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Abstract

We begin by observing that (discrete-time) Quasi-
Birth-Death Processes (QBDs) are equivalent, in a pre-
cise sense, to (discrete-time) probabilistic 1-Counter
Automata (p1CAs), and both Tree-Like QBDs (TL-
QBDs) and Tree-Structured QBDs (TS-QBDs) are
equivalent to both probabilistic Pushdown Systems
(pPDSs) and Recursive Markov Chains (RMCs).

We then proceed to exploit these connections to ob-
tain a number of new algorithmic upper and lower
bounds for central computational problems about these
models. Our main result is this: for an arbitrary QBD
(even a null-recurrent one), we can approximate its ter-
mination probabilities (i.e., its G matrix) to within i
bits of precision (i.e., within additive error 1/2i), in
time polynomial in both the encoding size of the QBD
and in i, in the unit-cost rational arithmetic RAM
model of computation. Specifically, we show that a de-
composed Newton’s method can be used to achieve this.

We emphasize that this bound is very different from
the well-known “linear/quadratic convergence” of nu-
merical analysis, known for QBDs and TL-QBDs,
which typically gives no constructive bound in terms of
the encoding size of the system being solved. In fact, we
observe (based on recent results for pPDSs) that for the
more general TL-QBDs this bound fails badly. Specif-
ically, in the worst case Newton’s method “converges
linearly” to the termination probabilities for TL-QBDs,
but requires exponentially many iterations in the encod-
ing size of the TL-QBD to approximate these probabil-
ities within any non-trivial constant error c < 1.

Our upper bound proof for QBDs combines several
ingredients: a detailed analysis of the structure of 1-
counter automata, an iterative application of a classic
condition number bound for errors in linear systems,
and a very recent constructive bound on the perfor-
mance of Newton’s method for monotone systems of
polynomial equations.

1 Introduction

A variety of important stochastic models are finitely
presentable but describe an infinite-state underlying
stochastic process. Among the many examples are
(multi-type) branching processes, (quasi-)birth-death
processes, stochastic petri nets, and stochastic context-
free grammars. Computation of basic quantities as-
sociated with such stochastic models (both transient
analyses and steady-state analyses) are fundamental to
many applications. Yet the complexity of computing
many such quantities is not adequately understood.

This paper begins by observing that there is a
close correspondence between different denumerable-
state probabilistic models studied, on the one hand,
in the queueing theory and structured Markov chain
community, and, on the other hand, more recently,
in the literature on analysis and model checking of
recursive probabilistic procedural programs. Specifi-
cally, we observe that discrete-time Quasi-Birth-Death
processes (QBDs) are equivalent, in a precise sense,
to probabilistic 1-Counter Automata (p1CAs), which
are in turn a strict subclass of probabilistic Pushdown
Systems (pPDSs), namely they are pPDSs restricted
to a 1-letter stack alphabet. Furthermore, we show
that Tree-Structured and Tree-Like QBDs (TL-QBDs),
which are extensions of QBDs, are indeed equivalent to
pPDSs and Recursive Markov Chains (RMCs).

These results are not at all surprising once one gets
over the differences in notation and language used by
the two communities. Both types of models are infinite-
state structured Markov chains that are finitely pre-
sented; in the case of QBDs and their tree exten-
sions the notation and methodology is more algebraic,
matrix-based, while in the case of pPDSs it is more
automata-theoretic and combinatorial.

We exploit these equivalences to obtain several new
algorithmic results about these models. A number of
results follow immediately from the equivalences and
existing results about the various models. For in-
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stance, it follows from results on RMCs that quantita-
tive model-checking of linear-time (ω-regular) temporal
properties for QBDs and TL-QBDs can be decided in
PSPACE in the size of the model ([13]). On the other
hand, obtaining any non-trivial approximation of the
“termination probabilities” for TL-QBDs (the analog
of the G matrix of QBDs), even to within any con-
stant additive factor c < 1/2, is at least as hard as
long standing open problems in exact numerical com-
putation, such as the square-root sum problem, whose
complexity (in the standard Turing model of computa-
tion) is not even known to be in NP [15].

Our main result is a new upper bound on numeri-
cal approximation of central quantities associated with
QBDs. Specifically, we show that, given a QBD (even
a null-recurrent one), the basic G matrix of “termi-
nation probabilities” for the QBD (and various other
quantities of interest that can be derived from it) can
be approximated to within i bits of precision in time
polynomial in both the encoding size of the QBD and in
i, in the unit-cost rational arithmetic RAM (i.e., ratio-
nal Blum-Shub-Smale) model of computation. More
precisely, in the stated time complexity in the unit-
cost model, one can compute a matrix G̃ ≥ 0 such that
‖G− G̃‖∞ ≤ 1/2i. Specifically, we show that the de-
composed Newton’s method (studied for RMCs and for
arbitrary monotone systems of polynomial equations in
[12]) can be used to achieve this bound.

We emphasize that this analysis is very different
from the well-known “linear/quadratic convergence”
analyses traditional to numerical analysis, which is
known to hold (in null-recurrent/non-null-recurrent
cases, respectively) on the equations that arise for
QBDs and TL-QBDs, using Newton’s method and sev-
eral other methods (such as logarithmic reduction and
cyclic reduction). “Linear/quadratic convergence” re-
sults only bound the number of iterations required as
a function of the desired error ε > 0 (i.e., the desired
number of bits i of precision). They completely ignore
how large the number of iterations may need to be as
a function of the encoding size of the input QBD.

In fact, we observe using recent results for pPDSs
([18]) that this polynomial upper bound for QBDs
fails badly for TL-QBDs. Specifically, there are worst-
case examples of TL-QBDs which require exponentially
many iterations of Newton’s method, as a function of
the size of the TL-QBD, in order to approximate ter-
mination probabilities (the analog of the G matrix for
TL-QBDs) to within any non-trivial constant additive
error, thus even to within 1 bit of precision. This is the
case even though Newton’s method is “linearly conver-
gent” on these examples. Our results thus reveal a
vast difference in the worst case behavior of Newton’s

method on QBDs and TL-QBDs, not apparent from
the usual “linear/quadratic” convergence analysis.

Our proof of the new upper bound for QBDs re-
lies on several ingredients. We first perform a detailed
analysis of the structure of 1-counter automata, estab-
lishing key properties. Firstly, there is a fixed polyno-
mial, q(n), such that for any QBD whose encoding size
is n,1 the termination probabilities (i.e., entries of the
G matrix), which may of course be irrational, are each
either 0 or ≥ 1/2q(n). This bound fails badly for TL-
QBDs, as there are simple examples (already noted for
RMCs [12]) of size O(n) for which positive termination
probabilities are 1/22n

. As a second crucial property,
we show that the dependencies among variables in the
non-linear (matrix) equation X = A−1 +A0X+A1X

2,
associated with a QBD (whose least non-negative so-
lution is the G matrix) have a very special structure
when decomposed into strongly connected components
(SCCs). Roughly speaking, the SCCs can have non-
linear internal structure, but distinct nonlinear SCCs
can not “depend” on each other. This special struc-
ture does not hold for the equations associated with
termination probabilities of TL-QBDs.

These two structural results allow us to bring in
other key ingredients in order to establish the poly-
nomial upper bound for QBDs. Specifically, we use
an important constructive upper bound recently estab-
lished in [9] on the performance of Newton’s method for
(strongly connected) monotone systems of polynomial
equations, combined with our result that QBD ter-
mination probabilities can be “polynomially” bounded
away from zero, in order to establish that for the non-
linear SCCs in the equations for G, a polynomial num-
ber of iterations of Newton’s method (as a function
of the encoding size and number of bits of precision),
starting from the 0 vector, suffice to obtain a desired
number of bits of precision for the variables in a non-
linear SCC. Finally, to approximate the entire matrix
G, we deal with a possibly nested series of linear SCCs
“above” nonlinear ones in the DAG of SCCs, by using
an iterative application of a classic, but rather delicate,
condition number bound for errors in the solution of
linear systems resulting from coefficient errors.

On the other hand, as a “lower bound” for QBDs,
we show that deciding whether Gi,j ≥ p, for a given
rational p, is at least as hard as the square-root sum
problem. Thus, resolving exact quantitative decision
problems for QBDs in polynomial time or even in NP,
in the traditional Turing model, is not possible with-

1In other words, n is the number of bits needed to describe
the QBD, by describing all the rational coefficients (given by
numerator and denominator in binary) in all the m×m matrices
that define the QBD.
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out a major breakthrough in exact numerical analysis.
By contrast, for the more general TL-QBDs, we ob-
serve that our recent result in [14] for RMCs implies
that even the problem of obtaining any non-trivial ap-
proximation of termination probabilities for TL-QBDs
is square-root-sum hard.

These results lead us to suspect that a similar differ-
ence should exist in the worst-case behavior on QBDs
and TL-QBDs for other numerical solution methods
such as the logarithmic or cyclic reduction type algo-
rithms (see, e.g, [2]). We have however not analysed
these other algorithms. Indeed, the equivalences we
point out open the door for the extensive methods
and algorithms developed in the structured Markov
chain community (which after all has a much longer
history) to be applied to the analysis of the more
recently studied models like pPDSs and RMCs, for
analysis and model checking of recursive probabilis-
tic procedural program. In the other direction, we
feel that the “automata-theoretic” viewpoint, offered
by the work on RMCs and pPDSs, and related liter-
ature, can be further exploited in research on QBDs,
TL-QBDs, and related models. In any case, we believe
a cross-fertilization between these two communities will
be a fruitful source of research in the near future. A
tool called PReMo [32] which implements optimized
versions of the decomposed Newton’s method and other
methods for the analysis of Recursive Markov Chains
(and their controlled and game extensions) has been
augmented with an input format for QBDs.

We have conducted a very preliminary comparison
of PReMo’s performance on QBDs with that of an ex-
isting tool for QBDs: SMCSolver [3]. SMCSolver’s im-
plementation of algorithms like (shifted) cyclic reduc-
tion handily beats PReMo (by an order of magnitude
or more) on large “dense” QBDs where the input Ai
matrices are dense. This is explained by the follow-
ing facts: firstly, such dense systems are typically not
decomposable; moreover, SMCSolver exploits concise
matrix representations of the nonlinear equations asso-
ciated with QBDs, which require O(n2) encoding size
(where n is the number of control states, and assuming
bounded size coefficients), whereas PReMo employs an
explicit algebraic formula representation of these equa-
tions (which allows handling arbitrary monotone sys-
tems of nonlinear equations) which for dense input Ai’s
requires O(n3) encoding size. Algorithms (like cyclic
reduction) employed in SMCSolver operate directly on
these matrix equations, and thus have far lower cost per
iteration. However, unlike PReMo, SMCSolver does
not exploit the potential for decomposing these equa-
tions (indeed, decomposition can destroy their simple
matrix equation form). Thus on very decomposable

systems, PReMo can do better. In particular, we con-
structed a family of highly decomposable QBDs, where
even the G matrix itself is sparse. On these exam-
ples, with 500 control states, SMCSolver’s fastest algo-
rithm (shifted cyclic reduction) took over 40 seconds to
achieve 10−10 error bounds, and on 5000 control states
it crashed. PReMo ran in under 1 second even for
5000 control states, to achieve 10−10 error. However,
these are very contrived examples explicitly designed
to be highly decomposable. On more dense examples
SMCSolver is far superior to PReMo. An interesting
line of future research would be to combine the bene-
fits of the concise matrix representations employed in,
e.g., SMCSolver, and the decomposition methods em-
ployed in PReMo. One challenge in this regard is this:
Newton’s method can also be carried out directly over
O(n2) sized matrix equations for QBDs, with low cost
per iteration (O(n3) operations), using known efficient
methods for solving the concise linear matrix equations
that arise in each iteration of Newton’s method over
QBDs (certain generalized Sylvester matrix equations,
see [2]). However, while TL-QBDs and RMCs also have
nonlinear equations with O(n2) matrix representations,
no such efficient solution method is known for the more
general linear matrix equations that arise in iterations
of Newton’s method on them. Finding such a method
would make Newton’s method more practical on large
“dense” TL-QBDs, RMCs, and pPDSs. But even with
such an efficient method, it remains a challenge to com-
bine it well with decomposition, because in general de-
composition destroys the matrix form of the equations.

All proofs are placed in the appendix.

Related work: Quasi-Birth-Death Processes (QBDs)
and more generally M/G/1-type and G/M/1-type
Markov chains have been studied for decades in queue-
ing theory, performance evaluation, and related areas,
both in discrete and continuous time, and so have nu-
merical solution methods for them (see, e.g., the books
[24, 25, 22, 2]). In particular, Latouche in [21], stud-
ied the behavior of Newton’s method on these mod-
els, and showed (building on [26]) that under certain
assumptions (namely when A =

∑
iAi is irreducible

and parameter ρ 6= 1) the Newton iterates are well de-
fined and converge monotonically and “quadratically”
to the matrix G. Several other “quadratically conver-
gent” methods have also been developed, e.g., loga-
rithmic reduction [23], and cyclic reduction (see [2]).
Remke et. al. in [28] have studied numerical algo-
rithms for model checking of continuous-time QBDs
against properties expressed in the continuous-time
temporal logic CSL. Several other models, in partic-
ular, (discrete-time) stochastic Petri Nets restricted to
markings where just one place can be unbounded, are
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already known to be equivalent to QBDs (see, e.g, [27]).

Tree-Structured QBDs (TS-QBDs) are a generaliza-
tion of QBDs, first studied in [35, 29, 34]. Tree-Like
QBDs (TL-QBDs) are a restriction of TS-QBDs, stud-
ied in, e.g., [22, 4, 31]. It was already observed in
[30] that TL-QBDs and TS-QBDs are equivalent, un-
der a tight notion of equivalence which amounts to an
instance of what we use to show equivalence also to
pPDSs and RMCs. Bini et. al. [4] studied the perfor-
mance of several numerical algorithms for TL-QBDs,
including Newton’s method. Building on [21], they
show that under a similar set of assumptions, Newton’s
iterations are defined and converge monotonically and
quadratically for various quantities such as the termi-
nation probabilities (the analog of the G matrix).

Pushdown automata are of course classic models
that date back to the origins of automata theory (see,
e.g., [16]). They have many applications, e.g., in pars-
ing of languages. Pushdown systems (the transition
graphs of pushdown automata), and equivalent mod-
els such as Recursive State Machines, have been stud-
ied extensively in the past decade for the analysis
and model checking of procedural programs (see, e.g.,
[8, 1]). In more recent years, researchers have extended
these models with probabilistic behavior, i.e., to prob-
abilistic Pushdown Systems (pPDSs) ([10, 6, 11, 5])
and Recursive Markov Chains ([12, 13, 33]), and de-
veloped model checking algorithms for them. In par-
ticular, results in [13] yield that linear-time ω-regular
quantitative model checking of RMCs and pPDSs can
be decided in PSPACE (we note that this is an upper
bound for an exact decision procedure, not numerical
estimation). A key role was played in all these anal-
yses by the computation of termination probabilities
(the analog of the G matrix) for RMCs. A number
of “lower bounds” were established in [12, 14], show-
ing that these upper bounds could not be substantially
improved without major breakthroughs on long stand-
ing open problems in exact numerical computation.
In [12], a decomposed Newton’s method was studied
for approximation of termination probabilities, and it
was shown that, after decomposition, Newton’s method
converges monotonically, starting from 0, for arbitrary
monotone polynomial systems (MSPs) that do have a
non-negative solution. Subsequently, [18, 9] studied in
much greater detail the performance of (decomposed)
Newton’s method on such monotone systems of polyno-
mial equations. They not only established worst-case
linear convergence results (even when the Jacobian at
the least fixed point (LFP) is singular), but impor-
tantly for our results in this paper, they also provided
a strong constructive upper bound on the number of it-
erations required for Newton’s method as a function of

the encoding size of the polynomial system. For pPDSs
and RMCs their upper bounds require exponentially
many iterations in the model’s size in order to converge
to within a constant factor of termination probabilities,
but we will exploit their results, and other things, to
show polynomial bounds for QBDs.

1-Counter Automata, which amount to Pushdown
Systems with only one stack symbol, are a standard
automata-theoretic model, and their relationship to
other infinite-state models in automata theory has
been well studied (see, e.g., [20, 19]). Probabilistic 1-
Counter Automata have not yet been extensively stud-
ied in the literature on model checking and verification.
Recently however, Brožek and Kučera have informed
us [7], that they have obtained a (as yet unpublished)
polynomial-time algorithm for deciding whether termi-
nation occurs almost surely (with probability 1) start-
ing from a given control state, and counter value 1, for
a probabilistic 1-counter automaton.

The rest of this paper is organized as follows. Sec-
tion 2 gives basic definitions. In Section 3 we show
the equivalence between QBDs and p1CA, and between
Tree-structured and Tree-like QBDs and pPDS, state
some consequences, and show that the square-root sum
problem reduces to the decision problem for QBDs. In
Section 4 we prove important structural properties of
p1CAs, and in Section 5 we use them to analyze the
decomposed Newton method for QBDs and prove a
polynomial bound on the number of iterations.

2 Definitions

Efficient embeddings and equivalences. We show
various probabilistic models are “essentially equiva-
lent”. To make the notion of “essentially equivalent”
precise, we use the following definitions.

Definition 1 For a (countable-state, discrete-time)

Markov chainM with states t and t′, we write t
t̄,p
; t′ to

denote that there is a sequence of states t̄ = t0, . . . , tk,
where t0 = t and tk = t′, and probabilistic transitions
(t0, p, t1) and (ti, 1, ti+1) for 1 ≤ i < k. (Note that if
k = 1, this just says that (t, p, t′) is a transition ofM.)

We shall say that one (countable state) Markov
chain M embeds efficiently in another Markov chain
M′, if there exist two polynomial-time computable
mappings, f, g, where f is a one-to-one mapping from
states of M to states of M′, and g is a one-to-one
mapping that maps a transition (t, p, t′) of M to a se-
quence, t̄ = t0 . . . tk of states in M′, with t0 = f(t)

and tk = f(t′), and such that f(t)
t̄,p
; f(t′) holds in

M′, and furthermore such that none of the auxiliary
states t1, . . . , tk−1 are in the range of the mapping f .
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Intuitively, this is essentially a monomorphic em-
bedding of one Markov chain inside another, except
that a transition (t, p, t′) can be “stretched” into a
sequence of transitions, using intermediate auxiliary
states, and with probability 1 transitions out of these
auxiliary states leading to the target, f(t′). All models
we consider, even countable-state ones, have a finite
description. So, for a family F of finite presentations
of Markov chains, each A ∈ F , describes a potentially
infinite-state underlying chain M(A).

Definition 2 If F and F ′ are two classes of finitely-
presented Markov chains, we say that F is efficiently
subsumed by F ′ iff: there is a polynomial-time com-
putable mapping h : F 7→ F ′, which maps a model
A ∈ F to a h(A) ∈ F ′, and such that there exists a
pair of functions fA and gA, which can themselves be
efficiently computed (as Turing machines) from A, and
such that fA and gA constitute an efficient embedding
of M(A) into M(h(A)). Finally, we say two classes F
and F ′ of finitely-presented chains are M-equivalent if
both of them are efficiently subsumed by the other.

It is not hard to see that if one family F of finitely
presented Markov chains is efficiently subsumed by
another family F ′, via a mapping h, then a variety
of computational problems for M(A), where A ∈ F ,
efficiently reduce to basically the same analyses of
M(h(A)) where h(A) ∈ F ′. These include both tran-
sient analyses (such as reachability or hitting probabil-
ity) as well as limit distributions.

In all the probabilistic models we define, we assume
that all probability coefficients in the models are ra-
tional (for computational purposes), and that they are
encoded in the standard way, by providing numerator
and denominator in binary.
Probabilistic Pushdown Systems. There are a
number of equivalent variations on the definition of
(probabilistic) Pushdown Systems. We use a standard
definition which is convenient for analysis. A proba-
bilistic Pushdown System (pPDS) P = (QP ,Γ,∆) con-
sists of a set of control states QP , a stack alphabet Γ,
and a probabilistic transition relation ∆ ⊆ (QP ×Γ)×
[0, 1]×QP ×{swap(Γ), swap&push(Γ×Γ), pop}). That
is, a transition has the form ((s, γ), p(s,γ),(s′,C), (s′, C)),
where based on the control state s and the symbol on
top of the stack, γ, with probability p(s,γ),(s′,C), the
transition updates the control state to s′, and per-
forms action C on the stack: If C = swap(γ′) then the
action swaps the top-of-stack symbol, γ, with symbol
γ′. If C = swap&push(γ′, γ′′), then the action both
swaps γ with γ′ and then pushes γ′′ on top of the
stack. Lastly, if C = pop, then the action pops the
top-stack-symbol γ off the stack. Each such transi-

tion has an associated probability p(s,γ),(s′,C), and we
assume that for each pair (s, γ) of control state and
top of stack symbol,

∑
(s′,C) p(s,γ),(s′,C) = 1. We as-

sume there is a special stack symbol ⊥ ∈ Γ that marks
the bottom of the stack. Accordingly, ⊥ is never over-
written with a different stack symbol, nor popped off
the stack, and is never pushed onto the stack or over-
writes a different stack symbol. A stack with letter
γ at the top and remaining content ω ∈ Γ∗ will be
written ωγ (note that the leftmost symbol in ωγ is
⊥). A pPDS P defines a countable-state Markov chain
M(P) = (V ′,∆′) in an obvious way. Namely, the
states of M(P) are V ′ = {(w, s) | s ∈ QP , w ∈
⊥Γ∗}, and the probabilistic transitions of M(P)
are ∆′ = {((w, s), p, (w′, s′)) | ((s, γ), p, (s′, C)) ∈
∆ & applying action C to w yields w′}. It was shown
in [12] that pPDSs are M-equivalent to Recursive
Markov Chains (RMCs). Since we do not explicitly
use RMCs, we will not recall their formal definition.

Probabilistic 1-Counter Automata. A probabilis-
tic 1-counter automaton (p1CA), A, is just a pPDS
with only one stack symbol γ (other than the special
bottom symbol ⊥). In other words, it is a pPDS with
Γ = {⊥, γ}. This is not the usual definition: they are
typically defined as having a finite number of control
states and an additional non-negative counter which
can be incremented or decremented during transitions,
and such that transitions can be enabled/disabled de-
pending on whether the counter is equal to 0 or not.
However, this can easily be seen to be equivalent to
a pPDS with one stack symbol, γ. The stack acts as
precisely a (unary) counter, and the counter is equal to
0 precisely when the top stack symbol is ⊥.

Formally, a p1CA is usually defined in the follow-
ing form, which we will find convenient. A p1CA,
A, is 3-tuple A = (S, δ, δ0) where S is a finite set of
control states and δ ⊆ S × R>0 × {−1, 0, 1} × S and
δ0 ⊆ S×R>0×{0, 1}×S are transition relations. The
transition relation δ is enabled when the counter is non-
zero, and the transition relation δ0 is enabled when it is
zero. We use p(c)

u,v to denote the unique probability such
that there is a transition (u, p(c)

u,v, c, v) ∈ δ, and likewise
we use q(c)

u,v to denote the unique probability such that
there is a transition (u, q(c)

u,v, c, v) ∈ δ0. If such a transi-
tion exists, it is unique, and thus p(c)

u,v > 0 (or q(c)
u,v > 0)

is uniquely determined. If such a transition doesn’t
exist, we may sometimes assume for convenience that
p

(c)
u,v = 0 (or q(c)

u,v = 0), even though there are no ex-
plicit 0-probability transitions provided in the input
which describes A. The transition probabilities out of
each control state u define a probability distribution,
i.e.,

∑1
c=−1

∑
v p

(c)
u,v = 1, and

∑1
c=0

∑
v q

(c)
u,v = 1. A
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p1CA, A, generates a denumerable-state Markov chain
M(A) = (V ′,∆′) with state set V ′ = {(s, d) | s ∈
S, d ∈ N}, and probabilistic transition relation ∆′ =
{((s, 0), p, (s′, j)) | (s, p, j, s′) ∈ δ0}∪ {((s, i), p, (s′, j)) |
i > 0, & (s, p, c, s′) ∈ δ, & j = i + c}. Obviously,
pPDSs with only one stack symbol γ (other than ⊥)
and p1CAs (with unary counter) are M-equivalent.

A 1-counter automaton (1CA) is just a p1CA with-
out probabilities, i.e., the transition relation is non-
deterministic. To each p1CA, A = (S, δ, δ0), we can
associate an underlying 1CA, A′ = (S, δ′, δ′0), which ig-
nores probabilities of transitions and treats them non-
deterministically. Specifically, a transition (u, c, v) ∈ δ′

(∈ δ′0) iff p
(c)
u,v > 0, (q(c)

u,v > 0, respectively). For a
1CA, A = (S, δ, δ0), a path starting at state (s1, n1)
is a sequence of states (s1, n1), (s2, n2), ......, (sr, nr),
such that, for all i ∈ {1, . . . , r − 1}, either ni > 0
and (si, ni+1 − ni, si+1) ∈ δ or ni = 0 and (si, ni+1 −
ni, si+1) ∈ δ0. It is called a non-zero path if ni > 0
for all i ∈ {1, . . . , r − 1}. (Note that we allow nr = 0
in non-zero paths.) Such a (non-zero) path is called a
(non-zero) terminating path if nr = 0, and if so it is said
to terminate in state (sr, 0). For p1CAs, A, we define
paths, non-zero paths, etc., as simply the paths, non-
zero paths, etc., in the underlying 1CA. Note that for a
p1CA, the probability that a particular non-zero path
(s1, n1), (s2, n2), ......, (sr, nr) occurs, in a random walk
starting at state (s1, n1) of the Markov chain M(A) is
precisely

∏
1≤i<r p

(ni+1−ni)
sisi+1 .

Quasi-Birth-Death Processes (QBDs). We con-
sider discrete-time QBDs only. Of course, many anal-
yses for continuous-time QBDs boil down to analyses
of their respective embedded discrete-time chains.

A Quasi-Birth-Death process (QBD) is a countable
state Markov chain whose transition matrix has the
following block structure:2

B0 B1 0 0 0 . . .
A−1 A0 A1 0 0 . . .

0 A−1 A0 A1 0 . . .
0 0 A−1 A0 A1 . . .
. . . . . . . . . . . . . . . . . .


where B0, B1, A−1, A0, A1 ∈ Rm×m≥0 . Thus, the finite
input which describes a QBD consists of the five m×m
matrices: B0, B1, A−1, A0, and A1. We can represent
each state of a QBD by a pair (i, j), where 1 ≤ i ≤ m
is the index of the state within its block and j ∈ N is

2In fact, various slightly different definitions of QBDs are
given in the literature, typically differing slightly on the struc-
ture of transition probabilities in the boundary cases, i.e., for
the first few blocks. These differences are immaterial and these
variants can be efficiently embedded in the transition structure
described here, as many authors have already observed.

the index of the block. Central to many analyses for
QBDs is the computation of the associated G matrix,
which we will call the termination probability matrix.
This is a m×m matrix, whose (i, i′) entry Gi,i′ denotes
the probability that, starting in state (i, 1), the Markov
chain will eventually visit a state in block 0, and such
that the first such state it visits is (i′, 0). As is well
known (e.g., [24]), G is the least non-negative solution
to the matrix equationX = A−1+A0X+A1X

2, i.e., for
any non-negative solution matrix G′, we have G ≤ G′

(entry-wise inequality). Other key matrices, which are
also central to computations for QBDs, can be derived
from the matrix G. Specifically, the R matrix, has Ri,i′
equal to the expected number of visits to state (i′, n+
1), starting from state (i, n), before returning to a state
in a block ≤ n. The matrix U (the “taboo probability”
matrix) has Ui,i′ equal to the probability that starting
from state (i, 1) the chain does not visit a state in block
0 until it eventually revisits a state in block 1, and it
does so in state (i′, 1). The matrices U and R can be
obtained from G: U = A0 + A1G, and R = A−1(I −
U)−1. (Of course, the approximate solution of G will
introduce errors in the solutions for U and R.) If the
QBD is positive recurrent, these matrices can be used
to compute steady state probabilities for being in any
given state (i, j) (see, e.g., [22]).
Tree-Like and Tree-Structured QBDs. Several
slight variants of TL-QBDs (and TS-QBDs) have ap-
peared in the literature. We used the most restrictive
definition of TL-QBDs in order to have the strongest
results about the equivalence of all these models. Con-
sider the infinite rooted d-ary tree Td, label every edge
with a symbol in Γ = {1, . . . , d}, and label every node
with the string w ∈ Γ∗ corresponding to the path from
the root; the root is labelled with the empty string ε.
The states of TS-QBDs and TL-QBDs consist of pairs
(w, i), where w ∈ Γ∗ is (the label of) a node of the tree
Td and i ∈ {1, . . . ,m} acts as a “control state”. The
transitions of a TS-QBD are as follows. From a state
(ε, i), i ∈ {1, . . . ,m}, there is a transition to state:

1. (ε, j) with probability f i,j , where j ∈ {1, . . . ,m}.
2. (s, j) with probability ui,js , where s ∈ Γ, and j ∈
{1, . . . ,m}.

From any state (wk, i), where w ∈ Γ∗ and k ∈ Γ,
and i ∈ {1, . . . ,m}, there is a transition to state:

3. (w, j) with probability di,jk .

4. (ws, j), where s ∈ Γ, with probability ai,jk,s.

5. (wks, j), where s ∈ Γ, with probability ui,js .

A TS-QBD can thus be described by a finite collection
ofm×mmatrices (specifically, d2+2d+1 such matrices)
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with rational entries, namely the matricesDk, Ak,s, Us,
and F , where k, s ∈ Γ, and where their (i, j) entry is
di,jk , ai,jk,s, u

i,j
s , and f i,j , respectively.

TL-QBDs are defined by restricting TS-QBDs: TL-
QBDs are TS-QBDs with the additional requirement
that if k 6= s, then Ak,s = 0 (i.e., the zero matrix), and
secondly that Ak,k = As,s for all k, s ∈ Γ.

3 Equivalences and basic consequences

Proposition 1 QBDs and p1CAs are M-equivalent.

The proof is very simple and is in the appendix. Briefly,
the block index of a state of a QBD corresponds to the
counter value of a state of the p1CA, the B matrices of
a QBD correspond to the probabilities q of transitions
on 0 counter and the A matrices correspond to the
probabilities p of transitions on nonzero counter.

Theorem 2 pPDSs, RMCs, TL-QBDs, and TS-
QBDs are all M-equivalent.

Obviously TL-QBDs are a special case of TS-
QBDs. Furthermore, TS-QBDs are themselves
a special case of pPDSs (equivalently, RMCs
[12]), where transitions are constrained as fol-
lows: (1) If ((s, γ), p(s,γ),(s′,C), (s′, C)) ∈ ∆,
where C = swap&push(γ′, γ′′), we must have
γ = γ′, i.e., every “swap and push” opera-
tion must be just a “push”, and (2) for all
γ, γ′ ∈ Γ, we must have p

(s,γ),(s′,swap&push(γ,γ′′))
=

p
(s,γ′),(s′,swap&push(γ′,γ′′))

, i.e., the probability of the
“push” does not depend on the top stack symbol. The
argument that pPDS can be efficiently embedded in
TL-QBDs is a bit more involved and is given in the ap-
pendix. Briefly, we can use auxiliary control states in
TL-QBDs in order to mimic, e.g., a pPDS’s swap&push
operation via a sequence of transitions in a TL-QBD.

Thus all the known results for pPDSs and RMCs ap-
ply to TL-QBDs, and vice versa. The following corol-
lary highlights a few results for TL-QBDs (and TS-
QBDs) that follow from work on pPDSs and RMCs.
The square-root sum problem asks, given natural num-
bers (d1, . . . , dn) ∈ Nn and k ∈ N, whether (

∑
i

√
di) ≥

k. This decision problem is contained in PSPACE,
but its containment even in NP is a longstanding open
problem first posed in the 1970s ([15]), with many ap-
plications. See ([12]) for more background.
Corollary 3 1. ([13]) The quantitative model check-

ing problem for QBDs and TL-QBDs, against
linear-time ω-regular temporal properties, is decid-
able in PSPACE.

2. ([12, 14]) The square-root sum problem is polyno-
mial time reducible to the problem of approximat-
ing the termination probability (the analog of the

G matrix) for TL-QBDs, even to within just one
bit of precision (or even to within any constant ad-
ditive factor c < 1/2). Furthermore, even deciding
whether a termination probability for a TL-QBD
is 1 is sqrt-sum-hard.

3. ([18]) There are TL-QBDs for which at least ex-
ponentially many iterations of the (decomposed)
Newton’s method ([12]), applied to the non-linear
equations for termination probabilities are needed
as a function of the TL-QBD’s encoding size, to
even converge to within just one bit of precision of
a termination probability.

The following is not a corollary of earlier results. It
is proved in the appendix.

Theorem 4 The square-root sum problem is polyno-
mial time reducible to the following problem: given a
p1CA (QBD) with control states u and v, and given a
rational value p decide whether Gu,v ≤ p.

4 Structural properties of (p)1CAs

This section develops crucial structural properties of
(probabilistic) 1-Counter Automata, used in section 5
to establish strong results on the performance of (de-
composed) Newton’s method for QBDs. Let mp(s, s′)
(mpn-z(s, s′)) denote the length of the shortest (non-
zero, respectively) terminating path starting at state
(s, 1) and terminating at state (s′, 0). If there is no
such (non-zero) terminating path, then by definition
mp(s, s′) = ∞ (mpn-z(s, s′) = ∞, respectively). By
convention, a path with a single state has length 0.
The next lemma (proved in the appendix) shows that
in 1CAs whenever a terminating path exists, a “short”
(polynomial length) such path also exists.

Lemma 5 Suppose A = (S, δ, δ0) is a 1CA where
|S| = k. For any pair of control states s, s′ ∈ S, either
mpn-z(s, s′) = ∞ or else mpn-z(s, s′) ≤ k3. Likewise,
either mp(s, s′) =∞, or else mp(s, s′) ≤ k4.

Corollary 6 Let A = (S, δ, δ0) be a p1CA where |S| =
k, and let pmin > 0 be the smallest positive probability
on any transition of A. For any pair of states s, s′ ∈ S,
either Gs,s′ = 0 or Gs,s′ ≥ pk

3

min.

Indeed, Gs,s′ > 0 iff there is a non-zero terminating
path starting at (s, 1) and terminating at (s′, 0). By
Lemma 5, the length of the shortest such path is ≤ k3.
Therefore its probability is at least pk

3

min.
The termination probabilities Gu,v, u, v ∈ S are the

smallest nonnegative solution to the following fixed
point equation system

xuv = p(−1)
uv + (

∑
w∈S

p(0)
uwxwv) +

∑
y∈S

p(1)
uy

∑
z∈S

xyzxzv (1)
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We can clean up this system of equations for G by
removing the variables xuv for which Gu,v = 0. This
can be done in polynomial-time, even for more gen-
eral fixed point equations associated with pPDSs and
RMCs (see [12]). (After clean-up, the equations may
no longer have the simple matrix form.) Henceforth,
we consider only cleaned-up equation systems, where
only non-zero variables remain.

Based on this equation system we can build a depen-
dency graph, D = (X̃, E), whose nodes are all non-zero
variables X̃ = {xuv : u, v ∈ S and Gu,v 6= 0} and there
is an edge (xuv, xst) ∈ E iff xst occurs on the rhs of the
equation xuv = α corresponding to xuv. We decompose
this graph into strongly connected components (SCCs)
and sort them topologically. As a result we obtain a
sequence of SCCs X1, X2, . . . , Xm such that there can
exist a path in graph D from variable x ∈ Xi to vari-
able x′ ∈ Xj only if i ≥ j. We will write xst ≡ xuv iff
s = u and t = v. We say a variable xuv depends on the
value of a variable xst iff either xst ≡ xuv, or there is
a path from xuv to xst in the graph D. Of course this
relation is transitive. We say that an equation xuv = α
is non-linear in a set X ′ of variables if, by removing all
variables that are not in X ′ from monomials in α, we
are left with an expression α′ that is non-linear. We
say that SCC Xi is nonlinear if the equation xuv = α
of some variable xuv ∈ Xi is nonlinear in Xi.

Theorem 7 If the clean equation xuv = α, for a vari-
able xuv ∈ Xi is non-linear in Xi, and if the clean
equation for a variable xst ∈ Xj is non-linear in Xj,
and there is a path from xuv to xst in dependency graph
D, then there is a path from xst to xuv in D.

The proof is long and is given in the appendix. With
the dependency graph D, we associate in the standard
way a directed acyclic graph (DAG), H, whose nodes
are SCCs of D, and which has an edge from SCC Xi

to Xj iff there is an edge in D from some variable in
Xi to some variable in Xj . The following is an easy
corollary.

Corollary 8 In the DAG, H, along any directed path
of SCCs there is at most one nonlinear SCC.

5 New upper bounds on Newton’s
method for QBDs

We will now exploit the structural results about
p1CAs established in section 4, to establish strong
new upper bounds on the performance of (decomposed)
Newton’s method on QBDs. In our analysis in this sec-
tion, we assume a unit-cost exact rational arithmetic

RAM model of computation. In other words, individ-
ual arithmetic operations on rationals have unit cost,
regardless of the size of the rationals.

Recall that in (multi-variate) Newton’s method, we
are given a suitably differentiable map F : Rn 7→ Rn,
and we wish to find a solution to the system of equa-
tions F (x) = 0. Starting at some x0 ∈ Rn, the method
works by iterating xk+1 := xk − (F ′(xk))−1F (xk),
where F ′(c) is the Jacobian matrix of partial deriva-
tives, whose (i, j) entry is ∂Fi

∂xj
evaluated at c.

In the setting of p1CAs, we have a system of n equa-
tions in n variables, xi = Pi(x), which we can denote
by x = P (x). Thus, we wish to find a solution to
F (x) .= P (x)− x = 0. Note that these are polynomial
functions, and thus certainly differentiable.

We shall solve this system of equations using the de-
composed Newton’s method of [12], which applies more
generally not just to systems x = P (x) arising for
p1CAs, but to any monotone system x = P (x) of poly-
nomial equations (i.e., where the coefficients in P (x)
are non-negative) which has a non-negative solution.
Specifically, for any such system x = P (x) which has
been cleaned up (i.e., variables which are necessarily
zero in any least solution have been removed, some-
thing which can be done easily in polynomial time
[12]) we form the dependency graph D for the non-
zero variables in the corresponding cleaned system of
equations, we decompose D into SCCs, and form the
DAG of SCCs, H. We then “solve” for the values of
variables in each SCC of H, “bottom up” by apply-
ing Newton’s method starting at the vector 0 to the
equations for each SCC, beginning with bottom SCCs.
Once one SCC is “solved” the values computed for the
variables in that SCC are plugged into equations in
higher SCCs that depend on those values.

Of course, since values may in general be irrational
and are only converged to in the limit, we have to spec-
ify more carefully what we mean by “solve” an SCC.
This is where we make crucial use of the special struc-
ture of SCCs in the case p1CAs and QBDs. By Corol-
lary 8, for any non-linear SCC, Xi, it must be the case
that any other SCC, Xj , for which there is a path in H
from Xi to Xj , is linear, i.e., any variable xuv ∈ Xj has
a corresponding clean equation xuv = α which is linear
in the variables of Xj , assuming variables in even lower
SCCs have been assigned fixed values. It was shown in
[12] (in the more general setting of monotone systems
arising from RMCs and pPDSs) that for such linear
SCCs, Xj , Newton’s method converges in just one it-
eration, starting at the vector 0, to the exact rational
least fixed point (LFP) solution we are after (i.e., to the
values Gu,v for these variables in xuv ∈ Xj). Thus, in a
bottom up fashion we can compute the exact solutions
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Gu,v for those variables xuv which are in linear SCCs
below any nonlinear SCC. After computing these val-
ues we plug them into equations for variables in higher
SCCs that depend on them, and we eliminate the lin-
ear SCC which was already solved. We do this until
there are no bottom linear SCCs remaining.

We next have to apply Newton’s method to non-
linear SCCs, which can have irrational solutions which
are only converged to in the limit. How many itera-
tions are “enough”? For this, we will use the following
recent result by Esparza et. al. (Theorem 3.2 of [9])
on the behavior of Newton’s method on precisely such
monotone nonlinear systems. Let P (X) be a cleaned
monotone system of polynomials (i.e., P (X) consists
of n multi-variate polynomials, Pi, i = 1, . . . , n, in the
variables X = x1, . . . , xn), such that X = P (X) has a
non-negative solution, and since it is cleaned, only pos-
itive solutions, and therefore a least fixed point (LFP)
solution, q∗ > 0. A vector q′ is said to have i valid bits
of q∗ if |q∗j − q′j |/q∗j ≤ 2−i for every 1 ≤ j ≤ n.

Theorem 9 ([9]) Let P (X) be a cleaned strongly con-
nected monotone system of quadratic polynomials (i.e.,
P (X) consists of n quadratic multi-variate polynomi-
als in n variables). Let cmin be the smallest nonzero
coefficient of any monomial in P (X), and let µmin
and µmax be the minimal and maximal components
of the LFP vector q∗ > 0, respectively. Let kf =
n · log( µmax

cmin·µmin·min{µmin,1} ). Let xj denote the vec-
tor of values obtained after j iterations of Newton’s
method on the system F (X) = P (X) − X, starting
with the initial all 0 vector, x0 = 0. Then for every
i ≥ 0, x(dkfe+i) has i valid bits of q∗.

For a given p1CA, we hereafter use m to denote the
maximum number of bits required to encode the inte-
ger numerators and denominators of transition proba-
bilities of the p1CA. Thus, in particular, the smallest
non-zero transition probability is pmin ≥ 1/2m. Us-
ing Theorem 9, the following can be shown (see the
appendix).

Theorem 10 Let P (X) be the cleaned strongly con-
nected monotone system of quadratic polynomials as-
sociated with a nonlinear SCC, Xi, of the decomposed
system of equations associated with a p1CA, and where
the exact rational values Gu,v associated with variables
xuv in already solved “lower” linear SCCs have been
substituted for xuv on the right hand side of equations
for variables in Xi. Suppose that the p1CA has n con-
trol states, and thus |Xi| ≤ n2, and let G|Xi denote
those entries Gu,v of the matrix G, such that xuv ∈ Xi.
Then, starting with x0 := 0, for every i ≥ 0, the New-
ton iteration x(4mn5+mn2+i) has i valid bits of G|Xi

.

Theorem 10 implies that we can compute i bits of
the values Gu,v for variables xuv in non-linear SCCs of
the system X = P (X) associated with a p1CA (QBD),
using only a number of iterations of Newton’s method
which is polynomially bounded in the size of the p1CA,
and linearly bounded in i.

We now have to confront a major difficulty: there
may be other, linear, SCCs, Xr, which are “above”
such non-linear SCCs in H. Specifically, there may
be a linear SCC Xr, from which there is a path in
H to a non-linear SCC, Xi. In order to be able to
(approximately!) compute Gu,v for variables xuv ∈ Xr,
we have to first approximately compute the (possibly
irrational) values Gu′,v′ , for xu′v′ ∈ Xi, and substitute
this value in occurrences of xu′v′ in equations for higher
linear SCCs. The question arises: how many bits of
precision i, do we need to compute Gu′,v′ to in order to
compute Gu,v to within i bits of precision? To answer
this, we employ a classic bound, based on condition
numbers, on errors in the solution of a linear systems.

Theorem 11 (see, e.g., [17], Chap 2.1.2, Thm 3.3)
Consider a system of linear equations, Bx = b, where
B ∈ Rn×n and b ∈ Rn. Suppose B is non-singular, and
b 6= 0. Let x∗ = B−1b be the unique solution to this
linear system, and suppose x∗ 6= 0. Let ‖ · ‖ denote any
vector norm and associated matrix norm (when applied
to vectors and matrices, respectively). Let cond(B) =
‖B‖ · ‖B−1‖ denote the condition number of B. Let
ε, ε′ > 0, be values such that ε′ < 1, and ε · cond(B) ≤
ε′/4. Let E ∈ Rn×n and ζ ∈ Rn, be such that ‖E‖‖B‖ ≤ ε,
‖ζ‖
‖b‖ ≤ ε, and ‖E‖ < 1/‖B−1‖. Then the system of

linear equations (B+E)x = b+ζ has a unique solution
x∗ε such that: ‖x∗ε − x∗‖

‖x∗‖
≤ ε′

We will apply this theorem using the l∞ vector norm
and induced matrix norm (maximum absolute row
sum): ‖x‖∞ = maxi |xi| and ‖A‖∞ = maxi

∑
j |aij |.

Suppose that the fixed point equation system for a
linear SCC of a p1CA, which lives “above” some non-
linear SCCs in the DAG H, looks like this: x = Ax+b.
We know that A ≥ 0 is an irreducible matrix (precisely
because the variables being solved for are in the same
SCC), b ≥ 0, and b 6= 0 since otherwise the unique
solution for this system would be q∗ = 0, and zero
variables were already eliminated. We can of course
rewrite this linear equation as (I −A)x = b. It follows
from a more general result in [12] about the decom-
posed systems of equations arising for RMCs (pPDSs)
(specifically, see Lemma 17 and Theorem 14 of [12]),

3Our statement is weaker, but derivable from that theorem.
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that ρ(A) < 1, where ρ(A) denotes the spectral radius
of A, and that therefore (I − A) is non-singular, and
furthermore (I −A)−1 = (

∑∞
i=0A

i). Thus the LFP of
this equation system is q∗ = (I−A)−1b = (

∑∞
k=0A

k)b.
To prove bounds on errors in “higher” linear SCCs,
when values in nonlinear SCCs are approximated, we
will need the following two lemmas (proof in the ap-
pendix):

Lemma 12 Let A ∈ Rn×n≥0 and b ∈ Rn≥0, such that:
(I −A)−1 =

∑∞
k=0A

k, and (
∑∞
k=0A

k)b ≤ 1, and A is
an irreducible non-negative matrix whose smallest non-
zero entry is c > 0, and b 6= 0 and p > 0 is the largest
entry of b. Then: ‖

∑∞
k=0A

k‖∞ ≤
n
pcn .

Lemma 13 Let Xr be a linear SCC of the cleaned
equation system for a p1CA, whose corresponding lin-
ear equation system is x = Ax+b, after variables xuv in
lower SCCs have been substituted by their exact (possi-
bly irrational) values Gu,v. Let pmin denote the small-
est positive probability on any transition of the p1CA,
and let n be its number of control states. Then the
following bounds hold:

1. 1
22mn3+m

≤ p2n3+1
min ≤ ‖(I −A)‖∞ ≤ n+ 1

2. ‖(I −A)−1‖∞ ≤
n2

p5n5
min

≤ n2 · 25mn5

3. cond(I −A) ≤ 2n3

p5n5
min

≤ 2n3 · 25mn5

4. ‖b‖∞ ≥ p
2n3+1
min ≥ 1

22mn3+m

For a “higher” linear SCC, Xr, i.e., one which can
reach some non-linear SCC inH, let us define its height,
hr < ∞, to be the maximum finite distance in H be-
tween Xr and some lower non-linear SCC that it can
reach. Let hmax = maxr hr, where the maximum is
taken over all linear SCCs that can reach a non-linear
SCC. Note that, as a very loose upper bound, cer-
tainly hmax ≤ n2, where n = |S| is the number of
control states of the p1CA, because there are at most
n2 variables in the entire system. Now consider the de-
composed Newton’s method applied to the fixed point
equations for a p1CA, with the following specification
for the number of iterations to be applied to each SCC:

1. Use, one iteration of Newton’s method (starting
at vector x0 = 0), or any linear system solving
method, to solve a remaining bottom linear SCC
exactly. Remove the linear SCC, and plug the cor-
responding values of variables into equations for
higher SCCs. Do this until only non-linear bot-
tom SCCs remain, or all SCCs are solved.

2. For each remaining non-linear SCC, apply New-
ton’s method (starting with vector x0 = 0) to the

non-linear equations for these SCCs, using the fol-
lowing number of iterations:

4mn5 +mn2 + hmax(9mn5 + 4) + i

Afterwards, plug the resulting (approximate) val-
ues for variables in each such non-linear SCC into
the equations for higher (linear) SCCs.

3. For each remaining linear SCC, use one iteration
of Newton’s method (or any other linear system
solution method) to solve for the exact (unique)
solution of the corresponding linear system (note
that the coefficients of these equations will have
errors because of the approximations below, but
we still seek their exact solution), then remove the
linear SCC, and plug these values into higher (lin-
ear) SCCs that remain, until no SCCs remain.

Theorem 14 Given a p1CA (or, equivalently, a
QBD), the above algorithm, based on (a decomposed)
Newton’s method, approximates every entry of the ma-
trix G of termination probabilities for the p1CA (QBD)
to within i bits of precision (i.e., to within additive er-
ror 1/2i). In the unit-cost arithmetic RAM model of
computation (i.e., rational Blum-Shub-Smale model),
the algorithm has a running time which is polynomial
in both the encoding size of the p1CA (QBD) and in i.

The proof is in the appendix. We briefly sketch the
argument. It proceeds by induction on the height, h,
of a given “higher” linear SCC, Xr, above non-linear
SCCs, to show that for every variable xuv ∈ Xr we
compute Gu,v to within Wh = (hmax−h)(9mn5 +4)+i
bits of precision. The base case h = 0 follows from the
fact that, applying Theorem 10, all non-linear SCCs are
approximated to within W0 = hmax(9mn5 + 4) + i bits
of precision, and all “lower” linear SCCs are computed
exactly. The inductive step shows, by using Theorem
11 and Lemma 13, that at each height h ≥ 1, solution
of the linear SCCs at that height can “lose for us” at
most another 9mn5 +4 bits of precision. We emphasize
that these (impractical) upper bounds for the number
of iterations are very coarse, and are only intended to
facilitate our proof that polynomially many iterations
of Newton’s method suffice. A more detailed analy-
sis would likely yield polynomial bounds with much
smaller exponents as the required number of iterations.

An important remaining open question is this: can
polynomial upper bounds for approximating the G ma-
trix for QBDs be established in the standard Turing
model of computation, rather than in the unit-cost ra-
tional arithmetic RAM model as we have done? A pos-
sible approach for doing this is via a detailed analysis of
the effect of round-off errors on iterations of Newton’s
method over the nonlinear equations for QBDs.
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A Appendix

A.1 Proof of Proposition 1

Proposition 1 QBDs and p1CAs are M-equivalent.
Proof.
1. Given a QBD, A, with underlying k × k matri-
ces B0, B1, A−1, A0, A1, the states of the corresponding
PDS, h(A), shall have the structure P = (QP ,Γ,∆),
where Γ = {⊥, γ}, and QP = {1, . . . k}. The transition
relation ∆ is defined to contain precisely the following
transitions: for 1 ≤ i, j ≤ k:

? ((i,⊥), (B0)i,j , (j, swap(⊥))) ∈ ∆.

? ((i,⊥), (B1)i,j , (j, swap&push(⊥, γ))) ∈ ∆.

? ((i, γ), (A−1)i,j , (j, pop)) ∈ ∆.

? ((i, γ), (A0)i,j , (j, swap(γ))) ∈ ∆.

? ((i, γ), (A1)i,j , (j, swap&push(γ, γ))) ∈ ∆.

Clearly, P defines a pPDS with the property that it
has one stack symbol γ other than ⊥, and the stack is
always of the form ⊥γr, for some r ≥ 0. It is not hard
to see that this translation yields an efficient embed-
ding.
2. Any pPDS with only one stack symbol can be viewed
as a QBD. Indeed, this is fairly easy to see. Given
such a pPDS, the swap transitions out of pairs of the
form (q,⊥), where, recall, we must swap (q,⊥) with
(q′,⊥) in order to maintain ⊥ at the bottom of the
stack, can be viewed as giving the matrix B0, and
any swap&push(⊥, γ) transitions out of (q,⊥) can be
viewed as giving the matrix B1. Furthermore, for the
transitions out of pairs of the form (q, γ), we can view
the pop, swap(γ) and swap&push(γ, γ) transitions as
giving the matrices A−1, A0, and A1, respectively.

A.2 Proof of Theorem 2

Theorem 2 pPDSs, RMCs, TL-QBDs, and TS-
QBDs are all M-equivalent.
Proof. It is easy to see from the definitions that
pPDSs are the most general model and TL-QBDs the
least general, To prove all equivalences, we show that
the swap&push operation of a pPDS can be encoded us-
ing a sequence of 3 transitions of a TL-QBD, using new
auxiliary states. Note that the pop operation of a pPDS
effectively already exists in TL-QBDs, and the swap op-
eration of a pPDS can then also be encoded once we
have swap&push: we can simply add a new symbol, ζ,
to Γ and instead of a transition from state (wγ, i) to

state (wγ′, j) with probability p, which do a transition
from state (wγ, i) to (wγ′ζ, j) with probability p, and
furthermore for any state (w′ζ, j) we have a probability
1 transition to to (w′, j). Note that the two transitions
together take us from state (wγ, i) to state (wγ′, j)
with probability p. Note that we do have available, in
a TL-QBD, the ability to do a “pop” with probability
1, as in the second transition described here, which can
depend on the top stack symbol, in this case ζ, and we
need not change the control state.

Now we describe how to implement swap&push. If
the original control states of the pPDS are {1, . . . , n},
then the new control states of the TL-QBD will be of
the form {1, . . . , n} × Γ≤2 × {1, 2, 3}. The swap op-
erations of the pPDS shall be mimiced by swap op-
erations (as described above) on control states of the
form (q, ∅, 1). The only place control states of the form
(q, γ, 2) and (q, γ, 3) shall be used is as follows: a transi-
tion of the form: ((q, γ), p(q,γ),(q′,C), (q′, C) of the pPDS,
where C = swap&push(γ′, γ′′), shall be mimiced by us-
ing the following three transitions of the TL-QBD:

Starting at state (wγ, (q, ∅, 1)) of the TL-QBD,
there is a transition with probability p(q,γ),(q′,C) (=

d
(q,∅,1),(q′,γ′γ′′,2)
γ ) to state (w, (q′, γ′γ′′, 2)), followed by

a probability 1 (= u
(q′,γ′γ′′,2),(q′,γ′′,3)
γ′ ) transition from

state (w, (q′, γ′γ′′, 2)) to state (wγ′, (q′, γ′′, 3)), and
then finally a probability 1 (= u

((q′,γ′′,3),(q′,∅,1)
γ′′ ) tran-

sition from (wγ′, (q′, γ′′, 3)) to (wγ′γ′′, (q′, ∅, 1)).
The given transformation constitutes an efficient

embedding of the Markov chain M(P), for the given
pPDS, P, into the Markov chain M(AP) for a corre-
sponding TL-QBD, AP . In particular, the number of
control states of AP is at most 3|QP | · |ΓP |2, and the
size of the stack alphabet for AP is the same as that of
P. This mapping thus defines an efficient embedding,
and establishes the equivalence.

A.3 Proof of Theorem 4

Theorem 4 The square-root sum problem is polyno-
mial time reducible to the following problem: given a
p1CA (QBD) with control states u and v, and given a
rational value p decide whether Gu,v ≤ p.
Proof. This proof is very similar to the proof in [12]
that 1-exit RMCs are sqrt-sum-hard.

Given numbers (d1, . . . , dn) and k, we will construct
a p1CA as follows. The p1CA has control state u
and n other control states, ti, corresponding to the
given numbers, di, i = 1, . . . , n. It also one other con-
trol state, v. Let m = maxi di. Let ci = (1/2)(1 −
(di/m2)), for i = 1, . . . , n. The transitions of the
p1CA are as follows, for i = 1, . . . , n: (u, 1/n, 0, ti) ∈ δ
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(ti, 1/2,+1, ti) ∈ δ and (ti, ci,−1, ti) ∈ δ and (ti, 1/2−
ci, 0, v) ∈ δ, also (v, 1,−1, v) ∈ δ.

We claim that Gu,v = (1/(nm))·
∑n
i=1

√
di, and thus

that Gu,v ≤ (k/(nm)) if and only if
∑n
i=1

√
di ≤ k.

To see the claim, note that for each i, we have Gti,ti
is the least non-negative solution to equation x =
(1/2)x2 + ci, and thus that Gti,ti = (1−

√
(1− 2ci)) =

(1−
√
di/m). Next note that the probability of termi-

nating (in any state) starting from each ti is 1, because
it satisfies the equation x = (1/2)x2 + (1/2). Thus,
Gti,ti +Gti,v = 1 and therefore Gti,v =

√
di/m. Thus,

Gu,v =
∑
i(1/n)

√
di/m = 1/(nm)

∑
i

√
di.

A.4 Proof of Lemma 5

Lemma 5 Suppose A = (S, δ, δ0) is a 1CA where
|S| = k. For any pair of control states s, s′ ∈ S, either
mpn-z(s, s′) = ∞ or else mpn-z(s, s′) ≤ k3. Likewise,
either mp(s, s′) =∞, or else mp(s, s′) ≤ k4.
Proof. We first prove the k3 upper bound
for the length of non-zero terminating paths, and
we then show why a k4 upper bound follows for
the length of arbitrary terminating paths. Let
(s1, n1), (s2, n2), (s3, n3), ...., (sr, nr) be the shortest
non-zero terminating path starting from (s, 1) and ter-
minating in (s′, 0). (In particular, (s1, n1) = (s, 1) and
(sr, nr) = (s′, 0).)

Let cmax = maxri=1 nr be the maximum value
of the counter along this path. There exists some
state (sj , cmax) on this path that achieves the high-
est counter value. (cmax may occur more than once,
but let’s just pick one, say the earliest occurrence.)

For every counter value c = 1, . . . , cmax, we define
the pairs (sic , c) and (si′c , c) as follows: ic is the largest
index i ≤ j in the path such that the i’th state is (si, c),
and such that for all i ≤ j′ ≤ j, the j′’th state on the
path is (sj′ , c′) where c′ ≥ c. (In other words, in the
segment from (si, c) to (sj , cmax) the count doesn’t go
below c.) Likewise i′c is the smallest index i ≥ j such
(si, c) is on the path and such that on the subpath
from (sj , cmax) to (si, c) the counter doesn’t go below
c. Note that icmax

= i′cmax
= j.

Clearly such pairs of indices ic and i′c are uniquely
defined for each c = 1, . . . , cmax, and we have
i1 < i2 < .... < icmax

= i′cmax
< ... < i′2 < i′1.

Now the key observation: if cmax > k2 then by the
pigeon-hole principle there must exist a pair of con-
trol states sa and sb such that for two distinct val-
ues 1 ≤ c′ < c′′ ≤ cmax of the counter, we have
sa = sic′ = sic′′ and sb = si′

c′
= si′

c′′
. There-

fore, since we must have ic′ < ic′′ ≤ i′c′′ < i′c′ , we

can remove the following two, positive length, seg-
ments from the above shortest path and still get a
valid non-zero terminating path from (s1, 1) to (sr, 0),
which would be a contradiction. Namely, we can
remove segments: (sic′ , nic′ ) . . . (sic′′−1, nic′′−1) and
(si′

c′′+1, ni′
c′′+1) . . . (si′

c′
, ni′

c′
). The resulting path is

guaranteed by its construction to be a shorter non-zero
terminating path, starting at (s, 1) and terminating at
(s′.0), contradicting the fact that the original path was
the shortest such path. Therefore, by contradiction, it
must be the case that cmax ≤ k2.

Therefore, the path (s1, 1)....(sr−1, nr−1) can con-
tain at most k(k2) = k3 distinct states (not count-
ing repetitions). However, note that in fact no state
can repeat along this shortest non-zero terminating
because otherwise it wouldn’t be a shortest non-zero
terminating path. Therefore the length of the short-
est non-zero terminating path from (s, 1) to (s′, 0) is
mpn-z(s, s′) ≤ k3.

Next we show why it follows that unless mp(s, s′) =
∞, then mp(s, s′) ≤ k4. Consider a shortest terminat-
ing path π = (s, 1) . . . (s′, 0), which may include inter-
mediate states with 0 counter values. Note that such a
shortest path can only hit the counter value 0 at most
k times, because otherwise a 0-counter state would be
repeated, and this would then not constitute a shortest
path. By the established k3 upper bound on the length
of shortest non-zero terminating paths, we know that
the subpath between every pair of 0-counter states in
the shortest path π can have at most length k3. Since
there are at most k 0-counter states along the path, the
total length of the path is |π| ≤ k4.

A.5 Background for the proof of Theorem
7

We introduce some additional notation. For a 1CA,
A = (S, δ, δ0), we write u +→ v iff (u, 1, v) ∈ δ; we write
u→ v iff (u, 0, v) ∈ δ, and u

−→ v iff (u,−1, v) ∈ δ. We
use the same notation for p1CAs, to denote positive
probability transitions, i.e., such transitions existing in
the underlying 1CA. For a (p)1CA, and for k < 0, we
write s

k−→ t iff there exists a non-zero terminating
path starting at (s, |k|) and terminating at (t, 0). For
k ≥ 0 we write s k−→ t iff there exists a non-zero path
starting at (s, 1) and ending at (t, k+ 1). Note that all
states along this path have counter value ≥ 1. In the
special case k = 0 we have u 0−→ u for all u ∈ S, since
we allow paths to have length 0. Also note that s +→ t

implies s 1−→ t, and s → t implies s 0−→ t and finally
s
−→ t implies s −1−→ t.
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Suppose that for some k, s k−→ t holds, and that
(s, n1) . . . (t, nl) is a non-zero path that witnesses this.
Then note that, for any d > 0, (s, n1 + d) . . . (t, nl + d)
is also a non-zero path in the same (p)1CA. We will
exploit this fact repeatedly.

Proposition 15 If u k1−→ v
k2−→ w for some u, v, w ∈

S, and either k1 ≥ 0 or k1, k2 ≤ 0, then u
k1+k2−→ w.

Proof. We join the two paths: from u to v satisfying
k1−→ and from v to w satisfying k2−→. The resulting

path will fulfil the k1+k2−→ requirements. For instance if
k1 ≥ 0 and k1 + k2 ≥ 0 then the first part of the joined
path from u to v starting at (u, 1) will reach (v, k1 + 1)
without encountering a 0-counter state, since it fulfils
k1−→. The second part from v to w will have the counter

shifted up by k1, thus it starts at (v, k1+1) and finishes
at (w, k1+k2+1), but does not hit counter 0 in between,
since it fulfils k2−→.

Note that it might be the case that u k1−→ v
k2−→ w,

but u
k1+k2−→ w does not hold. This can only hap-

pen if k1 < 0 and k2 ≥ 0. For instance, if δ =
{(u, 1.0,−1, v), (v, 1.0, 1, w)}, we have u −1−→ v

1−→ w,
but not u 0−→ w.

Proposition 16 If u k−→ v for some u, v ∈ S, then:

? if k < −1, u −1−→ w
k+1−→ v, for some w ∈ S

? if k > 1, u k−1−→ w
1−→ v, for some w ∈ S,

? if k = 1, u 0−→ w
+→ z

0−→ v, for some w, z ∈ S,

(in the last case z might be equal to v and u might be
equal to w).

Proof. For k ≤ −1 pick as w the first control state
on the u

k−→ v path from (u, |k|) to (v, 0) that has
counter value |k|−1. For k ≥ 1 pick as w the last state
on the u k−→ v path from (u, 1) to (v, k + 1) that has
counter value k. For k = 1, the transition after such a
state (w, 1) has to increase the counter since otherwise
it would not be the last state on the non-zero path with
counter value 1. So let the next state be (z, 2). From
there the non-zero path must reach the end state (s, 2)
without encountering a state with counter value 1.

Remark 1 After cleanup, if a variable xst is on the
rhs of a clean equation xuv = α, there are 3 (not mu-
tually exclusive) possibilities for how xst occurs in α:

1. as p(0)
us xst, so u→ s

−1−→ t = v

2. as p(1)
us xstxtv, so u +→ s

−1−→ t
−1−→ v

3. as p(1)
uwxwsxst, so u +→ w

−1−→ s
−1−→ t = v

Note that in cases (1.) and (3.) we have u 0−→ s
−1−→

t = v and in case (2.) we have u 1−→ s
−1−→ t

−1−→ v.

A.6 Proof of Theorem 7

Theorem 7 If the clean equation xuv = α, for a vari-
able xuv ∈ Xi is non-linear in the variables belonging
to Xi, and if the clean equation for a variable xst ∈ Xj

is non-linear in the variables belonging to Xj, and there
is a path from xuv to xst in dependency graph D, then
there is a path from xst to xuv in D.
Proof. We will first prove a few lemmas. For control
states u, v ∈ S, let δuv denote the usual Kronecker δ:
δuv = 1 if u = v and δuv = 0 if u 6= v.

Lemma 17 In dependency graph D, if the shortest
path from xuv to xst has a length k <∞ then for some

k′, 1− δvt ≤ k′ ≤ k, we have u k′−→ s
−1−→ t

−k′−→ v.

Proof. Proof by induction on k. The case k = 1
follows from Remark 1 and the fact that if t = v (in
other words δvt = 1) then t

0−→ v holds by default.
Assume the statement is true for k and consider some
shortest path of length k + 1 between two variables
xuv and xst. Let us consider the variable that is just
before xst on this shortest path and assume it is xwz
for some w, z ∈ S. Obviously the shortest path in D
from xuv to xwz has a length k. We know from the
induction assumption that for some 1 − δvz ≤ k′ ≤ k

we have u
k′−→ w

−1−→ z
−k′−→ v. On the other hand

we know that from xwz we can reach xst in one step,
thus from Remark 1 we get that w 1−→ s

−1−→ t
−1−→ z or

w
0−→ s

−1−→ t = z (both of these form a w −1−→ z path).
Considering these two facts together we get that either

u
k′−→ w

1−→ s
−1−→ t

−1−→ z
−k′−→ v or u k′−→ w

0−→ s
−1−→

t = z
−k′−→ v. Now using Proposition 15 we get that

either u k′+1−→ s
−1−→ t

−(k′+1)−→ v or u k′−→ s
−1−→ t

−k′−→ v.
Hence the statement for k + 1 is true as well.

Lemma 18 If xwv is a non-zero variable and u 0−→ w
then xuv is also non-zero and depends on xwv.

Proof. First of all notice that if u = w then the
statement is trivial. Secondly the variable xuv is non-
zero since a path u

0−→ w
−1−→ v forms a u −1−→ v path.
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Now if u 6= w then take a path from (u, 1) to
(w, 1) that fulfils u

0−→ w. Take all the states
along that path that have the the counter equal to 1:
(s0, 1), (s1, 1), . . . , (sn, 1) where s0 = u and sn = w (we
know that n ≥ 1 since u 6= w). Notice that for all i ≤ n
the variables xsiv are non-zero because path si

−1−→ v

exists (just take a subpath of the u 0−→ w
−1−→ v path).

Now consider the state (sn−1, 1). From this state the
path can not take transition reducing the counter to 0
since then the path would finish before reaching (w, 1).
If the path takes a transition that leaves the counter
unchanged then the next state on this path has to be
(sn, 1). It is because (sn, 1) was supposed to be the
next state after (sn−1, 1) to have the counter equal to
1. This means that on the rhs of the equation for the
variable xsn−1v there is an expression p

(0)
sn−1snxsnv and

as a result variable xsn−1v depends on xsnv. Finally,

if the path from (sn−1, 1) takes a transition sn−1
+→ z

then on the rhs of the equation for the variable xsn−1v

there is an expression p
(1)
sn−1zxzsn

xsnv. This is because
sn is the first state after (z, 2) that has the value of
the counter equal to 1 and so the the path z

−1−→ sn
exists. Therefore xzsn 6= 0 and similarly xsnv 6= 0 thus
after the cleaning step this expression will remain on
the rhs of the equation for xsn−1v. Hence again xsn−1v

depends on xsnv. By an easy induction we can prove
that for all 0 ≤ i < n the variable xsiv depends on
xsi+1v. Now finally, from the transitivity of this rela-
tion we can deduce that variable xs0v(≡ xuv) depends
on xsnv(≡ xwv).

Lemma 19 A non-zero variable xuv depends on the
value of a non-zero variable xst iff for some k ≥ 1−δvt
we have u k−→ s

−1−→ t
−k−→ v.

Proof. (⇒) Note that if xuv ≡ xst then u = s and
v = t, so 1 − δvt = 0 and s

−1−→ t (since xst > 0) thus
we have u 0−→ u = s

−1−→ t
0−→ t = v.

If xuv 6≡ xst then there is a path in D from xuv to xst
and so there is also the shortest one. Let us denote its
length by k′. From Lemma 17 for some 1−δvt ≤ k ≤ k′

we have u k−→ s
−1−→ t

−k−→ v.
(⇐) Of course xuv and xst are both non-zero since

from u
k−→ s

−1−→ t
−k−→ v we know that s −1−→ t and

u
−1−→ v holds.
If it happens that k = 0 then necessarily v = t. In

other words we know that u 0−→ s
−1−→ t = v which

means that u 0−→ s and xst > 0. Now from Lemma
18 we get that xut (≡ xuv) is non-zero and depends on
xst.

The rest of the proof is by induction on k. If k = 1
then u

1−→ s
−1−→ t

−1−→ v. Of course we instantly have
that xuv, xst, xtv are non-zero. From Proposition 16
we know that we can decompose the u 1−→ s part into
u

0−→ w
+→ z

0−→ s for some w, z ∈ S and the whole
path would like this: u 0−→ w

+→ z
0−→ s

−1−→ t
−1−→ v.

Furthermore, z −1−→ t, w −1−→ v and so xzt and xwv
are non-zero. From this we can deduce that on the
rhs of the equation for xwv we will have an expression
p

(1)
wzxztxtv. This means that xwv depends on variable
xzt. In addition from the facts u 0−→ w, z 0−→ s and
Lemma 18 we get that xuv depends on xwv and xzt
depends on xst. Finally, from the transitivity of this
relation we obtain that xuv depends on xst.

Now assume that the statement is true for some k′

and let us consider a u
k′+1−→ s

−1−→ t
−(k′+1)−→ v path.

From Proposition 16 we know that for some w, z ∈ S
we can decompose this path into a u k′−→ w

1−→ s
−1−→

t
−1−→ z

−k′−→ v path. It follows that w 1−→ s
−1−→ t

−1−→ z

and u
k′−→ w

−1−→ z
−k′−→ v. Now from the induction

assumption for k = 1 we get that xwz is non-zero and
depends on xst and from the induction assumption for
k = k′ we get that xuv is non-zero and depends on xwz.
This means that xuv also depends on xst.

Example 1 It might be the case that u 0−→ s
−1−→

t
0−→ v where t 6= v, but xuv does not de-

pend on xst like in the following example: δ =
{(u, 1.0, 0, s), (s, 1.0,−1, t), (t, 1.0, 0, v)}.

Lemma 20 If the clean equation for a variable xuv ∈
Xi is non-linear in the variables belonging to Xi then
for some k0 ≥ 1, k1 ≥ 0 and some w ∈ S we have
u

k0−→ u
−1−→ v

1−k0−→ w
k1−→ u

−1−→ v
−k1−→ v.

Proof. Since xuv is non-linear in the variables belong-
ing to Xi then from Remark 1 we can deduce that for
some s, t ∈ S we have xst, xtv ∈ Xi and the clean equa-
tion for xuv has on the rhs an expression p(1)

us xstxtv. It
follows that u +→ s

−1−→ t
−1−→ v. Since xst is in the same

SCC as xuv then there has to be a path from xst to xuv
in the graph D and using Lemma 17 we get that for
some k ≥ 1 − δvt we have s k−→ u

−1−→ v
−k−→ t. From

the same argument we get that for some k′ ≥ 0 we have

t
k′−→ u

−1−→ v
−k′−→ v. Now joining these paths together

we get u +→ s
k−→ u

−1−→ v
−k−→ t

k′−→ u
−1−→ v

−k′−→ v. Fi-
nally, using Proposition 15 we have u k+1−→ u

−1−→ v
−k−→

t
k′−→ u

−1−→ v
−k′−→ v.
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We can now finish the proof of Theorem 7. Using
Lemma 20 we get that for some k0, l0 ≥ 1, k1, l1 ≥ 0
and w, z ∈ S we have u k0−→ u

−1−→ v
1−k0−→ w

k1−→ u
−1−→

v
−k1−→ v and s

l0−→ s
−1−→ t

1−l0−→ z
l1−→ s

−1−→ t
−l1−→ t. We

can simplify the later to s l0−→ s
−1−→ t

−l0−→ t for some
l0 ≥ 1 using Proposition 15.

Since there is a path from xuv to xst then from
Lemma 17 we have u

k−→ s
−1−→ t

−k−→ v for some
k ≥ 1−δvt. Now we will show that s k′−→ u

−1−→ v
−k′−→ t

holds for some k′ ≥ 1 and using Lemma 19 we will get
that the variable xst depends on the variable xuv. We

start the s k′−→ u
−1−→ v

−k′−→ t path by iterating the
s

l0−→ s path n times for sufficiently large n obtaining
a s

n·l0−→ s path: s
l0−→ s

l0−→ s
l0−→ . . .

l0−→ s︸ ︷︷ ︸
n times

. We will

see how big n should be later. Now from the last s
we do: s −1−→ t

−k−→ v
1−k0−→ w

k1−→ u
k0−→ u

−1−→ v
−k1−→

v
−k1−→ v

1−k0−→ w
k1−→ u

k0−→ u
k−→ s

−1−→ t and now in
the end we iterate n times the t

−l0−→ t path. Along
the whole path the value of the counter is changed by:
nl0 − 1− k + 1− k0 + k1 + k0 − 1− k1 − k1 + 1− k0 +
k1 + k0 + k − 1 − nl0 = −1. Now if nl0 > k + k0 + k1

(it can be done since l0 ≥ 1) then using Proposition
15 we can rewrite it as s nl0−k+k1−→ u

−1−→ v
−nl0+k−k1−→ t.

Basically, we can get the value of the counter suffi-
ciently high at the beginning of the path in order to
prevent it from reaching zero later along the path (the
(w, nl0 − k − k0 − k1) state being the state with the
lowest counter value along the first part of the path)
until it reaches the final t state. Now finally, since
nl0 − k + k1 ≥ 1 it follows from Lemma 19 that xst
depends on xuv.

A.7 Proof of Corollary 8

Corollary 8 In the DAG of SCCs, H, along any di-
rected path of SCCs there can be at most one nonlinear
SCC.
Proof. Let Xi and Xj (i < j) be two SCCs on such
a path. If inside these two SCCs there are variables
x ∈ Xi and y ∈ Xj whose equations are non-linear
in the variables belonging to Xi and Xj , respectively,
then since there is a path from x to y in D (in other
words x depends on y) we know from Theorem 7 that
there is also a path from y to x. But that implies x
and y are in the same SCC, a contradiction.

A.8 Proof of Theorem 10

Theorem 10 Let P (X) be the cleaned strongly con-
nected monotone system of quadratic polynomials as-
sociated with a nonlinear SCC, Xi, of the decomposed
system of equations associated with a p1CA, and where
the exact rational values Gu,v associated with variables
xuv in already solved “lower” linear SCCs have been
substituted for xuv on the right hand side of equations
for variables in Xi. Suppose that the p1CA has n con-
trol states, and thus |Xi| ≤ n2, and let G|Xi

denote
those entries Gu,v of the matrix G, such that xuv ∈ Xi.
Then, starting with x0 := 0, for every i ≥ 0, the New-
ton iteration x(4mn5+mn2+i) has i valid bits of G|Xi

.
Proof. For the cleaned system X = P (X) associ-
ated with a p1CA, A, by Corollary 6, pn

3

min ≤ q∗ ≤ 1
(coordinate-wise inequality), where pmin > 0 is the
smallest positive probability on any transition of A.
Note, in particular, that µmax ≤ 1, and µmin ≥ pn

3

min ≥
1

2mn3 . Furthermore, note that because the entire sys-
tem of non-linear equations for a p1CA is quadratic,
the smallest coefficient cmin of any monomial in the
system X = P (X) for this non-linear SCC, can only
arise as the product of pmin times at most 2 previ-
ously computed values Gu′,v′ and Gu′′,v′′ for variables
xu′v′ and xu′′v′′ which appeared in lower (linear) SCCs.
Again, by Corollary 6, we know that Gu′,v′ , Gu′′,v′′ ≥
pn

3

min, and thus cmin ≥ p2n3+1
min ≥ 1/2m(2n3+1). Thus,

noting that the cleaned system X = P (X) for a p1CA
with n control states has at most n2 variables, the
expression for kf in Theorem 9 can be seen to be
kf ≤ n2 · log(22mn3+m2mn

3
2mn

3
) = 4mn5 +mn2.

A.9 Proof of Lemma 12

Lemma 12 Let A ∈ Rn×n≥0 and b ∈ Rn≥0, such that:
(I −A)−1 =

∑∞
k=0A

k, and (
∑∞
k=0A

k)b ≤ 1, and A is
an irreducible non-negative matrix whose smallest non-
zero entry is c > 0, and b 6= 0 and p > 0 is the largest
entry of b. Then:

‖
∑∞
k=0A

k‖∞ ≤
n

pcn

.
Proof. Let adij and a∗ij denote the (i, j) entry of
matrix Ad and A∗ =

∑∞
k=0A

k respectively. Since A is
irreducible, for every pair of indices i, j, there exists a
power 1 ≤ d ≤ n such that adij > 0. Furthermore, since
the smallest non-zero entry of A is c, we have adij ≥ cd.

We know that A∗b ≤ 1. Wlog we can assume
that the first entry of b is b1 = p, by basically per-
muting rows/columns of A and b. Now the i-th en-
try of A∗b is (A∗b)i =

∑n
j=1 a

∗
ijbj ≤ 1 and thus
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obviously (A∗b)i ≥ a∗i1b1 = a∗i1p. It follows that
a∗i1 ≤ 1

p , for all i. At the same time, for all d ≥ 0,
A∗Ad = (

∑∞
k=0A

k)Ad =
∑∞
k=dA

k ≤
∑∞
k=0A

k = A∗.
Thus (A∗Ad)(i,1) =

∑n
j=1 a

∗
ija

d
j1 ≤ a∗i1. Let a′i1 =

(
∑n
d=1A

∗Ad)(i,1). Thus, a′i1 ≤ na∗i1 ≤ n/p. On the
other hand:

a′i1 =
n∑
d=1

n∑
j=1

a∗ija
d
j1 =

n∑
j=1

a∗ij

(
n∑
d=1

adj1

)
≥ cn

n∑
j=1

a∗ij

The last inequality holds because, for every j, for some
1 ≤ d ≤ n we have adj1 ≥ cd ≥ cn. Therefore for all i
we have

∑n
j=1 a

∗
ij ≤ n

pcn and thus ‖A∗‖∞ ≤
n
pcn .

A.10 Proof of Lemma 13

Lemma 13 Let Xr be a linear SCC of the cleaned
equation system of a p1CA, whose corresponding linear
equation system is x = Ax + b, after variables xuv in
lower SCCs have been substituted by their exact (possi-
bly irrational) values Gu,v. Let pmin denote the small-
est positive probability on any transition of the p1CA,
and let n be its number of control states. Then the
following bounds hold:

1. 1
22mn3+m

≤ p2n3+1
min ≤ ‖(I −A)‖∞ ≤ n+ 1

2. ‖(I −A)−1‖∞ ≤
n2

p5n5
min

≤ n2 · 25mn5

3. cond(I −A) ≤ 2n3

p5n5
min

≤ 2n3 · 25mn5

4. ‖b‖∞ ≥ p
2n3+1
min ≥ 1

22mn3+m

Proof. We first show that ‖A‖∞ ≤ n, and there-
fore ‖I −A‖∞ ≤ n + 1 (because A is non-negative).
To see this, note that because this is a linear SCC,
this means that the equations (1) for every variable
xuv of a linear SCC, Xr, must take the form: xuv =
buv+(

∑
w p

(0)
uwxwv)+

∑
y p

(1)
uy
∑
z x
′
yzx
′
zv, but such that

for each z, either x′yz has been assigned a fixed constant
(≤ 1) or x′zv is a fixed constant (≤ 1). This is because,
one such variable in each quadratic term must belong
to a lower SCC and was thus substituted by a constant.
Thus, summing the coefficients for all variables on the
right hand side, we see that since

∑1
c=−1

∑
w p

(c)
uw ≤ 1,

the full sum
∑
j aij of all entries in row i of A corre-

sponding to the variable xuv, can not be more than n,
the number of control states.

Before showing the lower bound on ‖I −A‖∞, next
we show the bound ‖b‖∞ ≥ p2n3+1

min . Observe that
since the equation system has been cleaned, the least
fixed point solution for all variables, including in linear
SCCs, is non-zero, and therefore there must exist at

least one equation xuv = α in the linear SCC with a
non-negative constant term in α. The only ways such
a constant term can arise is as a sum of terms of the
form p, or px′, or px′x′′, where p is a transition proba-
bility of the p1CA and x′ and x′′ are variables in lower
SCCs which have been assigned fixed constants. By
Corollary 6, we have that ‖b‖∞ ≥ p

2n3+1
min .

Next, in order to estimate ‖(I −A)−1‖∞ note that,
using Corollary 6, all non-zero entries of A are ≥
pmin · (pmin)n

3
= (pmin)n

3+1. This is because all co-
efficients are either equal to some p(c)

uv or to p
(c)
uv · xwz

where xwz is a variable from a lower SCC that has
been substituted by a constant. We now use Lemma
12. Note that the dimensions of our matrix A here
can in fact be as large as n2 × n2 (because n is the
number of control states, and the dimensions of A are
based on the number of variables in the SCC). We
thus get from Lemma 12, using the bound ‖b‖∞ ≥
p2n3+1
min , and the fact that all non-zero entries of A are
≥ (pmin)n

3+1, that ‖(I −A)−1‖∞ = ‖
∑∞
k=0A

k‖∞ ≤
n2

pn5+n2+2n3+1
min

≤ n2

p5n5
min

. It follows that cond(I − A) =

‖I −A‖∞ · ‖(I −A)−1‖∞ ≤
2n3

p5n5
min

.

Finally, to see that p2n3+1
min ≤ ‖I −A‖∞, we will

show that for every variable xuv, the diagonal entry
(I − A)uv,uv ≥ p2n3+1

min . To see this it suffices to note
that in the original cleaned equation xuv = α for a vari-
able xuv ∈ Xr, it can not be the case that α consists of
just one linear term cxuv, because otherwise the LFP of
xuv = cxuv is 0, and we have already eliminated 0 vari-
ables. Hence, it must be the case that α contains either
another linear term c′xst or a constant term c′′, or both.
In either case, if we plug in the actual LFP values for
all other variables besides xuv into α, we will have left
an equation of the form xuv = cxuv + c′, where, by the
arguments of the previous two paragraphs, it must be
the case that c′ ≥ (pmin)2n3+1. Thus, solving for the
(unique) solution for xuv, we have xuv = c′/(1−c) ≤ 1.
Therefore, c′ ≤ (1−c), and thus (1−c) ≥ (pmin)2n3+1.
But note that (1 − c) is precisely the diagonal entry
(I −A)uv,uv. Therefore p2n3+1

min ≤ ‖I −A‖∞.

A.11 Proof of Theorem 14

Theorem 14 Given a p1CA (or, equivalently, a QBD),
the above algorithm, based on (a decomposed) Newton’s
method, approximates every entry of the matrix G of
termination probabilities for the p1CA (QBD) to within
i bits of precision (i.e., to within additive error 1/2i).
Moreover, in the unit-cost arithmetic RAM model of
computation (i.e., rational Blum-Shub-Smale model),
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the algorithm has a running time which is polynomial
in both the encoding size of the p1CA (QBD) and in i.
Proof. First, note that up until the non-linear SCCs,
all values for lower linear SCCs are computed exactly.
Next note that, given the number of iterations of New-
ton’s method that are applied in step (2.) of the al-
gorithm for non-linear SCCs, by Theorem 10, the val-
ues Gu,v for variables xuv in non-linear SCCs are com-
puted to within W0 = hmax(9mn5 + 4) + i valid bits
of precision. In other words, for each such xuv, a value
G′u,v is computed such that |Gu,v −G′u,v|/Gu,v ≤ 1

2W0 .
Moreover, since 0 < Gu,v ≤ 1, we can conclude that
|Gu,v −G′u,v| ≤ 1

2W0 .
Thus, sinceW0 = hmax(9mn5+4)+i ≥ i, for all non-

linear SCCs and all linear SCCs which are below them,
we certainly do compute G′u,v which approximates the
value Gu,v for the variables xuv in these SCC, to within
at least i bits of precision (i.e., such that |Gu,v−G′u,v| ≤
2i).

The rest of the proof proceeds by induction on the
height, h, of a given higher linear SCC, Xr, above
the non-linear SCCs, to show that for every variable
xuv ∈ Xr we compute Gu,v to within Wh = (hmax −
h)(9mn5 + 4) + i bits of precision.

For the base case, h = 0, this follows from the fact
that all non-linear SCCs are computed to within W0 =
hmax(9mn5 + 4) + i bits of precision, and all “lower”
linear SCCs are computed exactly.

For the inductive case, let Xr be an “upper” linear
SCC in H at height h > 0 above non-linear SCCs, and
and suppose that the values of all SCCs below it have
been computed to within at least Wh−1 = (hmax −
h + 1)(9mn5 + 4) + i bits of precision, and plugged
into the equations for Xr. We will show that after
the linear system associated with Xr has been solved
exactly, the solution gives, for each xuv ∈ Xr, a value
G′u,v such that |Gu,v−G′u,v| ≤ 1

2Wh
, i.e., such that G′u,v

approximates Gu,v to within i bits of precision.
To do this, we employ Theorem 11, which gives us

bounds on the errors in solutions of linear systems in
terms of condition numbers and other quantities asso-
ciated with the linear system, and Lemma 13, which
gives us bounds on these quantities for the specific lin-
ear systems that arise for one linear SCC of a p1CA.

Suppose that, if the values of lower SCCs had been
computed “exactly” (even though they can be irra-
tional), then the resulting linear system for Xr, which
may have irrational coefficients, would be (I−A)x = b.

Note that if the values of lower SCCs are approxi-
mated to within Wh−1 bits of precision, then the result-
ing system can be written as ((I −A) + E)x = (b+ ζ).
We will now bound the absolute values of entries of E
and ζ.

Note that each entry of the matrix A is the coeffi-
cient auv,st of xst ∈ Xr in the linear expression α for
the equation xuv = α of some variable xuv ∈ Xr. Now,
the question is, how much can auv,st change when the
values of lower SCCs are approximated to Wh−1 bits
of precision?

The answer is that, since the original quadratic
equation xuv = α′ can have another variable xs′t′ in
monomial terms that contain xst, and since all such
monomial terms in α′ have a coefficient ≤ 1, it can be
the case that by under-approximating Gs′,t′ to within
Wh−1 bits of precision, we have under-approximated
the resulting coefficient that arises from that monomial
by at most 1/2Wh−1 . Next we note that the coefficient
auv,st of xst may actually arise as the sum of at most
n such monomial terms (actually n+ 2, but this is im-
material and in fact it can easily be shown that they
can sum to at most 2). Thus it must be the case that
Euv,st ≤ n/2Wh−1 .

We can ask a similar question about b. Since a
constant term may arise because both variables in a
quadtratic monomial of α′ belonged to the lower SCCs,
we now have that the resulting error 1/2Wh−1 could
have arisen for both variables that were fixed in a
monomial. It is not hard to see that the resulting er-
ror for the entire monomial is at most 2/2Wh−1 , ba-
sically because such monomials in α′ have a coeffi-
cient ≤ 1, and because for values x, x′ > 0, we have
(x− ε)(x′− ε) ≥ xx′−2ε. Thus ζuv ≤ 2n/2Wh−1 . Since
the pairs uv and st were arbitrary, and E is at most
an n2 × n2 matrix, we have ‖E‖∞ ≤ n3/2Wh−1 , and
‖ζ‖∞ ≤ 2n/2Wh−1 .

Therefore, using Lemma 13, part (1.), we can

conclude that
‖E‖∞

‖(I −A)‖∞
≤ n322mn3+m

2Wh−1
, and also,

using Lemma 13, part (4.), we can conclude that
‖ζ‖∞
‖b‖∞

≤ 2n22mn3+m

2Wh−1
. Next, by Lemma 13, part (2.),

we have 1/‖(I −A)−1‖∞ ≥ 1/(n2 · 25mn5
), and since

‖E‖∞ ≤ n3/2Wh−1 , it is easy to check that ‖E‖∞ ≤
1/‖(I −A)−1‖∞. Finally, by Lemma 13, part (3.),
cond(I −A) ≤ 2n3 · 25mn5

.
Now we use these bounds and apply Theorem 11.

Let ε = 2n322mn3+m

2Wh−1
, and let ε′ = 8εn3 · 25mn5

=
16n622mn3+m25mn5

2Wh−1
. It can be checked that, by construc-

tion, the matrix equation (I −A)x = b and its approx-
imate version (I −A+ E)x = (b+ ζ), as well as ‖E‖∞,
‖ζ‖∞, ε, and ε′, all satisfy the conditions of Theorem
11.

Recall that the unique solution x∗ to the original
system is G|Xr

: it consists of those values Gu,v where
xuv ∈ Xr. Thus in particular 0 < ‖x∗‖∞ ≤ 1. Thus,
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by the conclusion of Theorem 11, there is a unique
solution vector x∗ε to the approximate system, such that

‖x∗ε − x∗‖∞ ≤ ε′ = 16n622mn3+m25mn5

2Wh−1
.

The proof of the inductive claim will now be com-
pleted by simply checking that 16n622mn3+m25mn5 ≤
22mn3+m+5mn5+n5+4 ≤ 29mn5+4, and thus since Wh =
(hmax − h)(9mn5 + 4) + i, that ‖x∗ε − x∗‖∞ ≤

1
2Wh

.
The fact that the algorithm has polynomial running

time in the unit-cost RAM model follows immediately
from the fact that there are only polynomially many
iterations of Newton’s method, and each iteration es-
sentially involves solving a linear system (or matrix in-
version), which can of course be done with polynomi-
ally many arithmetic operations (e.g., using Gaussian
elimination).
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