are at least as hard as the square-root sum and arithmetic circuit decision problems.

1 Introduction

A wide variety of problems from many fields (economics, game theory, probability, etc.) can be
cast in the form of finding a solution to a fixed point equation x = F (x). Computing a Nash
equilibrium is one prominent such problem that has attracted a lot of attention in economics, and
more recently in the computer science community. Nash’s theorem says that every (finite) game
has an equilibrium, i.e., a set of mixed strategies for the players such that no player can improve
its payoff by changing its strategy unilaterally [48]. Nash proved his theorem using Brouwer’s fixed
point theorem: every continuous function F from a compact convex body to itself has a fixed point.
There are many other applications of Brouwer’s theorem (and related fixed point theorems, e.g.,
Banach, Kakutani) such as price equilibria, values of games, probabilities of events in stochastic



models and others. The problem is that the proof of Brouwer’s theorem is nonconstructive, i.e., it
establishes the existence of one or more fixed points without showing how to compute one.

The problem of computing Nash Equilibria, and more generally computing fixed points of
Brouwer functions, has a long and rich history, dating back at least to the fundamental algorithm
of Scarf [52].1 Given a continuous function F and ε > 0, Scarf partitions the domain into simplices
of sufficiently small diameter δ (depending on ε and the modulus of continuity of the function F )
and navigates through the simplices to produce a point x′ such that ||F (x′)− x′||∞ < ε. The point
x′ is almost fixed by F , but it may be far from the actual fixed points. Let us call such a point x′ a
weak ε-fixed point (weak ε-FP), to distinguish it from a point x that is near a fixed point x∗ (i.e.,
||x∗ − x′||∞ < ε) which we will call a strong ε-fixed point. (The names are due to the fact that for
the kind of ‘well-behaved’ functions that are encountered in most applications, weak approximation
reduces to strong; see Section 2, Proposition 2, for a formal result that captures this.) To establish
the existence of an actual fixed point, the simplicial partition can be refined more and more, so that
the diameter, δ, of the simplices tends to 0; then the sequence of weakly approximate fixed points
must have (by compactness) a subsequence that converges to a point, which must be an actual
fixed point x∗. However, as Scarf pointed out ([52]), this latter part of the argument (existence of
a convergent subsequence) is nonconstructive in general. A number of other algorithms have been
proposed both for general fixed points and for Nash equilibria. Note that the goal of the algorithms
is to compute or approximate a (any) fixed point or Nash equilibrium, not a specific one; computing
a specific one, for example the one with highest payoff, is NP-hard [24].

In [50], Papadimitriou introduced a complexity class, PPAD, to capture problems like (approx-
imate) fixed points and Nash, and showed that a certain discretized version of the Brouwer fixed
point problem is complete for PPAD. The class PPAD lies between (the search problem versions of)
P and NP. The Nash problem has been investigated intensely recently in the theoretical computer
science community, and last year in a breakthrough set of papers [13, 10, 11] it was shown that
computing an (exact) Nash equilibrium for 2 players is PPAD-complete, and so is the problem of
computing a ε-Nash Equilibrium (ε-NE) for any number of players. An ε-NE is a profile of mixed
strategies where no player can improve its own payoff by more than ε by switching strategies uni-
laterally. ε-NEs correspond in a precise sense (they are polynomially equivalent, see section 2) to
weak ε-fixed points of Nash’s function.

Equilibria are the central solution concept in game theory and economics, and are meant to
characterize (i.e., predict or prescribe) the possible outcome(s) in settings with rational agents who
want to maximize their payoffs. We would therefore like to compute these predicted outcomes. As
is usual in computer science, all input data (the game payoff tables in this case) are assumed to
be rational for computational purposes. One major difference between games with 2 and 3 players
is that in the 2-player case there are always rational NEs and thus they can be computed exactly,
whereas for 3 and more players this is not the case: in general all NEs can be irrational. The same
phenomenon occurs in most applications of Brouwer’s theorem: the domain is not discrete (the
theorem depends after all on the function being continuous) and the fixed points are in general
irrational. This is also a familiar phenomenon in many other applications in science and engineering,
where the quantities of interest are described by nonlinear equations that have in general irrational
solutions. What does it mean then to compute fixed points and equilibria in these cases? The usual
approach for computing irrational numbers, since we cannot print all their digits, is to compute a
rational value that approximates them within some desired precision (error) ε; for example, π is
approximately 3.14159 up to five decimal digits of precision, i.e. within error ε < 10−5. Similarly,

1Scarf’s algorithm in turn builds on ideas from the Lemke-Howson algorithm for computing an exact Nash Equi-
librium for 2-player games [42].
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for fixed points and equilibria that are irrational, we would like to approximate such a solution
within a specified precision, i.e., to compute a rational point that differs from a solution (fixed
point or equilibrium) by at most ε in every coordinate. Note that this is different from computing
a ε-NE, which can be very far from any actual Nash equilibria (see Corollary 11 for a precise
statement about how far it can be). There are analogous situations in the physical world: a
physical system may be only slightly off-balance, i.e., the net effect of forces may be very small,
but still the equilibria may be far away.

So how hard is it to compute or approximate within ε a Nash equilibrium (any one) for 3 or
more players? Is it in PPAD? Is it even in NP? And if not, what is the right class that captures
these problems, i.e., the class for which they are complete? These are some of the questions we
address in this paper.

First, we show that placing the problem of approximating an actual Nash equilibrium in NP
(with any nontrivial approximation error) will imply a breakthrough on longstanding open prob-
lems. In the Square Root Sum problem (SQRT-SUM for short) we are given positive integers
d1, . . . , dn and k, and we want to decide whether

∑n
i=1

√
di ≤ k. This problem arises in many

contexts, e.g., in geometric computations where the square root sum represents the sum of Eu-
clidean distances between given pairs of points with integer (or rational) coordinates; for example,
determining whether the length of a specific spanning tree, or a given TSP tour of given points on
the plane is bounded by a given threshold k amounts to answering such a problem. This problem is
solvable in PSPACE, but it has been a major open problem since the 1970’s (see, e.g., [22, 49, 59])
whether it is solvable even in NP (or better yet, in P).

A related (and in a sense more powerful and fundamental) problem is the PosSLP problem:
given a division-free straight-line program, or equivalently, an arithmetic circuit with operations
+,−, ∗ and inputs 0 and 1, and a designated output gate, determine whether the integer N that is
the output of the circuit is positive. As shown in [1], the class PPosSLP , i.e., decision problems that
can be solved in polynomial time using an oracle (i.e., a subroutine) for PosSLP, is equal to the
class of discrete decision problems that can be solved in polynomial time in the Blum-Shub-Smale
model of real computation [5] using rational numbers as constants. This is a powerful model, which
is equivalent to the unit cost algebraic RAM model in which all operations on rationals take unit
time, no matter how large the numbers; in particular the SQRT-SUM problem can be decided in
polynomial time in this model [59]. Importantly, the division operator is exact rational division,
not integer division; it is known that with integer division (the floor function) all of PSPACE can
be decided in the unit-cost model in polynomial time [54, 4]. Allender et. al. [1] showed that
PosSLP and SQRT-SUM lie in the Counting Hierarchy, an analog of the polynomial-time hierarchy
for counting classes like #P . Thus, it is unlikely that either of these problems is PSPACE-complete,
but it remains an important open question whether either problem can be decided in P or even
in NP. It is worth pointing out that the problem EquSLP, which asks whether a given arithmetic
straight-line program over {+, ∗,−} with integer inputs produces output value exactly equal to 0,
a problem which looks a lot easier than PosSLP, is already equivalent to the well-studied problem
of polynomial identity testing (PIT), see [1]. PIT (equivalently, EquSLP) can be decided in co-RP,
but no NP algorithm is known for it, and in fact an NP upper bound would yield as a consequence
difficult lower bounds (see [35]). PosSLP easily subsumes PIT and appears to be much harder than
PIT, and it seems reasonable to conjecture that an NP algorithm for PosSLP does not exist.

We show that SQRT-SUM and PosSLP reduce to the problem of approximation of 3-player
Nash equilibria. Specifically, for any ε > 0, they reduce to this problem: given a game, Γ, with the
property (promise) that it has a unique Nash equilibrium, and such that a particular strategy is
played in the unique NE with probability either 0 or at least 1− ε, decide which of the two is the
case for Γ. This means that any non-trivial approximation of the desired coordinate in the unique
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NE, say to within any constant c < 1/2, would enable us to distinguish the two cases for small
enough ε > 0.

We show similar results for market equilibria: given an exchange economy with algebraic excess
demand functions that has a unique price equilibrium (in the unit price simplex), it is hard to
determine whether the price of a commodity in the unique equilibrium will be very close to 0 or
very close to 1.

Note that these hardness results hold even when there is a unique equilibrium, and thus there
is no issue of which equilibrium to select. The issue of uniqueness and problems of equilibrium
selection in games and markets with multiple equilibria have received a lot of attention; if the
notion of equilibrium captures the predicted outcome, which one should it be when there are
multiple equilibria and how is it selected? See, e.g., [30] for a general theory of equilibrium selection
in games (and note the remarks in the foreword by Aumann on the role of uniqueness), and see
[46], Chapter 17 for discussion on uniqueness (and local uniqueness) in market equilibria, sufficient
conditions, and references. When there is a unique equilibrium, then there is of course no ambiguity,
which is a desirable property: there is one predicted outcome. One would like to be able to compute
it.

The hardness proof has several interesting consequences. One implication is that ε-Nash equi-
libria for doubly-exponentially small ε > 0 (i.e. ε = 1/22nc

for some c) can still be at distance
almost 1 from the (unique) Nash equilibrium (see Corollary 11). We show that this phenomenon
does not arise for 2-player games: for every 2-player game G and every rational δ > 0, we can
pick a rational ε > 0 of bit-size polynomial in that of δ and the size of the game such that every
ε-Nash equilibrium is within δ of a Nash equilibrium of G. Another difference between 3-player and
2-player games is that in 2-player games the crux of the problem is in determining the support of
a NE (which pure strategies have nonzero probabilities); once we know the support, we can easily
compute in P-time a NE with that support. However this is not the case for 3-player games: we
show that even if we know that the game has a unique NE, and that the NE has full support (all the
pure strategies of all the players have nonzero probability), it is still SQRT-SUM- and PosSLP-hard
to approximate the NE, specifically, it is hard to determine whether a particular strategy is played
with probability less than ε or more than 1− ε for any constant ε > 0 (i.e. very close to 0 or to 1).
We also show that it is #P -hard to compute a desired bit of the (unique) NE, where the index of
the desired bit is specified in binary.

We define a new complexity class FIXP of problems that capture fixed point problems for
algebraically defined functions, over a compact convex domain. FIXP is the class of search problems
that can be expressed as fixed point problems for functions represented by polynomial size algebraic
circuits over the basis {+,−, ∗, /,max,min} with rational constants.

We show that the Nash equilibrium problem for 3 players (or more) is complete for FIXP. Nash
is complete both in the sense of exact and approximate computation. This result shows an intimate
connection between Nash equilibria and fixed points of algebraic functions, and explains why the
proofs of Nash’s theorem (and algorithms) for games with a general number of players (3 or more)
use a fixed point theorem (Brouwer or the related Kakutani theorem), and ultimately some type of
compactness argument. Recall that, in the case of 2 players, there is a direct, constructive proof of
Nash’s theorem, namely the Lemke-Howson algorithm [42], which does not rely on any fixed point
theorem nor compactness argument.

Another well-known application of fixed point theorems is the existence of market equilibria. We
show that computing a price equilibrium in an exchange economy with excess demand functions
that are algebraic (over the same basis {+,−, ∗, /,max,min}) is another complete problem for
FIXP.
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We show that the class FIXP is rather robust in several senses. Specifically, FIXP does not
change with the introduction of other operators to the basis, such as k

√ and fractional powers.
Moreover, we shall construct a new family of algebraic {+, ∗,max} functions (without division)
whose fixed points are precisely the Nash Equilibria of a given game, from which it follows that
algebraic circuits over the basis {+, ∗,max}, i.e., without division, are already sufficient to charac-
terize all of FIXP. Furthermore, we shall show that the domain assumed for the Brouwer functions
is rather flexible: it can be the standard (unit) n-simplex, or the (unit) n-cube, or any convex
polytope specified by (rational) linear inequalities, and it can even be an ellipsoid specified by its
(rational) center and associated matrix. We show that all of these domains yield the same class
FIXP (both with respect to approximation as well as decision problems), via a suitably weak notion
of polynomial-time (real-valued) search problem reduction. Finally, note that Nash’s functions are
given by algebraic formulas, rather than circuits. It therefore follows from the FIXP-completeness
of Nash equilibria that FIXP is already captured by fixed point functions given by algebraic formu-
las over basis {+,−, ∗, /,max,min}. Thus, overall the class FIXP is rather robust is several ways:
with respect to the set of algebraic operators, whether we allow functions specified by algebraic
circuits or just formulas, and also with regard to what (compact convex) domain we choose for the
functions. See Sections 2.3 and 4 for details.

An upper bound on the complexity of the discrete computational tasks associated with search
problems in FIXP (e.g., the approximation and decision problems) is PSPACE. We know no better
bound in general.

There are a number of other well-studied problems from different areas that can be cast as
fixed point problems of suitably defined functions given by simple algebraic formulas, and thus
are also in FIXP. We study several important such problems that can be cast in a fixed point
framework. Despite extensive work and a very rich theory developed over the years for these
models, the complexity of fundamental problems for them remain open. We now discuss several
of these models. Stochastic games were first introduced by Shapley [56] in 1953, and have been
extended in various directions and studied extensively since then. A simpler version, called simple
stochastic games was introduced by Condon [12] in computer science and has attracted a lot of
attention. The quantities of interest in these games are to compute or bound the values of the games
(they are unique) and to find optimal strategies for the players. Branching processes (BP) were
first introduced, in the 1-type case, by Galton and Watson in the 19th century to model population
dynamics, and generalized to the multi-type case by Kolmogorov and Sevastyanov ([39]) motivated
by biology. They are a basic probabilistic model for many applications (e.g., biological processes
[28, 36] and many others). The most basic quantities of interest here are the extinction probabilities
of entity types. Stochastic context-free grammars (SCFG) are a model in common use in Natural
Language Processing [45] and biological sequence analysis [16]. The probabilities of the language
and sublanguages generated by the grammar are quantities of interest here. Recursive Markov
chains (RMC), a more powerful model that encompasses in a precise sense both BPs and SCFGs,
were introduced in [19] to model recursive probabilistic programs (see also [18] for an equivalent
model). Basic quantities of interest here are the termination probabilities.

In all of the above models, one can define an appropriate function F such that the desired
quantities x∗ are a fixed point of F ; in fact in all cases except for general RMCs, the function and
the domain can be defined so that x∗ is the unique fixed point (for RMCs it is the least nonnegative
fixed point). In all these problems, the function F is just a tool to get a handle on the problem.
For problems like Nash and market equilibria, weak ε-fixed points have a game-theoretic/economic
meaning (they correspond to, e.g., ε-NEs, i.e., strategy profiles where the players have only a
small incentive to deviate) and thus are also of interest, besides of course the approximation of
the actual equilibria, which we would like to compute. For the other models mentioned above
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however, weak ε-fixed points have no significance, unless they help us find, approximate, or answer
questions about, the quantities of interest which are the actual fixed points. For example, consider
the approximation of the value of a simple stochastic game. We will observe that one can compute
easily in polynomial time a weak ε-fixed point of the associated function F , for any ε > 0 which is
constant or even inverse-polynomial (ε = 1/nc for a constant c); however, this is not useful since it
does not tell us how to compute even a constant approximation to the value of the game which is
what we are interested in. The same phenomenon occurs in branching processes, RMCs etc. It is
easy to obtain a weak ε-approximation for ε = 1/nc, but we do not know how to approximate the
extinction and termination probabilities.

The distinction between strong (near) and weak (almost) approximate fixed points was noted
early on, sometimes with statements which on the surface seem contradictory. For example, Scarf
in his original paper [52], remarks that obtaining strong ε-fixed points from weak ε-fixed points
is non-constructive for general mappings. On the other hand, Anderson [2] gives several “almost
implies near” theorems, notes a theorem of [41] that for every Brouwer function F and ε > 0 there
is a δ > 0 such that every weak δ-fixed point is a strong ε-fixed point, and shows furthermore that
for a class of smooth functions, δ is in fact linear in ε. What is going on? Scarf’s remark concerns
algorithms that use F as a black box, i.e. that work for all possible instances of all problems and
have restricted access to the function. Indeed, impossibility results are known in the black-box
oracle model, showing that no finite number of queries suffice to compute a strong approximation
for a Lipschitz continuous function given as a black box [57], whereas a weak approximation can be
obtained with a finite (exponential) number of queries in this model (and an exponential number is
required [31]). Anderson’s results concern a single function analysed with respect to the precision
only. These results represent two extremes: in one case, the model concerns algorithms that work
for all possible functions and place a very severe black box limitation on the access to the function.
In the other case, the theorem considers one function in isolation, which in effect corresponds to
considering a single instance of a problem (for example, Nash for a specific game Γ), i.e., it does
not take into account the dependence of the complexity on the instance.

In a concrete problem (like Nash, stochastic games, etc.) we have an intermediate situation
between the two extremes, and it is important to set up the framework properly to study the
complexity of the problem. We have concrete functions (for example Nash’s function for a game),
so the black box results are not relevant; for example, we certainly can compute approximations
to actual Nash equilibria in finite time, no worse than exponential. On the other hand, we do
not have a single function, but rather a class of functions, one for every instance of the problem,
and we want to determine the complexity as a function of the instance size, as well as precision.
Indeed, our results show that from a quantitative computational perspective, “almost” certainly
does not imply “near” for Nash and other classes of Brouwer functions. If we want to study the
complexity of these problems, it is in fact essential to distinguish between these notions: blurring the
distinction between the computation of ε-Nash equilibria and approximate computation of actual
Nash equilibria (and more generally, between weak and strong approximate fixed points) can lead
to unwarranted and potentially false conclusions, e.g., that the square-root-sum problem is in NP,
and that P-time in the unit-cost exact rational arithmetic model is contained in NP.

For some types of functions, weak and strong approximation for sufficiently small ε and even
exact computation can be related. We define a general class of polynomial piecewise linear functions,
and show that for them exact fixed point computation is in PPAD; the piecewise linear class includes
simple stochastic games, the discretized Brouwer problem of [50] which is PPAD-complete, and the
subclass of FIXP, denoted Linear-FIXP, where the circuits are restricted to the basis {+,max} and
with multiplication by rational constants only, i.e., do not use multiplication or division, except
by a constant. Indeed, we show (exact) fixed points of polynomial piecewise linear functions,
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Linear-FIXP, and PPAD are all polynomially equivalent.
For Shapley’s stochastic games, which have a nonlinear F , the problem is in FIXP, thus Shapley

reduces to Nash, both in the exact sense, as well as in the approximate and decision version.
Furthermore, we show that the (strong) approximation problem for Shapley’s games is reducible
to weak for sufficiently small ε (of the form ε = 1/2poly) and is thus in PPAD. However, bounding
the value of the game, e.g., deciding whether Player 1 can achieve reward ≥ r is harder: we show
that it is at least as hard as SQRT-SUM, and hence placing it in PPAD (or NP) would solve a
longstanding open problem.

For branching processes, SCFGs, and a corresponding subclass of Recursive Markov Chains,
called 1-RMCs, we show that the problem of computing the extinction (termination) probabilities
is in FIXP. The challenging part here is to constrain the domain of the function in a polynomial-
time computable way so that we get a Brouwer function with the desired probabilities forming the
unique fixed point in the domain. The decision problem (comparing the probabilities with a given
rational r) is SQRT-SUM- and PosSLP-hard [19]; we do not know the status of the approximation
problem for the relevant probabilities.

The rest of this paper is organized as follows. In Section 2 we set up the framework, and give
basic definitions and properties. We define total search problems where the solutions may be real-
valued (generally irrational) vectors, and define several types of discrete computational problems
associated with such search problems in Section 2.1. We present notation and background on games
and Nash equilibria in Section 2.2. We then discuss in Section 2.3 the formulation of search problems
as fixed point problems, define some important properties of function classes and give some basic
results on strong and weak approximation of fixed points for such functions. In Section 3 we give
reductions from the Square Root Sum and PosSLP problems to the Nash equilibrium problem, and
present the corollaries of these reductions that we described earlier for Nash and market equilibria.
In Section 4 we define the class FIXP, and prove that the Nash equilibrium problem is complete
for the class. We use the FIXP-completeness of Nash equilibria, together with an alternative fixed
point characterization of Nash equilibria, to show that the class of fixed point problems with the
reduced basis {+, ∗,max} and rational constants, is already equally powerful. We also show FIXP-
completeness of the price equilibrium problem for algebraically defined excess demand functions.
In Section 5 we define and discuss the class of piecewise-linear fixed point problems. We present
several examples of such problems (simple stochastic games, linearly interpolated functions, Nash
for 2-player and polymatrix games), and show that this class of problems is equivalent to Linear-
FIXP and to PPAD. In Section 6 we study Shapley’s stochastic games. We show that Shapley is
in FIXP, the approximation problem is in PPAD, and the decision problem is SQRT-SUM-hard.
Section 7 concerns branching processes, SCFGs, and 1-RMCs. We give the relevant definitions
and show that the computation of their termination probabilities is in FIXP. Section 8 gives some
concluding remarks.

2 Preliminaries

We will describe first a general framework for search problems where the solution sets may be
real-valued, and thus not computable exactly. We will then give definitions and brief background
for games and Nash equilibria. Finally we will set up the framework for expressing search problems
as fixed point problems for a class of functions, define some interesting classes of functions and
types of approximation, and give some of their basic properties.
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2.1 Total Search Problems

A search problem Π has a set of instances, represented by finite strings over a fixed finite alphabet
Σ, and each instance I has an associated set Sol(I) of “acceptable” solutions. Numbers in the input
(such as weights, rewards, probabilities etc.) are assumed to be rational as usual for computational
purposes, represented by the numerator and denominator written in binary; the size of a rational
number is the number of bits in the numerator and denominator. The size |I| of the instance I is
the length of the string that represents it. As usual, it is assumed that, given a string over Σ, one
can determine in polynomial time if the string is an instance of the problem.

The problems we will be interested in here (equilibria, fixed points, probabilities, etc.) are total:
every instance I has a nonempty set Sol(I) of solutions. For some problems there may be a unique
solution (for example, probabilities of certain events in a stochastic model), while for others there
may be multiple solutions (for example, Nash equilibria of a game). Unlike usual discrete problems
where solutions are also finite (and represented as strings), the search problems that we study here
have solutions that are in general real-valued vectors of finite dimension, dI , that is polynomially
bounded in the size |I| of the instance. We would like to solve the following problems:

1. Exact Computation: Given input I, compute a solution x in Sol(I). Note that if there
are multiple solutions, then any one of them is a correct output. If there are rational solutions,
we can output them explicitly, i.e., the problem is discrete and can be studied in the standard
discrete Turing machine model. In several problems, the solutions may be inherently irrational, so
we cannot output them explicitly. In this case the exact computation problem could be studied
in a real computation model, such as the model of [5]. However, our focus is on the standard
Turing machine model. In this model we can only compute some desired finite information about a
solution, such as compute bounds on it, or approximate it up to a desired precision. Attention has
to be paid in the formulation of the discrete problems to stay faithful to the search problem and not
make it harder: in particular, if there are multiple solutions, any one of them should enable us to
answer the question. There are several types of information that one may want to compute about
a solution, leading to various discrete problems, and this can make a difference in the complexity.
2. Partial Computation: Compute a specified number of bits of the solution. Given instance I
and integer k > 0 in unary, compute the binary representation of some solution (any one), up to
the first k bits after the decimal point. We would like to do this in time polynomial in |I| and k.
3. Decision Problem: Given instance I, rational vector r and a comparison operator vector θ
(e.g., ≥,≤, etc.) return a truth value that holds for at least one of the solutions, i.e. if all solutions x
satisfy xθr then return ‘Yes’, if none satisfies xθr then return ‘No’, and if some do and some do not,
then either answer is correct. Alternatively, and more usually, the decision question may be posed
on a particular entry: “return ‘Yes’ if x1 ≥ r for all solutions, ‘No’ if x1 < r for all solutions, and
otherwise (if solutions exist with both answers) then either answer is fine”. This formulation of the
decision problems reflects the standard way of turning optimization problems and other problems
with output to decision problems, except since there can be many different solutions on which a
given true/false predicate may have different truth values, we want to treat an answer as correct as
long as it is based on knowing any solution and evaluating the predicate on it. Thus, we consider
both ‘yes’ and ‘no’ as correct answers in cases where there exist distinct solutions for which the
predicate of interest is both true and false. We would like running time polynomial in |I| and in the
size (number of bits) of r. Note that the decision problem, as formulated above, requires simply to
return a truth value of the predicate that holds for some solution, rather than answering whether
there exists a solution that satisfies the predicate. The Existence question, given instance I and
rational r, is there a solution x with x1 ≥ r?, is equivalent to the decision question for problems with
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unique solutions, but not otherwise. For many search problems the existence question is NP-hard
while the search problem is not. For example, for 2-player Nash equilibria, the existence question
is NP-hard [24], while the search problem is not unless NP=coNP. Moreover, one can define trivial
search problems for which the existence question is NP-hard: consider graph coloring, where the
solutions are all legal colorings, x1 is the number of colors used, and the question is x1 ≤ 3?. The
search problem is trivial (compute any legal coloring of the graph) but determining whether there
exists a solution with x1 ≤ 3 is NP-hard. In the case of search problems with multiple solutions,
one has to be careful in formulating the decision version in a way that does not make it harder than
the search problem itself: knowing any solution should enable one to answer easily the decision
question (by evaluating the predicate on that solution).
4. Approximation Problem: Given instance I and rational ε > 0, compute a vector x that is
within (additive) ε > 0 of some solution, i.e., such that there is a x∗ ∈ Sol(I) such that |x∗−x|∞ ≤ ε.
Alternatively we could require an approximation of only a particular entry of a solution vector, e.g.,
approximate x∗1 within additive ε > 0. We would like polynomial time in |I| and in log(1/ε); this
permits approximation within 2−k in time polynomial in I and k. For several problems we will show
that the approximation problem is hard for some class, by showing hardness of a corresponding
Promised Gap Decision Problem PGD(a,b): Given instance I, rationals a < b, and the promise
that either all solutions x ∈ Sol(I) have x1 ≤ a or they all have x1 > b, determine which of the two
is the case.

There are some simple relations between these problems. Clearly, the partial computation of a
solution up to k bits after the decimal point is a 2−k-approximation. The other direction does not
necessarily hold: in principle, no matter how small the error ε in the approximation, we cannot be
sure what the first bit is, for example we cannot tell whether a probability is 1 or not.

For search problems whose solutions are rational, of size polynomial in the input size, if we can
solve the approximation problem in polynomial time, then we can also solve the exact computation
problem: Suppose that the polynomial q(n) is a bound on the size (number of bits in numerator
and denominator) of the solutions for instances of size n. Given an instance I, compute an approx-
imation v within ε = 1/23q(|I|) of a solution. Then compute for each component of v the closest
rational number whose denominator is bounded by 2q(|I|); this can be done in polynomial time
by the continued fraction method (see, e.g., [26]). The obtained vector y is uniquely determined,
because each component of v is 1/23q(|I|)-close to a rational with denominator at most 2q(|I|) and
any two such rationals are at least 1/22q(|I|) apart. The vector y must therefore be the solution
that is ε-close to v.

For problems with a unique solution, as already noted the Existence and the Decision problem
are equivalent; using them and binary search we can solve the partial computation (and approxima-
tion) problem in time polynomial in the input and output. The converse does not hold in principle,
because a partially computed solution is in base 2, so we cannot tell with it how the actual solution
compares for example with 1/3, no matter how many bits we have after the decimal point.

In general the above three discrete problems are related but not equivalent, i.e. for a search
problem Π, the associated Partial Computation, Decision, and Approximation problems may well
have different complexity.

Reductions between (real valued) Search Problems.
In the usual case of discrete search problems, a (polynomial) reduction from problem A to

problem B consists of two polynomial-time computable functions: a function f that maps instances
I of A to instances f(I) of B, and a second function g that maps solutions y of the instance f(I)
of B to solutions x of the instance I of A. For search problems with real-valued solutions, we have
to specify what kind of functions g are allowed, since our model of computation is the standard
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(discrete) Turing machine model, and thus we cannot talk about polynomial-time complexity for
functions on real numbers (as we could if we instead used a real model of computation). The main
criterion is that the definition should enable us to easily transfer back (discrete) solutions for B to
(discrete) solutions for A, for the discrete problems of interest associated with the search problems,
e.g., the decision, and approximation problems. It is sufficient for our purposes in this paper to
restrict the reverse function g to have a particularly simple form; of course if a problem A reduces to
B under a simple reduction, it also reduces under more powerful ones. Specifically, we will restrict
the function g to be a separable linear transformation with polynomial-time computable rational
coefficients; i.e., x = g(y), where each coordinate xi of x is obtained by a linear transformation
gi(y) = aiyj + bi on some coordinate yj of y, where the coefficients ai, bi are rationals computable
from I in polynomial time. We will call such reductions, given by functions f, g, where f is P-time
computable and g is a separable linear transformation with P-time computable coefficients, SL-
reductions. A reduction of this form from A to B induces corresponding P-time reductions for the
Decision and the Approximation problems. For the Decision problem, i.e., to answer for example
the question ‘xi ≥ r?’ for a solution to instance I of A, we construct the instance f(I) of B and
ask the question ‘yj ≥ (r − bi)/ai?’ if ai > 0, or ‘yj ≤ (r − bi)/ai?’ if ai < 0 (if ai = 0 the answer
is obvious). Similarly, it is easy to see that the Approximation problem for A reduces to that for
B. Furthermore, in all our reductions we can take the coefficients ai, bi to be (positive or negative)
powers of 2, in which case the reduction induces also a reduction from the Partial computation
problem for A to that of B.

2.2 Games and Nash Equilibria

In a (normal form) game Γ with k players, the instance consists of k (disjoint) finite sets of pure
strategies Si, i = 1, . . . , k, and k rational-valued payoff functions ui from the product strategy space
S = ΠiSi to Q. The elements of S, i.e., combinations of pure strategies, one for each player, are
called pure strategy profiles. The assumption of rational values is for computational purposes. Each
rational number r is represented as usual by its numerator and denominator in binary, and we use
size(r) to denote the number of bits in the representation. The size |Γ| of the instance (game) Γ is
the total number of bits needed to represent all the information in the game: the strategies of all
the players and their payoffs for all s ∈ S.

A mixed strategy for a player i is a probability distribution on its set Si of pure strategies. A
mixed strategy profile x is a combination of mixed strategies for all the players. Letting ni = |Si| and
n =

∑
i ni, a mixed strategy profile x can be represented by a non-negative vector of length n (i.e.,

its entries are indexed by all the players’ pure strategies) that is a probability distribution on the set
of pure strategies of each player. We will use xi to denote the subvector of x corresponding to player
i (i.e. the mixed strategy of player i in the profile x), and use xi,j to denote the probability with
which player i plays his strategy j in x. Thus, a vector xi is a mixed strategy of player i iff it belongs
to the unit simplex ∆ni = {y ∈ Rni |y ≥ 0;

∑ni
j=1 yj = 1} and the vector x is a mixed strategy profile

iff it belongs to the product of the k unit simplexes for the k players, {x ∈ Rn | x ≥ 0;
∑ni

j=1 xi,j = 1
for i = 1, . . . , k}. We let DΓ denote the set of all mixed profiles for game Γ.

The support of a mixed strategy profile x is the set of pure strategies that have nonzero proba-
bility in x. The profile is fully mixed if all the pure strategies of all players have nonzero probability.
We use the notation (i:j) to identify the pure strategy j of player i, as well as its representation
as a mixed strategy that assigns probability 1 to strategy j and probability 0 to the other strate-
gies of player i. When it is convenient, we will sometimes identify a pure strategy profile s with
the corresponding mixed strategy profile that assigns probability 1 to the pure strategies of s and
probability 0 to the other strategies. The payoff function of each player can be extended from pure

10



strategy profiles to mixed profiles, and we will overload notation and use ui to also denote the
expected payoff function for player i. Thus the (expected) payoff ui(x) of mixed profile x for player
i is

∑
x1,j1 . . . xk,jk

ui(j1, . . . , jk) where the sum is over all pure strategy profiles (j1, . . . , jk) ∈ S.
We use the notation x−i to denote the subvector of x induced by the pure strategies of all players
except for player i. If yi is a mixed strategy of player i, we use (yi;x−i) to denote the mixed profile
where everyone plays the same strategy as x except for player i, who plays mixed strategy yi.

A Nash equilibrium (NE) is a strategy profile x∗ such that no player can increase its payoff
by switching its strategy unilaterally. Formally, x∗ is a NE if for all i = 1, . . . , k and every mixed
strategy yi for player i, ui(x∗) ≥ ui(yi;x∗−i). It is sufficient to check switches to pure strategies only,
i.e., x∗ is a NE iff ui(x∗) ≥ ui((i:j);x∗−i) for every pure strategy j ∈ Si, for each player i = 1, . . . , k.

Nash showed that every finite game has at least one NE [48]. Thus, the problem of computing
a Nash equilibrium for a given game I is a total search problem, where Sol(I) is the set of NE of
game I.

Two-player games (with rational payoff functions) have rational NEs, thus exact computation
is possible, and as shown in [10, 9] the problem is PPAD-complete. PPAD is a class of discrete total
search problems, introduced in [50], that captures the basic principles of path-following algorithms
like Lemke-Howson [42] and Scarf [52]. Formally, a search problem Π is in PPAD if each instance
I has a set S(I) of candidate solutions which are (strings) polynomially bounded in the input
size |I|, and there are polynomial-time algorithms for the following tasks: (a) test whether a
given string I is an instance of Π and if so compute an initial candidate solution s0 in S(I), (b)
given I, s, test whether s ∈ S(I) and if so compute a successor succI(s) ∈ S(I) ∪ {⊥} and a
predecessor predI(s) ∈ S(I) ∪ {⊥}, where the symbol ⊥ stands for ‘nil’ (i.e. there is no successor
or predecessor), such that predI(s0) = ⊥, succI(s0) ∈ S(I), and for all u, v ∈ S(I), succI(u) = v
iff u = predI(v). The pred and succ functions induce a directed graph G(I) = (S(I), E), where
E = {(u, v)|succI(u) = v, predI(v) = u}. The graph G(I) consists of a set of directed paths, cycles,
and isolated nodes, and s0 is the source node of one of the paths. The desired solution set to
the instance I of the search problem, Sol(I), is the set of nodes of G(I), other than s0, that have
indegree + outdegree = 1, i.e., are endpoints of the paths; note that Sol(I) 6= ∅ because there must
be at least one more endpoint besides s0. As usual, the class is closed under P-time reductions, i.e.,
if search problem A reduces to problem B, and B satisfies the above definition, then A is considered
also to belong to PPAD. The class PPAD lies somewhere between P and TFNP: all search problems
in PPAD are total, and furthermore, for a given instance I, we can guess a solution s 6= s0 and
verify that it is a source or sink in the graph G(I), i.e. that s ∈ Sol(I).

For three or more players, it is possible that all the Nash equilibria are irrational, and thus
cannot be computed exactly. In fact, as shown by Bubelis in [7], any real root of any univariate
polynomial can arise as the (scaled) probability of a particular strategy or the payoff of a particular
player in a Nash equilibrium of a 3-player game, whose strategies and payoff functions depend on
the degree and the coefficients of the polynomial. In another result, Datta showed that every real
algebraic variety is isomorphic to the set of fully mixed Nash equilibria of a 3-player game [15]:
For every real algebraic variety V given by a set of polynomial equations in n variables, a 3-player
game can be constructed whose set of fully mixed Nash equilibria is isomorphic to V . This theorem
does not give a reduction because in general the game will have more Nash equilibria besides the
fully mixed ones; in fact, a set of polynomial equations may have no solutions, whereas every game
has one or more NEs. Also, the number of pure strategies of the game in Datta’s construction is
exponential in n. Nevertheless, the result indicates the richness of 3-player games.

Since the NE are irrational, we would like to address the associated discrete computational
problems, i.e. compute or approximate a NE up to specified precision, or solve the related decision
problem; this is one of the main subjects of this paper. Note that approximating a (actual) NE
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is different from the notion of an ε-NE (and the related notion of well-supported ε-NE) studied
previously and shown PPAD-complete [13, 25, 11]. An ε-NE is a strategy profile x such that no
player can improve its payoff by more than ε by switching unilaterally to another strategy. That
is, for every player i and every mixed strategy yi of player i, ui(x) ≥ ui(yi;x−i) − ε (again, it is
sufficient to check switches to pure strategies only). Thus, a profile x is an ε-NE if it is almost
at equilibrium, rather than being near an equilibrium. A well-supported ε-NE is an ε-NE x that
has in addition the property that every pure strategy (i:j) in the support of x has (expected)
payoff ui((i:j);x−i) ≥ ui(x)− ε. As shown in [13] the notions of ε-NE and well-supported ε-NE are
polynomially equivalent.

In general, an ε-NE (whether well-supported or not) can be very far from all actual NEs.
Specifically, our results will imply (see Corollary 11) examples of games, Γ(n), of size Θ(n), such
that there are 1/(22Ω(nc)

)-NEs which have distance 1 (in l∞) to any actual NE. So, even for an
ε so small that it requires exponentially many bits in binary relative to the size of the game just
to write down ε, an ε-NE can have the worst-case possible distance in some coordinate from any
actual NE, namely distance 1. On the other hand, all profiles that are sufficiently close to a NE
are also ε-NEs: more precisely, for every game I and ε > 0, we can take a δ > 0 of encoding size
polynomial in the size of I and ε, such that every profile x′ such that |x′ − x∗|∞ < δ for some NE
x∗, is an ε-NE ([43]).

2.3 Fixed Point Problems.

Nash proved his theorem in [48] using Brouwer’s theorem, which asserts that every continuous
function F from a convex compact domainD to itself has at least one fixed point, i.e. there is a point
x∗ ∈ D such that x∗ = F (x∗). Clearly, for every finite game Γ, the set DΓ of mixed strategy profiles
is convex and compact (it is a convex polytope). Nash defined for every finite game Γ a continuous
function FΓ fromDΓ to itself and showed that the fixed points of FΓ are precisely the Nash equilibria
of Γ. Specifically, for each player i and strategy j ∈ Si, the (i, j) component of the function FΓ is
defined as follows: FΓ(x)(i,j)

.= xi,j+max{0,gi,j(x)}
1+

Pmi
l=1 max{0,gi,l(x)} , where gi,j(x) = ui((i:j);x−i)−ui(x) is the net

“gain” of player i if he switches to pure strategy j (the “gain” gi,j(x) is a polynomial in x, which
may be positive, 0, or negative for a given profile).

Another well-known application of fixed point theorems is the existence of market equilibria.
Consider the following exchange equilibrium problem [53]. We have m agents and n commodities.
Each agent has an endowment (supply) of commodities which he brings to the market, sells it
at the prevailing prices and buys his preferred bundle of commodities. Let el be the endowment
vector of commodities for agent l, thus, eli is the amount of commodity i that agent l brings to the
market. If p is the vector of prices for the commodities, agent l receives 〈p, el〉 =

∑
i pie

l
i amount of

money, and with this he buys the vector of commodities dl(p) (his ‘demand’ vector), which is the
bundle of commodities that optimizes his preferences (his utility) at price vector p, using the money
he obtained by selling his/her endowment at price vector p. The difference between the agent’s
demand and supply, gl(p) = dl(p) − el, is called the excess demand of agent l. Since the money
he receives 〈p, el〉 is equal to the money he spends, 〈p, dl(p)〉, the excess demand function satisfies
the constraint 〈p, gl(p)〉 =

∑n
i=1 pig

l
i(p) = 0, called Walras’ law. Two other standard assumptions

on the excess demand functions are that (i) they are homogeneous of degree 0 (i.e., for all α > 0,
gl
i(αp) = gl

i(p)) and thus price vectors may be normalized to lie on the unit simplex ∆n, and (ii)
they are continuous on the unit simplex. Let gi(p) =

∑
l g

l
i(p) be the (total) market excess demand

for each commodity i. The functions gi(p) clearly also satisfy Walras’ law,
∑n

i=1 pigi(p) = 0, and
the same constraints (i) and (ii). A vector p of prices is an equilibrium if gi(p) ≤ 0 for all i (demand
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does not exceed supply), with equality for all commodities i that have pi > 0.
There is always at least one equilibrium, and the proof is via Brouwer’s theorem. Namely,

the equilibria are the fixed points of the function F : ∆n 7→ ∆n, defined by the formula Fi(p) =
pi+max(0,gi(p))

1+
P

k max(0,gk(p)) . Conversely, Brouwer’s theorem can be derived from the price equilibrium theorem
[60]. Namely, given a Brouwer function f : ∆n → ∆n, one can define a total market excess demand
function g : ∆n → Rn where g(p) = f(p) − (〈p, f(p)〉/〈p, p〉)p. It is easy to see that g satisfies the
constraints of an excess demand function (e.g., 〈p, g(p)〉 = 0 for all p , Walras’ law) and hence has
an equilibrium. Furthermore, any price equilibrium is a fixed point of f .

In this paper we study search problems that can be cast in a fixed point framework: every
instance I of the search problem Π is associated with a continuous function FI mapping a compact
convex domain DI to itself, such that the set Sol(I) of solutions is Fix(FI), the set of fixed points
of FI . More generally, we will also allow polynomial time SL-reduction from the search problem
Π for I to the fixed point problem for FI , i.e., it is not necessary to require Sol(I) = Fix(FI).
Thus, the solutions Sol(I) of the search problem may be obtained from the fixed points of FI by
projecting them to some of the components, and then possibly scaling and translating the compo-
nents, i.e., applying separate polynomial-time linear transformations with rational coefficients on
the components.

We now define some important types of fixed points problems. Consider a fixed point search
problem Π and the class F of functions FI indexed by the instances I of Π. We say that the
class F (and its fixed point problem Π) is polynomially continuous if there is a polynomial
q(z) such that for all instances I and all rational ε > 0, there is a rational δ > 0 such that
size(δ) ≤ q(|I| + size(ε)) and such that for all x, y ∈ DI , |x − y|∞ < δ ⇒ |FI(x) − FI(y)|∞ < ε.
It is easy to see that this definition is robust with respect to the norm: replacing the L∞ norm in
this definition by any other Lk norm, k ∈ N ∪ {∞}, would not alter the classes of functions that
are polynomially continuous. Also, note that all Lipschitz continuous functions, i.e. functions that
satisfy |FI(x) − FI(y)|k ≤ CI |x − y|k for all x, y ∈ DI , with Lipschitz constant CI ≤ 2poly(|I|), are
clearly polynomially continuous.

We say that the class F (and the associated problem Π) is polynomially contracting with
respect to norm Lk, k ∈ N ∪ {∞}, if there is some polynomial q(z) such that for all instances I
there is some rational β < 1−2−q(|I|), such that for all x, y ∈ DI , |FI(x)−FI(y)|k < β|x−y|k. The
contraction property is sensitive to the norm: a class may be contracting with respect to one norm
Lk but not with respect to another norm Lt. Clearly, if a class is polynomially contracting with
respect to any norm Lk then it is polynomially continuous. A contracting function FI (whether
polynomially contracting or not) has a unique fixed point x∗ by Banach’s theorem.

We say that F (and Π) is polynomially computable if there is a polynomial q(z) such that
(a) the domain DI for every instance I is a convex polytope (bounded convex polyhedron) described
by a set of linear inequalities with rational coefficients that can be computed from I in time q(|I|),
and (b) given a rational vector x ∈ DI , the image FI(x) is rational and can be computed from I
and x in time q(|I|+ size(x)).

For example, Nash’s class of functions F = {FΓ | Γ a game} is polynomially continuous and
polynomially computable, but it is not contracting.

In the problems that we will discuss, the domain will usually be a box, or a simplex, or a
cartesian product of simplexes. A box (hyper-rectangle) B[a, b], where a < b are two rational
vectors, is the set of points {x|a ≤ x ≤ b}. The unit cube is the box B[0, 1] where 0, 1 are the all-0
and all-1 vectors. We will use [0, 1]n to denote the unit cube in Rn. A simplex is the convex hull
of affinely independent points. The unit simplex ∆n is the convex hull of the n unit vectors in Rn,
i.e. ∆n = {x | x ≥ 0,

∑
i xi = 1}. In much of the literature on fixed points it is often customary,
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for simplicity, to take the domain of the function to be a box or a simplex, usually the unit cube
or the unit simplex. If we have a function F on a convex compact domain D, we can embed D
into a suitable large box or simplex D′ that contains D, define a continuous function π from D′

to D that is the identity on D, and compose π with F to form a continuous function F ′ on D′

whose fixed points are the fixed points of F . For example, the function π from D′ to D could be
taken to be the projection function that maps every point x ∈ D′ to its closest point in D under
the L2 metric; there is a unique such point since distance is a strictly convex function and D is a
bounded closed convex set (computing the closest point is a convex programming problem). The
embedding function π does not have to be a projection however; it could be taken to be any other
continuous function that is the identity on D. The box or simplex D′ can be translated and scaled
to a unit cube or unit simplex D′′. Of course, if we are interested in properties such as polynomial
computability of the function, then we have to make sure that the properties get preserved in the
transformation.

Lemma 1 Every polynomially computable fixed point search problem Π is SL-reducible to another
polynomially computable fixed point problem Φ that has the same set of instances and such that the
domain for each instance is a unit cube. If the problem Π is polynomially continuous then Φ is also
polynomially continuous. A similar SL-reduction exists to a problem Ψ with a unit simplex as the
domain for every instance.

Proof. Let Π be a polynomially computable fixed point search problem. Every instance I
has an associated bounded polyhedral domain DI and a (continuous) function FI mapping DI

to itself. Let d = dI be the dimension of the space (the number of variables of FI). We will
define another polynomially computable fixed point problem Φ with the same instances that has a
different associated function GI with domain [0, 1]d.

Compute in polynomial time (using linear programming) two rational vectors l < u that bound
respectively from below and above the points in DI , i.e. DI ⊂ B[l, u]. We will define a continuous
mapping π from B[l, u] to DI and compose it with FI to get a function F ′

I from B[l, u] to DI whose
fixed points are the same as the fixed points of FI . Then we will scale and translate the box B[l, u]
to map it to the unit cube [0, 1]d.

We define the mapping π from B[l, u] to DI as follows. Compute from I a set C of linear
inequalities defining the domain DI . Compute the affine hull of the domain; this can be done with
linear programming (see, e.g., [55] section 8.2). Thus, we can partition the set C into a set C1

of linear equations and a set C2 of linear inequalities that are satisfied strictly by some feasible
points in DI . We can assume without loss of generality that the constraints are non-redundant,
thus in particular the equations in C1 are linearly independent, and their number k is equal to
the codimension of the affine hull. Let C1 = {aix = bi|i = 1, . . . , k} and C2 = {aix ≤ bi|i =
k + 1, . . . ,m}. Compute a point c in the relative interior of the polyhedron that lies far from the
hyperplanes in C2. In particular, solve the following LP:
Maximize r
Subject to:
aix = bi; for i = 1, . . . , k
aix+ r ≤ bi for i = k + 1, . . . ,m

Let (c, r∗) be the computed optimal solution. Note that the components of c and the value r∗

are rationals of polynomial bit complexity in the size |I| of the instance.
If k > 0 (the polytope DI is not full-dimensional), compute in polynomial time a basis of d− k

rational vectors for the subspace parallel to the affine hull (i.e., a basis for the null space of the
matrix formed by the row vectors ai, i = 1, . . . , k), and let Q be the d × (d − k) matrix with the
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basis vectors as columns. Thus, the points of the affine hull are of the form c+Qv, v ∈ Rd−k. The
projection ρ(x) of a point x ∈ Rd on the affine hull is ρ(x) = c+Q(QTQ)−1QT (x− c), where the
superscript T denotes the transpose of a matrix as usual. Since Q has full column rank, the matrix
QTQ is invertible. Note that for any point x, the point ρ(x) satisfies the set C1 of linear equations,
and if x satisfies C1 then ρ(x) = x. If k = 0 then let Q be the identity matrix Id and ρ(x) = x.

Given a point x ∈ B[l, u], compute θi(x) = max((aiρ(x)−aic)/(bi−aic), 1) for i = k+1, . . . ,m,
and let θ(x) = max{θi(x)|i = k+1, . . . ,m}. Define π(x) = c+(ρ(x)− c)/θ(x). Note that for every
x ∈ B[l, u], the point π(x) satisfies C1 because both ρ(x) and c satisfy C1. For i = k + 1, . . . ,m,
we have aiπ(x) = aic + ai(ρ(x) − c)/θ(x) ≤ bi. Thus, π(x) ∈ DI . Furthermore, if x ∈ DI then
ρ(x) = x, and θi(x) = 1 for all i = k+1, . . . ,m; thus, θ(x) = 1 and hence π(x) = x. The mapping π
is clearly continuous; in fact it is easy to see that it is polynomially continuous since all the numbers
that enter in the transformation (coefficients of the constraints, entries of Q, etc.) are rationals of
polynomial size in |I|, and the quantities bi − aic for i = k + 1, . . . ,m are at least r∗ ≥ 2−poly(|I|).

Let F ′
I be the function from B[l, u] to DI ⊂ B[l, u] obtained by composing π with FI . The

function F ′
I is continuous and its fixed points are all in DI and are precisely the fixed points of FI .

If FI is polynomially continuous then so is F ′
I .

Let g be the linear transformation from the unit cube [0, 1]d to the box B[l, u] that maps each
point y ∈ [0, 1]d to the point x = g(y) defined by xi = gi(y) = (ui − li) · yi + li. Let g−1 be the
inverse linear transformation; i.e. g−1 maps each point x ∈ B[l, u] to the point y ∈ [0, 1]d where
yi = (xi − li)/(ui − li). Let GI be the function from the unit cube [0, 1]d to itself defined by
Gi = g−1 ◦F ′

i ◦ g; i.e. a point y ∈ [0, 1]d is first mapped to the point x = g(y) in B[l, u], then this is
mapped to the point x′ = F ′

I(x) ∈ DI , and then this is mapped back to the point y′ = g−1(x′) in
[0, 1]d. Clearly y′ = y iff x′ = x, and the latter happens only if x ∈ DI and FI(x) = x; i.e. there is a
1-1 correspondence between the fixed points of GI and the fixed points of FI . Thus, the problem Π
of computing a fixed point of FI reduces to the fixed point problem Φ for GI , where the function f
that maps instances of Π to instances of Φ is just the identity function, and the function that maps
solutions of the instance f(I) = I of Φ to solutions of the instance I of Π is the above function g.
If Π is polynomially computable, then clearly so is Φ, and if Π is polynomially continuous, then so
is Φ.

The analogous reduction to a fixed point problem with domain the unit simplex is similar. Take
a large simplex D′

I in Rd that contains DI and which is a scaling and translation of the simplex
Σd = {y ∈ Rd|y ≥ 0;

∑
i yi ≤ 1}, i.e. D′

I is the convex hull of a point l that is smaller in all
coordinates than all points of DI and the points l+U ·ei, i = 1, . . . , d where ei is the unit vector for
coordinate i and U is a large enough constant so that DI ⊂ D′

I ; e.g., U is a constant that exceeds
max{

∑
i(xi − li)|x ∈ DI}. Define the mapping π from D′

I to DI in exactly the same way as above.
Let ĜI be the mapping from Σd to itself defined by ĜI = ĝ−1 ◦ Fi ◦ π ◦ ĝ; where ĝ is the linear
transformation ĝ(y) = l+Uy for y ∈ Σd. As in the case of the unit cube, it is easy to see that y is
a fixed point of ĜI iff ĝ(y) is a fixed point of FI . Also, ĜI is polynomially computable, and if FI

is polynomially continuous then so is ĜI .
There is a 1-1 mapping between the simplex Σd and the (d + 1)-unit simplex ∆d+1 = {y ∈

Rd+1|
∑
yi = 1} where a point y = (y1, . . . , yd) ∈ Σd corresponds to the point (y1, . . . , yd, 1 −∑d

i=1 yi) ∈ ∆d+1. Composing with ĜI , this induces a mapping GI from the unit simplex ∆d+1 to
itself whose fixed points correspond 1-1 to the fixed points of ĜI and to the fixed points of FI .

For a fixed point search problem, we are interested in the associated problems mentioned before:
compute an exact fixed point if possible, or the decision and approximation problems. We refer to
the approximation of an actual fixed point as
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Strong Approximation: Given instance I, and rational ε > 0 as input, compute a rational vector
x′ ∈ DI such that there exists x∗ ∈ DI , where x∗ = FI(x∗) and |x∗ − x′|∞ < ε.

This is in contrast with the following weak version, which is specific to the formulation of the
search problem as a fixed point problem:
Weak Approximation: Given instance I and given a rational ε > 0 as input, compute a rational
vector x′ ∈ DI such that |FI(x′)− x′|∞ < ε.
Remarks: 1. A search problem may be expressible as a fixed point problem in many different ways,
using different functions. For example, besides Nash’s function, there are other functions whose
fixed points are also the NEs [23, 3]. In general, the notion of a weak approximation depends on
the function that is used. The notion of a (strong) approximation does not depend on the function;
it is inherent to the search problem itself.
2. As we shall show below, for polynomially continuous functions, strongly approximate fixed points
are also weakly approximate with a ‘small’ change in the approximation error ε, in the sense that if
we want a weak ε-approximation for some rational ε > 0 then we can pick an ε′ of size polynomial
in the size of ε and the instance such that all strongly ε′-approximate fixed points are also weakly
ε-approximate. The converse does not hold: a weak approximate fixed point may be very far from
all actual fixed points, even for polynomially continuous functions. This holds in particular for
Nash’s functions, as we will see in the next section.

We now give basic facts about the relationship between these different problems.

Proposition 2 Let F be the class of functions associated with a fixed point search problem.

1. If F is polynomially continuous, then weak approximation for F is P-time (many-one) re-
ducible to strong approximation.

2. If F is polynomially continuous and polynomially computable, then weak approximation for
F is in PPAD.

3. If F is polynomially contracting (with respect to any Lk norm) then strong approximation is
P-time reducible to weak approximation. Consequently, if F is both polynomially contracting
and polynomially computable, then the strong approximation problem for F is in PPAD.

Proof.

1. Given instance I and rational ε > 0, we wish to compute a weakly ε-approximate fixed
point of the function FI corresponding to I. Let δ be the continuity constant relative to ε/2
for the class F , i.e., δ is a rational constant such that for all x, y ∈ DI , if |x − y| < δ then
|FI(x)−FI(y)| < ε/2; the size of δ is upper-bounded by q(|I|+size(ε/2)), for some polynomial
q. Let ε′ = min(ε/2, δ). Consider any strong ε′-approximate FP x′ for FI . Then there is an
exact FP, x∗, s.t. |x′−x∗| < ε′. Thus, |FI(x′)−x′| ≤ |FI(x′)−FI(x∗)|+|FI(x∗)−x∗|+|x∗−x′| <
ε/2 + 0 + ε/2 = ε.

2. By Lemma 1 we can SL-reduce the fixed point problem Π for F to another fixed point problem
Φ for a polynomially continuous and polynomially computable class G with the unit simplex
as the domain. Every instance I of Π, corresponding to the function FI ∈ F with domain
DI ⊂ Rd is mapped to the same instance of Φ with corresponding function GI = g−1◦FI ◦π◦g
with domain the unit simplex ∆d+1, where g is a separable linear mapping that scales and
translates (the first d components of) the unit simplex ∆d+1 to a large simplex D′

I that
contains DI ; the mapping π maps D′

I to DI and is the identity on DI , and g−1 is the inverse
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mapping from D′
I to the unit simplex ∆d+1. For each coordinate i = 1, . . . , d, gi(y) = li +Uyi

for some vector l and scalar U , which are rational of size polynomial in |I|. Note that the
range GI(∆d+1) of GI is mapped by g to DI .

We are given an instance I of the fixed point problem Π and a rational ε > 0 and we want
to compute a weak ε-approximate fixed point of FI . Let ε′ > 0 be a (rational) continuity
constant of GI that corresponds to ε/U , i.e, for any two points y, y′ ∈ ∆d+1, if |y−y′| ≤ ε′ then
|GI(y) − GI(y′)| ≤ ε/U , where the norms are with respect to L∞. Since U has polynomial
size in |I|, the rational ε′ has size polynomial in |I| and size(ε). Suppose that y is a weak
ε′-approximate fixed point of GI and let y′ = GI(y). Then |y − y′| = |y − GI(y)| ≤ ε′, and
thus |y′ −GI(y′)| ≤ ε/U . Let x′ = g(y′). Since y′ is in the range of GI , the point x′ is in DI ,
and FI(x′) = g(GI(y′)). Thus, |x′ − FI(x′)| = |g(y′)− g(GI(y′))| ≤ U |y′ −GI(y′)| ≤ ε. That
is, if y is a weak ε′-fixed point of GI , then x′ = g(GI(y)) is a weak ε-fixed point of FI . Hence
it suffices to show that the weak approximation problem for a polynomially continuous and
polynomially computable fixed point problem Φ with the unit simplex ∆d+1 as domain is in
PPAD.

Index the d + 1 coordinates of the unit simplex ∆d+1 as 0, 1, . . . , d. Let ε′′ = ε′/2(d + 1).
Pick δ = 1/N > 0 for an integer N , with δ ≤ ε′′ such that, for all y, y′ ∈ ∆d+1, |y − y′| < δ
implies that |GI(y) − GI(y′)| < ε′′. By assumption, size(δ) is polynomially bounded in
|I| and size(ε′′), hence in |I| and size(ε). We can now apply Scarf’s or Kuhn’s algorithm
[52, 40] to GI , using a simplicization where the diameter of the subsimplices is bounded by δ.
Specifically, following the regular simplicization of [40], the unit simplex ∆d+1 is subdivided
into subsimplices using vertices from a regular grid of points whose coordinates are integer
multiples of 1/N = δ, and each vertex v is ‘colored’ with a label l(v) ∈ {0, 1, . . . , d}, namely a
coordinate l such that GI(v)l < vl, say the smallest such coordinate; if v is not a fixed point
there is clearly such a coordinate (because the sum of the components of v and ofGI(v) is equal
to 1), and if v is a fixed point, we can pick l to be the smallest coordinate with vl = maxi(vi).
With this labeling, the d+1 unit vectors ei at the corners of the unit simplex ∆d+1 are labeled
i, and all the vertices on the facet yj = 0 are labeled with an index 6= j. By Sperner’s lemma,
there is a panchromatic subsimplex in the subdivision, i.e., a subsimplex whose d+1 vertices
have different colors. It is easy to see that every point y in a panchromatic subsimplex is a
weak ε′-fixed point of GI [52]: First note that, for each coordinate i, the subsimplex contains a
vertex v such that GI(v)i ≤ vi, hence GI(y)i−yi = (GI(y)i−GI(v)i)+(GI(v)i−vi)+(vi−yi)
≤ ε′′ + δ. And since

∑
iGI(y)i =

∑
i yi = 1, it follows also that yi − GI(y)i ≤ d(ε′′ + δ).

Therefore, |GI(y)−y| ≤ d(ε′′+δ). Since ε′′ = ε′/2(d+1) and δ ≤ ε′′, we have |GI(y)−y| < ε′,
i.e., y is a weak ε′-fixed point. Note however: a panchromatic subsimplex may not contain
any fixed points.

The algorithms of [52, 40, 41] find a panchromatic subsimplex, by first augmenting the sim-
plicization to create an artificial starting subsimplex which has all the colors except one, and
then moving from subsimplex to (geometrically) adjacent subsimplex that includes at least the
same set of colors until it arrives finally to a panchromatic subsimplex. The algorithms yield
readily all the ingredients of the PPAD formulation except for the direction of the edges of the
underlying graph G(I), as we will explain below. We will describe the formulation for Kuhn’s
regular subdivision and algorithm [40], which is somewhat simpler. Take N to be a multiple
of d, i.e. N = md. First, the unit simplex ∆d+1 is augmented by adding one more layer of
subsimplices on each side to form the expanded simplex ∆̄d+1 = {x|

∑
i xi = 1, xi ≥ −1/N

for all i = 0, . . . , d}. Every new vertex v in the subdivision (i.e. vertex with a negative
coordinate) is given as label l(v) the smallest index l for which vl = maxi(vi). Note that the
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new layers do not contain any panchromatic subsimplex, because if a vertex v has vj ≤ 0
then l(v) 6= j.

Each cell C (subsimplex) of the subdivision can be defined by a vertex X0 of the subdivision
(i.e., a vector in ∆̄d+1 whose coordinates are multiples of 1/N) and a permutation π of
{1, . . . , d}. The vertices of the cell C are X0, X1, . . . , Xd where each vertex Xi is obtained
from the previous by adding 1/N in coordinate π(i) and subtracting 1/N from π(i)− 1, i.e.
Xi = Xi−1 + uπ(i), where uj = (ej − ej−1)/N is the vector that has 1/N in coordinate j,
−1/N in j − 1, and 0 elsewhere. We can alternatively view the cell C as having its d + 1
vertices arranged on a directed cycle where the edges are labelled 1-to-1 by the coordinates,
and the difference between two consecutive vertices connected by an edge labelled j is uj

(where u0 = (e0 − ed)/N , i.e., arithmetic on the indices is mod(d + 1)); X0 is the vertex

with incoming edge labelled 0, and the cycle is X0
π(1)→ X1

π(2)→ X2 . . .
π(d)→ Xd

0→ X0. Note
that

∑d
j=0 uj = 0, and hence X0 = Xd + u0. For every cell C of the subdivision there is a

unique corresponding cycle and a unique pair (X0, π). Conversely, for every X0 ∈ ∆̄d+1 whose
coordinates are multiples of 1/N and every permutation π of {1, . . . , d}, we can generate the
sequence X0, X1, . . . , Xd; if all the points are in ∆̄d+1 then they form a cell in the subdivision.

The problem is formulated in PPAD as follows. Let col(C) for a cell C denote the set of
colors of its vertices. The set S(I) of candidate solutions, which is the set of nodes of the
graph G(I) for the instance I, is the set of cells C such that {0, . . . , d−1} ⊆ col(C). Each cell
is described by a string of polynomial length giving the initial vertex X0 of the cell and the
permutation π of {1, . . . , d}. Furthermore, given a pair (X0, π) we can compute in polynomial
time the sequence X0, X1, . . . , Xd, determine if (X0, π) represents indeed a cell, evaluate the
function GI on the vertices to compute their colors, and thus determine whether the cell is in
S(I). The artificial starting candidate solution is the cell C0 represented by the pair (X0, π)
with X0 = (m+1

N , m
N ,

m
N , . . . ,

m
N ,−

1
N ) (recall that N = md) and π = 1, 2 . . . , d. Each vertex

Xi, i = 0, 1 . . . , d − 1 of the cell C0 has m+1
N in coordinate i, − 1

N in coordinate d, and m
N in

the rest of the coordinates; thus l(Xi) = i. The final vertex Xd is (m
N ,

m
N , . . . ,

m
N , 0) and thus

has some color l(Xd) 6= d; we can assume without loss of generality that l(Xd) = 0 (we can
index the coordinates at the beginning so that this holds). Thus, col(C0) = {0, . . . , d− 1}.
The edges of the graph G(I) connect two cells in S(I) iff they share a facet whose d vertices
have colors {0, . . . , d− 1}. We will specify the directions of the edges later. Note that every
cell (subsimplex) C with col(C) = {0, 1, . . . , d− 1} has two vertices that have the same color,
and thus it has two facets f1, f2 with colors {0, 1, . . . , d− 1}, namely the two facets obtained
by omitting one of the two vertices. If neither of the two facets is on the boundary of ∆̄d+1,
then there are two (geometrically) adjacent cells C ′

1, C
′
2 that share respectively the facets

f1, f2 with C; both cells C ′
1, C

′
2 belong to S(I) and they are the two nodes adjacent to C in

the graph. If one of the facets, say f1, lies on the boundary of ∆̄d+1, then it is easy to see that
C must be the starting cell C0: Since the vertices of facet f1 are labeled 0, . . . , d − 1, these
coordinates cannot be negative, thus f1 must lie on the boundary plane xd = − 1

N of ∆̄d+1.
At all the vertices of f1, the coordinates 0, . . . , d − 1 sum to 1 + 1

N = md+1
N , and since each

one of them is the maximum coordinate at some vertex of f1 and differs at most by 1
N in the

other vertices, it follows that each vertex of f1 has value m+1
N in one of the first d coordinates

and m
N in the rest. That is, the vertices of f1 are precisely the vertices X0, . . . Xd−1 of the

starting cell C0, and hence the other vertex of C must be X0 = (m
N , . . .

m
N , 0), and C = C0.

In this case there is of course only one adjacent cell. If C is panchromatic, then there is also
only one adjacent cell. Thus, the only nodes in the graph G(I) that have only one adjacent
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node are the starting cell C0 and the panchromatic cells.

For a cell C ∈ S(I) and a facet f of C with col(f) = {0, . . . , d− 1} the adjacent cell C ′ that
shares f can be determined as follows. Let w be the vertex of C that is not in f , and let
w

i→ v1→ . . . vd
j→ w be the cycle corresponding to C with the edges labelled uniquely by the

coordinates. Thus the facet f = {v1, . . . , vd}. Let w′ = w + ui − uj (which is also equal to

v1 − uj and vd + ui). The adjacent cell C ′ corresponds to the cycle w′ j→ v1→ . . . vd
i→ w′,

i.e. w is replaced by w′ and the labels of the two adjacent edges are swapped. Thus for
example, for C = C0 the starting artificial cell with cycle X0

1→ X1→ . . . Xd
0→ X0, the face

f to the adjacent cell is {X1, . . . , Xd}, and the adjacent cell is w′ 0→ X1→ . . . Xd
1→ w′ where

w′ = (m−1
N , m+1

N , m
N , . . . ,

m
N , 0).

The algorithms by Scarf, Kuhn et. al. determine the direction of the edges encountered by
the algorithm online, based on the history of the execution: the algorithm remembers from
which edge it came into a cell, and this determines the outgoing edge. This is not appropriate
for the PPAD formulation: The edges of a node (cell), including the direction, have to be
computed only from the representation of the node; if we include an additional bit in the
representation indicating from which edge the node was entered, this effectively doubles the
number of nodes and creates a second easily computable endpoint of a path, namely the copy
of the artificial starting node with the adjacent edge coming in. Thus, we need a different
way to specify the directions that is based only on the cell representation.

We define the direction of the edges as follows. As above, let C ∈ S(I) be a cell, f a facet

of C with col(f) = {0, . . . , d − 1}, w the vertex of C that is not in f , w i→ v1→ . . . vd
j→ w

the cycle corresponding to C. Define two permutations σ, τ as follows: σ is the permutation
of the colors 0, . . . , d− 1 as they appear in the sequence of the vertices v1, . . . , vd of the facet
f ; τ is the permutation of the coordinates 0, 1, . . . , d as they occur on the labels of the edges
along the cycle starting from the vertex w that is not on the facet. We direct the edge (C,C ′)
of C corresponding to facet f out of C (i.e. C → C ′) if the two permutations σ, τ have
opposite sign (one is even and the other is odd), and we direct it into C if they have the
same sign. For example, for the edge incident to the starting node C0, the permutations are
σ = 1, 2, . . . , d−1, 0 and τ = 1, 2, . . . , d, 0 which have opposite signs, thus the edge is directed
out of C0. Clearly, the directions of the edges are also easy to compute.

We have to show now that the definition is consistent and has the desired properties:
Property 1: If the above construction computes for a node C an edge C → C ′ or C ′ → C then
the construction computes for the other node C ′ the same edge directed in the same way.
Property 2: If a node C has two incident edges then one edge is directed into C and the other
out of C.

Proof of Property 1. Using our previous notation, let w i→ v1→ . . . vd
j→ w be the cycle

for cell C with facet f = {v1, . . . , vd}. Then w′ j→ v1→ . . . vd
i→ w′ is the cycle for cell C ′

where w′ = w + ui − uj . At cell C ′, we will have an edge connecting it to a neighboring

cell C ′′ with cycle w′′ i→ v1→ . . . vd
j→ w′′ where w′′ = w′ + uj − ui = w. Thus, C ′′ = C.

The color permutation σ′ for C ′ and f is clearly the same as the permutation σ for C and
f . The coordinate permutation τ ′ for C ′ and f is obtained from the permutation τ for C, f
by transposing i and j, thus it has opposite sign. So the edge will be directed at node C ′

consistently with C.

Proof of Property 2. Let w i→ v1→ . . . vd
j→ w be the cycle for cell C and facet f = {v1, . . . , vd}

19



with col(f) = {0, . . . , d − 1}. If w has color d then C is panchromatic and there is only one
incident edge. The same is true if C = C0. So suppose C 6= C0 and w has the same color
as vk. Then there is another facet f ′ with col(f ′) = {0, . . . , d − 1}, namely f ′ = vk+1 →
. . . vd → w → . . . vk−1 and the cell C has a second edge corresponding to this facet f ′.
The coordinate permutation τ ′ for the facet f ′ is the ordering of the d + 1 edge labels of C
starting from vk; thus, τ ′ is obtained from the permutation τ for f by shifting cyclically k
places. If d is even (i.e. d + 1 is odd) then sign(τ ′) = sign(τ) (every cyclic shift is even)
and if d is odd then sign(τ ′) = sign(τ)(−1)k. The color permutation σ′ for the facet f ′ is
obtained from the permutation σ for f by first moving the color l(vk) to the beginning (i.e.
k − 1 transpositions) and then shifting cyclically left k places the d colors. If d is odd then
sign(σ′) = sign(σ)(−1)k−1 (because the cyclic shifts don’t change the sign). If d is even, then
sign(σ′) = sign(σ)(−1)k−1(−1)k = −sign(σ).

If d is even we have sign(τ ′)sign(σ′) = −sign(τ)sign(σ). If d is odd we have sign(τ ′)sign(σ′) =
sign(τ)(−1)ksign(σ)(−1)k−1 = −sign(τ)sign(σ). Thus, in both cases, σ′ and τ ′ have the
same sign iff σ and τ have opposite signs. Therefore the edge of C corresponding to f ′ is
directed in the opposite way than the edge corresponding to f .

3. We know that for each FI ∈ F , there is a contraction factor βI , 0 ≤ βI < 1−2−q(|I|), for some
polynomial q(), such that for all x, y ∈ DI , |FI(x)−FI(y)|k < βI |x−y|k. Let x∗ be the Banach
fixed point of FI . We have |x − x∗|k ≤ |FI(x) − x|k + |FI(x) − x∗|k. But since F (x∗) = x∗,
we have: |x − x∗|k ≤ |FI(x) − x|k + βI |x − x∗|k. Hence (1 − βI)|x − x∗|k ≤ |FI(x) − x|k.
Thus |x− x∗|k ≤ (1/(1− βI))|FI(x)− x|k. In other words, if we want to find a vector x′ such
that |x′ − x∗|k < ε, then it suffices to compute an x′ such that |FI(x′) − x′|k < ε(1 − βI).
Recall that for any vector z ∈ Rn, |z|∞ ≤ |z|k ≤ k

√
n|z|∞. Since (1 − βI) ≥ 2−q(|I|), let

ε′ = (ε/(d k
√
ne))2−q(|I|), where n is the dimension of vectors x and FI(x). Then for every

point x′ such that |FI(x′) − x′|∞ < ε′, we have |x∗ − x′|∞ ≤ |x∗ − x′|k < ε. Thus a weak
ε′-approximate fixed point of FI , is a strong ε-approximate fixed point of FI .

In many search problems, which are formulated as fixed point problems for a class of functions,
the functions are just tools and weak approximation does not a priori have any significance for the
search problem itself. In the particular case of games and Nash’s function, the weak approximation
is relevant as it is closely related to the notion of ε-Nash equilibria.

Proposition 3 Computing an ε-NE (for a given game, Γ, and given ε > 0) is P-time equivalent
to computing a weak ε′-approximate fixed point of Nash’s function (for a given instance of Nash’s
function, FΓ, and given ε′ > 0).

Proof. For the one direction, suppose that we are given a (normal form) game Γ and a rational
ε′ > 0, and we want to compute a weak ε′-approximate fixed point of Nash’s function FΓ. Let n
be the maximum number of pure strategies for a player, and let ε = ε′/(n+ 1). Suppose that x is
an ε-NE of Γ. This implies that gi,j(x) ≤ ε for all i, j. Recall that FΓ(x)(i,j)

.= xi,j+max{0,gi,j(x)}
1+

Pmi
l=1 max{0,gi,l(x)} .

Thus FΓ(x)(i,j) +FΓ(x)(i,j)(
∑mi

l=1 max{0, gi,l(x)) = xi,j +max{0, gi,j(x)}, and so |FΓ(x)(i,j)−xi,j | =
|max{0, gi,j(x)} − FΓ(x)(i,j)(

∑mi
l=1 max{0, gi,l(x))| ≤ (mi + 1)ε ≤ ε′. Therefore, x is a weak ε′-

approximate fixed point.
For the other direction, we show that there is a polynomial q(z), such that for any normal form

game Γ, for each rational ε > 0 there is a ε′ > 0 such that size(ε′) ≤ q(size(ε) + size(Γ)), and
such that if x′ is a weak ε′-FP of Nash’s function FΓ, then x′ is a ε-NE.
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For a given game Γ, let M denote the maximum difference, over all players i, between the
maximum payoff value and minimum payoff value for player i under any pure strategy profile. Let
c = 1 +M , and let n be the maximum number of pure strategies of a player. Suppose that we are
given a rational ε > 0 and we want to compute an ε-NE for Γ. Assume without loss of generality that
ε ≤ 1. Take ε′ = ε2/(4c2n3), and let x be a weak ε′-approximate fixed point of Nash’s function, i.e.,
|FΓ(x)−x|∞ < ε′. Let φi,j(x) = max{0, gi,j(x)}. Note that we simply need to show that φi,j(x) ≤ ε
for all i and j. This guarantees that no player can switch to any other (pure or mixed) strategy
unilaterally and improve its payoff by more than ε. Since |FΓ(x)− x|∞ < ε′, using the definition of
FΓ, we have for every player i and each strategy j, |φi,j(x)− xi,j

∑
l φi,l(x)| < ε′(1 +

∑
l φi,l(x)) <

ε2/2cn2. Let ψi,j(x) = −gi,j(x) for those i, j such that gi,j(x) ≤ 0. Since
∑mi

j=1 xi,jgi,j(x) = 0, we
have

∑
xi,jφi,j(x) =

∑
xi,jψi,j(x), where the sum on the left hand side is over those strategies j

with φi,j > 0 and on the right hand side over those strategies j with ψi,j(x) > 0. (A strategy that
is not in the support of x is in neither side.) If one of the strategies j on the rhs has xi,j ≥ ε/2cn2

then we know (ε2/(2cn2)) > |φi,j(x) − xi,j
∑

l φi,l(x)| = |0 − xi,j
∑

l φi,l(x)| ≥ (ε/2cn2)
∑

l φi,l(x).
Therefore,

∑
l φi,l(x) < ε. So assume all the strategies on the rhs have xi,j < ε/2cn2. Then the

rhs (and hence also the lhs) is < ε/2n. Suppose wlog that j = 1 gives the maximum φi,j(x). If
xi,1 ≤ 1/2n then ε2/2cn2 > φi,1(x) − xi,1

∑
l φi,l(x) ≥ φi,1(x) − (1/2)φi,1(x) = (1/2)φi,1(x), so

φi,1(x) < ε2/n2 < ε. On the other hand, suppose xi,1 > 1/2n. Then the lhs is > (1/2n)φi,1(x), and
we know that the lhs is smaller than ε/2n, therefore φi,1 < ε, and we are done.

An immediate corollary of Proposition 2, part 2, and Proposition 3, is that computing an ε-NE is
in PPAD ([13, 50]). We will use Proposition 2, parts 2 and 3, in Sections 5 and 6 to place several
more problems in PPAD, and to give a fixed point characterization of PPAD.

3 Nash Equilibria are as hard as the Square Root Sum Problem
and Arithmetic Circuit Decision Problems

Recall the problems SQRT-SUM and PosSLP from Section 1. In the SQRT-SUM problem we are
given positive integers d1, . . . , dn and k, and we want to determine if

∑n
i=1

√
di ≤ k. In the PosSLP

problem, we are given a division-free straight-line program, or equivalently, an arithmetic circuit
with operations +,−, ∗ and inputs 0 and 1, and a designated output gate, and we want to determine
if the integer N that is the output is positive. Formally, the input arithmetic circuit is a sequence
of gates g0, g1, . . . , gm, where the first two gates read in the constants 0,1, i.e., g0 := 0, g1 := 1,
and the rest of the gates perform (wlog binary) operations, i.e., gi := gj ◦ gk, with j, k < i, where
the operator is ◦ ∈ {+,−, ∗}; the final gate gm computes the output number N . The best upper
bound known for them is the (4th level of the) Counting Hierarchy [1] (i.e. just below PSPACE),
and no lower bound is known (i.e., no hardness result above polynomial time is known).

In this section we will reduce these problems to the problem of computing a Nash equilibrium
of a given game. Then we will present a number of consequences of the reductions. Recall the
definition of the Promised Gap Decision Problem PGD(a, b) for a search problem, given in Section
2: Given instance I, rationals a < b, and the promise that all solutions x ∈ Sol(I) have x1 ≤ a or
they all have x1 > b, determine which of the two is the case.

Theorem 4

1. The SQRT-SUM and PosSLP problems are P-time (many-one) reducible to the promised-gap-
decision problem PGD(0,1) for 4-player Nash, even restricted to games that have a unique
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Nash equilibrium. That is, given a game that is guaranteed to have a unique Nash equilib-
rium, and such that the unique NE plays a certain pure strategy either with probability 0 or
probability 1, it is SQRT-SUM-hard and PosSLP-hard to distinguish between the two cases.

2. The SQRT-SUM and PosSLP problems are P-time reducible to the PGD(0,1− ε) problem for
3-player Nash Equilibria, for any constant ε > 0 (and even with ε = 2−poly). Furthermore,
this holds even for the restriction to games with a unique Nash equilibrium.

Results analogous to those stated in Theorem 4 also hold for approximation of the equilibrium
payoff of one player, in a game with a unique NE.

We will first prove Theorem 4 for PosSLP, and then for SQRT-SUM. We are given an arithmetic
circuit C over basis {+,−, ∗} with fan-in 2, with inputs 0, 1, and a single output gate, and we want
to determine whether the value of the circuit, val(C), is positive. The structure of the reductions
will be as follows. We first derive from C another circuit S over {+, ∗, /} (no subtraction, but with
division) with input 1/2, and with two output gates out1, out2, which has the following properties:
(i) all gates of the circuit S have values in the (open) interval (0, 1), and (ii) the values of the two
output gates are not equal, and val(C) > 0 iff val(out1) > val(out2). Second, we construct from S
a game Γ with three players which has a unique Nash equilibrium, the equilibrium is fully mixed,
and its value (the probability) on two distinguished pure strategies is proportional to val(out1)
and val(out2), i.e., val(out1)/K and val(out2)/K for some K. This part of the reduction is done
in two substeps. First we construct from S a game G with a fixed number of players that has
these properties (the precise number of players is 10, but it is not important) and then we use a
transformation from many players to three players that preserves the desired properties. In the
third and final step we have a separate transformation for each of the two claims in Theorem 4
from the game Γ to a suitable 4-player or 3-player game.

Step 1: Transformation of the circuit.
We are given a circuit C over basis {+,−, ∗} with inputs 0, 1. First, multiply the output by

2 (=1+1) and subtract 1 (as in [1]) to obtain a circuit C ′ that has nonzero value: val(C ′) > 0
if val(C) > 0 and val(C ′) < 0 if val(C) ≤ 0. Then transform the circuit C ′ to a circuit where
subtraction occurs only at the output gate, and which computes the same value: Replace every
gate g of C with two gates g+ and g− for the positive and negative parts, such that g = (g+− g−).
Viewing the transformation bottom-up, the input gates g0 := 0 and g1 := 1 are replaced by g+

0 := 0,
g−0 := 0, g+

1 := 1, g−1 := 0. Each addition gate gk := gi + gj in the original circuit is replaced by
two gates: g+

k := g+
i + g+

j and g−k := g−i + g−j . Likewise, a subtraction gate gk := gi− gj is replaced
by g+

k := g+
i + g−j and g−k := g−i + g+

j . Finally, a multiplication gate gk := gi ∗ gk can be replaced by
g+
k := (g+

i ∗ g+
j ) + (g−i ∗ g−j ) and g−k := (g+

i ∗ g−j ) + (g−i ∗ g+
j ) (note that we need two multiplication

gates and one addition gate for each of these). Clearly, the transformation only blows up the
circuit linearly. For the output gate, gout, we could add a subtraction gate gout := g+

out − g−out, thus
computing the same output as the original circuit. Let C ′′ be the circuit without this subtraction
gate gout, and which has g+

out, g
−
out as its two output gates. Clearly C ′′ uses only {+, ∗}, the two

output gates have unequal values, and val(g+
out) > val(g−out) iff val(C) > 0. All gates of C ′′ compute

nonnegative values.
Propagate the 0 inputs in the circuit C ′′ in a straightforward way, to identify and eliminate

all gates that have 0 value. Also shortcut and remove all addition gates that have fan-in 1 (i.e.,
addition gates that have an operand with value 0). Of course, if one of the output gates has value
0 and is eliminated in this process, then we are done, so we may assume that this is not the case.
Thus, we are left with a circuit D over {+, ∗} with two output gates that has only input 1, and all
the gates of D have (strictly) positive values.
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Let d be the depth of the circuit D. A circuit over {+, ∗} of depth d with input 1 can only
generate numbers of double exponential magnitude. Specifically, the largest number that can be
generated is 22d−1

, by computing 1+1 and then squaring it successively d−1 times. Let t = 1/22d
.

We can compute t by a circuit T of size d + 1 with input 1/2 by successively squaring it d times,
i.e. let T be the circuit (SLP) h0 := 1/2, h1 := h0 ∗ h0, . . . , hd := hd−1 ∗ hd−1.

The circuit S consists of the circuit T followed by a transformed version of D, where each
gate gk of D is transformed to a gate g′k as follows. The input gate g+

1 := 1 of D is transformed
to g′1 := hd. Each addition gate gk := gi + gj of D is transformed to g′k := g′i + g′j in S. Each
multiplication gate gk := gi ∗ gj is transformed to g′k := g′i ∗ g′j/hd; in more detail, we break up the
expression into two steps, performing first the multiplication, followed by the division (the order is
important): g′′k := g′i ∗ g′j ; g′k := g′′k/hd. The output gates out1, out2 of S are the gates (g+

out)
′, (g−out)

′

corresponding to the output gates of D.
Clearly, the size of S is linear in the size of the given circuit C. We show now that S has the

claimed properties for Step 1.

Lemma 5 The circuit S has the following properties.

1. All the gates have values in the open interval (0, 1).

2. The two output gates out1, out2 have unequal values. Furthermore, val(out1) > val(out2) iff
val(C) > 0.

Proof. A straightforward induction shows that the value of hi for i = 0, 1, . . . , d is 1/22i
. Thus,

val(hd) = 1/22d
= t.

We show that the value of each gate g′k in S is t times the value of the corresponding gate
gk in S, i.e. val(g′k) = t · val(gk). This can be shown easily by induction on the height of the
gate. The basis holds because the assignment gate g+

1 := 1 of D was transformed to g′1 := hd in
S. The induction step for an addition gate gk := gi + gj follows immediately from the induction
hypothesis. For a multiplication gate gk := gi ∗ gj we have val(g′k) := val(g′i) · val(g′j)/val(hd)
= (t · val(gi)) · (t · val(gj))/t = t · val(gk).

Since all the gates gk of D have positive value, smaller than 22d
, it follows that all the cor-

responding gates g′k of S have value in the interval (0, 1). Furthermore, this holds also for the
intermediate gates g′′k that are introduced by the multiplication gates, because g′′k := g′i ∗ g′j is the
product of two positive numbers smaller than 1. It clearly holds also for the gates hi, so it holds
for all the gates of S. Furthermore, the values of the output gates of S satisfy part 2 because they
are proportional to their values in D, which satisfy the claim.

Step 2: Construction of the game. We proceed now to Step 2 of the reduction, which
consists of two substeps. In substep 2a we will construct a 10-player game G from S, and in
substep 2b we will reduce it to a 3-player game Γ. The game G has 10 players, that are paired in
5 pairs i, i′ for i = 1, . . . , 5. The strategies of each unprimed player i are partitioned into blocks,
and the corresponding primed player i′ has one strategy for each block of i. If n is the number of
gates of the circuit S, then players 1,2,3 have n blocks each, and the primed players 1′, 2′, 3′ have
a corresponding set of n strategies each; players 4,5 have 3n blocks each and players 4′, 5′ have 3n
strategies. The sole purpose of the primed players is to ensure that in any Nash equilibrium of the
game, the probability of each unprimed player is divided evenly among its blocks. The ‘matching
pennies’ game is a simple way of enforcing this (various versions of this game have been used in
reductions before, e.g. [13, 10]). In our game, the payoff functions of the players are defined so
that the following holds. Given a pure strategy profile s = (s1, . . . , s5′), the payoff function ui(s)
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of each unprimed player i consists of two terms, ui(s) = µi(s) + µ′i(s) where the first term µi(s)
depends only on the strategies of the unprimed players, and the second term µ′i(s) depends only
on the strategies of i and i′; in particular µ′i(s) = M if the block of the strategy of i corresponds to
the strategy of i′, and µ′i(s) = 0 otherwise, where M is much greater than the maximum absolute
value of µi(s) over all pure strategy profiles s, say M > 6nmaxs |µi(s)|. The payoff ui′(s) of the
primed player i′ is −M if the strategy of i′ corresponds to the block of the strategy of i, and is 0
otherwise.

Lemma 6 Suppose that a game G has a pair of players i, i′, such that the (pure) strategies of
player i are partitioned into blocks, the blocks are in 1-1 correspondence with the (pure) strategies
of player i′ and the payoffs of i, i′ are of the form given above. Then every Nash equilibrium of G
has the following properties.

1. The total probability allocated to the strategies in each block of player i is the same for all the
blocks.

2. All strategies of player i′ have nonzero probability.

Proof. 1. Let x be any Nash equilibrium of G. Suppose that x gives unequal total probability
to some blocks of player i, and let R be the set of blocks that have maximum probability. Then
the strategies of player i′ that correspond to blocks in R must have 0 probability in x, because
otherwise i′ can improve his expected payoff. The expected payoff for player i of any strategy in
a block in R with respect to the rest of the profile x is at most maxs |µi(s)|, whereas the expected
payoff of any strategy in a block that corresponds to a maximum probability strategy of i′ is at least
M/3n−maxs |µi(s)|, since i′ has at most 3n strategies. Since M > 6nmaxs |µi(s)|, all the strategies
of player i that belong to a block in R must have probability 0, contradicting the assumption that
R is the set of blocks that have maximum probability. Therefore all the blocks of player i have the
same total probability in x.

2. If some strategy of player i′ has probability 0 in x, then all the strategies of player i in the
corresponding block must have probability 0 in x, which contradicts part 1.

It remains to define now the strategies and payoffs µi of the unprimed players 1, . . . , 5. Players
1,2,3 are called the primary players, and 4,5 are the auxiliary players. Let us order the gates of the
circuit S topologically, and denote them as q1, . . . , qn, where the first gate is the input assignment
q1 := 1/2, all the other gates correspond to operations +, ∗, /, with the last two gates being the
output gates out1, out2. The primary players have n blocks each, corresponding to the n gates, and
players 4 and 5 have 3n blocks each, one block for each primary player and each gate. Each block
of each player contains two strategies. We will index the strategies of a primary player i = 1, 2, 3
with triples (i, j, b) where j = 1, . . . , n gives the index of the block of i (and the corresponding
gate of S) and b = 0, 1. We will index the strategies of an auxiliary player i = 4, 5 with 4-tuples
(i, k, j, b), where k = 1, 2, 3 corresponds to a primary player, j = 1, . . . , n corresponds to a gate of
S, and b = 0, 1; the pair (k, j) gives the block of the strategy (i, k, j, b). The game G will be defined
so that it has a unique Nash equilibrium, and the probability of each strategy (i, j, b) of a primary
player i = 1, 2, 3 in the NE is equal to val(qj)/n if b = 0, and is equal to (1− val(qj))/n if b = 1.

The payoff functions µi of the unprimed players are obtained by superimposing ‘gadget’ sub-
games for the gates of the circuit S, in particular we have one gadget for each primary player and
gate. The gadget (subgame) Gij corresponding to primary player i = 1, 2, 3 and gate qj , j = 1, . . . , n
affects the payoff of player i iff he plays a strategy in his j-th block (i.e. (i, j, 0) or (i, j, 1)), and
it affects the payoff of an auxiliary player l = 4, 5 iff he plays a strategy in his (i, j) block (i.e.
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(l, i, j, 0) or (l, i, j, 1)). Thus, the payoff µ of each (unprimed) player for each of his own strategies
is affected by exactly one gadget Gij , namely the one corresponding to the block of the strategy.
Let Af(i, j) be the set of strategies affected by gadget Gij .

Intuitively, the purpose of the gadget Gij is to implement the operation of gate qj of S and
assign the correct value to the two strategies in the j-th block of primary player i. One way to do
this is to use gadgets similar to [13] for the +, ∗ operations, and build another gadget for division
(this is what we did in an earlier proof, as hinted in the conference version of this paper [21]).
We will instead provide here one parameterized gadget that works for all the operations, including
division (as well as for additional operations like roots and fractional powers, as we will see later
on). Besides its elegance and generality, the gadget has the important added benefit that it ensures
uniqueness of the NE. The gadget is based on a construction by Bubelis (Theorem 2 in [7]). We
state the properties of the gadget here in a form that will be useful to us, for this and subsequent
reductions. We include the details of the construction for completeness, and to prove the properties
that we will need.

Lemma 7 [7] Let f(x) = c0x
m + . . .+ cm be a polynomial with f(0) ≤ 0 and f(1) ≥ 0, and which

has a unique root α in the interval [0, 1]. Then we can construct a game Gf with three players, a
primary player 1 and two auxiliary players 2,3, where the primary player has two strategies 0,1,
and the auxiliary players each have a set {0, 1, . . . ,m} of m + 1 strategies. The game Gf has the
following properties. Every Nash equilibrium assigns probability α to the strategy 0 of the primary
player (and 1 − α to the strategy 1). Furthermore, if α 6= 0, 1, then the game has a unique Nash
equilibrium, and the NE is fully mixed. The payoff functions of the auxiliary players for each pure
strategy profile do not depend on the polynomial f and are 0,1, or -1; the payoff function of the
primary player for a pure strategy profile (s1, s2, s3) is cs2 if s1 = 1 and 0 if s1 = 0.

Proof. Our statement here differs somewhat from the statement of Theorem 2 of [7], which
concerns the payoff of a player rather than the probabilities of the NE, but the construction is
the same. As indicated in the statement of the lemma, the primary player 1 has two strategies
0,1, and the auxiliary players 2,3 have each m + 1 strategies 0, 1, . . . ,m. Let s = (s1, s2, s3) be a
pure strategy profile. We use the following notation: If P is a predicate of the profile s, we will
use χ(P (s)) to denote the indicator function of the predicate, i.e., χ(P (s)) = 1 if P (s) is true and
χ(P (s)) = 0 if P (s) is false. The payoff functions of the players, denoted hf

i , are as follows.
Player 1: hf

1(s) = cs2 if s1 = 1, and 0 otherwise (i.e., if s1 = 0).
Player 2: hf

2(s) = 1 if s2 = s3, and 0 otherwise.
Player 3: hf

3(s) = χ(s2 + 1 ≡ s3 mod (m + 1)) − χ(s1 = 0)χ(s2 = s3) − χ(s1 = 1)χ(s3 = 0). In
other words: If s1 = 0 then player 3 receives payoff 1 if s2 + 1 ≡ s3 mod (m + 1), payoff −1 if
s2 = s3, and 0 otherwise. If s1 = 1 then player 3 receives payoff 1 if s2 + 1 ≡ s3 mod (m+ 1) and
s3 6= 0, payoff −1 if s3 = 0 and s2 6= m, and payoff 0 otherwise.

Note that the payoffs of the auxiliary players do not depend on the polynomial f , so we can
omit the superscript f and simply denote them as hi(s), i = 2, 3.

We analyze now the Nash equilibria of the game. We follow the proof in [7]. Consider a Nash
equilibrium x = (x1, x2, x3). We shall show that x1(0) = α (and x1(1) = 1 − α). Let ξ = x1(0).
The mixed strategy of player 1 induces a subgame G′

ξ for players 2 and 3, and clearly (x2, x3)
must be a NE for this subgame. Let h′2, h

′
3 be the payoff functions of players 2,3 in this subgame.

For a given pure strategy profile s′ = (s2, s3) for players 2 and 3, the payoff h′2(s
′) of player 2 is

h′2(s
′) = 1 if s2 = s3, and 0 otherwise. The payoff h′3(s

′) of player 3 is h′3(s
′) = χ(s2 + 1 ≡ s3

mod (m+ 1))− ξχ(s2 = s3)− (1− ξ)χ(s3 = 0).
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Let v2, v3 be the expected payoffs for players 2,3 respectively in the equilibrium (x2, x3) of G′
ξ

(and in the NE x of Gf ). Then the expected payoff of each pure strategy of player 2 (resp. 3) is
upper bounded by v2 (resp. v3), with equality if the strategy is in the support of x. For player 2
we get the inequalities x3(j) ≤ v2 for the strategies j = 0, . . . ,m of player 2. Note that this implies
in particular that v2 > 0 since the strategies in the support of x3 have positive probability.

For player 3, the strategy 0 yields the inequality x2(m) − ξx2(0) + ξ − 1 ≤ v3. The strategies
j = 1, . . . ,m of player 3 yield respectively the inequalities x2(j − 1)− ξx2(j) ≤ v3. The sum of all
the left hand sides of these inequalities for player 3 is

∑m
j=0 x2(j)− ξ

∑m
j=0 x2(j)+ ξ−1 = 0. Thus,

v3 ≥ 0.
If v3 = 0 then all the player 3 constraints must be satisfied with equality because otherwise

the sum of the constraints would yield 0 < v3; hence x2(j − 1) = ξx2(j), for j = 1, . . . ,m.
Therefore, x2(j) = ξm−jx2(m), for j = 0, . . . ,m − 1. Since

∑m
j=0 x2(j) = 1, it follows that

x2(j) = ξm−j/
∑m

i=0 ξ
i for all j = 0, . . . ,m (where, ξ0 = 1 for all ξ including ξ = 0).

Suppose that x2(j) = ξm−j/
∑m

i=0 ξ
i does not hold for all j (and hence v3 > 0). Since both, the

left-hand sides x2(j) and the right-sides ξm−j/
∑m

i=0 ξ
i sum to 1, there must be indexes for which we

get strict inequalities in both directions. Hence there is an index j such that x2(j) > ξm−j/
∑m

i=0 ξ
i

whereas j′ = (j − 1) mod (m+ 1) satisfies x2(j′) ≤ ξm−j′/
∑m

i=0 ξ
i; if j = 0 the second inequality

is x2(m) ≤ 1/
∑m

i=0 ξ
i. The first inequality implies in particular that x2(j) > 0. Furthermore, the

combination of the two inequalities on x2(j) and x2(j′) implies that the constraint corresponding
to strategy j of player 3 is strict, and therefore x3(j) = 0. This means that the player 2 constraint
x3(j) ≤ v2 corresponding to strategy j of player 2 is strict (because v2 > 0), and therefore x2(j) = 0,
contradicting the fact that x2(j) > 0. We conclude that x2(j) = ξm−j/

∑m
i=0 ξ

i for all j = 0, . . . ,m.
Therefore, all the left-hand sides of the player 3 constraints are 0, which implies that v3 = 0.

The expected payoff of pure strategy 1 of player 1 is:

u1((1:1);x−1) =
m∑

j=0

cjx2(j) =
m∑

j=0

cjξ
m−j/

m∑
i=0

ξi = f(ξ)/
m∑

i=0

ξi

and the expected payoff of pure strategy 0 is u1((1:0);x−1) = 0. The expected payoff of player 1 in
the mixed profile x is u1(x) = (1−ξ)f(ξ)/

∑m
i=0 ξ

i. Since x is a NE we must have (1−ξ)f(ξ) ≥ 0 and
(1− ξ)f(ξ) ≥ f(ξ). If ξ 6= 0, 1 these imply that f(ξ) = 0. If ξ = 0 then the first inequality becomes
f(0) ≥ 0 and since the hypothesis of the lemma is that f(0) ≤ 0, it follows that f(ξ) = f(0) = 0.
Similarly, if ξ = 1, the second inequality becomes 0 ≥ f(1), and since the hypothesis of the lemma
is that f(1) ≥ 0, it follows again that f(ξ) = f(1) = 0. Thus, in all cases f(ξ) = 0, and since f has
a unique root α in the interval [0, 1] it follows that ξ = α.

The mixed strategy of player 1 in the Nash equilibrium x is uniquely determined: x1(0) = ξ = α
and x1(1) = 1 − α. This implies that the mixed strategy of player 2 is also uniquely determined:
x2(j) = αm−j/

∑m
i=0 α

i.
Suppose that α 6= 0. Then x2(j) > 0 for all j, and therefore all the constraints of player 2

are satisfied with equality. Thus, x3(j) = v2 for all j = 0, . . . ,m. Since
∑m

j=0 x3(j) = 1, we have
x3(j) = v2 = 1/(m + 1) for all j = 0, . . . ,m. Therefore, if α 6= 0 then there is a unique Nash
equilibrium. If α 6= 0, 1 then the NE is fully mixed.

In our reduction from PosSLP we will use Lemma 7 for a linear polynomial f(x) = c0x+ c1 to
get a gadget for each operation, where in all cases the coefficients are such that f(0) < 0, f(1) > 0
and f has a unique root that lies in the open interval (0, 1), hence the game Gf has a unique,
fully mixed equilibrium. Since f has degree 1, all three players have two strategies each, labeled
0,1. For each gate qj , j = 1, . . . , n of S we have a gadget G1j which ‘computes’ the value of the
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gate in the strategy (1, j, 0) of the primary player 1 (i.e. the probability of the strategy in the
unique NE is forced to val(qj)/n), and then we have two gadgets G2j , G3j that copy the value
to the corresponding strategies (2, j, 0), (3, j, 0) of the other two primary players 2,3. The gadget
(subgame) Gij corresponding to a primary player i = 1, 2, 3 and gate qj , j = 1, . . . , n of S is a copy
of the gadget Gf of the lemma, for some linear polynomial f , where players i, 4, 5 play the role of
the players 1, 2, 3 respectively in Gf , the strategies (i, j, 0) and (i, j, 1) in the j-th block of player i
play the role of strategies 0,1 of the primary player 1 of Gf , and the strategies (k, i, j, 0), (k, i, j, 1)
in the (i, j) block of the players k = 4, 5 play the role of the strategies 0,1 of the auxiliary players
2, 3 of Gf . For the gadgets G1j , the linear polynomial f is defined according to the operation of the
gate. For the copying gadgets G2j , G3j the linear polynomial f does not depend on the operation
of the gate.

Recall that the payoff function ui of every unprimed player i consists of two terms µi and µ′i,
and we have already defined the second term in the paragraph before Lemma 6. The first term
µi depends only on the strategies of the unprimed players. Let s = (s1, . . . , s5) be a pure strategy
profile of the unprimed players. The payoff µi(s) depends on the block of si, which corresponds to
one of the gadgets Gkj . We define in turn the payoff of all unprimed players. Except for primary
player 1, the payoffs for the other players do not depend on the operations of the gates.

Payoff of auxiliary players 4,5. Let s4 = (4, k, j, b2), where k = 1, 2, 3 is a primary player,
j = 1, . . . , n is the index of a gate, and b2 = 0, 1. Strategy s4 is in block (k, j) of player 4 which
corresponds to the gadget Gkj . If sk 6∈ Af(k, j) or s5 6∈ Af(k, j) then µ4(s) = 0. Suppose that
sk = (k, j, b1) and s5 = (5, k, j, b3) for some bits b1, b3. Then µ4(s) = h2(b1, b2, b3) = χ(b2 = b3)
where h2 is the payoff function of player 2 in the game Gf of Lemma 7; recall that the payoff of an
auxiliary player does not depend on the polynomial.
The payoff function µ5 of the auxiliary player 5 is defined similarly: Let s5 = (5, k, j, b3). If at
least one of sk and s4 is not in Af(k, j) then the payoff is 0; if they both are in Af(k, j) and
sk = (k, j, b1), s4 = (4, k, j, b2), then µ5(s) = h3(b1, b2, b3), where h3 is the payoff function of player
3 in the game of Lemma 7.

Payoff of primary players 2,3. For a primary player k = 2, 3, let sk = (k, j, b1), where j =
1, . . . , n is the index of a gate, and b1 = 0, 1. Strategy sk is in block j of player k which corresponds
to the gadget Gkj . If s4 6∈ Af(k, j) or s5 6∈ Af(k, j) then µk(s) = 0. Suppose that s4 = (4, k, j, b2)
and s5 = (5, k, j, b3) for some bits b2, b3. If b1 = 0 then µk(s) = 0. If b1 = 1 and b2 = 0 then
µk(s) = 1. If b1 = 1 and b2 = 1 then µk(s) = −n if s1 = (1, j, 0), and µk(s) = 0 otherwise. Note
that if a mixed strategy profile gives probability pj/n to the strategy (1, j, 0) of player 1, then
the payoff of primary player k = 2, 3 for the strategies in block j is the same as the payoff of the
primary player in the gadget Gf for the polynomial f(x) = x− pj .

Payoff of primary player 1. Let s1 = (1, j, b1), where j = 1, . . . , n is the index of a gate qj of
S, and b1 = 0, 1. Strategy s1 is in block j of player 1 which corresponds to the gadget G1j . If
s4 6∈ Af(1, j) or s5 6∈ Af(1, j) then µk(s) = 0. Suppose that s4 = (4, 1, j, b2) and s5 = (5, 1, j, b3)
for some bits b2, b3. The gadget G1j corresponds to a linear polynomial f that depends now on the
gate qj .

• Assignment (input) gate q1 := 1/2. The polynomial is f(x) = x − 1/2. The payoff µ1(s) is
set equal to the payoff hf

1(b1, b2, b3) of the primary player 1 in the gadget Gf of Lemma 7 for
this polynomial f . That is, µ1(s) = 1 if b1 = 1 and b2 = 0, µ1(s) = −1/2 if b1 = 1 and b2 = 1,
and µ1(s) = 0 otherwise.

• Addition gate qj := qk + ql. The polynomial is f(x) = x + c1, where we would like to set
c1 = −(val(qk) + val(ql)). However, of course we cannot (and do not want to) compute
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explicitly the values of the lower level gates qk, ql. So, we use instead the values ‘computed’
in the probabilities of the corresponding strategies (2, k, 0) and (2, l, 0) of primary player 2, in
the same way as we did for the copying gadgets in the definition of the payoffs for players 4
and 5. That is, µ1(s) = 1 if b1 = 1 and b2 = 0; µ1(s) = −n if b1 = 1, b2 = 1, and (s2 = (2, k, 0)
or s2 = (2, l, 0)); and µ1(s) = 0 otherwise.

• Multiplication gate qj := qk ∗ ql. The polynomial is f(x) = x+ c1, where we would like to set
c1 = −(val(qk) ∗ val(ql)), but we use instead the values computed in the probabilities of the
corresponding strategies (2, k, 0) and (3, l, 0) of players 2 and 3. That is, we set µ1(s) = 1 if
b1 = 1 and b2 = 0; µ1(s) = −n2 if b1 = 1, b2 = 1, and s2 = (2, k, 0), and s3 = (3, l, 0); and
µ1(s) = 0 otherwise.

• Division gate qj := qk/ql. The polynomial is f(x) = c0x + c1, where we would like to have
c0 = val(ql) and c1 = −val(qk), and use in their place the values computed in the probabilities
of the corresponding strategies (2, l, 0) and (2, k, 0) of player 2. Thus, we set µ1(s) = n if
b1 = 1, and b2 = 0, and s2 = (2, l, 0); µ1(s) = −n if b1 = 1, b2 = 1, and s2 = (2, k, 0); and
µ1(s) = 0 otherwise.

This concludes the definition of the gameG. We will show now thatG has the desired properties.

Lemma 8 The game G defined above has a unique Nash equilibrium. The equilibrium is fully
mixed. For each primary player i = 1, 2, 3 and each gate qj , j = 1, . . . , n of S, the probability of
the strategy (i, j, 0) in the NE is val(qj)/n and the probability of the strategy (i, j, 1) in the NE is
(1− val(qj))/n.

Proof. Let y be any Nash equilibrium of G. By Lemma 6 all the primed players 1′, . . . , 5′

have fully mixed strategies in y. Furthermore, for each unprimed player, the NE y assigns the
same total probability to each block: probability 1/n for the primary players, and 1/3n for the
auxiliary players. Thus, as far as the unprimed players are concerned, the only choice for y is how
to distribute the probability in each block between the two strategies of the block. Clearly, the
strategies of the primed players do not matter in this regard and can be ignored. We shall show
that the restriction of y to the unprimed players is unique and fully mixed. It will follow then that
the probabilities in y for the strategies of the primed players are also unique.

Specifically, we will use induction on the index j = 1, . . . , n of a gate qj and then on the index
i = 1, 2, 3 of a primary player to show that the probabilities in the NE y of the strategies in
Af(i, j) for each primary player i = 1, 2, 3 are uniquely defined, and furthermore, the probability
y(i, j, 0) = val(qj)/n and y(i, j, 1) = (1− val(qj))/n.

In the basis case, j = 1, i = 1 and q1 := 1/2. Then G11 is a copy of the gadget Gf for the
polynomial f(x) = x− 1/2. Clearly, f(0) < 0, f(1) > 0 and there is a unique root α = 1/2 in the
interval [0, 1]. Consider the restriction of y to the blocks of strategies of players 1, 4, 5 in Af(1, 1).
Multiply these probabilities by n for the primary player and by 3n for the auxiliary players to obtain
a mixed strategy profile y′ for Gf . We claim that y′ is a NE for Gf . In proof, consider the primary
player 1 of Gf and one of his two strategies b = 0, 1 (the argument is similar for the auxiliary
players). The expected payoff hf

1((1:b); y′−1) for 1 of strategy b = 0, 1 with respect to the rest of
the profile y′ for the other players is equal to (3n)2 times the expected payoff µ1((1:(1, 1, b)); y−1)
in G of the strategy (1, 1, b) for player 1 with respect to the rest of the profile y for the other
players. Thus, player 1 can improve his expected payoff in Gf by changing strategy unilaterally
iff player 1 can improve his payoff in G by changing accordingly his probability allocation between
the two strategies (1, 1, 0), (1, 1, 1) in his first block. A similar argument applies to the auxiliary
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players. Since y is a NE for G, it follows that y′ is a NE for Gf . From Lemma 7 the NE y′ is
unique and fully mixed, hence the values of y for the strategies in Af(1, 1) are nonzero and uniquely
determined. Since y′ gives probability 1/2 (the root of f(x)) to the strategy 0 of the primary player,
it follows that y gives probability 1/2n to strategy (i, j, 0), and the remaining probability 1/2n to
strategy (i, j, 1). Also, the components of the NE y corresponding to the strategies in Af(1, 1) of
the auxiliary players are nonzero and unique.

Consider the copying gadgets G21 and G31. More generally, the same argument applies to all the
copying gadgets Gij , i = 2, 3 and j = 1, . . . , n. Let pj = n · y(1, j, 0), and assume (inductively) that
y(1, j, 0) = val(qj)/n and y(1, j, 1) = (1−val(qj))/n. Thus, pj = val(qj) is uniquely determined and
is in the open interval (0, 1). We will show that y(i, j, 0) = val(qj)/n and y(i, j, 1) = (1−val(qj))/n
for the other two primary players i = 2, 3. Let f(x) = x−val(qj), and Gf the corresponding gadget
of Lemma 7. From the definition of the payoff function µi, for i = 2, 3, note that for every triple
of strategies si = (i, j, b1), s4 = (4, i, j, b2), s5 = (5, i, j, b3), the expected payoff µi of player i, if
players i, 4, 5 play pure strategies si, s4, s5 and the other players play according to y, is equal to
the payoff hf

1(b1, b2, b3) of the primary player 1 in Gf . This is of course true also for the auxiliary
players 4,5 (their payoff does not even depend on f). Thus, the gadget Gij acts exactly like a copy
of the gadget Gf for the above polynomial f(x) = x − val(qj). The rest of the proof is the same
as in the simple assignment case. We consider again the restriction of y to the blocks of strategies
of players i, 4, 5 in Af(i, j). Multiply these probabilities by n for the primary player i and by 3n
for the auxiliary players to obtain a mixed strategy profile y′ for Gf . We claim that y′ is a NE for
Gf . In proof, consider the primary player 1 of Gf . The expected payoff hf

1((1:b); y′−1) of player 1
for each of his strategies b = 0, 1 is equal to (3n)2µi((i:(i, j, b)); y−i). Since player i of G cannot
improve his payoff in y, the primary player 1 of Gf cannot improve his payoff in y′ either. Similarly
with the auxiliary players of Gf . It follows that y′ is a NE of Gf for f(x) = x− val(qj). Since all
gates in S have value in the open interval (0, 1), it follows that f(0) < 0 < f(1), there is a unique
root α = val(qj), and y′ is uniquely determined and fully mixed. Therefore, the probabilities
in y of the strategies of players i, 4, 5 in Af(i, j) are also uniquely determined and positive, and
y(i, j, 0) = val(qj)/n, y(i, j, 1) = (1− val(qj))/n.

Consider the strategies (1, j, b1) of a block j > 1 of the primary player 1 of G. They are
affected by the gadget G1j which corresponds to a gate qj of S. The gadget (more specifically,
the payoffs of player 1) depends on the operation of the gate. The arguments are similar for
the three types of operations. Consider an addition gate qj := qk + ql. Inductively we know
that y(2, k, 0) = val(qk)/n and y(2, l, 0) = val(ql)/n. Given this, the gadget G1j behaves like the
gadget Gf for the polynomial f(x) = x − (val(qk) + val(ql)), in the following sense: for every
triple of (pure) strategies s1 = (1, j, b1), s4 = (4, 1, j, b2), s5 = (5, 1, j, b3) in Af(1, j), the expected
payoff µ1 of player 1 if players 1, 4, 5 play pure strategies s1, s4, s5 and the other players play
according to y, is equal to the payoff hf

1(b1, b2, b3) of the primary player 1 in Gf . Similarly for
the auxiliary players 4,5. Note that since all gates of S have value in (0, 1), it holds again that
f(0) < 0 < f(1) and f has a unique root α = val(qk)+ val(ql). Thus, Gf has a unique, fully mixed
equilibrium y′. The rest of the argument is the same as for the copying gadgets. The strategies of
player 1 in Af(1, j) have probability y(1, j, 0) = y′1(0)/n = (val(qk) + val(ql))/n = val(qj)/n and
y(1, j, 1) = y′1(1)/n = (1 − val(qj))/n, and the strategies of the auxiliary players in Af(1, j) have
value 3n times smaller than the corresponding strategies of the auxiliary players in Gf . Thus, they
are all uniquely determined and positive.

For a multiplication gate qj := qk ∗ ql, the gadget G1j behaves like the gadget Gf for the
polynomial f(x) = x − (val(qk) ∗ val(ql)). For a division gate qj := qk/ql the gadget G1j behaves
like the gadget Gf for the polynomial f(x) = val(ql)x−val(qk). Note that in both cases, f(0) < 0 <
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f(1), and there is a unique root, which is equal to val(qj). Thus, Gf has a unique NE y′ and it is fully
mixed. By the same arguments as before, we conclude that all the strategies in Af(1, j) are uniquely
determined and have nonzero probability in y, and furthermore, y(1, j, 0) = y′1(0)/n = val(qj)/n
and y(1, j, 1) = y′1(1)/n = (1− val(qj))/n.

It follows that the restriction of the NE y to the strategies of the unprimed players is unique
and fully mixed. By Lemma 6, the NE y gives nonzero probability also to all the strategies
of the primed players. Furthermore, it is easy to see that these probabilities are uniquely de-
termined from the probabilities of the unprimed players. Consider for example player 1′ and
his n strategies (1′, j) j = 1, . . . n corresponding to the n blocks of player 1. The expected
payoff u1((1:(1, j, 0)); y−1) of strategy (1, j, 0) for player 1 with respect to the profile y for the
rest of the players is u1((1:(1, j, 0)); y−1) = µ1((1:(1, j, 0)); y−1)) + My(1′, j), where the first term
µ1((1:(1, j, 0)); y−1)) depends only on the restriction of y to the unprimed players, thus is uniquely
determined. The expected payoffs u1((1:(1, j, 0)); y−1) must be equal for all j = 1, . . . , n because
the strategies (1, j, 0) are all in the support of the NE y. Thus, the NE y satisfies the n−1 equations
µ1((1:(1, j, 0)); y−1)) +My(1′, j) = µ1((1:(1, j, 0)); y−1)) +My(1′, 1) for j = 2, . . . , n along with the
equation

∑n
j=1 y(1

′, j) = n. These equations determine uniquely the probabilities y(1′, j) from the
restriction of y on the unprimed players. An analogous argument applies to all the other primed
players. Therefore the Nash equilibrium is unique and fully mixed.

We can transform now the game G to a 3-player game Γ. We use a reduction of Bubelis
(Theorem 3 in [7]). The following proposition summarizes the relevant properties of the reduction.

Proposition 9 [7] For any (finite) game G with d players we can construct a 3-player game G′

such that the (pure) strategies of player 1 in G′ correspond 1-1 to the (pure) strategies of all the
players in G, and the following properties hold.
1. For every Nash equilibrium y of G′, if yij denotes the probability with which player 1 plays in
y the strategy (i, j) corresponding to the jth strategy of player i in G, then the vector x defined by
xij = dyij is a Nash equilibrium in G.
2. Conversely, for every Nash equilibrium x of G, there is a Nash equilibrium y of G′ such that
player 1 plays in y each strategy (i, j) with probability xij/d. Furthermore, if x is fully mixed (all
strategies are in the support), then there is a unique corresponding such Nash equilibrium y in G′,
and y is also fully mixed.
3. If the payoffs in G are rationals, then the payoffs in G′ are also rational and the game G′ can
be constructed in polynomial time in the size of G.

Apply the transformation of the proposition to the 10-player game G that we constructed from
the circuit S to construct a 3-player game. Let Γ be this game. Let (pure) strategies 1,2 of player
1 in Γ correspond to the strategies (1, n − 1, 0), (1, n, 0) of the primary player 1 in G, where qn−1

and qn are the two output gates out1, out2 of the circuit S. Then the following holds.

Lemma 10 The 3-player game Γ defined above has a unique Nash equilibrium. The equilibrium
is fully mixed. The probabilities in the NE of the strategies 1,2 of player 1 are proportional to
the values of the output gates out1, out2 of the circuit S, i.e they are respectively val(out1)/K,
val(out2)/K for some K.

Proof. The claim about uniqueness and full support of the Nash equilibrium of Γ follows
immediately from Lemma 8 and Proposition 9. The probabilities of the strategies 1,2 of player 1
in the NE of Γ are respectively val(out1)/K, val(out2)/K, where K = 10n.
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We will use now the game Γ to show Theorem 4 for PosSLP.

Proof of Theorem 4 for PosSLP.
1. Add a fourth player to Γ to obtain a game H. The first three players have the same strategies and
payoff as in Γ (thus their payoff is independent of Player 4). The fourth player has two strategies 1,2
and the following payoff function. Player 4 receives 1 if he plays the same strategy as player 1, and
receives 0 otherwise. Consider any Nash equilibrium y = (y1, y2, y3, y4) of H. Clearly the first three
components (y1, y2, y3) form an equilibrium of Γ since the payoff of the first three players does not
depend on the actions of Player 4. The expected payoff of strategy j = 1, 2 of Player 4 with respect
to this NE is equal to the probability of strategy j = 1, 2 of Player 1 in the NE, i.e. it is equal to
val(outj)/K. Therefore, Player 4 plays strategy 1 with probability 1 if val(out1) > val(out2), i.e.
if val(C) > 0, and plays strategy 1 with probability 0 if val(out1) < val(out2), i.e. if val(C) ≤ 0.
(Recall that the earlier transformation assured that val(out1) 6= val(out2).) Since the game Γ has
a unique Nash equilibrium, the same is true for H; the NE of H is fully mixed except for the fourth
player that plays a pure strategy.

2. We could reduce H to a 3-player game using Proposition 9. This gives a constant approx-
imability gap, but not close to 1. Namely, the gap resulting from this reduction is 1/4. Also the
NE of the resulting 3-player game is not unique because the NE of H is not fully mixed (however
the strategy of player 1 is the same in all NE). One way to show a gap close to 1, is by proving a
weighted version of the Proposition, where the different players are assigned different weights, and
then giving the bulk of the weight to player 4. This was our initial proof given in the conference
version of the paper (see Lemma 5 in [21]). We will give here instead a more direct reduction from
the game Γ, which also ensures the uniqueness of the NE.

Form a new 3-player game Γ′ from Γ by adding a new strategy n to player 2 and two new
strategies n1, n2 to player 3. The players have also the strategies of Γ which we call old strategies.
Denote the payoff functions of Γ and Γ′ by ui and u′i respectively. The payoff functions u′i are
defined as follows. Let s = (s1, s2, s3) be a pure strategy profile. Player 1 gets payoff u′1(s) = u1(s)
if both s2, s3 are old strategies, and u′1(s) = 0 otherwise. The payoff of Player 2 is u′2(s) = L if
both s2 and s3 are new strategies, it is u′2(s) = rL + u2(s) if both s2 and s3 are old strategies,
and it is 0 otherwise, where L > 1 is greater than the absolute value of all the payoffs of Γ, and r
is an (arbitrary) large integer of polynomial bit-size, e.g., r = 2poly(|Γ|). The payoff of Player 3 is
u′3(s) = −L+ u3(s) if both s2 and s3 are old strategies; it is u′3(s) = −L+ χ(s3 = ns1) if both s2
and s3 are new strategies; and it is 0 otherwise. Recall that χ(P (s)) denotes the indicator function
of a predicate P (s), thus χ(s3 = ns1) = 1 if either s1 = 1 and s3 = n1, or s1 = 2 and s3 = n2.

Let y = (y1, y2, y3) be a Nash equilibrium of Γ′, where y1, y2, y3 are respectively the mixed
strategies of players 1,2,3. For j = 2, 3, let yj(o), yj(n) denote respectively the total probabilities
of the old and new strategies of player j; for example, y3(n) = y3(n1) + y3(n2).

Claim 1 1. The probabilities y2(o), y2(n), y3(o), y3(n) are all positive.
2. Furthermore, r − 1 ≤ y3(n)/y3(o) ≤ r + 1.

Proof. Players 2 and 3 play a weighted version of matching pennies with respect to the new/old
type of their strategies. The first part of the claim is similar to the ordinary matching pennies.
If y2(o) = 0 (resp. if y2(n) = 0) then Player 3 will put all the probability in the old (resp. new)
strategies, and therefore player 2 will put also all the probability in the old (resp. new) strategies,
contradiction. A similar argument shows that we cannot have y3(o) = 0 or y3(n) = 0. Thus,
y2(o), y2(n), y3(o), y3(n) are all positive.

For the second part, suppose first that y3(n) > (r+1)y3(o). The expected payoff u′2((2:n); y−2)
for player 2 of strategy n with respect to the profile y for the other players is Ly3(n) > L(r+1)y3(o),
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thus it is strictly greater than the expected payoff of all the old strategies of player 2; therefore
y2(n) = 1 and y2(o) = 0, contradicting part 1.

Suppose that y3(n) < (r − 1)y3(o). Then the expected payoff u′2((2:n); y−2) is Ly3(n) < L(r −
1)y3(o), hence it is strictly smaller than the expected payoff of the old strategies; therefore y2(n) = 0
contradicting again part 1.

Consider the mixed strategy profile z = (z1, z2, z3) for the game Γ obtained from the NE y
of Γ′ by dividing the probabilities of the old strategies of player 2 by y2(o) and the old strategies
of player 3 by y3(o). Since y is a NE for Γ′, it follows from the definition of the payoffs that
the profile z must also be a NE of Γ. Recall that Γ has a unique Nash equilibrium z and it is
fully mixed. Thus y1 = z1 is also unique. The first two strategies of player 1 have probabilities
y1(1), y1(2) which satisfy y1(1) > y1(2) iff val(C) > 0. Consider the strategies n1, n2 of player 3.
From the definition of the payoffs of player 3 in Γ′, it follows that if val(C) > 0, i.e. y1(1) > y1(2),
then y3(n1) = y3(n) ≥ 1 − (1/r) and y3(n2) = 0, whereas if val(C) > 0, i.e. y1(1) < y1(2), then
y3(n2) = y3(n) and y3(n1) = 0. Therefore, if we can distinguish the case that strategy n1 has
probability ≥ 1 − (1/r) from the case that it has probability 0 then we can decide whether the
value of the given circuit C is positive or not.

To show the uniqueness of the NE y, it suffices to show that the quantities y2(o), y2(n), y3(o), y3(n)
are uniquely determined, because then the uniqueness of the probabilities of the old strategies fol-
lows from the uniqueness of the NE of Γ, and for the two new strategies n1, n2 of Player 3, as
we already argued, one of n1, n2 will get probability y3(n) and the other 0, depending on whether
val(C) is positive or negative. Let u2(z), u3(z) be the expected payoff of players 2,3 respectively
at the NE z of Γ.

The expected payoff in Γ′ for player 2 of all old strategies is y3(o)(u2(z)+rL), and the expected
payoff of strategy n is Ly3(n). These two quantities must be equal (because y is a NE and these
strategies are in the support), thus y3(o)(u2(z) + rL) = Ly3(n), which together with the equality
y3(o) + y3(n) = 1 determine uniquely y3(o) and y3(n).

The expected payoff for player 3 of all old strategies in the NE y is y2(o)(u3(z)−L). If val(C) > 0
then strategy n1 of player 3 is in the support, its expected payoff is y1(1) − Ly2(n) and must be
equal to y2(o)(u3(z)− L). The equations y1(1)− Ly2(n) = y2(o)(u3(z)− L) and y2(o) + y2(n) = 1
determine uniquely y2(o) and y2(n). Similarly, if val(C) < 0, then n2 is in the support, its expected
payoff is y1(2)−Ly2(n) = y2(o)(u3(z)−L) and again combining with the equation y2(o)+y2(n) = 1
we can determine uniquely y2(o) and y2(n).

We conclude that Γ′ has a unique NE, and the probability of strategy n1 of player 3 is ≥ 1−(1/r)
or 0 according as val(C) > 0 or not.

We will show now Theorem 4 for SQRT-SUM. It is known that SQRT-SUM Turing-reduces to
PosSLP [1], which implies of course that SQRT-SUM Turing-reduces to the questions about Nash
equilibria. However we can give direct many-one reductions using similar techniques to PosSLP.

Proof of Theorem 4 for SQRT-SUM.
We are given positive integers d1, . . . , dm and k and we want to test if

∑
i

√
di ≤ k. Note that

we can test if
∑

i

√
di = k in polynomial time [6]. We do this test first on our input, so we can

assume without loss of generality that we do not have equality.
We will give reductions using the same structure as for PosSLP. From the given instance of the

SQRT-SUM problem, we will construct a 3-player game Γ that has a unique Nash equilibrium, the
NE is fully mixed, and strategies 1 and 2 of player 1 have probabilities proportional to

∑
i

√
di and

k in the NE. Both parts of the Theorem can then be derived from the game Γ in exactly the same
way as shown above in the proof for PosSLP.
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Let R be an integer greater than
∑m

i=1 di and k. We construct first a circuit S with two
outputs out1, out2. All the gates have values in the open interval (0, 1) and the two output gates
have values val(out1) = (

∑m
i=1

√
di)/R and val(out1) = k/R. The circuit uses (scaled) square-root

gates, addition, and input assignment gates. More precisely, for each i = 1, . . . ,m the circuit S has
a gate qi :=

√
di/R. Then it adds the gates qi to compute the first output gate out1; we can do

this either using a sequence of pairwise addition gates with fan-in 2, but we can also do it directly
having an addition gate with fan-in m, out1 = qm+1 :=

∑m
i=1 qi. Finally we have the second output

gate out2 := k/R (an assignment gate). Clearly, all gates have values in (0, 1).
Now we construct from the circuit S a 10-player game G as we did in the PosSLP reduction

(actually we do not need all the players in this case, but for simplicity we just follow the same
method). The only thing we need to show is how to implement the gadget for the scaled square root
operation qi :=

√
di/R. We use the construction of Lemma 7 for the polynomial f(x) = R2x2 − di.

Clearly f(0) < 0, f(1) > 0, and the polynomial has a unique root in the interval (0, 1), namely√
di/R. For addition we use the same gadget as before, and for the assignment out2 := k/R we use

the gadget for the linear polynomial x − (k/R). As in the PosSLP case, the constructed game G
has the properties of Lemma 8: it has a unique Nash equilibrium, the NE is fully mixed, and two
distinguished strategies of player 1, say strategies 1,2, have probability (

∑m
i=1

√
di)/nR and k/nR,

where n is the number of gates of the circuit S (i.e. n = m + 2 if we use the fan-in m addition
gate).

The rest of the steps are exactly the same as in the PosSLP case. We transform the game
G to a 3-player game Γ, and then reduce Γ to a 4-player game H for part 1, and to a 3-player
game Γ′ for part 2. Both games H,Γ′ have a unique Nash equilibrium. A particular strategy in
game H (strategy 1 of player 4) is played with probability either 1 or 0 in the NE depending on
whether

∑m
i=1

√
di > k or

∑m
i=1

√
di < k. And similarly, a particular strategy (strategy n1 of player

3) is played with probability at least 1 − (1/2poly) or 0 in the NE according as
∑m

i=1

√
di > k or∑m

i=1

√
di < k.

The proof of the theorem has several interesting consequences, which we present in the rest of
this section. A first corollary of the proof is that ε-Nash equilibria can be very far from the actual
NE in a game: an ε-Nash equilibrium with ε doubly exponentially small can be distance 1 from
any (even the unique) NE in a 4-player game, and distance almost 1 in a 3-player game.

Corollary 11 There is a constant c > 0, such that for every n there is a 4-player game, Γn, of
size O(n) with a unique Nash equilibrium, and with a ε-NE, x′, where ε = 1/22Ω(nc)

, such that x′

has l∞-distance 1 from the NE. For 3-players, the same statement holds with distance 1 replaced
by 1− 2−poly(n).

Proof. Let S be the circuit that computes t = 1/22m
by successive squaring of 1/2, and has

two output gates out1 and out2 with values t and 2t. The circuit S has m + 2 gates. Apply the
reduction of Theorem 4 to S to compute a 4-player game H. The game H has size polynomial in
m, and has a unique Nash equilibrium y. The NE gives probability 0 to the strategy 1 of player
4 and probability 1 to strategy 2. The expected payoff of strategy 1 of player 4 differs from the
expected payoff of strategy 2 by less that t. Thus, the mixed profile x which is the same as the NE
y, except that strategy 1 of player 4 gets probability 1, is an ε-Nash equilibrium with ε < 1/22m

.
Similarly, we can transform S to a 3-player game Γ′, which has a unique Nash equilibrium y,

and the NE gives probability 0 to strategy n1 of player 3 and probability 1− 2−poly to strategy n2.
The mixed profile x that gives the probability 1−2−poly to n1 instead of n2 is an ε-Nash equilibrium
with ε < 1/22m

.
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We note that this kind of gap between ε-NE and actual Nash equilibria with such a small ε can
not happen in the 2-player case.

Proposition 12 There is a polynomial p such that, for every 2-player game Γ and every rational
δ > 0, if ε ≤ 1/2p(|Γ|+size(δ)) (i.e., with ε having size polynomial in the size of Γ and δ), then every
ε-Nash equilibrium of Γ is within distance δ of an actual NE of Γ.

Proof. Recall that every feasible Linear Program with rational coefficients has an optimal
rational solution whose bit complexity is bounded by a polynomial in the size of the LP. Let q(n)
be a polynomial that upper bounds the size of an optimal solution of every LP with 10n variables
and constraints, whose coefficients are rationals of size n. Let p(n) = 4q(n).

Let Γ be a 2-player game with rational payoffs, and δ > 0 a given rational. Let S1, S2 be the
pure strategy sets of the two players, and assume without loss of generality that they are disjoint.
Let u1, u2 be the payoff functions of the two players. Let ε ≤ 1/2p(|Γ|+size(δ)), and let x′ be any
ε-Nash equilibrium of Γ. We view x′ as a vector indexed by S1∪S2, where S1∩S2 = ∅. Let i1 ∈ S1

be a best response (pure) strategy of player 1 with respect to strategy x′ for player 2, i.e., i1 is a
strategy in S1 that has the maximum expected payoff u1((1:i1);x′−1). Let i2 ∈ S2 be the analogous
best response strategy for player 2. Let I ⊆ S1 ∪ S2 be the set of strategies (of both players)
with probability at most

√
ε in x′. Note that all pure strategies of player 1 that are not in I have

expected payoffs with respect to the profile x′ for player 2 that are within
√
ε of each other and

of the best response strategy i1 of player 1, because otherwise if we transfer in x′ the probability
from the strategy in S1− I with the minimum expected payoff to the best response strategy i1, the
overall expected payoff of player 1 will increase by more than ε. Similarly, all strategies of player 2
that are not in I have expected payoffs with respect to the profile x′ for player 2 that are within√
ε of each other and of the best response i2.

Let y be the vector obtained by rounding every entry of x′ to the nearest (integral) multiple of
δ/2. Consider the following Linear Program with a vector of variables x indexed by S1 ∪ S2 and a
scalar variable z. (The entries of the vector y in the LP are fixed rationals.)
Minimize z
Subject to:
xi − yi ≤ δ/2 for all i ∈ S1 ∪ S2

yi − xi ≤ δ/2 for all i ∈ S1 ∪ S2

xi ≤ z for all i ∈ I∑
j∈S2

u1(i, j)xj ≤
∑

j∈S2
u1(i1, j)xj for all i ∈ S1∑

j∈S2
u1(i, j)xj ≥

∑
j∈S2

u1(i1, j)xj − z for all i ∈ S1 − I∑
j∈S1

u2(j, i)xj ≤
∑

j∈S1
u2(j, i2)xj for all i ∈ S2∑

j∈S1
u1(i, j)xj ≥

∑
j∈S1

u1(j, i2)xj − z for all i ∈ S2 − I∑
i∈S1

xi = 1∑
i∈S2

xi = 1
xi ≥ 0 for all i ∈ S1 ∪ S2

z ≥ 0
The vector x′ and z =

√
ε satisfy all the constraints. Since

√
ε = 1/22q(n) < 1/2q(n), it follows

that an optimal solution has z = 0. Let x∗, z = 0 be an optimal solution. Then x∗i = 0 for all
i ∈ I. Furthermore, all strategies of player 1 in S1 − I, which includes all the strategies in the
support of x∗, have the same expected payoff

∑
j∈S2

u1(i1, j)x∗j ; and all other strategies of S1 that
are not in the support do not have a higher payoff. Similarly with player 2. Therefore x∗ is a Nash
equilibrium of G. From the first two sets of inequalities, the vector x∗ is within δ/2 of the vector
y, which in turn is within δ/2 of x′. Therefore, |x′ − x∗| ≤ δ.
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Another important difference between the 3-player and the 2-player case is that in the 2-player
case the whole crux of the problem is in determining the support of a Nash equilibrium (this is
why the problem is essentially purely combinatorial): If we are told what the support of a NE is
then we can can easily compute a NE in polynomial time. This is not the case for 3-player games:
Even if we know that there is a unique NE and that it is fully mixed (the support is the whole set
of pure strategies of all the players), it is still not easy to compute or approximate a NE.

Corollary 13 The SQRT-SUM and PosSLP problems are P-time (many-one) reducible to the
following problem: Given a 3-player game that is guaranteed to have a unique Nash equilibrium,
the NE is fully mixed, and the strategy 1 of player 1 is played in the NE either with probability < ε
or with probability > 1− ε where ε = 1/2poly, distinguish between the two cases.

Proof. We show the proof for PosSLP; the proof for SQRT-SUM is similar. Given a circuit C
over basis {+,−, ∗} with inputs 0,1, we construct first as before a circuit D over {+, ∗} with input
1 and two output gates, and from this a circuit S over {+, ∗, /} with input 1/2 and with two output
gates out1, out2 with the properties that all gates have values in the open interval (0, 1), the output
gates have unequal values and val(C) > 0 iff val(out1) > val(out2) (see Lemma 5). Recall that S
computes first in some gate hd a tiny quantity t = 1/22d

, where d is the depth of D. The values
of out1 and out2 are equal to t times the values of the output gates of D, thus they are integer
multiples of t, thus in particular val(out1), val(out2), and |val(out1)− val(out2)| are all at least t.

Extend S to a circuit S′ that has two new output gates out1′, out2′ such that, if val(out1) >
val(out2) then val(out1′) is almost 1 (but < 1) and val(out2′) is almost 0 (but > 0), and symmet-
rically, if val(out1) < val(out2) then val(out1′) is almost 0 and val(out2′) is almost 1. Specifically,
out1′ computes [out1 + t2 − min(out1, out2)]/[|out1 − out2| + 2t2], and similarly out2′ computes
[out2 + t2 − min(out1, out2)]/[|out1 − out2| + 2t2]. If val(out1) > val(out2) then val(out1′) =
[|out1− out2|+ t2])]/[|out1− out2|+ 2t2] > 1− t, and val(out2′) = t2/[|out1− out2|+ 2t2] < t. If
val(out1) < val(out2) then val(out1′) < t and val(out2′) > 1− t. We can compute the desired val-
ues using gates for the absolute value and min operations, or derive these using a square-root gate.
Since we already showed a gadget for the square root operation that has the required uniqueness
and full support properties, we will use a square root gate. Note that if a, b are two numbers, then
|a−b| =

√
a2 + b2 − 2ab andmin(a, b) = (a+b)/2−|a−b|/2. We add gates to S that compute the fol-

lowing quantities: w1 := (out1)2, w2 := (out2)2, w3 := out1∗out2, w4 := w1 +w2−2w3, w5 :=
√
w1

(thus w5 = |out1−out2|), w6 := (out1/2)+(out2/2), w7 := w6−(w5/2) (thus w7 = min(out1, out2)),
w8 := (hd)2, w9 := w5+2w8 (thus w9 = [|out1−out2|+2t2]), w10 := out1+w8−w7, out1′ := w10/w9,
w11 := out2+w8−w7, out2′ := w11/w9. Some of the right-hand sides have more than two operands
(for example, the equation for w4, w10 etc.); we could break them down further into pairwise opera-
tions if we wished, but it is not necessary. Observe that all the gates have values in the interval (0, 1).
For example, for w9 = [|out1− out2|+ 2t2] this follows from the fact that 1 > out1, out2 ≥ t > 2t2.

Now apply the transformation of Theorem 4 to the circuit S′ to obtain first a 10-player game
G, and from this a 3-player game Γ, such that Γ has a unique Nash equilibrium y, the NE is fully
mixed, and the probabilities in the NE of strategies 1,2 of player 1 are proportional to the values
of out1′, out2′, i.e. y1(1) = val(out1′)/K and y2(2) = val(out2′)/K for some K (cf. Lemma 10).

From Γ construct a 3-player Γ̂ as follows. Player 1 has the same strategies as in Γ. Players
2 and 3 have the strategies of Γ, which we call old strategies and in addition they each have two
new strategies n1, n2. Denote by ui the payoff functions in Γ, and by ûi in Γ̂. Let L be a number
larger than the absolute value of all the payoffs of Γ and 1, and let r be an arbitrary large integer
of polynomial bit-size, e.g. r = 2poly(n). The payoff functions ûi are as follows. Let s = (s1, s2, s3)
be a pure strategy profile. Player 1 gets payoff û1(s) = u1(s) if both s2, s3 are old strategies, and
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û1(s) = 0 otherwise. The payoff û2(s) of Player 2 is defined as follows. If both s2 and s3 are old
strategies, then û2(s) = rL + u2(s). If both s2 and s3 are new strategies then û2(s) is the sum
of two terms: the first term is L, and the second term is 1 iff s2 = ns1 and s3 6= s2, and it is 0
otherwise; i.e. the second term is 1 if either s1 = 1, s2 = n1, s3 = n2 or s1 = 2, s2 = n2, s3 = n1. If
one of s2, s3 is new and the other is old then û2(s) = 0. The payoff û3(s) of Player 3 is defined as
follows. If both s2 and s3 are old strategies, then û3(s) = −L + u3(s). If both s2 and s3 are new
strategies then û3(s) = −L+ χ(s2 = s3); i.e., the second term is 1 if s2 = s3, and it is 0 otherwise.
If one of s2, s3 is new and the other is old, then û3(s) = 0.

Note that the above game Γ̂ is very similar to the game Γ′ that we constructed in the proof of
part 2 of Theorem 4. As in that game, players 2 and 3 play a weighted matching pennies game
between the new and old strategies. The difference here is that both players 2 and 3 have two
new strategies, and the subgame induced by these strategies is another weighted matching pennies
game whose weight is determined by the probabilities of the strategies 1 and 2 of player 1.

Let y = (y1, y2, y3) be a Nash equilibrium of Γ̂. For j = 2, 3, let yj(o), yj(n) denote respectively
the total probabilities of the old and new strategies of player j; for example, y3(n) = y3(n1)+y3(n2).
These quantities satisfy the same properties of Claim 1 in the proof of Theorem 4: The probabilities
y2(o), y2(n), y3(o), y3(n) are all positive. Furthermore, r − 1 ≤ y3(n)/y3(o) ≤ r + 1. Let z =
(z1, z2, z3) be the mixed strategy profile for the game Γ obtained from the NE y of Γ̂ by dividing
the probabilities of the old strategies of player 2 by y2(o) and the old strategies of player 3 by y3(o).
As in the case of the game Γ′ in the proof of Theorem 4, the profile z must be the (unique) Nash
equilibrium of Γ. Thus, y1 = z1 is unique, and y1(1) = val(out1′)/K, y1(2) = val(out2′)/K.

The subgame induced by the strategies n1, n2 of players 2 and 3 is a weighted matching pennies
game. As in Claim 1 both strategies of both players must have nonzero probability in y (since
their sums y2(n) and y3(n) are both nonzero). Therefore, the NE y is fully mixed. Moreover, the
ratio of the probabilities y3(n1), y3(n2) is equal to the ratio of the probabilities y1(1), y1(2). To see
this, note that the expected payoff of strategy n1 of player 2 with respect to the profile y for the
other players is û2((2:n1); y−2) = Ly3(n) + y1(1)y3(n2), and the expected payoff of strategy n2 is
û2((2:n2); y−2) = Ly3(n)+y1(2)y3(n1). Since both strategies are in the support, the two quantities
must be equal. Thus y1(1)y3(n2) = y1(2)y3(n1), hence y3(n1)/y3(n2) = y1(1)/y1(2).

If the given circuit C has positive value val(C) > 0, then y1(1)/y1(2) = val(out1′)/val(out2′) >
(1− t)/t, thus y3(n1) > (1− t)y3(n) ≥ (1− t)(1− (1/r)) = 1− (1/2poly). If the given circuit C has
value val(C) ≤ 0, then y1(1)/y1(2) = val(out1′)/val(out2′) < t/(1 − t), thus y3(n1) < ty3(n) <<
(1/2poly).

We already remarked that the NE y has full support. For the uniqueness, it is not hard to
see that y2(o), y2(n), y3(o), y3(n) are uniquely determined along the same lines as in the proof of
Theorem 4. This implies then the uniqueness of the probabilities of all the strategies in the NE. The
uniqueness of the probabilities of the old strategies follows from the uniqueness of the NE of Γ. For
the new strategies n1, n2 of player 3, observe that since y3(n1)/y3(n2) = y1(1)/y1(2), we must have
y3(n1) = y3(n)y1(1)/(y1(1)+y1(2)) and y3(n2) = y3(n)y1(2)/(y1(1)+y1(2)), and thus y3(n1), y3(n2)
are uniquely determined from y3(n) and y1 = z1. Regarding the new strategies of player 2, we can
show that y2(n1) = y2(n2) = y2(n)/2: To see this, note that the expected payoffs of strategies n1,
n2 of player 3 with respect to the profile y for the other players must be equal (because they are in
the support), thus −Ly2(n) + y2(n1) = −Ly2(n) + y2(n2), hence y2(n1) = y2(n2). Thus, the game
Γ̂ has a unique, fully mixed Nash equilibrium.

Another corollary of the proof of Theorem 4 concerns the difficulty of computing specified bits
of a NE. One of the implications of the theorem (and the above Corollary) is that computing the
first bit of a specified strategy probability x1 in a (any) NE is at least as hard as SQRT-SUM and
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PosSLP. In [1] it is shown that computing a specified bit of the integer computed by an arithmetic
circuit is #P-hard, when the index of the desired bit is given in binary. Using our reductions
from PosSLP, we can deduce a similar result for NEs. The key property is that we can ensure
that certain probabilities in the game are binary shifts of the numbers computed by the arithmetic
circuit.

Corollary 14 Given a 3-player game that has a unique Nash equilibrium and given an index i in
binary, it is #P-hard to compute the i-th bit of the probability of the first strategy of player 1 in the
NE.

Proof. We reduce from the problem of computing a desired bit i (specified in binary) of the integer
computed by an arithmetic circuit over basis {+, ∗} with input 0,1 [1]. Let D be such a circuit. We
follow the same transformation steps of Theorem 4. Construct from D another circuit S such that
all gates have values in (0, 1) with an output gate out whose value is val(out) = t · val(D), where
t = 1/22d

, and d is the depth ofD. (We don’t need two outputs here.) Add dummy gates to S so that
the number n of gates is a power of 2, n = 2m for some m. Next transform the circuit S to a game G
as before, but now add 6 more dummy players that have one strategy each, so that G has 16 players.
Finally transform G to a 3-player game Γ as before. The game Γ has a unique Nash equilibrium
y. The probability of strategy 1 of player 1 in the NE is y1(1) = val(out)/16n = val(D)/22d+m+4.
Thus y1(1) is a binary shift of val(D), and the i-th bit of val(D) is equal to the bit of y1(1) with
index i+ 2d +m+ 4. Clearly we can specify this index in binary with polynomially many bits.

Finally we note that similar results follow for market equilibria. We state and show below the
analogue of Corollary 13, concerning the computational hardness of estimating prices in a market
with a unique equilibrium. Recall that prices are normalized to be in the unit simplex, i.e. the
prices of all the commodities are nonnegative and their sum is equal to 1.

Corollary 15 The SQRT-SUM and PosSLP problems are P-time (many-one) reducible to the
following problem: Given an exchange economy where the aggregate excess demand functions for
the commodities are given by explicit algebraic formulas over {+,−, ∗, /,max}, with the property that
the market has a unique price equilibrium, all prices are positive in the equilibrium, and commodity
1 has price either < ε or > 1− ε where ε = 1/2poly, distinguish between the two cases.

Proof. We reduce from the problem of Corollary 13. We are given a 3-player game G that
is guaranteed to have a unique Nash equilibrium, the NE is fully mixed, the strategy 1 of player
1 is played in the NE either with probability < ε′ or > 1 − ε′, where ε′ = 1/2poly, and we wish
to distinguish between the two cases. Let ni be the number of strategies of player i, and n =
n1 + n2 + n3. We have an economy with n commodities corresponding to the n strategies of the
players. We let (i, j) denote the commodity corresponding to the j-th strategy of player i, where
(1,1) is the commodity 1 in the statement of the corollary. We will define a suitable Brouwer
function f from ∆n to ∆n, which has a unique fixed point p∗ that has the desired properties, and
then we will define the excess demand functions from f using Uzawa’s formula.

Let ε = 2ε′, a1 = 1 − ε′, a2 = a3 = ε′/2. Every mixed strategy profile y = (yi,j |i = 1, 2, 3; j =
1, . . . , ni) of G can be mapped 1-to-1 to the point p = φ(y) of ∆n where pi,j = φ(y)i,j = aiyi,j ;
note that the point p = φ(y) lies in the subset S = {p ∈ ∆n|

∑ni
j=1 pi,j = ai; i = 1, 2, 3}. Every

point p in ∆n can be mapped to a mixed strategy profile y = π(p) of G using the formula π(p)i,j =
pi,j+

1
ni

max(ai−
Pni

j=1 pi,j ,0)

max(ai,
Pni

j=1 pi,j)
, for all (i, j). It is straightforward to verify that

∑ni
j=1 π(p)i,j = 1 for all

i = 1, 2, 3. Furthermore, if p ∈ S, then π(p)i,j = pi,j

ai
for all i, j; that is, φ(π(p)) = p. Let FG
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be Nash’s function for the game G. Define the function f : ∆n → ∆n by the formula f(p) =
φ(FG(π(p))). That is, a point p ∈ ∆n is first mapped to the mixed strategy profile y = π(p) of G,
then y is mapped to the new strategy profile y′ = FG(y), and finally y′ is mapped back to a point
p′ = φ(p) in S ⊂ ∆n.

We claim that f has a unique fixed point, specifically the point p∗ = φ(y∗), where y∗ is the unique
Nash equilibrium of G. Clearly, f(p∗) = φ(FG(π(p∗))) = φ(FG(y∗)) = φ(y∗) = p∗. Conversely, any
fixed point p′ of f must belong to S because the range of f is contained in S; if y′ = π(p′) is not a
NE of G, then the Nash function maps it to a different profile y′′ = FG(y′) 6= y′, and then φ maps it
back to a different point p′′ 6= p′, because φ is 1-to-1. Thus, the only fixed point of f is p∗ = φ(y∗).

Using Uzawa’s formula [60], we can define a total market excess demand function g : ∆n → Rn

from the above function f , where g(p) = f(p)− 〈p,f(p)〉
〈p,p〉 p. Then there is exactly one price equilibrium,

namely the unique fixed point p∗ = φ(y∗) of f . The price p∗1 of commodity 1 (i.e. (1,1)) in the
price equilibrium is equal to a1y

∗
1,1 = (1− ε′)y∗1,1. If strategy 1 of player 1 has probability y∗1,1 < ε′

in y∗, then the corresponding commodity 1 has price p∗1 < ε′ < ε, and if the strategy probability is
y∗1,1 > 1− ε′ then the commodity 1 price is p∗1 > (1− ε′)2 > 1− 2ε′ = 1− ε.

4 Nash Equilibria and the class FIXP

We define a class of fixed point problems, FIXP, for which the Nash equilibrium problem (for
3 or more players) will be shown to be complete. The class of fixed point problems induces a
corresponding class for each of the associated types of questions: e.g., a class of decision problems,
a class of (strong) approximation problems, etc. As usual in the definition of classes (cf. PLS,
PPAD, MAXSNP, etc.), it is convenient to define a syntactic version and then close it under
(polynomial-time) reductions. Recall that in the framework of search problems cast as fixed points,
each instance I of a search problem is associated with a continuous function FI from a compact
convex domain DI to itself, such that Sol(I) = Fix(FI). The basic characteristics of the class FIXP
are that (i) the domain DI is a convex polytope described by a set of linear inequalities with rational
coefficients that can be computed from I in polynomial time, and (ii) the function FI is represented
by an algebraic circuit (or straight line program) CI over the basis {+,−, ∗, /,max,min, k

√ } using
rational constants, that computes the function over the domain, and there is a polynomial time
algorithm that computes the circuit from I.2 Note that the circuit operates on real numbers, but
the algorithms we study do not do any computation on reals; the circuit is a finite representation of
the function, just like a formula, but more succinct of course. The underlying model of computation
for us is still the standard discrete Turing machine.

The circuit CI is a sequence of gates g1, . . . , gr, where for i = 1, . . . , n, gi := xi is an input
variable, for i = n+ 1, . . . , n+m, gi := ci ∈ Q is a rational constant (encoded in the standard way,
with numerator and denominator given in binary), and for i > n+m, we have gates gi := gj ◦ gk,
with j, k < i, where the binary operator is ◦ ∈ {+,−, ∗, /,max,min} (infix max and min have the
obvious meaning), or gate gi = k

√
gj for some j < i, and some integer k > 1 given in unary. The

last n gates are the output gates. The circuit CI represents the function FI . Thus, it is required to
have the property that if we input any vector x ∈ DI into CI then all the gates are well defined and
the circuit outputs a vector CI(x) = FI(x) in DI . In particular, this means that for inputs x ∈ DI ,
there is no division by 0 in the circuit (i.e. the denominators of all division gates are nonzero), and

2Including the gates k
√

allows one to express readily a richer class of Brouwer functions (and is also convenient
in the proofs). It will follow from the completeness of the Nash equilibrium problem for FIXP that omitting the root
gates does not reduce the expressive power of FIXP.
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the operands of all the root gates k
√ with even k are nonnegative; a root gate outputs the unique

nonnegative root of its operand if k is even, and the unique (real) root if k is odd.
We can define other operations from the basis. Since we have multiplication, we can easily

build any integer power ym (even with m written in binary), and thus also any rational power
ym/k = ( k

√
y)m (with the denominator k given in unary, and the operand has to be nonnegative

for even k for this to be defined). With max and arithmetic we can define other piecewise linear
functions, for example the absolute value |y| = max(y,−y). The absolute value can be obtained
also as |y| =

√
y2.

On the other hand, some of the operations are obviously redundant (can be defined in terms
of others) and could have been omitted, but we included them explicitly for convenience. For
example, since we have subtraction, min can be obtained from max and vice-versa. In fact, since
we allow any rational constants, subtraction itself is not even needed. Also, we could have just
included the constant 1 (and −1 if we omitted subtraction) and built the other rationals using
operations. Furthermore, since we have square root, the min and max operations can be built from
the others and are not needed: max(a, b) = (a+b)/2+ |a−b|/2 = (a+b)/2+

√
(a− b)2/2; similarly,

min(a, b) = (a+ b)/2− |a− b|/2 = (a+ b)/2−
√

(a− b)2/2.
We close the class by reductions. Recall that a reduction from problem A to problem B consists

of two functions, a polynomial-time function f that maps instances I of A to instances f(I) of B,
and a second function g that maps solutions y of the instance f(I) of B to solutions x of the
instance I of A. In the case of reductions between discrete problems, where solutions are finite
(this includes problems with rational-valued solutions), the second function g is any polynomial-
time computable function. For problems with real-valued solutions, as mentioned in Section 2, we
restrict the function g to be a separable linear transformation with rational coefficients that are
computable in polynomial time from I. For example, a special case of such a reduction is when the
formulation of a search problem as a fixed point problem involves the addition of more auxiliary
variables besides the ones we want to compute in the search problem; in this case the function g is
the projection on the coordinates of interest in problem A. For instance, in a game we may be only
interested in the payoff of one player in a Nash Equilibrium or the total payoff; the formulation of
the problem as a fixed point problem involves the addition of variables for the probabilities of the
players’ strategies.

In our definition of the class, the domains of the functions are polyhedral. However, we can
include in FIXP problems with common nonlinear convex domains such as balls and ellipsoids, by
modifying (enlarging) the domains and defining suitable embeddings of the domains via algebraic
functions that preserve the fixed points. In general, reductions can be used to embed different
domains into each other by an algebraic function in a continuous fixed point-preserving manner .
For example, we show below that FIXP does not change if we restrict the domain of the function
for every instance to be a unit cube or unit simplex.

Lemma 16 The class FIXP does not change if the requirement on the domain for the instances
of the problem is changed in either of the following ways.

1. The domain for an instance can be a ball with given rational center and diameter, or more
generally an ellipsoid with given rational center and matrix, computed from the instance in
polynomial time.

2. The domain for every instance is restricted to be a unit cube. The same holds if the domain
for every instance is restricted to be a unit simplex.

Proof. 1. Suppose that the domain for instance I is a ball S(c, r) with (rational) center c and
radius r in Rd, i.e., DI = {x ∈ Rd|

∑d
i=1(xi − ci)2 ≤ r2}, and let CI be the circuit for the function
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FI . Let B[l, u] be a big enough box that contains S(c, r), for example take l = c− r · 1, u = c+ r · 1
where 1 is the all-1 vector. We change the domain to D′

I = B[l, u] and modify the circuit to another
circuit C ′

I in such a way that the fixed points stay the same. The circuit C ′
I takes as input a point

x ∈ B[l, u], computes θ = max(1,

qPd
i=1(xi−ci)2

r ), and then computes the point y = c + (x − c)/θ.
Note that y ∈ S(c, r), and if x ∈ S(c, r) then y = x. Then we feed y into the circuit CI , and output
CI(y). Clearly, every fixed point of CI is also a fixed point of C ′

I , and conversely every fixed point
x of C ′

I must be in the ball S(c, r) and is a fixed point of CI .
Suppose that DI is an ellipsoid E(c, A) = {x ∈ Rd|(x− c)TA(x− c) ≤ 1}, where c is a rational

point and A a rational symmetric positive definite matrix, constructed from I in polynomial time.
Recall that every symmetric positive definite matrix, A, has a Cholesky factorization A = LLT ,
where L is lower triangular, non-singular, and has positive diagonal entries. The matrix L can be
‘computed’ from A using a polynomial number of algebraic operations, including square roots (see,
e.g., [58], page 183). Note that E(c, A) = {x ∈ Rd|(LT (x− c))T (LT (x− c)) ≤ 1}. We again change
the domain to a big enough box D′

I = B[l, u] that contains DI . The new circuit C ′
I takes as input

a point x ∈ B[l, u] and works as follows. First it computes the Cholesky factor matrix L, and its

inverse L−1. Then it computes the point z = LT (x − c), the scalar θ = max(1,
√∑d

i=1 z
2
i ), the

point w = z/θ, and then the point y = (L−1)Tw + c. Finally it outputs CI(y). Note that y is in
DI = E(c, A), because (y−c)TA(y−c) = wTL−1LLT (L−1)Tw = wTw ≤ 1; furthermore, if x ∈ DI ,
then θ = 1, w = z, and y = x. Therefore, the fixed points of C ′

I are the same as the fixed points of
CI .

2. Let Π be a problem in FIXP. We reduce it to another problem Φ in FIXP that has the same
instances, and whose domain for every instance is a unit cube. We use the same domain-embedding
mapping as in the proof of Lemma 1. Each instance I of Π has an associated polyhedral domain
DI , and a function FI represented by a polynomially computable circuit CI that maps DI to itself.
Let d = dI be the number of variables of FI . As shown in Lemma 1 we can define another function
GI that maps the unit cube [0, 1]d to itself, and define a linear separable function g on Rd such
that there is a 1-1 correspondence between the fixed points of FI and GI , specifically, y is a fixed
point of GI iff x = g(y) is a fixed point of FI .

The function g maps the i-th coordinate of a point y to the i-th coordinate of a point x by the
expression xi = gi(y) = (ui− li) ·yi + li, where ui > li are respectively an upper and lower bound on
the i-th coordinate of all the points inDI . The reverse mapping g−1 maps xi to yi = (xi−li)/(ui−li).
The function GI is defined as g−1 ◦ FI ◦ π ◦ g, where π maps the box B[l, u] to DI . We follow the
definitions of these functions to construct from the instance I a circuit C ′

I for the function GI .
First we compute in polynomial time from the instance I a set of linear equations {ax = bi|i =

1, . . . , k} and a set of linear inequalities {ax ≤ bi|i = k + 1, . . . ,m} that describe the domain DI ,
and compute a point c in the relative interior of DI and a matrix Q as in the proof of Lemma
1. We also compute the circuit CI for the function FI . The circuit C ′

I for the function GI is
constructed as follows. The circuit C ′

I takes as input a vector (point) y in the unit cube [0, 1]d,
and applies first the linear transformation g to compute a point x, which will be in the box B[l, u].
The next part of the circuit computes ρ(x) = c+Q(QTQ)−1QT (x− c). Then it computes θi(x) =
max((aiρ(x)−aic)/(bi−aic), 1) for i = k+1, . . . ,m, and then θ(x) = maxi θi(x). Note that θ(x) is
guaranteed to be nonzero, in fact at least 1. Then the circuit computes π(x) = c+ (ρ(x)− c)/θ(x).
The vector π(x) is fed into the inputs of the circuit CI . Finally the circuit C ′

I applies the (linear)
transformation g−1 to the output x′ of CI to produce the output y′ = g−1 of C ′

I .
The proof for the unit simplex is similar.

Corresponding to the class FIXP of search problems (with real solutions) there is a class of
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Decision problems, a class of Approximation problems and a class of Partial computation problems.
To emphasize the distinction between them, we can attach a subscript to FIXP, denoting these
classes of associated problems as FIXPd, FIXPa, FIXPpc, respectively. Note that these are
classes of discrete search problems (hence their complexity can be studied in the standard Turing
machine model), as opposed to FIXP which is a class of, in general, real-valued search problems
(whose complexity can be studied in a real computation model, e.g. [5]). We can show that all the
discrete problems are in PSPACE, by appealing to PSPACE decision procedures for the existential
theory of reals (ETR) [8, 51]. The decision problem for the ETR is the following: decide whether
there exists a real vector of values x which satisfies a given boolean combination of multi-variate
polynomial inequalities of the form P (x) ≥ 0, where the polynomials P (x) have rational coefficients
[51].

Proposition 17 The Partial Computation, Decision, (Strong) Approximation and Existence ver-
sions of all problems in FIXP can be solved in PSPACE.

Proof. Let Π be a problem in FIXP. Recall the existence problem: Given an instance I and a
tuple of rational (upper and/or lower) bounds for a subset of the components of a solution, does
there exist a solution x ∈ Sol(I) that satisfies the given bounds? As we noted, this is stronger than
the simpler Decision problem that we defined for the search problem. The existence problem can be
formulated in the Existential Theory of the Reals. Given an instance I of Π, construct the circuit
CI for the instance, introduce a variable for every gate, and write a set of polynomial equations
and inequalities with rational coefficients that express the semantics of the gates. The constraints
for the +,−, ∗ gates are obvious. The constraint for a division gate gi := gj/gk is gigk = gj . The
constraint set for a max gate gi := max(gj , gk) is gi ≥ gj , gi ≥ gk, (gi − gj)(gi − gk) = 0. The
constraint set for a min gate is similar. The constraint set for a root gate gi := k

√
gj with k odd

is (gi)k = gj , and with k even is (gi)k = gj , gi ≥ 0. Add equalities that equate the outputs of the
circuit with the inputs, and add the set of linear inequalities on the input variables x that define
the domain DI . Finally, add inequalities for the existence question that relate the coordinates of x
with the given bounds. Call a PSPACE procedure [8, 51] that determines whether the system has
a solution.

We can solve the partial computation and (strong) approximation problems by using the above
existence problem in a binary search manner, coordinate by coordinate. We can actually (partially)
compute up to to any precision a specific desired solution if we want, for example one that maximizes
or minimizes specified components.

We show that Nash exactly characterizes the search problems that can be cast as fixed points
of functions represented by algebraic circuits:

Theorem 18 The Nash equilibrium problem for 3 (or more) players, is FIXP-complete. In partic-
ular, the corresponding Decision, (Strong) Approximation and Partial Computation problems are
complete respectively for FIXPd, FIXPa, and FIXPpc.

Proof. It is easy to see that d-player Nash for any d is in FIXP. Let I be an instance (a game), let
Si be the set of strategies of player i, let ni = |Si| be their number, let n =

∑
ni, and let ui be the

payoff function of player i. The domain of the Nash problem is the cartesian product ∆ of the d unit
simplexes ∆ni , i = 1, . . . , d. That is, if the vector x = (xij) denotes a mixed strategy profile, where
xij is the probability of the jth strategy of player i, then DI = ∆ is described by the set of linear
equations

∑ni
j=1 xij = 1 for all i = 1, . . . , d, and inequalities xij ≥ 0 for all i, j. The Nash equilibria

are the fixed points of Nash’s function FI from ∆ to itself. The function FI is given by a simple
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formula that uses the algebraic operations +,−, ∗, / and max. Recall from Section 2 that the ij-th
component of FI(x) is FI(x)ij = xij+max{0,gi,j(x)}

1+
Pni

j=1 max{0,gi,l(x)} , where gi,j(x) = ui((i:j);x−i)−ui(x) is the net

gain of player i in expected payoff if he switches to his jth pure strategy. The expected payoff ui(x)
is a (multilinear) polynomial ui(x) =

∑
(j1,...,jd)∈S ui(j1, . . . , jd)x1j1 . . . xdjd

, where the summation
ranges over all pure strategy profiles in S = S1× . . . Sd. Similarly, ui((i:j);x−i) and gi,j(x) are also
polynomials. Clearly, we can efficiently build an algebraic circuit (indeed an algebraic formula)
that computes FI .

We show the hardness now. Let Π be a problem in FIXP, and I an instance of Π, which
corresponds to a Brouwer function from a domain DI to itself. By Lemma 16 we can assume
that the domain is a unit cube [0, 1]n. From I we compute an algebraic circuit CI over the basis
{+,−, ∗, /, k

√
,max,min} with n input and output variables. Let x1, ..., xn be the input variables

and x′1, ..., x
′
n the output variables. The circuit has the property that for any input vector x ∈ [0, 1]n,

all the operations of the circuit are defined (i.e. there is no division by 0, and even roots are applied
only to nonnegative operands) and the output is a vector x′ ∈ [0, 1]n. We can assume without loss
of generality that all constants of the circuit are nonnegative, since we have subtraction gates
available. We will first transform the circuit in several substeps to bring it into a normal form, and
then we will construct from it a game using similar gadgets as in the last section.

Step 1: Transformation of the circuit.
First we eliminate the max and min gates, using the identities max(a, b) = (a+ b)/2 + |a− b|/2

= (a+ b)/2 +
√

(a− b)2/2, and min(a, b) = (a+ b)/2− |a− b|/2 = (a+ b)/2−
√

(a− b)2/2. That
is, each max gate gi := max(gj , gk) is replaced by a sequence of gates si1 := gj + gk, si2 := 2,
si3 := si1/si2, si4 := gj − gk, si5 := si4 ∗ si4, si6 :=

√
si5, si7 := si6/si2, gi := si3 + si7. A min gate

is similarly replaced by an analogous sequence of gates. Let D1 be the resulting circuit.
Next we move all the divisions to the top, that is, we transform to another circuit that has one

division for each variable, which is the final output gate for the variable. We replace every gate
gi of D1 by two new gates g′i, g

′′
i which will play the role of the numerator and denominator, i.e.

when we evaluate the circuit for any input in the domain, the value of gi in the original circuit
will equal the value of g′i/g

′′
i in the transformed circuit. The transformation is as follows. If gi is

an assignment gate, gi := c for some constant c or gi := xj for some input variable xj then we set
g′i := c or g′i := xj respectively, and g′′i := 1. For an addition or subtraction gate gi := gj ± gk we
let g′i := (g′j ∗ g′′k)± (g′k ∗ g′′j ) (this involves two multiplication gates and one addition or subtraction
gate) and let g′′i := g′′j ∗g′′k . A multiplication gate gi := gj ∗gk becomes g′i := g′j ∗g′k and g′′i := g′′j ∗g′′k .
A division gate gi := gj/gk becomes g′i := g′j ∗ g′′k and g′′i := g′′j ∗ g′k. A root gate gi := k

√
gj with odd

k becomes g′i := k

√
g′j and g′′i := k

√
g′′j . A root gate gi := k

√
gj with even k becomes g′i := k

√
g′j ∗ g′′j

and g′′i := k

√
g′′j ∗ g′′j ; i.e., we introduce two intermediate multiplication gates that compute g′j ∗ g′′j

and g′′j ∗ g′′j and take their roots. Note that since the operand gj = g′j/g
′′
j of the original gate is

guaranteed to be nonnegative for any input in the domain, it follows that the operands of the new
root gates are also nonnegative. Finally, for each output gate outi of CI that computes the output
variable x′i, we have a gate outi := out′i/out

′′
i .

Let D2 be the circuit resulting from the above transformation. A straightforward induction
shows that for each input vector x ∈ [0, 1]n the following properties hold: (1) all the gates g′′i
representing the denominators are nonzero, (2) all even root gates have nonnegative operands, and
(3) for each gate gi of CI its value val(gi) is equal to the ratio val(g′i)/val(g

′′
i ) of the values of the

corresponding gates in D1.
In the third step of the transformation, we move the subtractions right below the top, that is,

for each output variable x′i there are (at most) two subtractions, one for the numerator out′i and
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one for the denominator out′′i . After this step is finished, there may be some subtraction gates
further below in the circuit, but all the gates will be guaranteed to compute nonnegative values
for any input in the domain. This step is similar to the transformation of the last section, i.e. for
each gate gi of D1, except for the top division gates, we introduce two gates g+

i and g−i for the
positive and the negative part. An assignment gate gi := c or gi := xj becomes g+

i := c or g+
i := xj

(recall we assumed, wlog, that all constants are nonnegative) and g−i := 0. Addition, subtraction
and multiplication gates are transformed as in the previous section.

For a root gate gi := k
√
gj we introduce several intermediate gates. First compute sj :=

min(g+
j , g

−
j ) via a sequence of +,−, /,√ gates, corresponding to the subexpressions of the expres-

sion (g+
j + g−j )/2 −

√
((g+

j )2 + (g−j )2)− 2 ∗ (g+
j ∗ g−j )/2. This involves two subtraction gates: one

that computes the operand of the square root, ((g+
j )2 + (g−j )2) − 2 ∗ (g+

j ∗ g−j ), and a second one
that does the final subtraction of the expression to produce sj ; note that both of them compute

nonnegative values. Next we introduce gates t+j := g+
j − sj , t−j := g−j − sj , and then let g+

i := k

√
t+j

and g−i := k

√
t−j . Note that the intermediate subtraction gates t+j , t

−
j always compute nonnegative

numbers: if gj has nonnegative value, i.e. val(g+
j ) ≥ val(g−j ), then val(t+j ) = val(gj), val(t−j ) = 0,

both root gates g+
i and g−i have nonnegative operands and are thus well-defined whether k is odd

or even, and val(g+
i ) = val(gi), val(g−i ) = 0. If gj has negative value, i.e. val(g+

j ) < val(g−j ),
then val(t+j ) = 0, and val(t−j ) = −val(gj); in this case, k must be odd, and we have val(g+

i ) = 0,
val(g−i ) = −val(gi). Thus, in both cases, the transformation produces the correct value and ensures
that all the gates have nonnegative value.

When we reach the children out′i, out
′′
i of the division gates at the roots (which compute the

outputs x′i), we have introduced corresponding gates for their positive and negative parts. Note
that all the gates below this layer compute non-negative numbers. To ensure that all the gates
in the circuit compute non-negative numbers, instead of subtracting the positive and negative
parts to compute out′i, out

′′
i , we compute the absolute values of the differences, and divide these

at the top. That is, we have a gate aout′i that computes |(out′i)+ − (out′i)
−|, and gate aout′′i that

computes |(out′′i )+ − (out′′i )
−| and change the top gates to outi := aout′i/aout

′′
i . Note that this

does not affect the final outputs: For every input vector in the domain, each output x′i of CI is
nonnegative, therefore dividing the absolute values yields the same result. The absolute differ-
ence |(out′i)+ − (out′i)

−| is computed by introducing gates for the subexpressions of the expression√
(((out′i)+)2 + ((out′i)−)2)− 2 ∗ ((out′i)+ ∗ (out′i)−); note that the subtraction gate that computes

the operand of the square root produces a nonnegative value. Similarly with the other gate aout′′i
that computes |(out′′i )+ − (out′′i )

−|.
Let D3 be the circuit resulting after the third substep of the transformation. Clearly, for

every input vector in the domain, all the gates in the circuit compute nonnegative numbers. By
a straightforward induction it is easy to see that the value of every gate in D2 below the top two
levels is equal to the difference of the two corresponding gates in D3.

In the last step we transform the circuit D3 so that all the gates compute numbers between 0
and 1. We do this as follows. The computed numbers are at most doubly exponential in the size of
the circuit, and hence in the size of the instance I. Let d = poly(|I|) be such that all the computed
numbers are strictly smaller than 22d

. In the next step we add at the bottom of the circuit D3

a circuit T that computes t = 1/22d
by successive squaring of 1/2 d times, and multiply all the

inputs and the constants by t before feeding them into the original circuit; i.e., an assignment gate
gi := c or gi := xj becomes gi := c ∗ hd or gi := xj ∗ hd, where hd is the last gate of the circuit T
that computes t. We modify the gates of D3 in a similar way as in Section 3. In particular, the
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addition and subtraction gates stay the same. A multiplication gate gi := gj ∗ gk is changed to
gi := (gj ∗ gk)/hd, broken into two steps, where we first perform the multiplication and then the
division. A division gate that is not an output gate, gi := gj/gk, is changed to gi := (gj ∗ hd)/gk,
broken into two steps where we first perform the multiplication and then the division. The output
gates are left alone. A root gate gi := k

√
gj is changed to gi := k

√
gj ∗ tk−1, i.e. we introduce

additional gates that compute the powers of t = hd, e.g. s2 := hd ∗ hd, s3 := s2 ∗ hd, etc., add a
gate ĝi := gj ∗ sk−1, and change the gate gi to gi := k

√
ĝi.

Let S be the circuit that results from the last substep of the transformation. The circuit S
has the property that for every input vector in the domain, all gates have nonnegative values.
Furthermore, except for the top division gates that compute the outputs, every other gate of S
that corresponds to a gate of D3 has value equal to t times the value of the corresponding gate
of D3. This can be shown by a straightforward induction. This fact means in particular that all
these gates have values in the interval [0, 1]. This obviously holds also for the gates of the initial
subcircuit T that we attached in the bottom, and for the other auxiliary gates we introduced.
Furthermore it holds also for the output gates outi := aout′i/aout

′′
i because the new factor t in the

numerator and denominator cancels out, so the output in S is the same as the output in D3, and
it is in [0, 1].

To summarize, the circuit S uses (constant or input) assignment, addition, subtraction, multi-
plication, division, and root gates. For every input vector in x ∈ [0, 1]n, all the gates are well-defined
(no division by zero, no negative operands for even root gates), the values of all the gates are in
[0, 1], and the outputs of the circuit are equal to the outputs of the given circuit CI .

Step 2: Construction of the game.
We are ready now to transform the circuit S to a game. As in the reduction of the last section,

we first construct a game G with 10 players, and then transform it to a 3-player game Γ. The
constructions are very similar to those in the last section.

The game G has 10 players that are paired in 5 pairs i, i′, for i = 1, . . . , 5. The structure of the
game is the same as in the proof of Theorem 4. Players 1,2,3 are the primary players, players 4,5
are the auxiliary players, their strategies are partitioned into blocks, each primed player i′ has one
strategy corresponding to each block of the corresponding unprimed player i and plays matching
pennies with it. Let N be the number of gates of S, and let q1, . . . , qN be the sequence of gates in
topological order. Each primary player i = 1, 2, 3 has N blocks, (i, j); j = 1, . . . , N , one for each
gate qj of S, and each block contains two strategies (i, j, 0) and (i, j, 1). An auxiliary player l = 4, 5
has 3N blocks (i, j); i = 1, 2, 3; j = 1, . . . , N , one for each primary player i and each gate qj of S;
the blocks contain two strategies (l, i, j, 0), (l, i, j, 1), in all cases, except if i = 1 and qj is a k-th
root gate, in which case the block contains k + 1 strategies (l, 1, j, 0), (l, 1, j, 1), . . . , (l, 1, j, k).

The payoff functions of the players are defined in a similar manner as in the proof of Theorem
4. In particular the payoff function ul of each unprimed player l = 1, . . . , 5 is the sum µl +µ′l of two
terms, where the first term depends on the strategies of the unprimed players only, and the second
term on the strategy of l and l′ only, just like before. The second term µ′l and the payoff ul′ of the
primed players is the same as in Theorem 4; namely if the strategy of l′ corresponds to the block
of the strategy of l in a pure strategy profile s, then µ′l(s) = M and ul′(s) = −M , where M is a
large number (e.g. M > 6N maxs |µl(s)|); otherwise, µ′l(s) = 0 and ul′(s) = −0.

The first term µl of the payoff of each unprimed player l depends only on the strategies of the
unprimed players, and is determined by a set of gadgets Gij , one for each primary player i = 1, 2, 3
and gate qj , j = 1, . . . , N . The gadget Gij affects the payoff function of a player for a strategy
profile s = (s1, . . . , s5) iff his strategy lies in the block (i, j). The purpose of each gadget Gi,j is to
‘compute’ in the strategy (i, j, 0) of player i the value of the gate qj as a function of its operands,
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in the sense that it ensures that in every Nash equilibrium, the probability of strategy (i, j, 0) of
player i is equal to val(qj)/N . For each gate qj , j = 1, . . . , N of S, we first ‘compute’ the value
of the gate in the strategy (1, j, 0) of player 1, by a gadget G1j that depends on the operation of
the gate, and then copy the value to the corresponding strategies (2, j, 0), (3, j, 0) of the other two
primary players 2,3, using simple copying gadgets G2j , G3j that do not depend on the operation of
the gate.

The copying gadgets Gij for i = 2, 3, j = 1, . . . , N are exactly the same as in the proof of
Theorem 4. The gadgets G1j for assignment, addition, subtraction, multiplication and division
gates qj are also exactly the same. The only difference here is that the inputs to the circuit are
variables xj in addition to constants. Replace all the operands of gates that are input variables by
the corresponding output gates; one can think of this as having the outputs of the circuit feed back
into it, thus forming a cyclic circuit. That is, if l′ = N − n+ l is the index of the output gate that
computes the lth output x′l, then we replace all occurrences of xl as an operand of a gate by ql′ .
For example a multiplication gate qj := xl ∗ qm becomes qj := ql′ ∗ qm. As before, all these gadgets
are instances of the gadget Gf of Lemma 7 for a linear polynomial f .

The gadget G1j for a root gate qj := k
√
ql is a copy of the gadget Gf for the polynomial

f(z) = zk + ck, where ck = −val(ql). As with the other gates, we do not compute explicitly the
value of gate ql but use the value ‘computed’ by the probability of strategy (2, l, 0). Note that
f(0) ≤ 0 and f(1) ≥ 0, and the polynomial has a unique root in [0, 1]. The blocks (1, j) of the
auxiliary players have k + 1 strategies in this case.

In more detail, the first term µi of the payoff of each unprimed player i for a pure strategy
profile s = (s1, . . . , s5) is defined as follows.

Payoff of auxiliary players 4,5. Similar to Theorem 4. The payoff µ4 is as follows (µ5 is similar).
Let s4 = (4, k, j, b2). Strategy s4 is in block (k, j) of player 4, which corresponds to a gadget Gkj ,
for some primary player k = 1, 2, 3 and gate qj , j = 1, . . . , N . If sk or s5 is not in block (k, j) of
the respective player k or 5, then µ4(s) = 0. So suppose sk = (k, j, b1) and s5 = (5, k, j, b3). Then
µ4(s) = h2(b1, b2, b3), where h2 is the payoff function of player 2 in the game Gf of Lemma 7, for
the polynomial f that corresponds to the gadget Gkj . (Actually h2 depends only on the degree of
the polynomial, and not the polynomial itself.)

Payoff of primary players 2,3. Exactly the same as in Theorem 4.
Payoff of primary player 1. Let s1 = (1, j, b1). If gate qj of the circuit S is an assignment,

addition, subtraction, multiplication, or division gate, then µ1(s) is exactly the same as in Theorem
4, except that as we mentioned, we use in place of the input variables the corresponding output
gates. Thus, for example if qj := xl ∗qm then we treat it as if it was qj := ql′ ∗qm, which means that
µ1(s) in this case is defined as follows. If s4 or s5 are not in block (1, j) then µ1(s) = 0. Suppose
s4 = (4, 1, j, b2), s5 = (5, 1, j, b3). Then µ1(s) = 1 if b1 = 1 and b2 = 0; µ1(s) = −N2 if b1 = 1,
b2 = 1, and s2 = (2, l′, 0) and s3 = (3,m, 0); and µ1(s) = 0 otherwise.

Suppose that qj is a root gate, qj := k
√
ql. If s4 or s5 is not in block (1, j) then µ1(s) = 0.

Suppose s4 = (4, 1, j, b2), s5 = (5, 1, j, b3). If b1 = 0 then µ1(s) = 0. Suppose that b1 = 1. If b2 = 0
then µ1(s) = 1; if b2 = k and s2 = (2, l, 0) then µ1(s) = −N ; in all other cases µ1(s) = 0.

This concludes the definition of the game G.
Let y be a Nash equilibrium of G. By Lemma 6, each block of an unprimed player receives the

same total probability in the NE y: probability 1/N for the primary players 1,2,3 and 1/3N for the
auxiliary players 4,5. For each input variable xj , let qj′ be the gate that computes the corresponding
output x′j , and let x∗j = N · y(1, j′, 0) be N times the probability of the corresponding strategy
(1, j′, 0) of player 1 in the NE y. Let x∗ be the input vector (x∗j : j = 1, . . . , n).

Claim 2 For every Nash equilibrium y of the game G, the vector x∗ = (N ·y(1, j′, 0) : j = 1, . . . , n)
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is a fixed point of the function FI specified by the circuit CI . Conversely, for every fixed point x∗

of FI , there is a Nash equilibrium y of G such that x∗ = (N · y(1, j′, 0) : j = 1, . . . , n).

Proof. Let y be a Nash equilibrium of G. From the copying gadgets G2j , G3j we have y(1, j, 0) =
y(2, j, 0) = y(3, j, 0) for all j = 1, . . . , N . In particular for every output gate qj′ we have y(1, j′, 0) =
y(2, j′, 0) = y(3, j′, 0) = x∗j . Consider the circuits CI , S with the input vector x∗. By the correctness
of the transformation from CI to S, the output values are equal. We claim that for each gate qj of
S, the value of the gate, val(qj) on input x∗ to the circuit is equal to N · y(1, j, 0) (and hence also
N ·y(2, j, 0) and N ·y(3, j, 0)). This can by shown by induction on the height of the gate, in exactly
the same way as in the proof of Theorem 4 using the properties of the gadgets Gf . It follows that
the value of each output gate qj′ is equal to N · y(1, j′, 0), i.e. to x∗j . Thus, x∗ is a fixed point of
the circuit S, and hence also of the circuit CI .

Conversely, given any fixed point x∗ of CI , and hence also of S, we can define a profile y for
G as follows. Let val(qj) be the value of gate qj of S on input x∗ to the circuit. Let y(1, j, 0) =
y(2, j, 0) = y(3, j, 0) = val(qj)/N and y(1, j, 1) = y(2, j, 1) = y(3, j, 1) = (1− val(qj))/N . For each
gadget Gij , the probabilities of the primary player correspond to a root of the polynomial f of the
gadget, hence they can be extended to the auxiliary players to form a Nash equilibrium for the
gadget. The probabilities can be then extended to the primed players to form a Nash equilibrium
y for G.

From the game G construct a 3-player game Γ using the transformation of Proposition 9. By
the proposition, the Nash equilibria of Γ correspond (in general not 1-1) to the Nash equilibria of
G: For every NE z of Γ, its projection z1 on the strategies of player 1 multiplied by 10 yields a NE
of G; and conversely, for every NE y of G there is a NE z = (z1, z2, z3) of Γ such that z1 = y/10.
In particular, there is a set of n pure strategies of player 1, say strategies 1, . . . , n (these are the
strategies corresponding to the strategies (1, j′, 0); j = 1, . . . , n in the game G), such that for every
NE z = (z1, z2, z3) of Γ, if we multiply its projection z1[1 . . . n] on these strategies of player 1 by
10N we obtain a fixed point of S, and hence also of CI and FI ; and conversely, for every fixed point
x∗ of FI , there is a Nash equilibrium z of Γ such that x∗ = z1[1 . . . n]/10N .

Therefore, the fixed point problem reduces to the Nash equilibrium problem in its exact version,
as well as in the decision and approximation version. For the partial computation version where
we want to compute a specified number of bits of the fixed point, pad the circuit S with dummy
gates so that N becomes a power of 2, N = 2l, and add 6 dummy players to the game G with
one strategy each, before transforming it to the 3-player game Γ. Then the relation between the
fixed points x∗ of the function and the NE z of Γ becomes x∗ = z1[1 . . . n]/2l+4, thus the mapping
between the two vectors is just a binary shift.

Another example of a FIXP-complete problem, is the exchange equilibrium problem (defined
in Section 2) for a market specified by the excess demand functions. We have a set of m agents
and n commodities, and we are given the excess demand functions gl

i(p); l = 1, . . . ,m; i = 1, . . . , n
of the agents for the different commodities at prices p, and hence also the total market excess
demand function gi(p) =

∑
l g

l
i(p); i = 1, . . . , n. Recall that the equilibria of the market are the

fixed points of the function F : ∆n 7→ ∆n, defined by the formula Fi(p) = pi+max(0,gi(p))
1+

P
k max(0,gk(p)) . Clearly,

if the functions gl
i, and hence also gi, are defined by algebraic circuits (or formulas), then so is the

function F and the exchange equilibrium problem is in FIXP. For the completeness, recall that
given a Brouwer function f : ∆n → ∆n, one can define a total market excess demand function
g : ∆n → Rn using Uzawa’s formula [60]: g(p) = f(p)− (〈p, f(p)〉/〈p, p〉)p. The price equilibria are
exactly the fixed points of f . Clearly, if f is given by an algebraic circuit we can construct a circuit
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for g. Furthermore, we can also reduce directly the 3-player Nash equilibrium problem to the price
equilibrium problem as in the proof of Corollary 15 which gives an algebraic formula for g, rather
than a circuit. Thus:

Proposition 19 The exchange equilibrium problem with excess demand functions given by alge-
braic circuits (or formulas) over {+,−, ∗, /,max,min, k

√ } is FIXP-complete.

As we remarked after the definition of the class FIXP, the class does not change if we omit
some of the operators, because they can be defined in terms of others. Some other such invariance
properties do not follow from the properties of the operators but rather from the completeness of
the Nash equilibrium problem. One obvious consequence of the completeness is that the class does
not change if we omit the root operators, since Nash’s function does not have any roots. Also,
FIXP does not change if we require the function FI to be represented by a formula rather than
a circuit, since Nash’s function is given by a formula. Furthermore, bounded-depth formulas are
enough, if we use addition gates with unbounded fan-in.

A non-obvious consequence is that the class does not change if we omit division. To show this, we
will define another function GI from a game I, whose fixed points are also the Nash equilibria, and
which can be implemented without division. Let I be a d-player game with a set Si of pure strategies
for each player, let ni = |Si|, let n =

∑
ni, and let ui be the payoff function of player i. The domain

of the function is the same, DI = ∆, the cartesian product of the d unit simplexes ∆ni for the d
players. For each mixed strategy profile x, let v(x) be a vector which gives the expected payoff of
each pure strategy of each player with respect to the profile x for the other players. That is, vector
x is a vector of dimension n whose entries are indexed by pairs (i, j), i = 1, . . . , d; j = 1, . . . , ni, and
v(x) is also a vector of dimension n whose (i, j)-entry is ui((i:j);x−i). Let h(x) = x + v(x). For
each player i, consider the function fi,x(t) =

∑
j∈Si

max(hij(x) − t, 0). Clearly, it is a continuous,
piecewise linear function of t. The function is strictly decreasing as t ranges from −∞ (where
fi,x(t) = +∞) up to maxj hij(x) (where fi,x(t) = 0). Thus, there is a unique value of t, call it ti,
where fi,x(ti) = 1. The function GI is defined as follows: GI(x)ij = max(hij(x) − ti, 0) for every
i = 1, . . . , d; j ∈ Si. From our choice of ti, we have

∑
j∈Si

GI(x)ij = 1 for all i = 1, . . . , d, thus
GI(x) is in the domain DI = ∆. In fact it can be shown that GI(x) is the point of ∆ that is closest
to the point h(x), and that therefore the function GI is the same as the function of [27], which is
defined as the projection of h(x) on ∆. With the explicit definition of GI above, it is actually quite
easy to show that the fixed points of GI are precisely the Nash equilibria; this gives also another
elementary proof of Nash’s theorem.

Lemma 20 The fixed points of the function GI are precisely the Nash equilibria of the game I.

Proof. If x is a fixed point of GI , then xij = max(xij + v(x)ij − ti, 0) for all i, j. Recall that
v(x)ij = ui((i:j);x−i) is the expected payoff for player i of his pure strategy (i:j) with respect to
strategy x for the other players. The equation xij = max(xij + ui((i; j);x−i) − ti, 0) implies that
ui((i:j);x−i) = ti for all i, j such that xij > 0, and ui((i:j);x−i) ≤ ti for all i, j such that xij = 0.
Consequently, x is a Nash equilibrium.

Conversely, suppose that x is a Nash equilibrium, and let ri = ui(x) be the expected payoff
of player i in x. Then v(x)ij = ui((i:j);x−i) = ri for all i, j such that xij > 0, and v(x)ij =
ui((i:j);x−i) ≤ ri for all i, j such that xij = 0. Thus, xij = max(xij + v(x)ij − ri, 0) for all
i, j, and hence fi,x(ri) =

∑
j∈Si

max(hij(x) − ri, 0) =
∑

j∈Si
xij = 1. Therefore, ri = ti, and

GI(x)ij = max(xij + v(x)ij − ti, 0) = xij for all i, j, i.e., GI(x) = x.

We can implement the function GI by a circuit without division.
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Lemma 21 We can construct in polynomial time a circuit with basis {+,−, ∗,max,min} (no di-
vision) and rational constants that computes the function GI .

Proof. The circuit implements the following algorithm. Given a vector x ∈ ∆, first compute
y = h(x) = x + v(x). Clearly y can be computed with +, ∗ gates. For each player i, let yi

be the corresponding subvector of y induced by the strategies of player i. Sort yi in decreasing
order, and let zi be the resulting sorted vector, i.e. the components of zi = (zi1, . . . , zini) are
the same as the components of yi, but they are sorted: zi1 ≥ zi2 ≥ . . . ≥ zini . The circuit
uses a sorting network Ni for each i (see e.g. [37] for background on sorting networks). For
each comparator gate of the network we use a max and a min gate. Then we compute ti as
max{(1/l) ∗ ((

∑l
j=1 zij) − 1)|l = 1, · · · , ni}; we will show below that indeed this expression gives

the correct value of ti. Finally, output x′ij = max(yij − ti, 0) for each i = 1, . . . , d; j ∈ Si.
We show now that ti = max{(1/l) ∗ ((

∑l
j=1 zij) − 1)|l = 1, · · · , ni}. Consider the function

fi,x(t) =
∑

j∈Si
max(zij − t, 0) as t decreases from zi1 where the function is 0, down until the

function reaches the value 1. In the first interval from zi1 to zi2 the function is fi,x(t) = zi1 − t;
in the second interval from zi2 to zi3 it is fi,x(t) = zi1 + zi2 − 2t; and so forth. In general, in the
l-th interval, fi,x(t) =

∑l
j=1(zij − t) =

∑l
j=1 zij − lt. If the function reaches the value 1 in this

interval, then ti = ((
∑l

j=1 zij) − 1)/l. For k < l, we have
∑k

j=1(zij − ti) ≤
∑l

j=1(zij − ti) = 1,
and therefore ((

∑k
j=1 zij) − 1)/k ≤ ti. On the other hand, if l < ni, then ti ≥ zl+1, and thus for

k > l we have
∑k

j=1(zij − ti) = 1 −
∑k

j=l+1(ti − zij) ≤ 1, and thus again ((
∑k

j=1 zij) − 1)/k ≤ ti.
Therefore, ti = max{(1/l) ∗ ((

∑l
j=1 zij)− 1)|l = 1, · · · , ni}.

Theorem 22 The class FIXP stays the same if the circuits are restricted to use only the operations
{+, ∗,max} and rational constants.

Proof. From the completeness of Nash and Lemmas 20 and 21, we do not need division or roots.
Subtraction and min are not needed since we have −1.

5 Piecewise Linear Functions and PPAD

We will define a general class of fixed point problems with piecewise linear, polynomial-time com-
putable functions and show that (i) they have rational fixed points, and (ii) their exact fixed point
computation problem is in PPAD. We will in fact show that the following are all equivalent: (a) this
piecewise linear class of fixed point problems, (b) PPAD, and (c) a (piecewise) linear fragment of
FIXP (which we call Linear-FIXP), having operators {+,max} as well as multiplication by rational
constants only.

Consider a fixed point search problem Π: every instance I is associated with a continuous
function FI on a (convex compact) domain DI . We say that Π is a polynomial piecewise linear
problem if the following hold: The domain DI is a polytope defined by a set of linear inequalities
with rational coefficients that can be computed from I in polynomial time. The domain is divided
by hyperplanes into polyhedral cells, the function FI is linear in each cell and is of course continuous
over the whole domain. The coefficients of the function in each cell and of the dividing hyperplanes
are rationals of size bounded by a polynomial in |I|. These are not given explicitly in the input,
in fact there may be exponentially many dividing hyperplanes and cells. Rather, there is an
underlying (polynomial-depth) arithmetic decision tree TI for deciding if a point x is in the domain
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and determining its cell, using linear comparisons of the form ax ≤ b (a, b poly-size rationals), and
a polynomial-time algorithm for tracing the appropriate path in the tree for a given point x until it
reaches a leaf, where it outputs the appropriate linear function FI(x). Formally, there is an oracle
algorithm that runs in time polynomial in |I| which generates a sequence of queries of the form
ax ≤ b? adaptively (i.e., the next query depends on I and the sequence of previous answers), and
at the end outputs ‘No’ (i.e., x is not in the domain) or outputs a (rational) matrix C and vector
C ′ such that FI(x) = Cx+ C ′.

We give several examples of problems that can be expressed as polynomial piecewise linear fixed
point problems.

Simple Stochastic Games (SSG) [12]. This is a two-player game played on a directed graph
G = (V,E) whose nodes represent the positions of the game and the edges represent the possible
moves. The graph has two sink nodes labeled 0 and 1, and the rest of the nodes are partitioned into
three sets, V0 (random), V1 (max), V2 (min). The edges out of each random node are labelled with
rational probabilities that sum to 1. A token is placed initially at a node s and then moved along
edges until it reaches a sink. If the token is at a node u in V0 then the edge is chosen randomly
according to the probabilities, if u ∈ V1 then it is chosen by Player 1 who tries to maximize the
probability of reaching sink 1, and if u ∈ V2 then the edge is chosen by Player 2 who tries to
minimize the probability of reaching sink 1. For every starting node s, there is a well-defined value
xs of this (zero-sum) game, which is the probability that the token reaches eventually sink 1 if both
players play optimally. The task is to compute the value xs for a specific node s or for all nodes
s. In general, each player may base his decision in each step on the whole previous history, and
may also randomize. However, it is known that there are optimal pure (deterministic) stationary
strategies, i.e., strategies that always select the same successor from each max or min node every
time it is visited. For given deterministic strategies σ1, σ2 for the players, the game G becomes a
Markov chain Gσ1,σ2 and the values can be computed by solving a linear system of equations. Since
the transition probabilities are assumed to be rational (as usual) this implies in particular that the
values of the game are rational of size (bit complexity) m polynomial in the input size |G|. The
search problem of computing the vector x of values of a SSG is in PLS [61]. The decision problem
xs ≥ 1/2? (does Player 1 win with probability at least 1/2) is in NP ∩coNP , and it is a well known
open problem whether it is in P [12].

Let n = |V | and let x be the n-vector of game values for the different starting nodes. The
vector x satisfies a system of equations x = F (x), which are as follows. If u is the 0 sink or the 1
sink then xu = 0 or xu = 1 respectively; if u ∈ V0 then xu =

∑
v puvxv, where the sum ranges over

all edges (u, v) with puv the corresponding probability; if u ∈ V1 then xu = max{xv|(u, v) ∈ E}; if
u ∈ V2 then xu = min{xv|(u, v) ∈ E}. The function F maps the domain D = [0, 1]n to itself. In
general there may be multiple solutions to the system x = F (x) in the unit cube, however as shown
by Condon [12], every game G can be polynomially reduced to a ‘stopping’ game G′, whose system
has a unique solution in the unit cube. A game G is a stopping game if it has the property that
for every pair of deterministic strategies σ1, σ2 for the players, the induced Markov chain Gσ1,σ2

has a path from every node to some sink. For every stopping game, the system x = F (x) has a
unique solution, which is of course the vector of values of the game. A simple stochastic game G
can be transformed to a stopping game G′ by having every non-sink node transition with a suitably
small probability δ to the 0 sink, and the node follows with the remaining probability 1 − δ the
original transitions (technically, for each max or min node, a random node is added that makes this
probabilistic transition). If δ is a sufficiently small rational, of size polynomial in |G| (and the size
m of the values of the game G), then the games G and G′ have the same optimal (deterministic)
strategies, and furthermore the vectors of optimal values of the two games are very close to each
other, much closer than 2−2m. (In Condon’s model [12] the transition probabilities of a game are
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1/2, but it is well-known that her proof works for any rational probabilities.) Hence, by solving
the stopping game G′ we obtain optimal strategies σ1, σ2 for the two players in G, and we can also
obtain the optimal values for G by either solving the linear system of equations for the Markov
chain Gσ1,σ2 , or by rounding the values for G′ to the nearest rationals with denominator at most
2m (as is well-known, this can be done efficiently with the continued fraction method (see, e.g.,
[26])).

Clearly the max and min operations, and hence also F , are piecewise linear functions. In
this example, the dividing hyperplanes are of the form xv = xw, for pairs of nodes v, w that are
successors of the same node in V1 or V2. Thus, in this case there are a polynomial number of
hyperplanes, and an exponential number of cells. Clearly, for a given x, we can ask queries that
compare the relevant components of x, corresponding to successors of the same max or min node
to determine which successor achieves the maximum or minimum, and output F (x).

Linearly interpolated functions. The following discretized model of Brouwer functions F is
used in [50]. The input is an integer N (in binary) and a Turing machine M , which given a “grid”
point x in the unit cube [0, 1]n with coordinates multiples of 1/N returns in polynomial time a
displacement vector µ(x) such that F (x) = x+ µ(x) ∈ [0, 1]n (the displacement is also constrained
to satisfy |µ(x)| ≤ 1/N2 in [50], but this restriction is actually not necessary as we’ll see). The
function then is extended to a piecewise linear map throughout [0, 1]n, by partitioning [0, 1]n into
1/N -cubelets along the grid hyperplanes, partitioning each cubelet into simplexes in a standard
simplicization, and then interpolating the values at the vertices of each simplex. The cells here are
the simplexes.

It is not hard to give an algorithm that determines efficiently for a given x ∈ [0, 1]n the simplex
that contains it, and then evaluate F at the vertices of the simplex and compute the linear form
of the function F (x) by interpolation: For given x ∈ [0, 1]n, the algorithm first does binary search
on the coordinates of x to determine the 1/N -cubelet that contains x, and then does linear tests
to determine the simplex in the standard simplicization of the cubelet. Point x can be written
(uniquely) as a convex combination x =

∑
i λivi of the n + 1 vertices vi of the simplex, and

F (x) =
∑

i λiF (vi). The vector λ is a linear function in x, i.e., it has the form λ = Bx + b,
where B, b can be computed by solving the system x =

∑
i λivi; 1 =

∑
i λi for λ. Run the Turing

machine M on the vertices of the simplex to determine their values F (vi). Let V ′ be the matrix
with columns F (vi). Then we have F (x) = (V ′B)x+ V ′b.
Note: Every Brouwer function F (say on the unit cube [0, 1]n) can be approximated by a linearly
interpolated function G by imposing a suitably fine grid. However, a fixed point of G may not give
a good approximation to any fixed point of F . If F is polynomially continuous then a fixed point
of G (for a suitably small but polynomially encodable grid size) is a weak ε-fixed point of F . But
recall that in general a weak ε-fixed point may be very far from any actual fixed point of F (cf.
3-player Nash).

Nash for 2-player and polymatrix games. Nash’s function is nonlinear even for 2 players.
However, the function of Lemma 20 becomes piecewise linear in the 2-player case. Let I be a 2-
player game, Si the set of strategies of player i, ni = |Si| their number, and ui the payoff function of
player i = 1, 2. A mixed strategy profile vector x = (xij |i = 1, 2; j ∈ Si) is mapped to GI(x) whose
ij-th component is GI(x)ij = max(hij(x) − ti, 0), where hij(x) = xij + ui((i:j);x−i), and ti is the
unique value of t such that

∑
j∈Si

max(hij(x)−ti, 0) = 1. In the 2-player case, every expected payoff
ui((i:j);x−i) of a pure strategy (i:j) is a linear function of x: u1((1:j);x−1) =

∑
k∈S2

u1(j, k)x2,k

and u2((2:j);x−2) =
∑

k∈S1
u2(k, j)x1,k. Thus, each hij(x) is a linear function. Recall the algorithm

for computing ti from Lemma 21: We first sort the vector yi = (hij(x)|j ∈ Si) into a vector zi; this
involves a sequence of comparisons of components of yi, i.e. of linear expressions in x, after which
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we know the sorted order of the components. Then we compute ti = max{(1/l)∗((
∑l

j=1 zij)−1)|l =
1, · · · , ni}, i.e., perform another sequence of comparisons of linear expressions to determine which
l gives the maximum value, which yields a linear expression for ti. We finally compare hij(x)− ti
with 0, and output the maximum of the two for the ij-component of GI(x). Thus, the fixed point
problem for GI , which is the 2-player Nash problem, is a polynomial piecewise linear problem.

The same holds more generally for polymatrix games, which are multiplayer games where the
payoffs are sums of the payoffs of the pairwise interactions, i.e., the payoff function ui of each player
is the sum of d−1 functions vik (where d is the number of players), one for each other player k 6= i,
where the function vik(s) for a pure strategy profile s depends only on the strategies of players
i and k; that is, an instance of a (normal form) polymatrix game is specified by d(d − 1) tables
vik; 1 ≤ i 6= k ≤ d. The functions hij(x) are again linear in these games, and therefore GI(x) is
piecewise linear.

We now analyze the class of polynomial piecewise linear functions.

Lemma 23 The class of functions associated with a polynomial piecewise linear fixed point problem
is polynomially computable and polynomially continuous.

Proof. Let Π be a polynomial piecewise linear fixed point problem, let I be an instance of Π,
and FI the associated function. Given instance I and rational x, we first test if x satisfies the
linear constraints that describe the domain DI , and then we apply the oracle algorithm, evaluating
explicitly the linear expressions that appear in the comparisons, and finally compute the value
FI(x) of the function. Clearly, this takes polynomial time in |I| and size(x). Thus, Π has a
polynomially computable class FΠ of functions.

The polynomial continuity of the class FΠ follows from the fact that FI is linear in each cell
and it is continuous across cells over the whole domain DI . In more detail, let d(n) be an upper
bound on the number of variables for instances I of size n, and p(n) an upper bound on the size of
the coefficients of the function FI in all the cells. Thus, every coefficient is the ratio of two integers
with at most p(n) bits. Within every cell, if two points are within distance δ, in L∞ norm, then
their images under FI are within distance d(n)2p(n)δ of each other. If two points r, s ∈ DI are not
in the same cell, then consider the linear segment connecting r and s, which goes through a number
of cells. Note that by continuity, on the common boundaries of two cells the functions of the two
cells must give the same value. The function FI increases the distance at most by a factor d(n)2p(n)

in each cell, and hence also over the whole segment r − s, i.e. |FI(r) − FI(s)| ≤ |r − s|d(n)2p(n).
Thus, to ensure that |FI(r) − FI(s)| ≤ ε, it suffices to have |r − s| ≤ δ = ε/d(n)2p(n); clearly, the
size of δ is polynomial in the size of ε and n = |I|.

Theorem 24 Polynomial piecewise linear problems have rational fixed points of polynomial size in
the input size, and their exact fixed point computation problem is in PPAD.

Proof. By the previous lemma, polynomial piecewise linear problems have a polynomially
continuous and polynomially computable class of functions and hence the weak approximation
problem is in PPAD by Proposition 2. We will reduce the exact computation problem to the weak
approximation problem. Given an instance of the problem, we pick a suitably small ε, compute
a weak ε-fixed point y, form a LP involving the inequalities on the path traced by the decision
algorithm on y, and from the function at y, and show that the solution to the LP gives us an exact
fixed point. Thus, we can compute an exact fixed point with one application of Scarf’s algorithm
and Linear Programming.

51



In more detail, let Π be a piecewise linear problem. Let d = d(n) be (an upper bound on)
the number of variables for instances I of size n, and p(n) a polynomial that bounds the size of
the rational coefficients of the hyperplanes and the function FI . Let m be an upper bound on
the bit-size of the solution of any linear system with d(n) + 1 equations and coefficients that are
rationals of size p(n); i.e., if such a system has a solution then it has one with every component of
size ≤ m. Then m is bounded by a polynomial q(n).

Given an instance I of size n, pick ε < 1/2m. Suppose that y is a weak ε-approximate fixed
point in the max (L∞) norm, i.e., |FI(y) − y| ≤ ε. Run the decision tree algorithm on y, and let
Ay ≤ b be the set of inequalities formed by the queries and answers; if some inequalities on the
path are strict, we change them to weak inequalities, i.e., Ay ≤ b describes the closure of the cell.
Note that we can assume without loss of generality that all points that satisfy Ax ≤ b are in the
domain DI since the algorithm answers ‘Yes’ for y on the basis of these comparisons (we could have
also constructed the linear constraints for DI and included them explicitly, but it is not necessary).
Let Cy + C ′ be the output linear function; this is the function FI for all points that lie in the cell
of y. Note that because of the continuity of FI over the domain, the value FI(x) of the function on
all the points x in the closure of the cell (including the points on the boundary) must be Cx+C ′;
i.e. FI(x) = Cx+ C ′ for all points x that satisfy the inequalities Ax ≤ b.

Solve the following LP with variables a vector x and a scalar z:
Minimize z
Subject to:
Ax ≤ b
(Cx)i + C ′

i − xi ≤ z for i = 1, . . . , d
xi − (Cx)i − C ′

i ≤ z for i = 1, . . . , d
From the last two sets of inequalities, z ≥ 0, so we don’t have to include it explicitly. The vector

(x, z) = (y, ε) is a feasible solution to the LP. The minimum value is achieved at a vertex (x∗, z∗)
of the feasible set and is at most ε. The optimal vertex is the intersection of d+ 1 constraints, and
therefore it is a rational vector whose entries have size at most m. Since 0 ≤ z∗ ≤ ε < 1/2m at
the optimal vertex, it follows that z∗ = 0. Thus, Cx∗ +C ′ = x∗, and since x∗ satisfies Ax ≤ b, the
point x∗ is in the domain and FI(x∗) = Cx∗ + C ′ = x∗.

Corollary 25 The following problems are in PPAD:
1. Compute the value and optimal strategies of a simple stochastic game.
2. Compute an exact fixed point of a linearly interpolated function.
3. Compute a Nash equilibrium of a polymatrix game.

Membership of simple stochastic games in PPAD was observed in [34], although it should be
mentioned that there is an oversight in the proof there, because it uses a theorem of [50] without
noticing that the theorem does not apply to the actual function, but to a modified function obtained
by linear interpolation at grid points.

We describe an alternative way to show the membership of simple stochastic games in PPAD,
which is also instructive as it shows the relationship between exact computation, strong, and weak
approximation for this problem. Recall that every game G can be transformed to a stopping game
G′ by having the game stop in every step with a suitably small probability δ, so that the values of
the nodes in the game G′ are very close to the values in G, say within distance 1/23m, where m is
the bit-size of the values in G. Let x = F (x) be the fixed point system of equations for the non-sink
nodes of the original game G, obtained by substituting 0 and 1 respectively for the variable of the
0 sink and the 1 sink. Then the system for G′ is x = F ′(x) where F ′ = (1−δ)F . The function F ′ is
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a contraction mapping with respect to norm L∞ with contraction factor 1− δ (which is the reason
that it has a unique fixed point). Since size(δ) is polynomial in |G| (and |G′|), and F ′ is obviously
polynomially computable, we know from Proposition 2 that the strong approximation problem for
G′ is in PPAD. Let y be a strong ε-approximate fixed point of F ′, where ε = 1/23m. Then y is
within 1/23m of the vector of values of G′, and hence within 1/23m−1 of the vector of values of G.
Since the values of G are rationals with denominator at most 2m, we can readily obtain the values
of G from y by the continued fraction method. Also, the optimal strategies according to y, where
each player picks for every node the successor with the best (maximum or minimum) y value, is
also an optimal strategy in G.

We remark that although the exact computation of the values of a simple stochastic game G
reduces to (strong) approximation of the values for sufficiently small ε, which in turn reduces to
weak approximation for the associated function FG for a suitable error δ (of size polynomial in
size(ε)), this holds only for exponentially small errors. For error ε that is constant or polynomially
small (i.e., ε = 1/|G|c for some constant c) it is not at all clear that such a reduction holds. In fact
we can easily compute a weak ε-approximation for ε constant or 1/|G|c as follows. The function
FG is a monotone mapping from the unit cube [0, 1]n to itself: if x ≥ x′ then FG(x) ≥ FG(x′). If G
has multiple fixed points (e.g., if it is not a stopping game), then it has a Least Fixed Point (LFP)
in [0, 1]n, i.e., a fixed point that is at least as small in all coordinates as all the other fixed points,
and this LFP is precisely the vector of values of the game. Starting with the all-0 vector, apply
FG repeatedly; the resulting sequence of vectors 0, FG(0), F 2

G(0), . . . , F k
G(0), . . . is non-decreasing in

all coordinates and its limit as k → ∞ is the least fixed point of FG. Now, if we stop the process
when the vector does not increase by more than ε in any coordinate from one iteration k to the
next, then the obtained vector F k

G(0) is a weak ε-approximate fixed point of FG. Since the sequence
starts with the 0 vector and all coordinates are bounded from above by 1, this will happen after
k ≤ n/ε iterations, thus, a polynomial number of iterations if ε ≥ 1/|G|c. Thus, we can obtain a
weak ε-approximate fixed point for ε = 1/|G|c in polynomial time. However, the computed weak
approximate fixed point does not help us to estimate the actual values of the game, which is what
we are actually interested in. Indeed, it is an open problem whether the values of a simple stochastic
game can be approximated with any constant error, for example 1/2, in polynomial time; this was
raised by Condon in her original paper [12].

Returning to the general class of piecewise linear fixed point problems, a consequence of Theo-
rem 24 and the fact that linear interpolated functions, or that 2-player Nash, belong to this class
(both of which are complete for PPAD [50, 10]), is that this class is equivalent to PPAD. The same
can be shown for the (piecewise) ‘linear’ part of FIXP: Let Linear-FIXP be the class of problems
that can be expressed as (polynomially reduced to) exact fixed point computation problems for
functions given by algebraic circuits using {+,−,max,min} (equivalently, {+,max}) and multipli-
cation with rational constants only; no roots, division, or multiplications of two gates/inputs are
allowed.

Theorem 26 Linear-FIXP=PPAD.

Proof. For the Linear-FIXP ⊆ PPAD direction, it is not hard to show that a circuit as above that
does not use multiplication (and division) except by a constant, computes a polynomial piecewise
linear function. Let I be an instance, and CI the Linear-FIXP circuit for I. The following oracle
algorithm takes a vector x, asks linear comparison queries, and outputs the linear expression for
CI(x). First construct the linear inequality system that describes DI and check that x is in DI .
If it is not, return ’No’, so assume that x ∈ DI . Process the circuit bottom-up and compute a
linear expression for each gate. For a +,− gate or a gate that multiplies its input by a rational
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constant, an expression can be constructed readily from the expressions of the gate’s inputs. For a
max or min gate, ask a query that compares the linear expressions for the inputs, and accordingly
propagate one of the two input expressions. Output the expressions for the output gates of CI .
Thus, the exact fixed point problem for a problem in Linear-FIXP is in PPAD by Theorem 24.

For the other direction, PPAD ⊆ Linear-FIXP, by [10] it suffices to show that 2-player Nash
is in Linear-FIXP. Consider the function GI for a 2-player game I, and the circuit CI constructed
for it in Lemma 21. In the 2-player case, hij(x) = xij + ui((i:j);x−i) is a linear function of x for
all i = 1, 2; j ∈ Si, as we mentioned earlier in this section when we explained that GI is piecewise
linear. The rest of the circuit uses only max,min,+,− and multiplication by rational constants
1/l. Thus, 2-player Nash is in Linear-FIXP.

6 Shapley Stochastic Games

Stochastic games were first introduced by Shapley in his seminal paper [56] in a more general
form where the players take actions simultaneously instead of one at a time (as they do in simple
stochastic games). In Shapley’s game there is a (finite) directed graph G = (V,E), each node
(state) u has an associated one-shot zero-sum finite game with a reward (payoff) matrix Au for
player 1 from player 2. If the play is in state u and the players choose actions (pure strategies) i, j
then Player 1 receives reward Au[i, j] from Player 2, the game stops with probability qu

ij > 0, and it
transitions to state v with probability puv

ij , where qu
ij +

∑
v p

uv
ij = 1. Since there is at least a positive

probability q = min{qu
ij |u, i, j} > 0 of stopping in each step, the game stops almost surely in a

finite number of steps. (Another standard equivalent formulation is as a discounted game, where
the game does not stop but future rewards are discounted by a factor 1 − q per step). The goal
of Player 1 is to maximize (and of Player 2 to minimize) the total expected reward. Both players
have optimal stationary strategies, i.e., strategies that depend on the current node but not on the
history, but the optimal strategies are mixed (randomized) in this case; this is true of course even
for one-shot zero-sum games, i.e., the special case when there is only one node and the game stops
after the first step. A stationary mixed strategy σi for player i is an assignment of a probability
distribution at each node to the set of actions of player i at that node. Let ru(σ1, σ2) denote the
expected reward of player 1 under the (mixed) strategies σ1, σ2 if the game is started at node u.
Then the min-max relation supσ1

infσ2 ru(σ1, σ2) = infσ2 supσ1
ru(σ1, σ2) holds, where σ1, σ2 range

over all mixed strategies of the two players; this quantity is the value of the game (started at u).
An instance of a Shapley stochastic game consists of the graph G = (V,E), the reward matrices

Au, u ∈ V , the transition and stopping probabilities. As usual we assume that all rewards and
probabilities in the input are rationals. Let x = (xu|u ∈ V ) be the vector of game values for the
different starting states u. We would like to compute the vector x of game values, and optimal
strategies for the players. Unlike simple stochastic games, the values and optimal strategy prob-
abilities in general may be irrational now, so we may not be able to compute them exactly. We
would like to bound them, e.g., answer decision questions, such as, is the value xu ≥ 1/2?, and/or
approximate the values.

The vector x of values satisfies a fixed point equation as follows. For each node u, let Bu(x) be
the matrix, whose rows and columns correspond to the actions of the players, and whose i, j entry
is Au[i, j] +

∑
v p

uv
ij xv. Let V al(Bu(x)) be the value of the one-shot zero-sum game represented by

the reward matrix Bu(x). The optimal value vector of the stochastic game satisfies the system of
equations x = F (x) where Fu(x) = V al(Bu(x)), u ∈ V . Furthermore, there is a unique solution,
because F is a Banach function (a contraction map) under the L∞ norm with contraction factor
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1 − q. Note that F is a nonlinear function. For the domain we can pick a box [−M,M ]n with M
large enough (M = max{|Au[i, j]||u, i, j}/q suffices).

Theorem 27 The following hold for computing the game value in Shapley’s games.
1. Computing the game value is in FIXP; hence Shapley reduces to (3-player) Nash.
2. The (strong) approximation problem is in PPAD.
3. The decision and partial computation problems are at least as hard as SQRT-SUM.

Proof. 1. We cannot directly build an algebraic circuit for V al because we do not even know
if LP can be solved in a number of algebraic operations that is polynomial in the dimension of
the problem. Instead we introduce a vector y of additional variables for the probabilities of all the
actions (pure strategies) of both players at all the nodes. The domain for y is a cartesian product
of unit simplexes, one for each node and each player. Thus, the domain of x, y can be readily
described by a set of linear equations and inequalities.

We have the following equations. For each node u, let yu be the subvector consisting of both
players’ actions at node u. We have the (vector) equation yu = φu(yu, x), where φu is the Nash
function (or the function G of Lemma 20) applied to the actions at u and the reward matrix Bu(x),
and the equation xu = (y1

u)T ·Bu(x) · y2
u, where y1

u, y
2
u are the subvectors of yu corresponding to the

strategies of players 1 and 2. Clearly these are algebraic formulas and we can easily build a circuit
for them. Obviously, the optimal strategies for the players and the optimal rewards satisfy these
equations. On the other hand, consider a fixed point x, y. Since yu is a fixed point of Nash’s function
for Bu(x), it defines optimal mixed strategies with respect to Bu(x) and thus xu = V al(Bu(x)).
Hence x is the vector of values of the game.

2. The mapping F is a polynomially contracting function, since the distance from 1 of the
contraction factor is q, which has polynomial size. It is also polynomial-time computable: for any
rational x, we can compute the payoff matrix Bu(x) for each node u, and then compute the value
V al(Bu(x)) of the corresponding one-shot zero-sum game by Linear Programming. Therefore, by
Proposition 2, strong approximation reduces to weak approximation, and is in PPAD.

3. This is shown by a modification of a construction in [20] that reduces the SQRT-SUM
problem to the decision problem for concurrent stochastic games with a reachability objective. We
are given a set of positive integers a1, . . . , an and another integer k, and would like to determine
whether

∑n
i=1

√
ai ≥ k. We can clearly assume that ai > 1 for all i. Construct a graph G for the

stochastic game that contains a start node s, it has n other nodes u1, . . . , un, and a target node t.
The one-shot games for the various nodes are as follows. At each node ui, each player has

two actions 1,2. The reward is 0 for all combinations of actions. The transition and stopping
probabilities are defined as follows. Compute a rational number mi that approximates

√
ai from

above within 1/2ai, i.e., 0 ≤ mi−
√
ai ≤ 1/(2ai). We can clearly compute efficiently such a rational

approximation with standard methods. Let ci,2 = (m2
i − ai)/4, gi = mi − 1− ci,2, and ci,1 = gici,3,

where 0 < ci,3 < 1 is a small-sized rational value such that ci,3 < 1/2gi. If players 1 and 2 choose
different actions at node ui then the game stops with probability 1. If both players choose action
1, then the game moves with probability ci,1 to t, stays with probability ci,2 at node ui, and stops
with the remaining probability 1− ci,1− ci,2. If both players choose action 2, then the game moves
with probability ci,3 to t and stops with the remaining probability 1 − ci,3. It is easy to see that
these are all legitimate probabilities. The reward at ui is 0 in all cases.

At the start node s, the players have only one action (i.e., effectively they have no choice). At
node s the game stops with probability 1/2, and transitions to node ui with probability E/ei for
each i = 1, . . . , n, where ei = ci,3/2ci,2 and E = 1/2(

∑n
i=1

1
ei

). The reward at node s is 0. At the
target node t, the players have also only one action. The reward is 1, and the game stops with
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probability 1. This concludes the specification of the game Γ. Since there is nonzero probability of
stopping at every node and for every combination of player actions, Γ is a Shapley game.

Note that a reward (of 1 unit) is only obtained at node t, and the game stops after that. There-
fore, optimizing (maximizing or minimizing) the reward is equivalent to optimizing the probability
of reaching the target node t. The analysis follows closely the analysis of [20]. The value of the game
at t is clearly 1. Let xi be the value of the game at node ui. Then xi = V al(Bi), where the 2× 2
matrix Bi for the one-shot zero-sum matrix game at ui has Bi[1, 1] = ci,1 + ci,2xi, Bi[2, 2] = ci,3,
and Bi[1, 2] = Bi[2, 1] = 0. Note that Bi[1, 1] > 0 and Bi[2, 2] > 0. If the optimal strategy of
player 1 at ui is to play 1 with probability pi and 2 with probability 1 − pi, then by basic facts
about zero-sum matrix games we must have 0 < pi < 1 and xi = pi(ci,1 + ci,2xi) = (1− pi)ci,3. So
pi = ci,3/(ci,1+ci,2xi+ci,3), and substituting this expression for pi in the equality xi = pi(ci,1+ci,2xi),
we have: ci,2x2

i +(gici,3+ci,3−ci,2ci,3)xi−gi(ci,3)2 = 0. Solving for xi, and keeping only the positive
root (since xi is a probability), we can derive after some calculations that xi = di + ei

√
ai, where

di = −(gici,3 + ci,3 − ci,2ci,3)/2ci,2 and ei = ci,3/2ci,2 as defined above.
The value at node s is xs =

∑n
i=1(E/ei)xi = D + E

∑n
i=1

√
ai, where D = E

∑n
i=1 di/ei. Note

that D and E are rational numbers that we can easily compute from the input, and E > 0. Let
r = D + Ek. Then

∑n
i=1

√
ai ≥ k iff the value xs of the game starting at s is at least r. For the

partial computation problem, just add reward −(D+Ek) at the start node s. Then
∑n

i=1

√
ai ≥ k

iff xs ≥ 0.

Given part (3), the decision problem for Shapley’s game, i.e., “is the value ≥ r for given rational
r?”, is not likely to be placed easily in PPAD (or NP).

7 Branching Processes, SCFGs, and 1-RMCs

Branching Processes, Stochastic Context-Free Grammars, and 1-exit Recursive Markov Chains, are
three closely related probabilistic models. We will show in this section that the computation of the
basic quantities of interest for these models is in FIXP.

A (Multitype) Branching Process (MT-BP) [39, 29] G = (V,R) consists of a (finite) set V =
{S1, . . . , Sk} of types, and a (finite) set R of rules Si

p→ α, where Si ∈ V , p ∈ (0, 1], and α is a
(finite) multi-set whose elements are in V , and such that for every type Si,

∑
〈pj |(Si

pj→αj)∈R〉
pj = 1.

The rule Si
p→ α specifies the probability with which an entity of type i generates the multiset α

of offspring in the next generation. The MT-BP specifies a stochastic reproduction process, which
starting with an initial finite set of entities of given types (we usually start with one entity of some
type Sj), proceeds in discrete steps from one generation to the next, as follows. For each entity
in the current set, independently and simultaneously, a rule is chosen at random (according to the
rules’ probabilities), whose left hand side is the type of the entity, and the entity is replaced with a
new set of entities whose types are specified by the right hand side of the rule, to produce the next
generation. The process continues as long as the current set of entities is not empty and terminates
if and when it becomes empty. The basic quantities of interest are the extinction probabilities: the
extinction probability p(Sj) of type Sj is the probability that, starting with one entity of type Sj ,
the process will terminate (die out). Clearly, given these probabilities for all types, it is easy to
compute the probability of extinction for any initial set of entities, by multiplying the extinction
probabilities of the entities in the initial set. The multisets on the right-hand sides of the rules
could either be given explicitly by listing all member types as many times as they occur in the
multiset, or more succinctly, by specifying the multiplicities of the types in binary notation. As

56



shown in [19], the computation of the extinction probabilities in the succinct version reduces to the
explicit listing version (by introducing additional types).

A Stochastic Context-Free Grammar (SCFG) is a tuple G = (T, V,R, S1), where T is a set
of terminal symbols, V = {S1, . . . , Sk} is a set of variables (or non-terminals), and R is a set of
rules Si

p→ α, where Si ∈ V , p ∈ (0, 1], and α ∈ (V ∪ T )∗, such that for every non-terminal Si,∑
〈pj |(Si

pj→αj)∈R〉
pj = 1. S1 is specified as the starting nonterminal. A SCFG G generates a language

L(G) ⊆ T ∗ and associates a probability p(τ) to every terminal string τ in the language, according
to the following stochastic process. Start with the starting nonterminal S1, pick a rule with left
hand side S1 at random (according to the probabilities of the rules) and replace S1 with the string
on the right-hand side of the rule. In general, in each step we have a string σ ∈ (V ∪ T )∗; take the
leftmost nonterminal Si in the string σ (if there is any), pick a random rule with left-hand side Si

(according to the probabilities of the rules) and replace this occurrence of Si in σ by the right-hand
side of the rule to obtain a new string σ′. The process stops only when (and if) the current string
σ has only terminals. The probability p(τ) of a terminal string is the probability that the process
terminates with the string τ . In the above definition we used leftmost derivation for concreteness,
but rightmost or any other derivation rule yields the same probabilities p(τ) for the terminal strings
of the language. The probability of the language L(G) of the SCFG G is p(L(G)) =

∑
τ∈L(G) p(τ).

Note that p(L(G)) is the probability that the stochastic process that we described above, starting
with S1 terminates. More generally, we can define for each nonterminal Sj ∈ V an associated
probability p(Sj), which is the probability that the process starting with Sj terminates.

A Recursive Markov Chain (RMC) consists of a collection {A1, . . . , Ak} of component Markov
chains that can call each other in a potentially recursive manner like recursive procedures. Each
component chain Ai has a set Ni of nodes, a set Bi of boxes (these correspond to recursive calls),
and a set Ei of edges (transitions). A subset Eni ⊆ Ni of nodes is specified as the set of entries of
Ai and another disjoint subset Exi ⊆ Ni is specified as the set of exits; the entries have no incoming
edges and represent nodes where execution of Ai can start, and exits have no outgoing edges and
represent nodes where execution of Ai terminates. Every box b ∈ Bi is associated with a component
AY (b) via a labelling function Y that maps each box to the index of a component that is called
recursively when there is a transition to the box b. Each transition (u, v) ∈ Ei goes from a vertex u
that is either a (non-exit) node of Ni or a pair (b, ex) where b ∈ Bi is a box and ex is an exit of the
associated component AY (b), to a vertex v that is either a (non-entry) node of Ni or a pair (b, en)
where b ∈ Bi is a box and en is an entry of the associated component AY (b). The term vertex is
used to refer collectively to the nodes and the entries (b, en) and exits (b, ex) of the boxes. Every
transition (u, v) has an associated (rational) probability puv. Note that exits of components and
entries of boxes do not have any outgoing transitions; every other vertex has outgoing transitions
and their probabilities must sum to 1. An 1-exit Recursive Markov chain (1-RMC) is an RMC in
which every component has only 1 exit.

An RMC, started at a given initial vertex, represents a stochastic process, an infinite state
Markov chain, where the state contains both the current vertex and the stack of pending recursive
calls (i.e., a sequence of boxes). At each step a transition is chosen out of the current vertex ac-
cording to the transition probabilities; if the transition leads to the entry (b, en) of a box, then the
current component is suspended, the box b is added to the stack and a call to the corresponding
component AY (b) is initiated at its entry en. If the transition leads to an exit ex of the current
component then the current call terminates; if the stack is empty then the whole execution termi-
nates, otherwise the top box b is retrieved from the stack and the calling component resumes from
the exit (b, ex) of the box b. We refer to [19] for more detailed descriptions and thorough treatment
of the theory of RMCs. The key quantity of interest in the analysis of RMCs is the probability of
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termination: for a given vertex u (of some component), what is the probability qu that the RMC
started at vertex u (with empty stack) will eventually terminate?

It was shown in [19] that MT-BPs, SCFGs, and 1-RMCs are computationally equivalent, in the
sense that there are pairwise (polynomial) reductions between the computation of the extinction
probabilities of MT-BPs, the probability of the language of SCFGs, and probability of termination of
1-RMCs. These probabilities are all in general irrational. The “qualitative” problem of determining
whether the probabilities are 0,1, or in-between can be solved in polynomial time; i.e., for example
we can determine in P-time whether the language of a SCFG has probability 1. On the other hand,
the “quantitative” decision problem of determining whether a specified termination probability is
at least a given rational r is SQRT-SUM and PosSLP-hard. We show in this section that the
computation of these probabilities is in FIXP.

We will use 1-RMCs in our analysis below for concreteness. Let {A1, . . . , Ak} be a 1-RMC.
Let Q,N,E,B be respectively the set of vertices, nodes, edges, and boxes of (all the components
of) the RMC A. Let q = (qu|u ∈ Q) be the vector of termination probabilities of all the vertices,
let x = (xu|u ∈ Q) be a corresponding vector of variables, and let n = |Q|. The termination
probabilities satisfy a system of fixed point equations x = P (x), where P : Rn

≥0 7→ Rn
≥0, and each

coordinate function Pu(x) is given by a polynomial with positive rational coefficients. Specifically,
there are three types of equations (polynomials), depending on the type of vertex u. If u is an exit
then Pu(x) = 1. If u is a non-entry node or a box-exit then Pu(x) =

∑
puvxv where the summation

ranges over all transitions (u, v) out of u. If u is a box-entry, i.e., u = (b, en) for some box b, and
the exit of the box is v = (b, ex), then Pu(x) = xenxv. The mapping P is a nonlinear, monotone
operator, and has a Least Fixed Point (LFP): a point x∗ ∈ [0, 1]n such that x∗ = P (x∗) and x∗ ≤ x′

for all other fixed points x′ ∈ Rn
≥0. The LFP is precisely the vector q of termination probabilities

[19].
The function P can clearly be implemented by an algebraic circuit (in fact, simple formulas),

and it maps the unit cube to itself. The problem is that in general there are multiple fixed points
in the unit cube, and to place the problem in FIXP we have to ‘eliminate’ them, by modifying the
domain and the function in such a way that the desired LFP is left as the unique fixed point in the
domain.

Theorem 28 Computing the termination probabilities for 1-RMCs, MT-BPs, and SCFGs, is in
FIXP. Thus the decision/approximation problem reduces to decision/approximation for (3 player)
Nash equilibria.

Proof. We will prove that the domain and the polynomial map P (x) for 1-RMCs (equivalently,
MT-BPs, SCFGs) can be transformed using min-max algebraic operations in such way that x =
P (x) has a unique solution which is the LFP, x∗. The result follows immediately.

Given a 1-RMC A, we construct the system x = P (x) associated with it. We first find and
eliminate the nodes with termination probability 0 or 1, i.e., those entries i such that x∗i = 0 and
x∗i = 1. This can be done in P-time ([19]), yielding a reduced system x = F (x) on the remaining
variables. From the theory of branching processes and 1-RMCs [29, 19], we know that the reduced
system (i) has a unique fixed point in the semi-open unit cube B[0, 1) = {x ∈ Rn|0 ≤ x < 1},
which is the LFP x∗, and (ii) for any point x ∈ B[0, 1), the sequence F k(x), k = 1, 2, . . . converges
to x∗. The problem is that Brouwer’s theorem and the definition of FIXP require the domain to
be a closed (convex) set and B[0, 1) is not closed. We will modify the function so that the domain
becomes the closed cube, while avoiding the boundary fixed points.

We need the following crucial lemma:
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Lemma 29 The LFP, x∗, for the reduced n-dimensional system x = F (x) for a 1-RMC (without
0 and 1 nodes) has the property that for all i, x∗i ≤ (1 − ε), where ε = 1/2n2|A|

c
for a constant c,

where |A| denotes the encoding size of the 1-RMC.

Proof. The proof requires concepts and results from [19]. Construct the dependency graph G of
x = F (x): the graph has one node for each variable, and has an edge from xi to xj if xj appears
in Fi(x). We will argue that every bottom strongly connected component (SCC) of G contains a
variable xj such that its value in the LFP x∗ is x∗j ≤ 1− 1/2poly(|A|), and then we will use this fact
to show that this holds for all variables.

Consider any bottom SCC C in the dependency graph G. We can confine x = F (x) to C to
get a subsystem xC = R(xC), where xC is the subvector of x consisting of the variables in C. Let
B(xC) denote the Jacobian matrix (matrix of partial derivatives) of R(xC), and let B(1) be the
matrix evaluated at the all 1 vector (i.e., B(1) is the so-called moment matrix of R(xC)). Let
r = ρ(B(1)) be the spectral radius of B(1). By a result in [19], the fact that the value in the LFP
of the variables of C is strictly less than 1 implies that r = ρ(B(1)) > 1. Moreover, there is a
nonzero vector u ≥ 0 such that B(1)u = ru (u is an eigenvector associated with the eigenvalue r).

Let I ′ be the set of indices i such that ui > 0, and let B′(1) be the corresponding square
submatrix of B(1) indexed by rows and columns in I ′. Since r > 1, we can argue (as in Lemma
31 of [19]), that there is a rational vector y′ ≥ 0 indexed by I ′ such that B′(1)y′ ≥ y′ + 1, and all
entries of y′ have size m = poly(|A|), polynomial in the size of A. To see this, note that if we scale
u so that its smallest nonzero entry is at least 1/(r − 1), then its subvector on I ′, u[I ′], satisfies
B′(1)u[I ′] = ru[I ′] ≥ u[I ′] + 1; thus, the LP B′(1)y′ ≥ y′ + 1; y′ ≥ 0 has a solution, and therefore it
has a (nonnegative) rational solution y′ 6= 0 all of whose coordinates are of size m polynomial in n
and the size of the entries of B′(1). The entries of B′(1) are 0,1, and transition probabilities of the
RMC A. Therefore m is polynomial in |A|. Thus, every nonzero coordinate of y′ is between 1/2m

and 2m, where m = poly(|A|).
Let z be a vector, indexed by the variables in C, that is 1− 1/2n2m in all coordinates, and let

B(z) be the Jacobian B(xC) evaluated at z. The matrix B(z) is the same as B(1) except that some
entries decreased by ≤ 1/2n2m. Let y be the vector indexed by the variables in C, with yi = y′i for
i ∈ I ′ and yi = 0 for i 6∈ I ′. Consider B(z)y. For an index i 6∈ I ′, we know that (B(1)u)i = rui = 0,
hence Bij(1) = 0 for all j ∈ I ′, and since B(z) ≤ B(1), the same holds for B(z). Therefore,
(B(z)y)i = 0 for all i 6∈ I ′. For i ∈ I ′, we have (B(z)y)i ≥ (B(1)y)i − 1/2 because every entry of
B(z) differs from the corresponding entry of B(1) by at most 1/2n2m, there are n entries in each
row, and all coordinates of y are at most 2m. Thus, (B(z)y)i ≥ yi + 1/2 ≥ ayi for all i ∈ I ′, where
a = 1 + 1/2m+1. Therefore, B(z)y ≥ ay, which implies that the spectral radius of B(z) satisfies
ρ(B(z)) ≥ a > 1 (by applying basic facts from Perron-Frobenius theory, e.g., Theorem 8.3.2 in
[32]).

We show now that C contains a variable xj such that x∗j < zj = 1 − 1/(2n2m). As shown in
[19], the spectral radius of the Jacobian evaluated at the LFP, B(x∗C), satisfies ρ(B(x∗C)) ≤ 1. Since
ρ(B(x)) is a monotonic function of x, and ρ(B(z)) > 1, it must be the case that zj > x∗j for some
coordinate j. Therefore, x∗j < 1− 1/(2n2m).

Thus, every bottom SCC contains a variable xj such that x∗j < 1− 1/(2n2m). Every node xi of
the dependency graph G can reach some bottom SCC, hence every node xi has a path, of length
at most n, to some variable xj with x∗j < 1− 1/(2n2m). If p is the smallest transition probability
of the 1-RMC, then the path from xi to xj implies that x∗i ≤ 1− pn(1/(2n2m)) = 1− (pn/(2n2m)).
Let ε in the statement of the lemma be ε = (pn/(2n2m)). Then x∗i ≤ 1− ε for all i.

Now, define a function F ′ : [0, 1]n 7→ [0, 1]n as follows: F ′(x) = F (min(x, 1 − ε)). That
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is, trim if necessary every component xi of x to 1 − ε, i.e., set yi = min(xi, 1 − ε), and then
output F (y). Clearly F ′ is also continuous and monotone, and the original LFP x∗ of F is also
a fixed point of F ′. We claim there are no other fixed points. Suppose z is another fixed point,
F ′(z) = z, and let z′ = min(z, 1 − ε). Now z′ ≤ z = F (z′), by definition of F ′(z). Thus we have
z′ ≤ F k(z′) ≤ limk→∞ F k(z′), by monotonicity of F (x). But we know that for every vector z′,
0 ≤ z′ < 1, limk→∞ F k(z′) converges to the LFP, x∗ (this follows from, e.g., Theorem 7.2 in [29])
so z = x∗. Thus F ′ : [0, 1]n 7→ [0, 1]n is a FIXP function with a unique fixed point which is the
LFP, x∗.

The decision problem for 1-exit RMCs, equivalently MT-BPs and SCFGs, (is the termination
probability ≥ r? for a given rational r) is SQRT-SUM- and PosSLP-hard [19]. We do not know
if this holds for the approximation problem. RMCs with multiple exits are more powerful that
1-exit RMCs, and appear to be computationally harder to analyze in some respects. Intuitively,
the difference in modeling power is that in a multi-exit RMC, when a recursive call terminates it
can pass back a finite amount of information to the calling procedure, whereas in a 1-exit RMC
it does not pass back any information, besides the fact that it terminated. It is known that the
qualitative problem for multi-exit RMCs, e.g., determining whether it terminates with probability
1, is SQRT-SUM and PosSLP-hard, and hence seems less likely to be (or at least much harder to
show) in P. Furthermore, the problem of approximating the termination probabilities within any
constant < 1 is also SQRT-SUM- and PosSLP-hard; this was stated in the conference version of
the present paper [21], and the proof is given in the full version of [19]. We remark that the weak
ε-approximation problem for these models (including multi-exit RMCs) can be solved in polynomial
time for any ε > 0 that is constant or even an inverse polynomial (1/nc for some c), in the same
way as we described for simple stochastic games, i.e., by computing F k(0) for k = 1, 2, . . . until a
weak ε-fixed point is reached. However, such a point does not provide any useful estimation of the
termination probabilities.

8 Conclusions

We have studied the complexity of the Nash equilibrium problem for games (with any number of
players) and, more generally, fixed point computational problems. We have shown that any nontriv-
ial approximation of (actual) Nash equilibria is at least as hard as longstanding open problems, e.g.,
the square root sum problem, and a circuit decision problem (PosSLP) that characterizes the power
of polynomial time in the unit-cost exact rational arithmetic RAM model with arbitrary precision.
These problems are not known to be in NP, nor even in the polynomial-time hierarchy (the best
upper bound for them is the Counting Hierarchy). We especially view the reduction from PosSLP
as a strong indication that the (approximate) computation of actual Nash equilibria is not in P,
nor even in NP (and thus not in PPAD either). We showed similar results for market equilibria:
given an exchange economy with a unique equilibrium, it is SQRT-SUM-hard and PosSLP-hard to
predict with any nontrivial accuracy the prices of the commodities in the equilibrium.

We defined a class, FIXP, that captures search problems that can be formulated as fixed point
problems for algebraically defined Brouwer functions with basis {+,−, ∗, /,max,min}. We showed
that the 3-player Nash equilibrium problem is FIXP-complete. In other words, Nash equilibria for 3
(or more) players encapsulate fixed points of all algebraic functions. We showed that the piecewise
linear fragment of FIXP corresponds to fixed points for (polynomial) piecewise linear functions and
coincides with PPAD. We also showed that the class FIXP is quite robust in several respects: with
respect to the set of algebraic operators allowed, the domain of the Brouwer functions, and whether
algebraic circuits or formulas are used to define the class.
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We discussed several important probabilistic and game theoretic models, for which the basic
computational problems can be formulated in a fixed point framework: simple stochastic games
(SSGs), Shapley’s original stochastic games, branching processes, stochastic context-free grammars,
and 1-recursive Markov chains. The first one (SSGs) has a piecewise linear fixed point function,
while all the rest have nonlinear functions and irrational solutions in general. In these problems
we want to compute a specific fixed point of a (simple algebraic) function associated with a given
instance. In these types of problems, where we seek a specific solution, the domain (and/or the
function) have to be defined so that the desired solution is the unique fixed point in the domain.
The fact that these (open) problems are in FIXP means that 3-player Nash is at least as hard as
them. In the case of SSGs the problem is in PPAD (and thus reduces to 2-player Nash), and the
same holds for approximation of the value of Shapley’s game, but not for the decision problem,
which we showed is square-root-sum-hard.

There are a number of open problems raised by this work. Besides the concrete problems we
have discussed, whose complexity status is not known, it would be interesting and important to gain
a better understanding of the relationship between FIXP (and the associated discrete problems)
and other complexity classes. First, regarding the relationship with PPAD, we know clearly PPAD
⊆ FIXP. Is the containment strict? The class FIXP represents fixed point problems of general (non-
linear) algebraic functions, while PPAD represents piecewise linear functions, with 3-player Nash
and 2-player Nash being respectively the prototypical complete problems for the classes. In terms
of approximation, FIXP represents strong approximation (i.e., approximate computation of an ac-
tual fixed point) and PPAD represents weak approximation (getting a point that is almost fixed).
The intuition is that the former tasks are strictly harder, so we conjecture that the containment is
strict.

A related set of questions regarding FIXP is to characterize what minimal sets of algebraic
operators suffice to capture it, and also what operators we can add without increasing its power.
We have shown that algebraic circuits with the operators {+, ∗,max} suffice to capture FIXP. On
the other hand, adding all the operators {+,−, ∗, /,max,min, k

√ } does not change the power of
FIXP. What other operators can we add without increasing the power of FIXP? What if instead
we restrict the set of operators to only {+, ∗}, i.e., to standard algebraic circuits that only define
polynomial functions? Is the {+, ∗} class strictly weaker than FIXP? On the other hand, does the
{+, ∗} class contain Linear-FIXP = PPAD (i.e., {+,max} and mulitiplication by rational constants
only)? Note that the {+, ∗} class is of interest because such functions are differentiable (as opposed
to only piecewise-differentiable in the case of {+, ∗,max}, and only piecewise-linear in the case of
{+,max}). Thus, e.g., standard root finding methods for differentiable functions, like Newton’s
method, are more directly applicable to the {+, ∗} class.

The discrete computational problems associated with FIXP are somewhere between P and
PSPACE. Can the upper bound be improved? We cannot expect dramatic improvement (say to
NP) without also improving the status of the square-root sum and PosSLP problems, but, still,
short of that, can we place the discrete FIXP problems say in the Counting Hierarchy (which would
mean that probably they are not PSPACE-complete)?

On the lower bound side, could the problems be NP-hard? Would this contradict some accepted
conjecture on classical complexity classes? We now give some evidence that an NP-hardness result
would also have some interesting consequences, in particular on the relationship between standard
Turing machine classes and the real-model classes (and may not be easy to show). It is well known
that if any (discrete) total NP search problem were NP-hard, this would imply that NP=co-NP
[33, 47]. The discrete versions of FIXP problems however are not known to be (and quite possibly
are not) in NP, as we indicated above. The exact computation problems are of course real-valued
search problems and hence, strictly speaking, their complexity can be studied only in a real model
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of computation. As such, the exact computation problems of FIXP are total real-valued search
problems whose complexity lies somewhere between the Blum-Shub-Smale classes PR and (total
search) NPR, restricted to rational inputs and constants [5],3 in a way similar to how PPAD lies
between P and (total search) NP. The class of discrete problems solvable in PR (with rational
inputs and constants) corresponds to P-time in the unit cost rational arithmetic model; it clearly
contains P and, as mentioned, it is not known whether this containment is strict. Similarly, we do
not know whether the class of discrete problems in NPR strictly contains NP. Indeed, equality does
not seem to violate any standard complexity assumptions (but of course such an equality would
have major consequences, for example it would immediately place the square-root-sum and PosSLP
problems in NP). A complete problem for the former class (discrete NPR) is the decision problem
for the existential theory of reals (ETR): decide whether there exists a real vector of values x which
satisfies a given boolean combination of multi-variate polynomial inequalities of the form P (x) ≥ 0,
where the polynomials P (x) have rational coefficients [5]. This problem is clearly NP-hard, e.g.,
because one can trivially encode 0-1 integer linear programming in ETR by adding the equalities
xi = x2

i to ensure every variable xi is either 0 or 1. On the other hand, ETR is not known to
be coNP-hard. Returning to FIXP, by analogy to the results that show total NP search problems
can’t be NP-hard unless NP=coNP [33, 47] and using essentially the same arguments, we can show
the following: if any FIXP search problem is NP-hard (even via any real-valued search problem
reduction computable in PR restricted to rational constants), then deciding the existential theory of
reals (ETR) is coNP-hard, and thus coNP ⊆ NPR. Whether ETR is coNP-hard is an open problem,
and neither answer appears to contradict any accepted complexity conjecture.
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