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Overview

A number of important countable infinite-state stochastic processes
can be captured by adding recursion to finite-state Markov chains.

Adding recursion to MCs also provides a natural abstract model of
probabilistic procedural programs (useful in verification).

Such models can also be captured by probabilistic extensions to
classic infinite-state automata-theoretic models, like context-free
grammars, pushdown automata, and one-counter automata.

The algorithmic theory, and complexity, of analyzing such recursive
MCs and their extension to Markov decision processes and stochastic
games, has turned out to be an extremely rich subject.

In this talk, I will survey only one fragment of this theory
(focusing mainly on recent joint work with Alistair Stewart and
Mihalis Yannakakis).
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Multi-type Branching Processes (Kolmogorov,1940s)
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Question: What is the probability of
eventual extinction, starting with one
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R

We get nonlinear fixed point equations:
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
q∗R = 0.276; q∗B = 0.769; q∗G = 0.059.
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Stochastic Context-Free Grammars
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Termination probabilities (also called
the partition function of the SCFG) are
the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).
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Probabilistic Polynomial Systems of Equations

1

3
x2
BxG xR +

1

2
xBxR +

1

6

is a Probabilistic Polynomial: the coefficients are positive and sum to 1.

A Probabilistic Polynomial System (PPS), is a system of n equations

x = P(x)

in n variables where each Pi (x) is a probabilistic polynomial.

Every multi-type Branching Process (BP) with n types, and every SCFG
with n nonterminals, corresponds to a PPS, and vice-versa.
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Basic properties of PPSs, x = P(x)

For every PPS, P : [0, 1]n → [0, 1]n defines a monotone map on [0, 1]n.

Proposition

A PPS, x = P(x) has a least fixed point, q∗ ∈ [0, 1]n.
(q∗ can be irrational.)

q∗ = limk→∞ Pk(0).

q∗ is vector of extinction/termination probabilities for the BP (SCFG).

Question

Can we compute the probabilities q∗ efficiently (in P-time)?

First considered by Kolmogorov & Sevastyanov (1940s).
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Newton’s method

Newton’s method

Seeking a solution to F (x) = 0, we start at a guess x(0), and iterate:

x(k+1) := x(k) − (F ′(x(k)))−1F (x(k))

Here F ′(x), is the Jacobian matrix:

F ′(x) =


∂F1
∂x1

. . . ∂F1
∂xn

...
...

...
∂Fn
∂x1

. . . ∂Fn
∂xn


For PPSs, F (x) ≡ (P(x)− x), and Newton iteration looks like this:

x(k+1) := x(k) + (I − P ′(x(k)))−1(P(x(k))− x(k))

where P ′(x) is the Jacobian of P(x).
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Newton on PPSs

We can decompose x = P(x) into its strongly connected components
(SCCs), based on variable dependencies, and eliminate “0” variables.

Theorem [E.-Yannakakis’05]

Decomposed Newton’s method converges monotonically to the LFP q∗ for
PPSs, and for more general Monotone Polynomial Systems (MPSs).

But...

In [E.-Yannakakis’05,’09], we gave no upper bounds on # of
iterations needed for PPSs or MPSs.

We proved hardness results (PosSLP-hardness) for obtaining any
nontrivial approximation of the LFP of MPSs for recursive Markov
chains.
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What is Newton’s worst case behavior for PPSs?

[Esparza,Kiefer,Luttenberger,’10] studied Newton’s method on MPSs
further:

Gave bad examples of PPSs, x = P(x), where q∗ = 1, requiring
exponentially many iterations, as a function of the encoding size |P|
of the equations, to converge to within additive error < 1/2.

For strongly-connected equation systems they gave an exponential
upper bound in |P|.
But they gave no upper bounds for arbitrary PPSs or MPSs in terms
of |P|.

(Recently [Stewart-E.-Yannakakis’13], we give a matching exponential
upper bound in |P| for arbitrary PPSs and MPSs.)
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P-time approximation for PPSs

Theorem ([E.-Stewart-Yannakakis,STOC’12])

Given a PPS, x = P(x), with LFP q∗ ∈ [0, 1]n, we can compute a rational
vector v ∈ [0, 1]n such that

‖v − q∗‖∞ ≤ 2−j

in time polynomial in both the encoding size |P| of the equations
and in j (the number of “bits of precision”).

We use Newton’s method..... but how?
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Qualitative decision problems for PPSs are in P-time

Theorem ([Kolmogorov-Sevastyanov’47,Harris’63])

For certain classes of strongly-connected PPSs, q∗i = 1 for all i iff the
spectral radius %(P ′(1)) for the moment matrix P ′(1) is ≤ 1,
and otherwise q∗i < 1 for all i .

Theorem ([E.-Yannakakis’05])

Given a PPS, x = P(x), deciding whether q∗i = 1 is in P-time.

(Deciding whether q∗i = 0 is also in P-time (and a lot easier).)
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Algorithm for approximating the LFP q∗ for PPSs

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

2 On the resulting system of equations, run Newton’s method starting
from 0.

Theorem ([ESY’12])

Given a PPS x = P(x) with LFP 0 < q∗ < 1, if we apply Newton starting
at x(0) = 0, then

‖q∗ − x(4|P|+j)‖∞ ≤ 2−j

Theorem ([ESY’12])

Given a PPS x = P(x) with LFP 0 < q∗ < 1, if we apply Newton starting
at x(0) = 0, then

‖q∗ − x(32|P|+2j+2)‖∞ ≤ 2−2j
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Algorithm with rounding

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

2 On the resulting system of equations, run Newton’s method starting
from 0.

3 After each iteration, round down to a multiple of 2−h

Theorem ([ESY’12])

If, after each Newton iteration, we round down to a multiple of 2−h where
h := 4|P|+ j + 2, then after h iterations ‖q∗ − x(h)‖∞ ≤ 2−j .

Thus, we obtain a P-time algorithm (in the standard Turing model) for
approximating q∗.

Kousha Etessami (U. Edinburgh) Infinite-state MCs,MDPs, Stochastic Games STACS’13 15 / 38



High level picture of proof

For a PPS, x = P(x), with LFP 0 < q∗ < 1, P ′(q∗) is a non-negative
square matrix, and (we show)

(spectral radius of P ′(q∗) ) ≡ %(P ′(q∗)) < 1

So, (I −P ′(q∗)) is non-singular, and (I −P ′(q∗))−1 =
∑∞

i=0(P ′(q∗))i .

We can show the # of Newton iterations needed to get within ε > 0 is

≈≈ log ‖(I − P ′(q∗))−1‖∞ + log
1

ε

‖(I − P ′(q∗))−1‖∞ is tied to the distance |1− %(P ′(q∗))|,
which in turn is related to mini (1− q∗i ), which we can lower bound.

Uses lots of Perron-Frobenius theory.
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Proof outline: some key lemmas

(1− q∗) is the vector of survival probabilities.

Lemma

If q∗ − x(k) ≤ λ(1− q∗) for some λ > 0, then q∗ − x(k+1) ≤ λ
2 (1− q∗).

Lemma

For any PPS with LFP q∗, such that 0 < q∗ < 1, for any i ,
q∗i ≤ 1− 2−4|P|.
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The complexity of quantitative decision problems for BPs

Proposition

Given a PPS, x = P(x), and a probability p, deciding whether q∗i ≤ p is in
PSPACE.

Proof.
∃x(x = P(x) ∧ xi ≤ p)

is expressible in the existential theory of reals. There are PSPACE decision
procedures for ∃R ([Canny’89,Renegar’92]).

Now some bad news:

Theorem ([E.-Yannakakis,’05,’07])

Given a PPS, x = P(x), deciding whether q∗i ≤ 1/2 (or q∗i ≤ p for any
p ∈ (0, 1)), is both Sqrt-Sum-hard and PosSLP-hard.
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two “hard” problems

Sqrt-Sum: the square-root sum problem is the following decision problem:
Given (d1, . . . , dn) ∈ Nn and k ∈ N, decide whether

∑n
i=1

√
di ≤ k .

Solvable in PSPACE.
Open problem ([GareyGrahamJohnson’76]) whether it is in NP (or even
the polynomial time hierarchy).

PosSLP: Given an arithmetic circuit (Straight Line Program) with gates
{+, ∗,−} with integer inputs, decide whether the output is > 0.
PosSLP captures all of polynomial time in the unit-cost arithmetic RAM
model of computation.

[Allender, Bürgisser, Kjeldal-Petersen, Miltersen,2006] Gave a (Turing)
reduction from Sqrt-Sum to PosSLP and showed both can be decided in

the Counting Hierarchy: PPPPPPP

. Nothing better is known.
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The quantitative decision problem for PPSs is
PosSLP-equivalent

Theorem ([E.-Stewart-Yannakakis’12])

Given a PPS, x = P(x), and a probability p, deciding whether q∗i < p is
P-time (many-one) reducible to PosSLP. (And thus PosSLP-equivalent.)

Thus it captures the full power of polynomial time in the unit-cost
arithmetic RAM model of computation.

And by [Allender, et. al.’06], it is also in the Counting Hierarchy.
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Branching Markov Decision Processes
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Branching Markov Decision Processes

{}

{ , }
1/4
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1/2 , }

}{

{

{ , ,
1/3

1/6

,

{

{ , }

}

{ , ,
1

}

}

Question

What is the maximum probability of

extinction, starting with one ?

xR =
1

3
x2

BxGxY +
1

2
xBxR +

1

6

xB =
1

4
x2

R +
3

4
xG = xBx2

R

xY = max{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Fact [E.-Yannakakis’05]

The maximum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).
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What is the minimum probability of
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B , xR}

We get fixed point equations, x̄ = P(x̄).

Fact [E.-Yannakakis’05]
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are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).
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Maximum Probabilistic Polynomial Systems of Equations

A Maximum Probabilistic Polynomial System (maxPPS) is a system

xi = max{pi ,j(x) : j = 1, . . . , mi} i = 1, . . . , n

of n equations in n variables, where each pi ,j(x) is a probabilistic
polynomial. We denote the entire system by:

x = P(x)

Minimum Probabilistic Polynomial Systems (minPPSs) are defined
similarly.

These are Bellman optimality equations for maximizing (minimizing)
extinction probabilities in a BMDP.

We use max/minPPS to refer to either a maxPPS or an minPPS.
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Basic properties of max/minPPSs, x = P(x)

P : [0, 1]n → [0, 1]n defines a monotone map on [0, 1]n.

Proposition. [E.-Yannakakis’05]

Every max/minPPS, x = P(x) has a least fixed point, q∗ ∈ [0, 1]n.

q∗ = limk→∞ Pk(0).

q∗ is vector of optimal extinction probabilities for the BMDP.

Question

Can we compute the probabilities q∗ efficiently (in P-time)?
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P-time approximation for BMDPs and max/minPPSs

Theorem ([E.-Stewart-Yannakakis,ICALP’12])

Given a max/minPPS, x = P(x), with LFP q∗ ∈ [0, 1]n, we can compute a
rational vector v ∈ [0, 1]n such that

‖v − q∗||∞ ≤ 2−j

in time polynomial in the encoding size |P| of the equations, and in j.

We establish this via a Generalized Newton’s Method that uses linear
programming in each iteration.
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Newton iteration as a first-order (Taylor) approximation

An iteration of Newton’s method on a PPS, applied on current vector
y ∈ Rn, solves the equation

Py(x) = x

where Py(x) ≡ P(y) + P ′(y)(x− y) is a linear (first-order Taylor)
approximation of P(x).
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Generalised Newton’s method

Linearisation

Given a maxPPS

(P(x))i = max{pi ,j(x) : j = 1, . . . ,mi} i = 1, . . . , n

We define the linearisation, Py (x), by:

(Py(x))i = max{pi ,j(y) +∇pi ,j(y).(x− y) : j = 1, . . . ,mi} i = 1, . . . , n

Generalised Newton’s method, applied at vector y

For a maxPPS,
minimize

∑
i xi subject to Py(x) ≤ x;

For a minPPS,
maximize

∑
i xi subject to Py(x) ≥ x;

These can both be phrased as linear programming problems. Their optimal
solution solves Py(x) = x, and yields the GNM iteration we need.
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Algorithm for max/minPPSs

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.
(q∗i = 1 decidable in P-time using LP [E.-Yannakakis’06]: reduces to a
spectral radius optimization problem for non-negative square
matrices.)

2 On the resulting system of equations, run Generalized Newton’s
Method, starting from 0. After each iteration, round down to a
multiple of 2−h.
Each iteration of GNM can be computed in P-time by solving an LP.

Theorem [ESY’12]

Given a max/minPPS x = P(x) with LFP 0 < q∗ < 1, if we apply rounded
GNM starting at x(0) = 0, using h := 4|P|+ j + 1 bits of precision, then

‖q∗ − x(4|P|+j+1)‖∞ ≤ 2−j .
We can do all this in time polynomial in |P| and j .
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finite-state Simple Stochastic Games

S1 S2

S3 S5

S4

1
3

1
2

1
6

2
5

2
5

1
5

1

What is the value of the game for
hitting S5 starting at S1?
(These games are determined.)

x1 =
1

3
x2 +

1

2
x3 +

1

6

x2 =
2

5
x1 +

1

5
x3 +

2

5
x3 = max{x1, x4}
x4 = min{x2, x3}

We get linear-min-max equations,
x̄ = P(x̄).

Fact: [Shapley’53,Condon’92]
Hitting values are the least fixed point,
q∗ ∈ [0, 1]4, of x = P(x).
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In any finite-state SSG, both max and min, have optimal positional
strategies (i.e., deterministic and memoryless optimal strategies).

Thus [Condon’92]: deciding whether the game value q∗i ≤ 1/2, is in
NP ∩ coNP.

And computing the (exact, rational) values q∗ is in FNP.

Long standing open problem whether SSGs are solvable in P-time.
(Subsumes parity games and mean payoff games.)
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Branching Simple Stochastic Games
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We get fixed point equations, x̄ = P(x̄).

Fact [E.-Yannakakis’05]
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q∗ ∈ [0, 1]3 of x̄ = P(x̄).
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Qualitative and Quantitative problems for BSSGs

Theorem ([E.-Yannakakis’05])

For any BSSG, both players have static positional optimal strategies for
maximizing (minimizing) extinction probability.

A static positional strategy is one that, for every type belonging to the
player, always deterministically chooses the same single rule.
(i.e., it is deterministic, memoryless, and “context-oblivious”.)

Theorem ([E.-Yannakakis’06])

Given a BSSG, deciding if the extinction value is q∗i = 1 is in NP ∩ coNP,
& is at least as hard as computing the exact value for a finite-state SSG.

Theorem ([ESY’12])

Given a BSSG, and given ε > 0, we can compute a vector v ∈ [0, 1]n, such
that ‖v − q∗‖∞ ≤ ε, in FNP.
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One piece of a larger story

Many other analyses: expected total reward, discounted reward,
expected limiting average reward, model checking.

Many analyses require termination probabilities q∗ as a prerequisite,
but they also require non-trivial additional work.

Recursive Markov Chains (RMCs) form a more general class of
countable infinite-state discrete-time MCs. (BPs and SCFGs
correspond to 1-exit RMCs.)
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Recursive Markov Chain

en

u
z

ex1

ex2

A1

b1 : A2

1
2

1
2

1
3

1
3

1

1
2

1
4

1
4

1

1
3

en′

w

v

ex ′
1

ex ′
2

A2

b′
1 : A1

b′
2 : A2

3
4

1
4

1

4
5

1
5

1
4

3
4

1

1
2

1

1
2

Kousha Etessami (U. Edinburgh) Infinite-state MCs,MDPs, Stochastic Games STACS’13 2 / 2



RMCs also have MPSs (not PPSs) whose LFP q∗ ∈ [0, 1]n gives their
termination probabilities.

However, any non-trivial approximation of q∗ for RMCs is
PosSLP-hard ([E.-Yannakakis’07]).

For RMDPs and RSSGs any non-trivial approximation of their value
vector is uncomputable! ([E.-Yannakakis’05]).
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But other subclasses of RMCs, corresponding to other important
stochastic processes, are analyzable.

1-box RMCs correspond to (discrete-time) Quasi-Birth-Death
processes (QBDs), and to probabilistic one-counter automata
(OC-MCs).

For QBDs we can approximate q∗ in P-time
([E.-Wojtczak-Yannakakis’08], [Stewart-E.-Yannakakis’13]).

Many problems for OC-MDPs and OC-SSGs are also decidable
([Brazdil-Brozek-E.-Kucera-Wojtczak’10,’10,’11]), but for many we
don’t know good complexity bounds.
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Conclusion

A very rich landscape, with still many open questions.

Can we solve finite-state SSGs in P-time?

Can we obtain any better upper bounds for PosSLP??

Deciding q∗ ≥ 1/2 for Branching SSGs subsumes both of these
problems.
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