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Multi-type Branching Processes
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Fact

The extinction probabilities are the least
fixed point, q* € [0,1]3, of X = P(X).
qr = 0.276; g5 = 0.769;

|
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Probabilistic Polynomial Systems of Equations
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is a Probabilistic Polynomial: the coefficients are positive and sum to 1.

v

A Probabilistic Polynomial System (PPS), is a system of n equations
x = P(x)

in n variables where each P;(x) is a probabilistic polynomial.

Every multi-type Branching Process (BP) with n types, and every SCFG
with n nonterminals, corresponds to a PPS, and vice-versa.
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Basic properties of PPSs, x = P(x)

For every PPS, P : [0,1]” — [0, 1]" defines a monotone map on [0, 1]". ]

Proposition

e A PPS, x = P(x) has a least fixed point, ¢* € [0,1]".
(q* can be irrational.)

o g" = limy_ P¥(0).

@ g is vector of extinction/termination probabilities for the BP (SCFG).

Can we compute the probabilities g* efficiently (in P-time)?

First considered by Kolmogorov & Sevastyanov (1940s).
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Newton's method

Newton's method

Seeking a solution to F(x) = 0, we start at a guess x(°), and iterate:

x(k+1) = x(K) _ (F'(x(K)) L F(x(K)
Here F'(x), is the Jacobian matrix:

oF oF

Ox1 """ Oxn
F'(x) = E

9F,  OF,

Ox1 """ Oxn

For PPSs, F(x) = (P(x) — x), and Newton iteration looks like this:

x(FD) = x() () — P/(x()) 7L (P(x(K)) — x(K)y

where P’(x) is the Jacobian of P(x).

Kousha Etessami (U. Edinburgh) BMDPs RP2014 6 /33
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Newton on PPSs

We can decompose x = P(x) into its strongly connected components
(SCCs), based on variable dependencies, and eliminate “0" variables.

Theorem [E.-Yannakakis'05]

Decomposed Newton's method converges monotonically to the LFP g* for
PPSs, and for more general Monotone Polynomial Systems (MPSs).

v

@ In [E.-Yannakakis'05,'09], we gave no upper bounds on # of
iterations needed for PPSs or MPSs.

@ We proved hardness results (PosSLP-hardness) for obtaining any
nontrivial approximation of the LFP of MPSs for recursive Markov
chains.
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What is Newton's worst case behavior for PPSs?

[Esparza,Kiefer,Luttenberger,’07,"10] studied Newton's method on MPSs
further:

o Gave bad examples of PPSs, x = P(x), where ¢* = 1, requiring
exponentially many iterations, as a function of the encoding size |P)|
of the equations, to converge to within additive error < 1/2.

@ For strongly-connected equation systems they gave an exponential
upper bound in |P|.

@ But they gave no upper bounds for arbitrary PPSs or MPSs in terms
of |P].
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[Esparza,Kiefer,Luttenberger,’07,"10] studied Newton's method on MPSs
further:

o Gave bad examples of PPSs, x = P(x), where ¢* = 1, requiring
exponentially many iterations, as a function of the encoding size |P)|
of the equations, to converge to within additive error < 1/2.

@ For strongly-connected equation systems they gave an exponential
upper bound in |P|.

@ But they gave no upper bounds for arbitrary PPSs or MPSs in terms
of |P].

Recently in [Stewart-E.-Yannakakis'13], we gave a matching exponential
upper bound in |P| for arbitrary PPSs and MPSs.
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P-time approximation for PPSs

Theorem ( )

Given a PPS, x = P(x), with LFP q* € [0, 1]", we can compute a rational
vector v € [0,1]" such that

v —a*loo < 27

in time polynomial in both the encoding size |P| of the equations
and in j (the number of “bits of precision” ).

We use Newton's method..... but how?
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Qualitative decision problems for PPSs are in P-time

For certain classes of strongly-connected PPSs, q; = 1 for all i iff the
spectral radius o(P’(1)) for the moment matrix P'(1) is <1,
and otherwise q; < 1 for all i.

Given a PPS, x = P(x), deciding whether qi = 1 is in P-time.
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For certain classes of strongly-connected PPSs, q; = 1 for all i iff the
spectral radius o(P’(1)) for the moment matrix P'(1) is <1,
and otherwise q; < 1 for all i.

Given a PPS, x = P(x), deciding whether qi = 1 is in P-time.

(It is even in strongly-P-time ([Esparza-Gaiser-Kiefer'10]).)

Deciding whether g = 0 is also easily in (strongly) P-time.
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Algorithm for approximating the LFP for PPSs

@ Find and remove all variables x; such that g7 = 0 or g; = 1.

@ On the resulting system of equations, run Newton’s method starting
from 0.
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Algorithm for approximating the LFP for PPSs

@ Find and remove all variables x; such that g7 = 0 or g; = 1.

@ On the resulting system of equations, run Newton’s method starting
from 0.

Theorem ( )

Given a PPS x = P(x) with LFP 0 < q* < 1, if we apply Newton starting
at x(© = 0, then

lq* — x@PHD|| <27/
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Algorithm

© Find and remove all variables x; such that g7 = 0 or g/ = 1.

@ On the resulting system of equations, run Newton’s method starting
from 0.

© After each iteration, round down to a multiple of 2=/

Theorem ( )

If, after each Newton iteration, we round down to a multiple of 2=" where
h:=4|P| + j + 2, then after h iterations ||q* — x(N)||o, <27

Thus, we obtain a P-time algorithm (in the standard Turing model) for
approximating g*.
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High level picture of proof

e For a PPS, x = P(x), with LFP 0 < g* < 1, P'(g*) is a non-negative
square matrix, and (we show)

(spectral radius of P'(q*) ) = o(P'(q")) < 1
e So, (I — P'(q*)) is non-singular, and (I — P'(g*))~! = Y20 (P'(g*))".

@ We can show the # of Newton iterations needed to get within ¢ > 0 is

o 1
e log (1 = P(67) o + log -

o ||(I = P(g")) !l is tied to the distance |1 — o(P'(q*))|,
which in turn is related to min;(1 — g7), which we can lower bound.

@ Uses lots of Perron-Frobenius theory, among other things...
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Question

What is the maximum probability of
extinction, starting with one ’ ?

1, 1
R =3 BXGXY+§XBXR+_
IR
XB — ZXR+Z
X = XgXp
xy = max{x3, xg}

We get fixed point equations, x = P(X).

6

i

The maximum extinction probabilities

are the least fixed point, q* € [0, 1]3,
x = P(x).
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xy = min{x3,xr}

We get fixed point equations, x = P(X).
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The minimum extinction probabilities
are the least fixed point, q* € [0,1]3, of
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Maximum Probabilistic Polynomial Systems of Equations

A Maximum Probabilistic Polynomial System (maxPPS) is a system
x; = max{p;j(x):j=1,...,m} i=1,...,n

of n equations in n variables, where each p; j(x) is a probabilistic
polynomial. We denote the entire system by:

x = P(x)
Minimum Probabilistic Polynomial Systems (minPPSs) are defined
similarly.
These are Bellman optimality equations for maximizing (minimizing)
extinction probabilities in a BMDP.

We use max/minPPS to refer to either a maxPPS or an minPPS. J

Kousha Etessami (U. Edinburgh) BMDPs RP2014 17 / 33



Basic properties of max/minPPSs, x = P(x)

P :[0,1]" — [0,1]" defines a monotone map on [0, 1]".

Proposition.

e Every max/minPPS, x = P(x) has a least fixed point, g* € [0,1]".
o g" = limy_ P¥(0).

@ g* is vector of optimal extinction probabilities for the BMDP.

Can we compute the probabilities g* efficiently (in P-time)?

Kousha Etessami (U. Edinburgh) BMDPs RP2014
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P-time approximation for BMDPs and max/minPPSs

Theorem ( )

Given a max/minPPS, x = P(x), with LFP q* € [0,1]", we can compute a

rational vector v € [0,1]" such that
v = a[loo <277

in time polynomial in the encoding size |P| of the equations, and in j.

We establish this via a new Generalized Newton's Method that uses linear

programming in each iteration.

Kousha Etessami (U. Edinburgh) BMDPs RP2014
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Newton iteration as a first-order (Taylor) approximation

An iteration of Newton's method on a PPS, applied on current vector
y € R", solves the equation

PY(x) = x

where PY(x) = P(y) + P'(y)(x — y) is a linear (first-order Taylor)
approximation of P(x).

Kousha Etessami (U. Edinburgh) BMDPs RP2014 20/ 33



Generalised Newton's method

Linearisation
Given a maxPPS

(P(x))i = max{pjj(x):j=1,...,m;} i=1,...,n

We define the linearisation, PY(x), by:

(PY(x))i = max{p; j(y) + Vpij(y)(x—y):j=1,...,m} i=1,...,n

Kousha Etessami (U. Edinburgh) BMDPs RP2014 21 /33



Generalised Newton's method

Linearisation

Given a maxPPS
(P(x))i = max{pjj(x):j=1,...,m;} i=1,...,n

We define the linearisation, PY(x), by:

(PY(x))i = max{pii(y) + Vpi(y).(x—y) :j=1,....m} i=1....n

Generalised Newton's method: iteration applied at vector y
For a maxPPS,
For a minPPS,

minimize ), x; subject to PY(x) < x;
maximize ) . x; subject to PY(x) > x;

These can both be phrased as linear programming problems. Their optimal
solution solves PY(x) = x, and yields one GNM iteration.

v
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Algorithm for max/minPPSs

© Find and remove all variables x; such that g = 0 or g; = 1.
(g7 = 1 decidable in P-time using LP [E.-Yannakakis'06]: reduces to a
spectral radius optimization problem for non-negative square
matrices. )
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matrices. )

@ On the resulting system of equations, run Generalized Newton's
Method, starting from 0. After each iteration, round down to a
multiple of 277,

Each iteration of GNM can be computed in P-time by solving an LP. )
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Algorithm for max,/minPPSs

© Find and remove all variables x; such that g = 0 or g; = 1.
(g7 = 1 decidable in P-time using LP [E.-Yannakakis'06]: reduces to a
spectral radius optimization problem for non-negative square
matrices. )

@ On the resulting system of equations, run Generalized Newton's
Method, starting from 0. After each iteration, round down to a
multiple of 2=/,

Each iteration of GNM can be computed in P-time by solving an LP. )

Theorem [ESY'12]

Given a max/minPPS x = P(x) with LFP 0 < q* < 1, if we apply rounded

GNM starting at x(O) = 0, using h := 4|P| + j + 1 bits of precision, then
lq* — x@IPIH+D))| < 2,

Thus, algorithm runs in time polynomial in |P| and j.
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Proof outline: some key lemmas

(1 — q*) is the vector of pessimal survival probabilities.

If q* — x¥) < \(1 — g*) for some \ > 0, then q* — x(*t1) < 3(1 — q¥).

For any Max(Min) PPS with LFP q*, such that 0 < q* < 1, for any i,
q- <1-—274Pl
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Branching Simple Stochastic Games
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o 0 00.-0) What is the value of extinction, starting
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Branching Simple Stochastic Games
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Qualitative and Quantitative problems for BSSGs

Theorem ([E.-Yannakakis'05])

For any BSSG, both players have static positional optimal strategies for
maximizing (minimizing) extinction probability.

A static positional strategy is one that, for every type belonging to the
player, always deterministically chooses the same single rule.
(i.e., it is deterministic, memoryless, and “context-oblivious”.)

Theorem ([E.-Yannakakis'06])

Given a BSSG, deciding if the extinction value is g = 1 is in NP N coNP,
& is at least as hard as computing the exact value for a finite-state SSG.

Theorem ([ESY'12])

Given a BSSG, and given € > 0, we can compute a vector v € [0,1]", such
that |[|[v — ¢*||cc <€, in FNP (and in PLS).
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ieore)
.4{}
@)
°
® o

©<{.}
(@}

Kousha Etessami (U. Edinburgh) s RP2014 27 /33



Optimal problem for BMDPs
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Optimal
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What is the minimum probability of not
reaching . starting with one . ?

_2 +1
YR = 3YY)/Y 3
2

YG=§

yy = min{yc,yr}

We get fixed point equations, y = Q(y)

v

Thm.
The maximum reachability probabilities
are 1 — g*, where g* € [0,1]% is the
GREATEST FIXED POINT, of

y = Q(¥).
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probl

Question
What is the maximum probability of not

reaching . starting with one . ?

_2 +1
Yr = 3}/YYY 3
2

}’G=§

Yy = maX{YG; )/R}
We get fixed point equations, ¥ = Q(¥)

V.

Thm.

The minimum reachability probabilities
are 1 — g*, where g* € [0,1]3 is the
GREATEST FIXED POINT of

y = Q(¥)
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P-time approximation of optimal probability for

BMDPs

Theorem ( )

Given a max/minPPS, y = Q(y), with GFP g* € [0,1]", we can compute
a rational vector v € [0,1]" such that

v — g[loo < 27

in time polynomial in the encoding size |Q| of the equations, and in j.

We again establish this via Generalized Newton’'s Method.
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Algorithm for of max/minPPSs

© Find and remove all variables x; such that g/ = 1.
(This can be done in P-time, by qualitative analysis of y = Q(y).)
@ Interestingly, we do not need to eliminate the variables x; such that
g = 0. (And we do not want to eliminate variables with g = 0.)

© On the resulting system of equations, run Generalized Newton's
Method, starting from 0. After each iteration, round down to a
multiple of 277

@ Amazingly this works! Note the very subtle difference with the
algorithm for approximating the LFP of the same max/minPPS.
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Algorithm for of max/minPPSs

© Find and remove all variables x; such that g/ = 1.
(This can be done in P-time, by qualitative analysis of y = Q(y).)
@ Interestingly, we do not need to eliminate the variables x; such that
g = 0. (And we do not want to eliminate variables with g = 0.)

© On the resulting system of equations, run Generalized Newton's
Method, starting from 0. After each iteration, round down to a
multiple of 277

@ Amazingly this works! Note the very subtle difference with the
algorithm for approximating the LFP of the same max/minPPS.

| A\

Theorem [ESY'14]

Given a max/minPPS x = P(x) with GFP 0 < g* < 1, if we apply rounded
GNM starting at x(©) = 0, using h := 4|P| + j + 1 bits of precision, then
Hg* _ X(4|P|+j+1)||oo < 2=

Thus, algorithm runs in time polynomial in |P| and j.

v
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Conclusion

@ We have established P-time algorithms for a number of fundamental
qualitative and quantative (approximate) analysis problems for
Multi-type Branching Processes and for Branching MDPs, including
for:

e optimal extinction probabilities
e optimal reachability probabilities
o optimal expected progeny size ([E.-Wojtczak-Yannakakis'08])

@ These algorithms also yield FNP (and PLS) complexity bounds for
Branching Simple Stochastic Games with the same objectives.

@ Many open questions still remain for these and related infinite-state
recursive stochastic models and stochastic games.
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