Algorithms for Branching Markov Decision Processes

Kousha Etessami

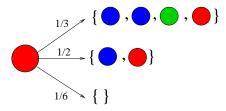
University of Edinburgh

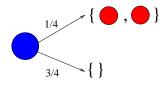
Based on joint works with:

Alistair Stewart&Mihalis YannakakisU. of EdinburghColumbia Uni.

RP 2014 Oxford U. September 22nd, 2014

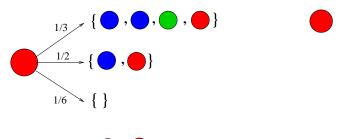
・ロト ・四ト ・ヨト ・ヨト 三日 -

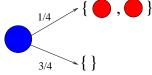


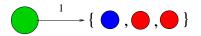


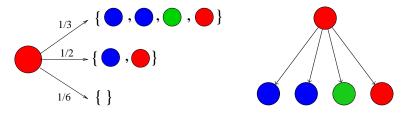
(日) (周) (三) (三)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

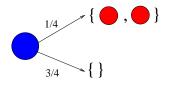


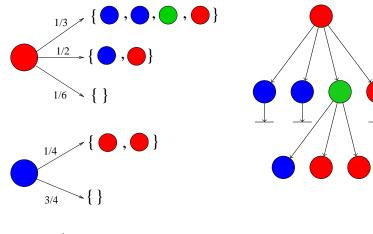


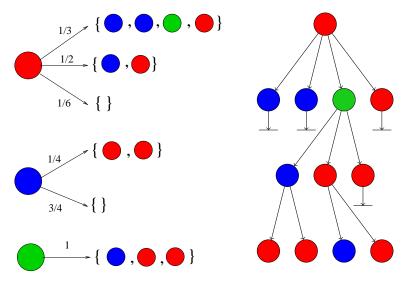




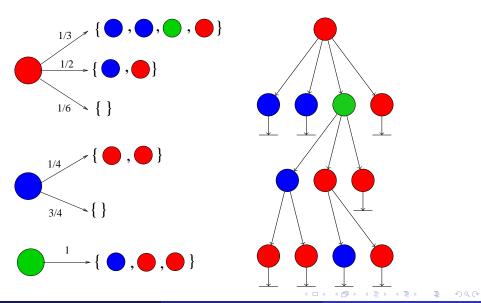
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●







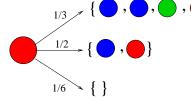
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

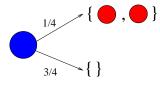


•}

?

Question: What is the probability of eventual extinction, starting with one



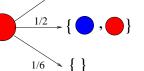


Kousha Etessami (U. Edinburgh)

RP2014 3 / 33

XR

Question: What is the probability of eventual extinction, starting with one ?



1/3 🦯

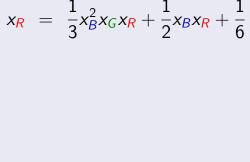


Question: What is the probability of eventual extinction, starting with one

$$1/3 \quad \{ \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc$$

$$1/2 \quad \{ \bigcirc, \bigcirc, \bigcirc \}$$

$$1/6 \quad \{ \}$$



?

Question: What is the probability of eventual extinction, starting with one

$$1/3 \quad \{ \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc$$

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$
$$x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$$
$$x_{G} = x_{B}x_{R}^{2}$$

?

Question: What is the probability of eventual extinction, starting with one

$$1/3 \quad \{ \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc$$

$$1/2 \quad \{ \bigcirc, \bigcirc, \bigcirc, \bigcirc$$

$$1/2 \quad \{ \bigcirc, \bigcirc, \bigcirc \}$$

$$1/6 \quad \{ \}$$

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$
$$x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$$
$$x_{G} = x_{B}x_{R}^{2}$$

We get nonlinear fixed point equations: $\bar{\mathbf{x}} = P(\bar{\mathbf{x}}).$

1/4

3/4

Question: What is the probability of eventual extinction, starting with one

 $x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$ $x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$ $x_{G} = x_{B}x_{R}^{2}$

We get nonlinear fixed point equations: $\bar{\mathbf{x}} = P(\bar{\mathbf{x}}).$

Fact

The extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0, 1]^3$, of $\mathbf{\bar{x}} = P(\mathbf{\bar{x}})$.

?

Question: What is the probability of eventual extinction, starting with one

$$1/3 \quad \{ \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc$$

$$1/2 \quad \{ \bigcirc, \bigcirc, \bigcirc \}$$

$$1/6 \quad \{ \}$$

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$
$$x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$$
$$x_{G} = x_{B}x_{R}^{2}$$

We get nonlinear fixed point equations: $\bar{\mathbf{x}} = P(\bar{\mathbf{x}}).$

Fact

The extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0, 1]^3$, of $\mathbf{\bar{x}} = P(\mathbf{\bar{x}})$. $q_R^* = 0.276$; $q_B^* = 0.769$; $q_G^* = 0.059$.

$$\frac{1}{3}x_B^2 x_G x_R + \frac{1}{2}x_B x_R + \frac{1}{6}$$

is a Probabilistic Polynomial: the coefficients are positive and sum to 1.

A Probabilistic Polynomial System (PPS), is a system of n equations

$$\mathbf{x} = P(\mathbf{x})$$

in *n* variables where each $P_i(x)$ is a probabilistic polynomial.

Every multi-type Branching Process (BP) with n types, and every SCFG with n nonterminals, corresponds to a PPS, and vice-versa.

For every PPS, $P: [0,1]^n \rightarrow [0,1]^n$ defines a monotone map on $[0,1]^n$.

Proposition

- A PPS, x = P(x) has a least fixed point, q^{*} ∈ [0, 1]ⁿ.
 (q^{*} can be irrational.)
- $q^* = \lim_{k \to \infty} P^k(\mathbf{0}).$
- q* is vector of extinction/termination probabilities for the BP (SCFG).

Question

Can we compute the probabilities q^* efficiently (in P-time)?

First considered by Kolmogorov & Sevastyanov (1940s).

< 日 > < 四 > < 三 > < 三 >

Newton's method

Newton's method

Seeking a solution to $F(\mathbf{x}) = 0$, we start at a guess $\mathbf{x}^{(0)}$, and iterate:

$$\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} - (F'(\mathbf{x}^{(k)}))^{-1}F(\mathbf{x}^{(k)})$$

Here $F'(\mathbf{x})$, is the **Jacobian matrix**:

$$\mathsf{F}'(\mathbf{x}) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} \cdots \frac{\partial F_1}{\partial x_n} \\ \vdots \vdots \\ \frac{\partial F_n}{\partial x_1} \cdots \frac{\partial F_n}{\partial x_n} \end{bmatrix}$$

For PPSs, $F(x) \equiv (P(x) - x)$, and Newton iteration looks like this:

$$\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + (I - P'(\mathbf{x}^{(k)}))^{-1}(P(\mathbf{x}^{(k)}) - \mathbf{x}^{(k)})$$

where $P'(\mathbf{x})$ is the Jacobian of $P(\mathbf{x})$.

We can decompose $\mathbf{x} = P(\mathbf{x})$ into its strongly connected components (SCCs), based on variable dependencies, and eliminate "0" variables.

Theorem [E.-Yannakakis'05]

Decomposed Newton's method converges monotonically to the LFP \mathbf{q}^* for PPSs, and for more general Monotone Polynomial Systems (MPSs).

But...

- In [E.-Yannakakis'05,'09], we gave no upper bounds on # of iterations needed for PPSs or MPSs.
- We proved hardness results (PosSLP-hardness) for obtaining any nontrivial approximation of the LFP of MPSs for recursive Markov chains.

[Esparza,Kiefer,Luttenberger,'07,'10] studied Newton's method on MPSs further:

- Gave bad examples of PPSs, $\mathbf{x} = P(\mathbf{x})$, where $q^* = 1$, requiring exponentially many iterations, as a function of the encoding size |P| of the equations, to converge to within additive error < 1/2.
- For strongly-connected equation systems they gave an exponential upper bound in |P|.
- But they gave no upper bounds for arbitrary PPSs or MPSs in terms of |P|.

[Esparza,Kiefer,Luttenberger,'07,'10] studied Newton's method on MPSs further:

- Gave bad examples of PPSs, $\mathbf{x} = P(\mathbf{x})$, where $q^* = 1$, requiring exponentially many iterations, as a function of the encoding size |P| of the equations, to converge to within additive error < 1/2.
- For strongly-connected equation systems they gave an exponential upper bound in |P|.
- But they gave no upper bounds for arbitrary PPSs or MPSs in terms of |P|.

Recently in [Stewart-E.-Yannakakis'13], we gave a matching exponential upper bound in |P| for arbitrary PPSs and MPSs.

Theorem ([E.-Stewart-Yannakakis,STOC'12])

Given a PPS, $\mathbf{x} = P(\mathbf{x})$, with LFP $\mathbf{q}^* \in [0, 1]^n$, we can compute a rational vector $\mathbf{v} \in [0, 1]^n$ such that

$$\|\mathbf{v} - \mathbf{q}^*\|_\infty \le 2^{-j}$$

in time polynomial in both the encoding size |P| of the equations and in j (the number of "bits of precision").

We use Newton's method but how?

Theorem ([Kolmogorov-Sevastyanov'47,Harris'63])

For certain classes of strongly-connected PPSs, $q_i^* = 1$ for all *i* iff the spectral radius $\varrho(P'(1))$ for the moment matrix P'(1) is ≤ 1 , and otherwise $q_i^* < 1$ for all *i*.

Theorem ([E.-Yannakakis'05])

Given a PPS, $\mathbf{x} = P(\mathbf{x})$, deciding whether $q_i^* = 1$ is in P-time.

Theorem ([Kolmogorov-Sevastyanov'47,Harris'63])

For certain classes of strongly-connected PPSs, $q_i^* = 1$ for all *i* iff the spectral radius $\varrho(P'(1))$ for the moment matrix P'(1) is ≤ 1 , and otherwise $q_i^* < 1$ for all *i*.

Theorem ([E.-Yannakakis'05])

Given a PPS, $\mathbf{x} = P(\mathbf{x})$, deciding whether $q_i^* = 1$ is in P-time.

(It is even in strongly-P-time ([Esparza-Gaiser-Kiefer'10]).)

Theorem ([Kolmogorov-Sevastyanov'47,Harris'63])

For certain classes of strongly-connected PPSs, $q_i^* = 1$ for all *i* iff the spectral radius $\varrho(P'(1))$ for the moment matrix P'(1) is ≤ 1 , and otherwise $q_i^* < 1$ for all *i*.

Theorem ([E.-Yannakakis'05])

Given a PPS, $\mathbf{x} = P(\mathbf{x})$, deciding whether $q_i^* = 1$ is in P-time.

(It is even in strongly-P-time ([Esparza-Gaiser-Kiefer'10]).)

Deciding whether $q_i^* = 0$ is also easily in (strongly) P-time.

- Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$.
- On the resulting system of equations, run Newton's method starting from 0.

- Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$.
- On the resulting system of equations, run Newton's method starting from 0.

Theorem ([ESY'12])

Given a PPS $\mathbf{x} = P(\mathbf{x})$ with LFP $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, if we apply Newton starting at $\mathbf{x}^{(0)} = \mathbf{0}$, then

$$\|\mathbf{q}^* - \mathbf{x}^{(4|P|+j)}\|_{\infty} \le 2^{-j}$$

- Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$.
- On the resulting system of equations, run Newton's method starting from 0.
- Solution After each iteration, round down to a multiple of 2^{-h}

Theorem ([ESY'12])

If, after each Newton iteration, we round down to a multiple of 2^{-h} where h := 4|P| + j + 2, then after h iterations $\|\mathbf{q}^* - \mathbf{x}^{(h)}\|_{\infty} \leq 2^{-j}$.

Thus, we obtain a P-time algorithm (in the standard Turing model) for approximating q^* .

High level picture of proof

• For a PPS, x = P(x), with LFP $0 < q^* < 1$, $P'(q^*)$ is a non-negative square matrix, and (we show)

(spectral radius of ${\sf P}'(q^*)$) $\equiv arrho({\sf P}'(q^*)) < 1$

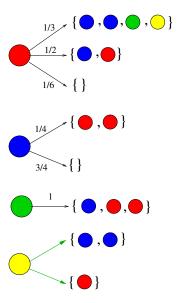
• So, $(I - P'(q^*))$ is non-singular, and $(I - P'(q^*))^{-1} = \sum_{i=0}^{\infty} (P'(q^*))^i$.

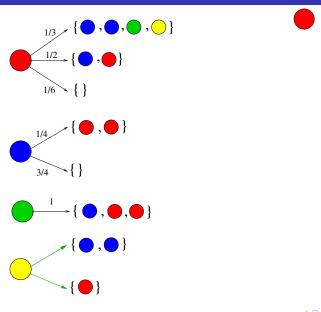
• We can show the # of Newton iterations needed to get within $\epsilon > 0$ is

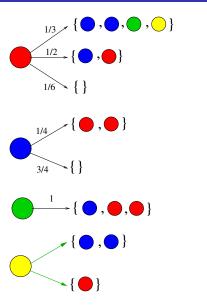
$$pprox pprox \log \|(I-P'(q^*))^{-1}\|_\infty + \log rac{1}{\epsilon}$$

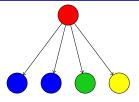
- $\|(I P'(q^*))^{-1}\|_{\infty}$ is tied to the distance $|1 \varrho(P'(q^*))|$, which in turn is related to min_i $(1 q_i^*)$, which we can lower bound.
- Uses lots of Perron-Frobenius theory, among other things...

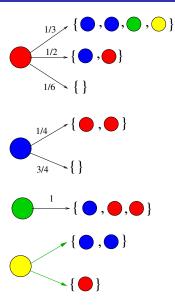
< 口 > < 何 > < 三 > < 三 ;

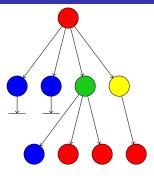




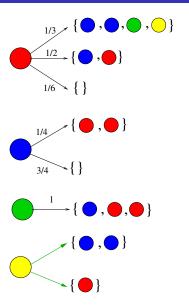


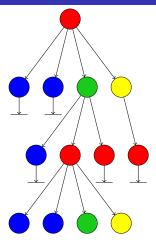






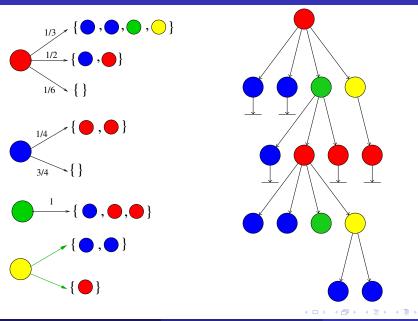
▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへ⊙





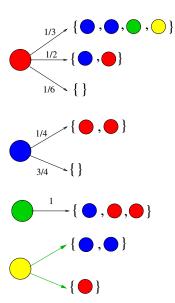
• • = • • =

▲ 西部



■ ► ■ のQC RP2014 14/33

Branching Markov Decision Question

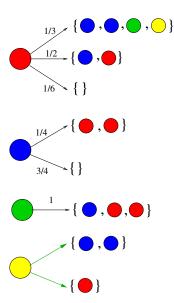


What is the maximum probability of

extinction, starting with one

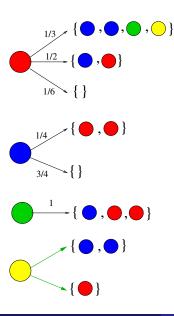
Kousha Etessami (U. Edinburgh)

Branching Markov Decision Question



What is the maximum probability of 7 extinction, starting with one $x_{\mathbf{R}} = \frac{1}{3}x_{B}^{2}x_{G}x_{\mathbf{Y}} + \frac{1}{2}x_{B}x_{\mathbf{R}} + \frac{1}{6}$ $x_B = \frac{1}{4}x_R^2 + \frac{3}{4}$ $x_G = x_B x_R^2$ XV

Branching Markov Decision Question



What is the maximum probability of extinction, starting with one $x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{Y} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$ $x_B = \frac{1}{4}x_R^2 + \frac{3}{4}$ $x_G = x_B x_R^2$ $x_{\mathbf{Y}} = \max\{x_{\mathbf{R}}^2, x_{\mathbf{R}}\}$

We get fixed point equations, $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Fact [E.-Yannakakis'05]

The maximum extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0, 1]^3$, of $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Branching Markov Decision Question



What is the minimum probability of extinction, starting with one $x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{Y} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$ $x_B = \frac{1}{4}x_R^2 + \frac{3}{4}$ $x_G = x_B x_R^2$ $x_{\mathbf{Y}} = \min\{x_{\mathbf{R}}^2, x_{\mathbf{R}}\}$

We get fixed point equations, $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Fact [E.-Yannakakis'05]

The minimum extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0, 1]^3$, of $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

A Maximum Probabilistic Polynomial System (maxPPS) is a system

$$\mathbf{x}_i = \max\{p_{i,j}(\mathbf{x}): j = 1, \dots, m_i\}$$
 $i = 1, \dots, n$

of *n* equations in *n* variables, where each $p_{i,j}(x)$ is a probabilistic polynomial. We denote the entire system by:

$$\mathbf{x} = P(\mathbf{x})$$

Minimum Probabilistic Polynomial Systems (minPPSs) are defined similarly.

These are Bellman optimality equations for maximizing (minimizing) extinction probabilities in a BMDP.

We use max/minPPS to refer to either a maxPPS or an minPPS.

RP2014

17 / 33

 $P: [0,1]^n \to [0,1]^n$ defines a monotone map on $[0,1]^n$.

Proposition. [E.-Yannakakis'05]

- Every max/minPPS, x = P(x) has a least fixed point, $q^* \in [0, 1]^n$.
- $q^* = \lim_{k \to \infty} P^k(\mathbf{0}).$

• q* is vector of optimal extinction probabilities for the BMDP.

Question

Can we compute the probabilities q^* efficiently (in P-time)?

Theorem ([E.-Stewart-Yannakakis,ICALP'12])

Given a max/minPPS, $\mathbf{x} = P(\mathbf{x})$, with LFP $\mathbf{q}^* \in [0, 1]^n$, we can compute a rational vector $\mathbf{v} \in [0, 1]^n$ such that

$$\|\mathbf{v} - \mathbf{q}^*\|_{\infty} \leq 2^{-j}$$

in time polynomial in the encoding size |P| of the equations, and in j.

We establish this via a new Generalized Newton's Method that uses linear programming in each iteration.

An iteration of Newton's method on a PPS, applied on current vector $y \in \mathbb{R}^n$, solves the equation

$$P^{\mathbf{y}}(\mathbf{x}) = \mathbf{x}$$

where $P^{\mathbf{y}}(\mathbf{x}) \equiv P(\mathbf{y}) + P'(\mathbf{y})(\mathbf{x} - \mathbf{y})$ is a linear (first-order Taylor) approximation of P(x).

Generalised Newton's method

Linearisation

Given a maxPPS

$$(P(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{x}): j = 1, \dots, m_i\} \qquad i = 1, \dots, n$$

We define the linearisation, $P^{y}(x)$, by:

$$(P^{\mathbf{y}}(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{y}) + \nabla p_{i,j}(\mathbf{y}).(\mathbf{x} - \mathbf{y}) : j = 1, \dots, m_i\} \qquad i = 1, \dots, n$$

• • = • • = •

< □ > < 凸

Generalised Newton's method

Linearisation

Given a maxPPS

$$(P(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{x}) : j = 1, \dots, m_i\} \qquad i = 1, \dots, n$$

We define the linearisation, $P^{y}(x)$, by:

$$(P^{\mathbf{y}}(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{y}) + \nabla p_{i,j}(\mathbf{y}).(\mathbf{x} - \mathbf{y}) : j = 1, \dots, m_i\} \qquad i = 1, \dots, n$$

Generalised Newton's method: iteration applied at vector y

For a maxPPS,

For a minPPS,

minimize
$$\sum_i x_i$$
 subject to $P^{\mathbf{y}}(\mathbf{x}) \leq \mathbf{x}$;

maximize $\sum_{i} x_i$ subject to $P^{\mathbf{y}}(\mathbf{x}) \geq \mathbf{x}$;

These can both be phrased as linear programming problems. Their optimal solution solves $P^{y}(\mathbf{x}) = \mathbf{x}$, and yields one GNM iteration.

< 47 ▶

Algorithm for max/minPPSs

Find and remove all variables x_i such that q_i^{*} = 0 or q_i^{*} = 1.
 (q_i^{*} = 1 decidable in P-time using LP [E.-Yannakakis'06]: reduces to a spectral radius optimization problem for non-negative square matrices.)

Algorithm for max/minPPSs

- Find and remove all variables x_i such that q^{*}_i = 0 or q^{*}_i = 1.
 (q^{*}_i = 1 decidable in P-time using LP [E.-Yannakakis'06]: reduces to a spectral radius optimization problem for non-negative square matrices.)
- On the resulting system of equations, run Generalized Newton's Method, starting from 0. After each iteration, round down to a multiple of 2^{-h}.

Each iteration of GNM can be computed in P-time by solving an LP.

Algorithm for max/minPPSs

- Find and remove all variables x_i such that q^{*}_i = 0 or q^{*}_i = 1.
 (q^{*}_i = 1 decidable in P-time using LP [E.-Yannakakis'06]: reduces to a spectral radius optimization problem for non-negative square matrices.)
- On the resulting system of equations, run Generalized Newton's Method, starting from 0. After each iteration, round down to a multiple of 2^{-h}.

Each iteration of GNM can be computed in P-time by solving an LP.

Theorem [ESY'12]

Given a max/minPPS $\mathbf{x} = P(\mathbf{x})$ with LFP $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, if we apply rounded GNM starting at $\mathbf{x}^{(0)} = \mathbf{0}$, using h := 4|P| + j + 1 bits of precision, then $\|\mathbf{q}^* - \mathbf{x}^{(4|P|+j+1)}\|_{\infty} \le 2^{-j}$.

Thus, algorithm runs in time polynomial in |P| and j.

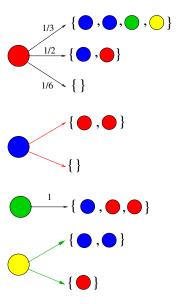
(日) (四) (日) (日)

 $(1-\mathbf{q}^*)$ is the vector of pessimal survival probabilities.

Lemma If $\mathbf{q}^* - \mathbf{x}^{(k)} \leq \lambda(\mathbf{1} - \mathbf{q}^*)$ for some $\lambda > 0$, then $\mathbf{q}^* - \mathbf{x}^{(k+1)} \leq \frac{\lambda}{2}(\mathbf{1} - \mathbf{q}^*)$.

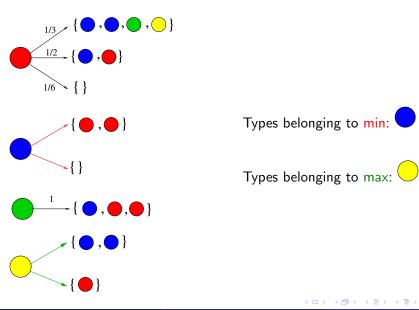
Lemma

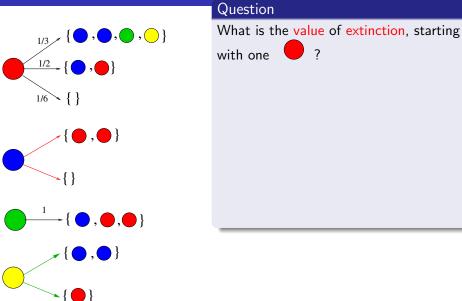
For any Max(Min) PPS with LFP \mathbf{q}^* , such that $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, for any *i*, $q_i^* \leq 1 - 2^{-4|P|}$.

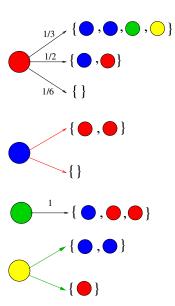


▲ 西部

· · · · · · · ·







\sim	
(J	uestion
4	acotion

What is the value of extinction, starting	
with one 🧧 ?	
$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{Y} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$	
$x_B = \min\{x_R^2, 1\}$	
$x_G = x_B x_R^2$	
$x_{\mathbf{Y}} = \max\{x_B^2, x_{\mathbf{R}}\}$	
We get fixed point equations, $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.	
Fact [EYannakakis'05]	
The extinction values are the LFP, $\mathbf{q}^* \in [0, 1]^3$ of $\mathbf{\bar{x}} = P(\mathbf{\bar{x}})$.	

<ロト <問ト < 回ト < 三ト

Kousha Etessami (U. Edinburgh)

BMDPs

■ ► ■ のQC RP2014 25/33

Theorem ([E.-Yannakakis'05])

For any BSSG, both players have static positional optimal strategies for maximizing (minimizing) extinction probability.

A static positional strategy is one that, for every type belonging to the player, always deterministically chooses the same single rule. (i.e., it is deterministic, memoryless, and "context-oblivious".)

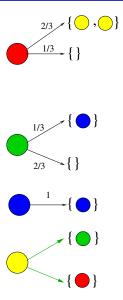
Theorem ([E.-Yannakakis'06])

Given a BSSG, deciding if the extinction value is $q_i^* = 1$ is in NP \cap coNP, & is at least as hard as computing the exact value for a finite-state SSG.

Theorem ([ESY'12])

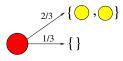
Given a BSSG, and given $\epsilon > 0$, we can compute a vector $v \in [0, 1]^n$, such that $||v - q^*||_{\infty} \le \epsilon$, in FNP (and in PLS).

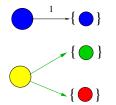
Optimal Reachability problem for BMDPs



< ロト < 同ト < ヨト < ヨ

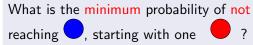
Optimal Reachability problem for BMDPs

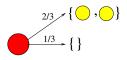


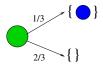


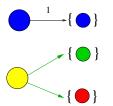
.

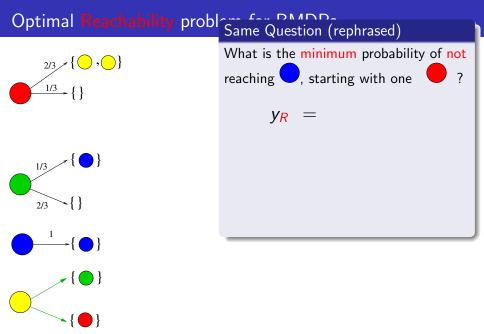
Optimal Reachability problem for DMDD-Same Question (rephrased)



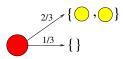


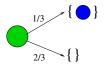


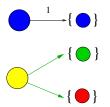




Optimal Reachability problem for DMDD Same Question (rephrased)





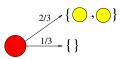


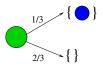
What is the minimum probability of not reaching , starting with one 7 $y_{\mathbf{R}} = \frac{2}{3}y_{\mathbf{Y}}y_{\mathbf{Y}} + \frac{1}{3}$ $y_G = \frac{2}{3}$ $y_Y = \min\{y_G, y_R\}$ We get fixed point equations, $\bar{\mathbf{y}} = Q(\bar{\mathbf{y}})$.

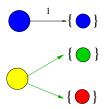
Thm. [ESY'14]

The maximum reachability probabilities are $\mathbf{1} - \mathbf{g}^*$, where $\mathbf{g}^* \in [0, 1]^3$ is the GREATEST FIXED POINT, of $\mathbf{\bar{y}} = Q(\mathbf{\bar{y}})$.

Optimal Reachability problem for PMDDa







What is the maximum probability of not reaching \bigcirc , starting with one \bigcirc ? $y_{R} = \frac{2}{3}y_{Y}y_{Y} + \frac{1}{3}$ $=\frac{2}{3}$ УG $y_{\mathbf{Y}} = \max\{y_G, y_{\mathbf{R}}\}$ We get fixed point equations, $\bar{\mathbf{y}} = Q(\bar{\mathbf{y}})$.

Thm. [ESY'14]

The minimum reachability probabilities are $\mathbf{1} - \mathbf{g}^*$, where $\mathbf{g}^* \in [0, 1]^3$ is the GREATEST FIXED POINT of $\bar{\mathbf{y}} = Q(\bar{\mathbf{y}})$.

P-time approximation of optimal reachability probability for BMDPs

Theorem ([E.-Stewart-Yannakakis, 2014])

Given a max/minPPS, $\mathbf{y} = Q(\mathbf{y})$, with GFP $\mathbf{g}^* \in [0,1]^n$, we can compute a rational vector $\mathbf{v} \in [0,1]^n$ such that

$$\|\mathbf{v} - \mathbf{g}^*\|_{\infty} \le 2^{-j}$$

in time polynomial in the encoding size |Q| of the equations, and in j.

We again establish this via Generalized Newton's Method.

Algorithm for GFP of max/minPPSs

- Find and remove all variables x_i such that g^{*}_i = 1. (This can be done in P-time, by qualitative analysis of y = Q(y).)
- 2 Interestingly, we do not need to eliminate the variables x_i such that $g_i^* = 0$. (And we do not want to eliminate variables with $q_i^* = 0$.)
- On the resulting system of equations, run Generalized Newton's Method, starting from 0. After each iteration, round down to a multiple of 2^{-h}.
- Amazingly this works! Note the very subtle difference with the algorithm for approximating the LFP of the same max/minPPS.

Algorithm for GFP of max/minPPSs

- Find and remove all variables x_i such that g^{*}_i = 1. (This can be done in P-time, by qualitative analysis of y = Q(y).)
- 2 Interestingly, we do not need to eliminate the variables x_i such that $g_i^* = 0$. (And we do not want to eliminate variables with $q_i^* = 0$.)
- On the resulting system of equations, run Generalized Newton's Method, starting from 0. After each iteration, round down to a multiple of 2^{-h}.
- Amazingly this works! Note the very subtle difference with the algorithm for approximating the LFP of the same max/minPPS.

Theorem [ESY'14]

Given a max/minPPS $\mathbf{x} = P(\mathbf{x})$ with GFP $\mathbf{0} \le \mathbf{g}^* < \mathbf{1}$, if we apply rounded GNM starting at $\mathbf{x}^{(0)} = \mathbf{0}$, using h := 4|P| + j + 1 bits of precision, then $\|\mathbf{g}^* - \mathbf{x}^{(4|P|+j+1)}\|_{\infty} \le 2^{-j}$.

Thus, algorithm runs in time polynomial in |P| and j.

- We have established P-time algorithms for a number of fundamental qualitative and quantative (approximate) analysis problems for Multi-type Branching Processes and for Branching MDPs, including for:
 - optimal extinction probabilities
 - optimal reachability probabilities
 - optimal expected progeny size ([E.-Wojtczak-Yannakakis'08])
- These algorithms also yield FNP (and PLS) complexity bounds for Branching Simple Stochastic Games with the same objectives.
- Many open questions still remain for these and related infinite-state recursive stochastic models and stochastic games.

K. Etessami, A. Stewart, and M. Yannakakis.Polynomial time algorithms for multi-type branching processes and stochastic context-free grammars.

Proceedings of STOC'12, pp. 579-588, 2012. Full version: arXiv:1201.2374

K. Etessami, A. Stewart, and M. Yannakakis.

Polynomial time algorithms for Branching Markov Decision Processes and Probabilistic Min/Max Polynomial Bellman Equations.

Proceedings of ICALP'12, pp. 314-326, 2012. Full version: arXiv:1202.4798

K. Etessami, A. Stewart, and M. Yannakakis.

Greatest Fixed Points of Probabilistic Min/Max Polynomial Bellman Equations, and Optimal Reachability for Branching MDPs.

Forthcoming, 2014.

Other related papers accessible on my web page.