The Complexity of Analyzing Infinite-State Markov Chains, Markov Decision Processes, and Stochastic Games

Kousha Etessami

University of Edinburgh

STACS'13 Kiel, March 1st, 2013

▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

• A number of important countable infinite-state stochastic processes can be captured by adding recursion to finite-state Markov chains.

臣

590

< ⊒ >

æ

< A

< □ ▶

- A number of important countable infinite-state stochastic processes can be captured by adding recursion to finite-state Markov chains.
- Adding recursion to MCs also provides a natural abstract model of probabilistic procedural programs (useful in verification).

500

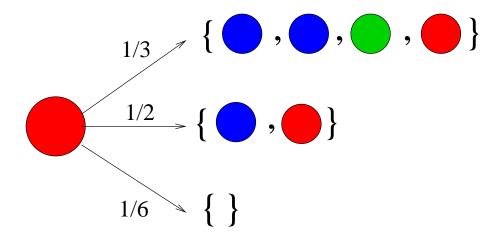
э.

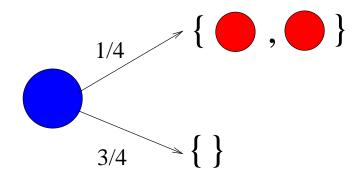
• 🗆

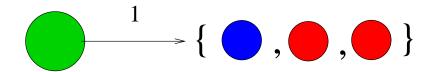
- A number of important countable infinite-state stochastic processes can be captured by adding recursion to finite-state Markov chains.
- Adding recursion to MCs also provides a natural abstract model of probabilistic procedural programs (useful in verification).
- Such models can also be captured by probabilistic extensions to classic infinite-state automata-theoretic models, like context-free grammars, pushdown automata, and one-counter automata.

- A number of important countable infinite-state stochastic processes can be captured by adding recursion to finite-state Markov chains.
- Adding recursion to MCs also provides a natural abstract model of probabilistic procedural programs (useful in verification).
- Such models can also be captured by probabilistic extensions to classic infinite-state automata-theoretic models, like context-free grammars, pushdown automata, and one-counter automata.
- The algorithmic theory, and complexity, of analyzing such recursive MCs and their extension to Markov decision processes and stochastic games, has turned out to be an extremely rich subject.

- A number of important countable infinite-state stochastic processes can be captured by adding recursion to finite-state Markov chains.
- Adding recursion to MCs also provides a natural abstract model of probabilistic procedural programs (useful in verification).
- Such models can also be captured by probabilistic extensions to classic infinite-state automata-theoretic models, like context-free grammars, pushdown automata, and one-counter automata.
- The algorithmic theory, and complexity, of analyzing such recursive MCs and their extension to Markov decision processes and stochastic games, has turned out to be an extremely rich subject.
- In this talk, I will survey only one fragment of this theory (focusing mainly on recent joint work with Alistair Stewart and Mihalis Yannakakis).



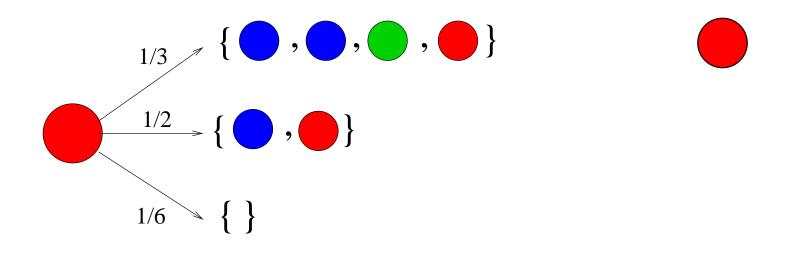


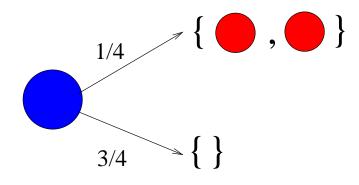


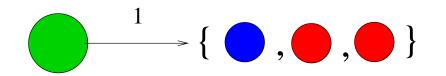
STACS'13 3 / 38

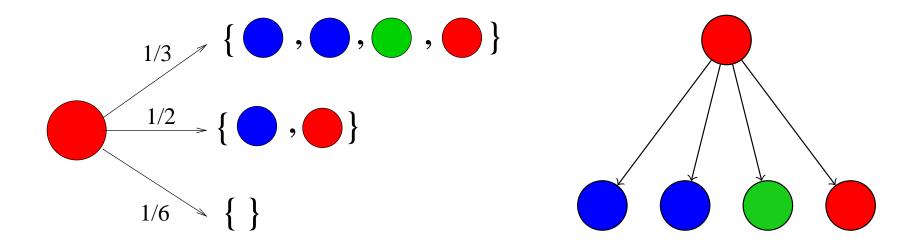
 $\mathcal{A} \mathcal{A} \mathcal{A}$

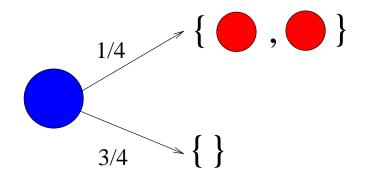
▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필 -

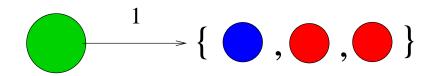


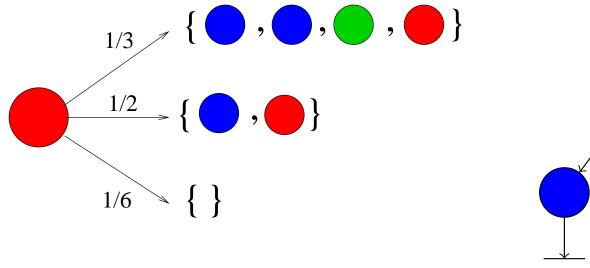


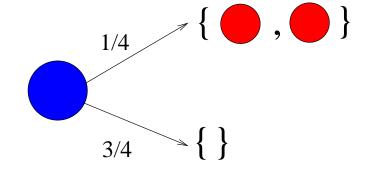


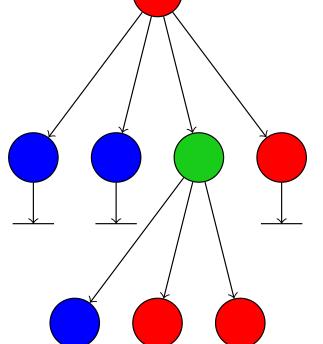


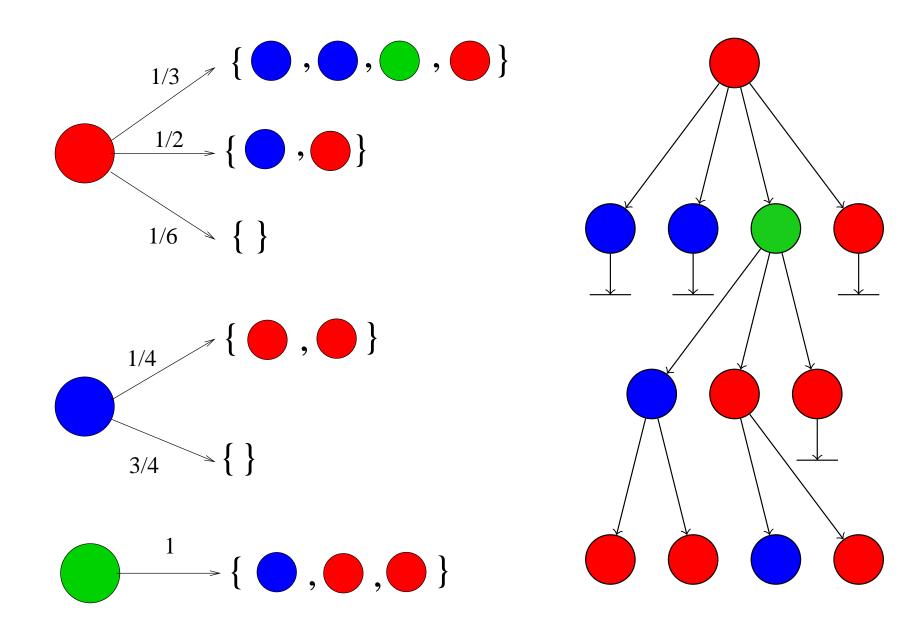


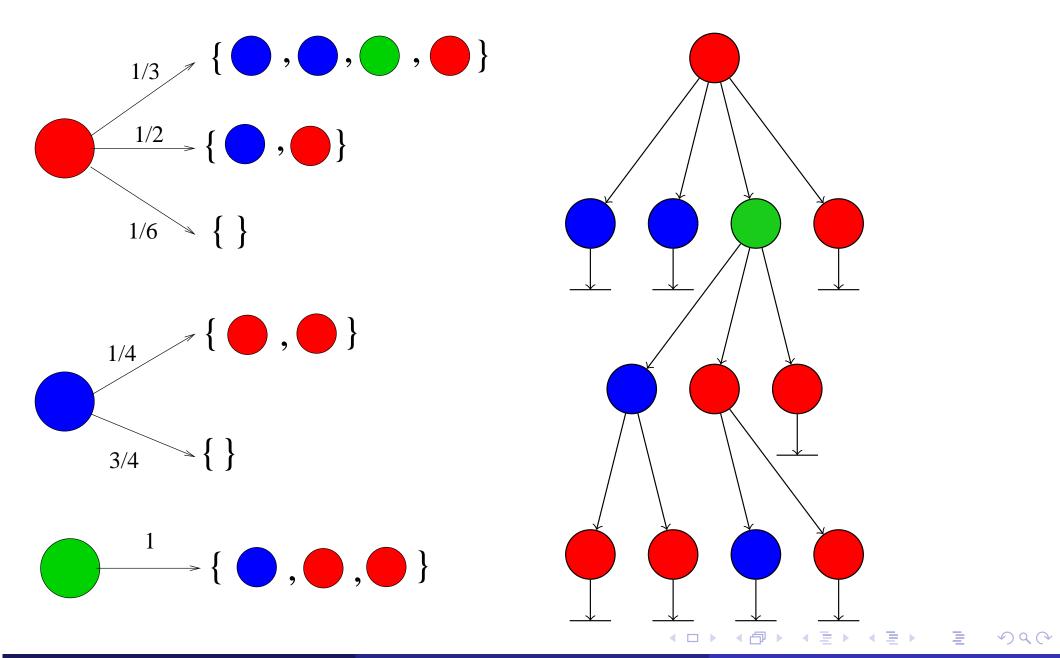






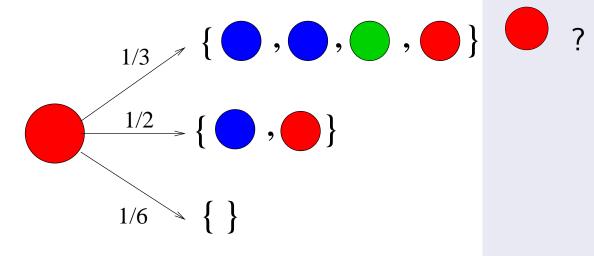


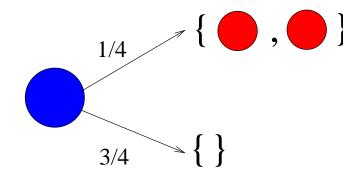


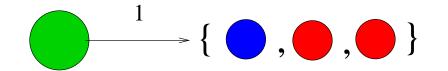


STACS'13 3 / 38

Question: What is the probability of eventual extinction, starting with one







STACS'13 4 / 38

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- **3**

< ≣ ▶ < ≣ ▶

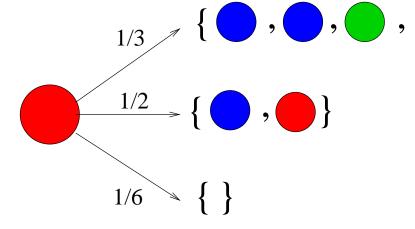
< □ ▶

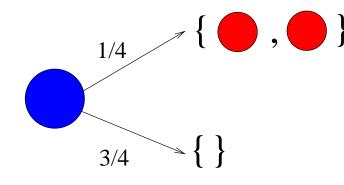
}

?

XR

Question: What is the probability of eventual extinction, starting with one





 $\mathcal{A} \mathcal{A} \mathcal{A}$

- 3

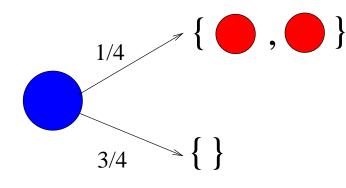
I = ► < = ►</p>

< □ ▶

?

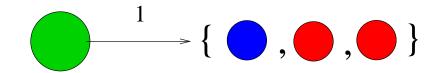
Question: What is the probability of eventual extinction, starting with one

$$\begin{array}{c}
1/3 \\
1/2 \\
1/2 \\
1/6 \\
1/6 \\
\end{array}$$



X _R	—	$\frac{1}{3}x_B^2 x_G x_R + \frac{1}{2}x_B x_R $	1 6

< □)



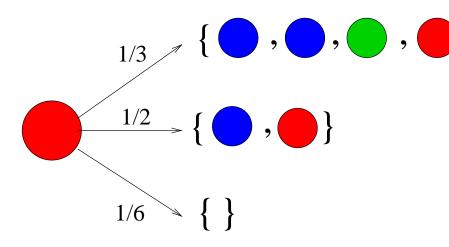
STACS'13 4 / 38

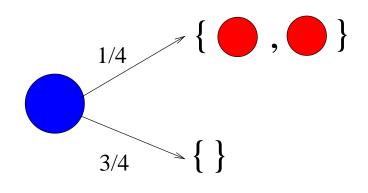
32

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< 토 ▶ < 토 ▶

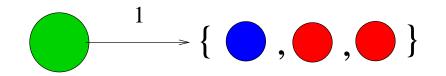
Question: What is the probability of eventual extinction, starting with one





 $x_{R} = \frac{1}{3} x_{B}^{2} x_{G} x_{R} + \frac{1}{2} x_{B} x_{R} + \frac{1}{6}$ $x_B = \frac{1}{4}x_R^2 + \frac{3}{4}$ $x_G = x_B x_R^2$

< □ ▶

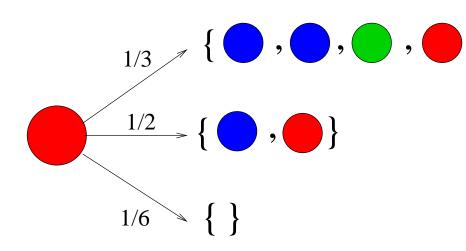


STACS'13 4 / 38

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- < ⊑ ▶ < ⊑ ▶

Question: What is the probability of eventual extinction, starting with one



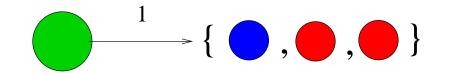
?

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$

 $x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$
 $x_{G} = x_{B}x_{R}^{2}$

We get nonlinear fixed point equations: $\bar{\mathbf{x}} = P(\bar{\mathbf{x}}).$

< □ ▶



{ }

1/4

3/4

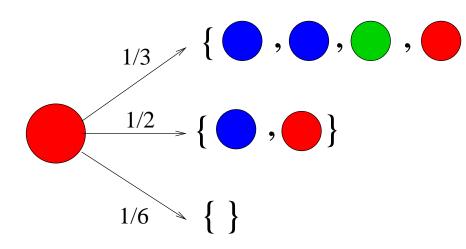
 $\mathcal{A} \mathcal{A} \mathcal{A}$

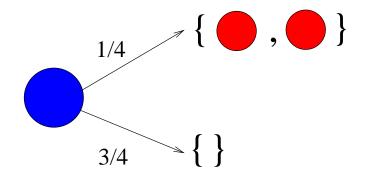
3

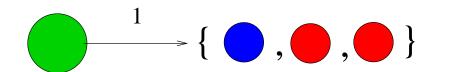
- < ≣ ▶ < ≣ ▶

?

Question: What is the probability of eventual extinction, starting with one







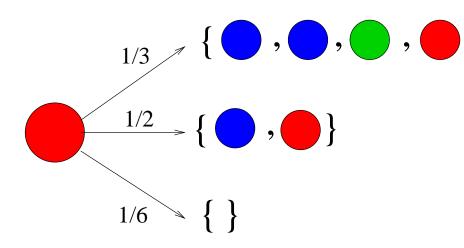
$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}x_{R} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$$
$$x_{G} = x_{B}x_{R}^{2}$$

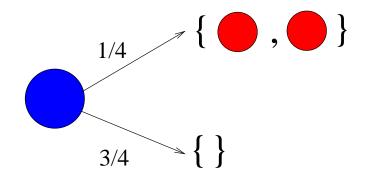
We get nonlinear fixed point equations: $\bar{\mathbf{x}} = P(\bar{\mathbf{x}}).$

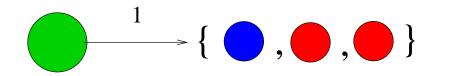
Fact

The extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0, 1]^3$, of $\mathbf{\bar{x}} = P(\mathbf{\bar{x}})$.

Question: What is the probability of eventual extinction, starting with one





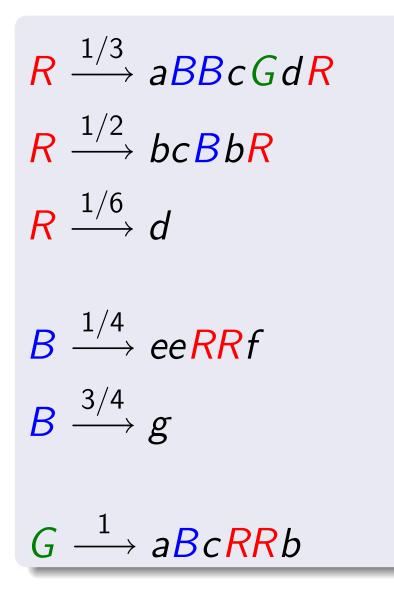


$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$
$$x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$$
$$x_{G} = x_{B}x_{R}^{2}$$

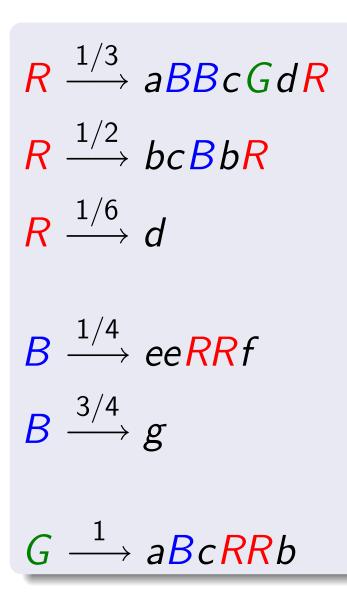
We get nonlinear fixed point equations: $\bar{\mathbf{x}} = P(\bar{\mathbf{x}}).$

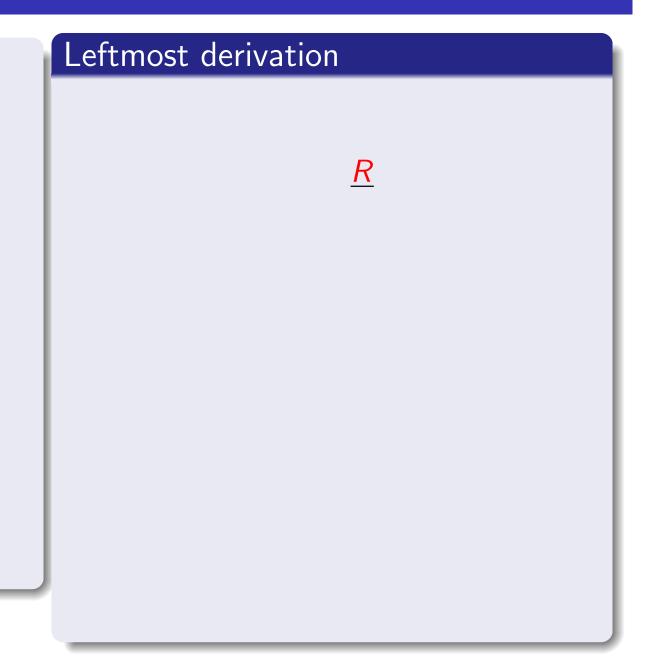
Fact

The extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0, 1]^3$, of $\mathbf{\bar{x}} = P(\mathbf{\bar{x}})$. $q_R^* = 0.276; q_B^* = 0.769; q_G^* = 0.059$.



STACS'13 5 / 38



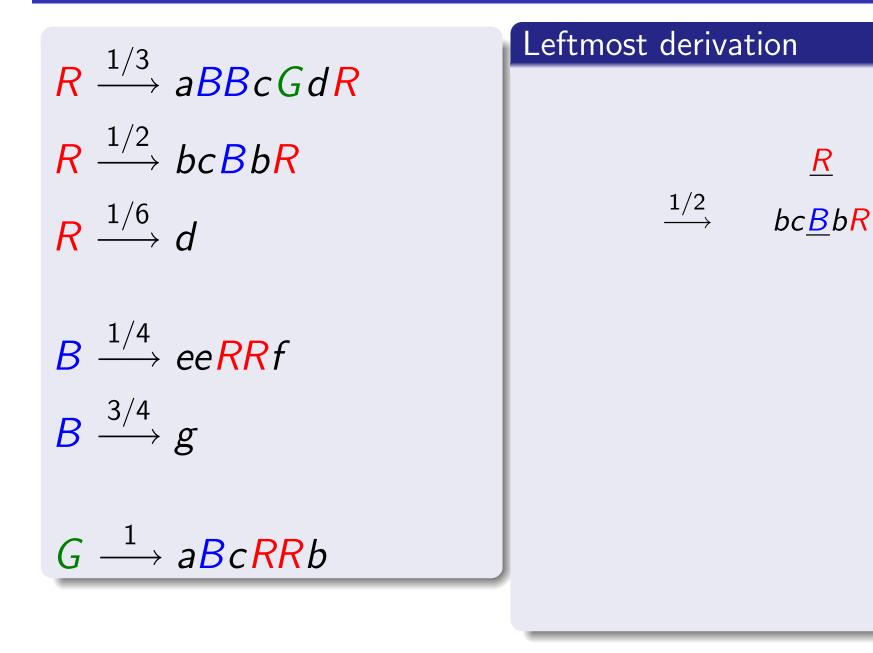


< □ > < 三 > < 三 >

< □ ▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

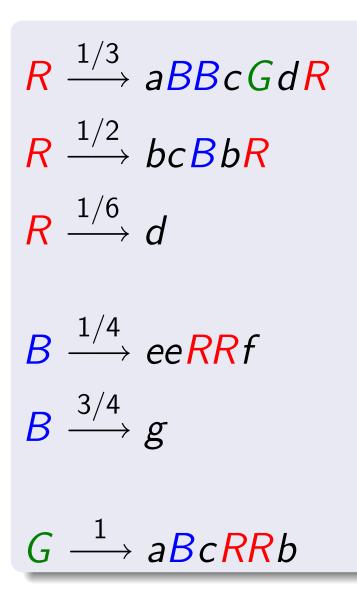
- 3



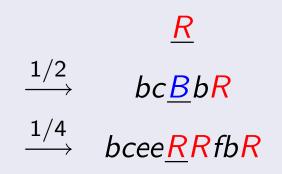
STACS'13 5 / 38

3

《曰》 《圖》 《필》 《필》



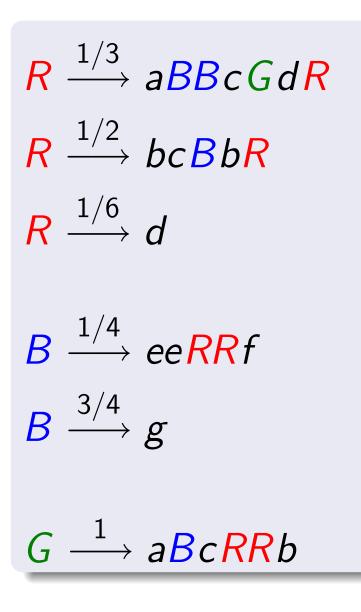
Leftmost derivation



◆□▶ ◆□▶ ◆□▶ ◆□▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- B



Leftmost derivation



・ロト ・(中下・・モト・・モート

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- 3

 $R \xrightarrow{1/3} aBBcGdR$ $R \xrightarrow{1/2} bcBbR$ $R \xrightarrow{1/6} d$ $B \xrightarrow{1/4} eeRRf$ $B \xrightarrow{3/4} g$ $G \xrightarrow{1} aBcRRb$

Leftmost derivation

	<u>R</u>
$\xrightarrow{1/2}$	bc <u>B</u> b <mark>R</mark>
$\xrightarrow{1/4}$	bcee <u>R</u> RfbR
$\xrightarrow{1/6}$	bceed <u>R</u> fb <mark>R</mark>
$\xrightarrow{1/6}$	bceeddcb <u>R</u>

◆□▶ ◆□▶ ◆□▶ ◆□▶

$R \xrightarrow{1/3} aBBcGdR$
$R \xrightarrow{1/2} bcBbR$
$R \xrightarrow{1/6} d$
$B \xrightarrow{1/4} eeRRf$
$B \xrightarrow{3/4} g$
$G \xrightarrow{1} aBcRRb$

Leftmost derivation

	<u>R</u>			
$\xrightarrow{1/2}$	bc <u>B</u> bR			
$\xrightarrow{1/4}$	bcee <u>R</u> RfbR			
$\xrightarrow{1/6}$	bceed <u>R</u> fb <mark>R</mark>			
$\xrightarrow{1/6}$	bceeddcb <u>R</u>			
$\xrightarrow{1/6}$	bceeddcbd			
probability of th	nis derivation:	$\frac{1}{2}$.	$\frac{1}{4}$	$\cdot \frac{1}{6}^{3}$

∃ ►

< □ ▶

< 4 ▶

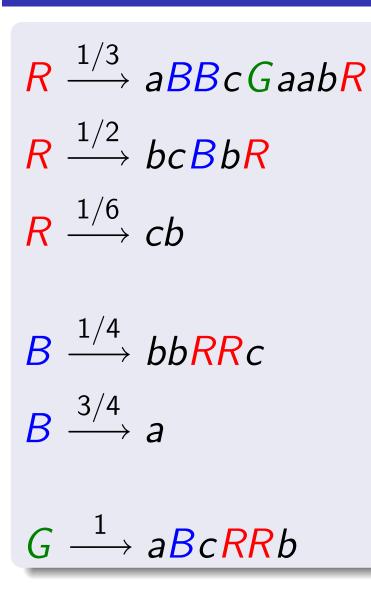
▲ 글 ▶

E.

590

5 / 38

Kousha Etessami (U. Edinburgh)Infinite-state MCs,MDPs, Stochastic GamesSTACS'13



Question

What is the probability of termination, i.e., eventually generating a finite string, starting with one non-terminal, R?

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲ 토 ▶ ▲ 토 ▶ - 토

 $R \xrightarrow{1/3} aBBcGaabR$

 $R \xrightarrow{1/2} bcBbR$

 $R \xrightarrow{1/6} ch$

 $B \xrightarrow{1/4} bbRRc$ $R \xrightarrow{3/4} a$

 $G \xrightarrow{1} aBcRRb$

Question

What is the probability of termination, i.e., eventually generating a finite string, starting with one non-terminal, R?

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$
$$x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$$
$$x_{G} = x_{B}x_{R}^{2}$$

Fact

Termination probabilities (also called the partition function of the SCFG) are the least fixed point, $\mathbf{q}^* \in [0, 1]^3$, of $\bar{\mathbf{x}} = P(\bar{\mathbf{x}}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶

3

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

$$\frac{1}{3}x_B^2 x_G x_R + \frac{1}{2}x_B x_R + \frac{1}{6}$$

is a Probabilistic Polynomial: the coefficients are positive and sum to 1.

A Probabilistic Polynomial System (PPS), is a system of *n* equations

$$\mathbf{x} = P(\mathbf{x})$$

in *n* variables where each $P_i(x)$ is a probabilistic polynomial.

Every multi-type Branching Process (BP) with *n* types, and every SCFG with *n* nonterminals, corresponds to a PPS, and vice-versa.

~ Q Q

For every PPS, $P : [0,1]^n \rightarrow [0,1]^n$ defines a monotone map on $[0,1]^n$.

Proposition

- A PPS, x = P(x) has a least fixed point, $q^* \in [0, 1]^n$. (q^* can be irrational.)
- $q^* = \lim_{k \to \infty} P^k(\mathbf{0}).$
- **q**^{*} is vector of extinction/termination probabilities for the BP (SCFG).

▲口▶ ▲圖▶ ▲필▶ ▲필▶ - 필 -

STACS'13

 $\mathcal{A} \mathcal{A} \mathcal{A}$

8 / 38

Question

Can we compute the probabilities q^* efficiently (in P-time)?

First considered by Kolmogorov & Sevastyanov (1940s).

Newton's method

Newton's method

Seeking a solution to $F(\mathbf{x}) = 0$, we start at a guess $\mathbf{x}^{(0)}$, and iterate:

$$\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} - (F'(\mathbf{x}^{(k)}))^{-1}F(\mathbf{x}^{(k)})$$

Here $F'(\mathbf{x})$, is the **Jacobian matrix**:

$$\mathsf{F}'(\mathsf{x}) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} \cdots \frac{\partial F_1}{\partial x_n} \\ \vdots \vdots \vdots \\ \frac{\partial F_n}{\partial x_1} \cdots \frac{\partial F_n}{\partial x_n} \end{bmatrix}$$

For PPSs, $F(x) \equiv (P(x) - x)$, and Newton iteration looks like this:

$$\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + (I - P'(\mathbf{x}^{(k)}))^{-1}(P(\mathbf{x}^{(k)}) - \mathbf{x}^{(k)})$$

where $P'(\mathbf{x})$ is the Jacobian of $P(\mathbf{x})$.

We can decompose $\mathbf{x} = P(\mathbf{x})$ into its strongly connected components (SCCs), based on variable dependencies, and eliminate "0" variables.

Theorem [E.-Yannakakis'05]

Decomposed Newton's method converges monotonically to the LFP \mathbf{q}^* for PPSs, and for more general Monotone Polynomial Systems (MPSs).

But...

- In [E.-Yannakakis'05,'09], we gave no upper bounds on # of iterations needed for PPSs or MPSs.
- We proved hardness results (PosSLP-hardness) for obtaining any nontrivial approximation of the LFP of MPSs for recursive Markov chains.

SQ (A

▲□▶ ▲□▶ ▲□▶ ▲三▶

[Esparza,Kiefer,Luttenberger,'10] studied Newton's method on MPSs further:

- Gave bad examples of PPSs, x = P(x), where q* = 1, requiring exponentially many iterations, as a function of the encoding size |P| of the equations, to converge to within additive error < 1/2.
- For strongly-connected equation systems they gave an exponential upper bound in |P|.
- But they gave no upper bounds for arbitrary PPSs or MPSs in terms of |P|.

- 4 = > - 4 = >

[Esparza,Kiefer,Luttenberger,'10] studied Newton's method on MPSs further:

- Gave bad examples of PPSs, x = P(x), where q* = 1, requiring exponentially many iterations, as a function of the encoding size |P| of the equations, to converge to within additive error < 1/2.
- For strongly-connected equation systems they gave an exponential upper bound in |P|.
- But they gave no upper bounds for arbitrary PPSs or MPSs in terms of |P|.
- (Recently [Stewart-E.-Yannakakis'13], we give a matching exponential upper bound in |P| for arbitrary PPSs and MPSs.)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲□▶ ▲□▶ ▲□▶ ▲□▶

Theorem ([E.-Stewart-Yannakakis,STOC'12])

Given a PPS, $\mathbf{x} = P(\mathbf{x})$, with LFP $\mathbf{q}^* \in [0, 1]^n$, we can compute a rational vector $\mathbf{v} \in [0, 1]^n$ such that

$$\|\mathbf{v}-\mathbf{q}^*\|_\infty \leq 2^{-j}$$

in time polynomial in both the encoding size |P| of the equations and in j (the number of "bits of precision").

We use Newton's method..... but how?

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲ 토 ▶ ▲ 토 ▶ - 토

Theorem ([Kolmogorov-Sevastyanov'47,Harris'63])

For certain classes of strongly-connected PPSs, $q_i^* = 1$ for all *i* iff the spectral radius $\varrho(P'(1))$ for the moment matrix P'(1) is ≤ 1 , and otherwise $q_i^* < 1$ for all *i*.

Theorem ([E.-Yannakakis'05])

Given a PPS, $\mathbf{x} = P(\mathbf{x})$, deciding whether $q_i^* = 1$ is in P-time.

(Deciding whether $q_i^* = 0$ is also in P-time (and a lot easier).)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ □

Algorithm for approximating the LFP q^* for PPSs

- Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$.
- On the resulting system of equations, run Newton's method starting from 0.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶ - 王

< □ ▶

Algorithm for approximating the LFP q^* for PPSs

- Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$.
- On the resulting system of equations, run Newton's method starting from 0.

Theorem ([ESY'12])

Given a PPS $\mathbf{x} = P(\mathbf{x})$ with LFP $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, if we apply Newton starting at $\mathbf{x}^{(0)} = \mathbf{0}$, then

 $\|\mathbf{q}^* - \mathbf{x}^{(4|P|+j)}\|_{\infty} \le 2^{-j}$

- 4 戸 ト 4 三 ト (三 ト ク Q ()

Algorithm for approximating the LFP q^* for PPSs

- Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$.
- On the resulting system of equations, run Newton's method starting from 0.

Theorem ([ESY'12])

Given a PPS $\mathbf{x} = P(\mathbf{x})$ with LFP $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, if we apply Newton starting at $\mathbf{x}^{(0)} = \mathbf{0}$, then

$$\|\mathbf{q}^* - \mathbf{x}^{(4|P|+j)}\|_{\infty} \le 2^{-j}$$

Theorem ([ESY'12])

Given a PPS $\mathbf{x} = P(\mathbf{x})$ with LFP $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, if we apply Newton starting at $\mathbf{x}^{(0)} = \mathbf{0}$, then

$$|\mathbf{q}^* - \mathbf{x}^{(32|P|+2j+2)}||_{\infty} \le 2^{-2^j}$$

32

▲□▶ ▲□▶ ▲□▶ ▲□▶

- Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$.
- On the resulting system of equations, run Newton's method starting from 0.
- 3 After each iteration, round down to a multiple of 2^{-h}

Theorem ([ESY'12])

If, after each Newton iteration, we round down to a multiple of 2^{-h} where h := 4|P| + j + 2, then after h iterations $\|\mathbf{q}^* - \mathbf{x}^{(h)}\|_{\infty} \le 2^{-j}$.

Thus, we obtain a P-time algorithm (in the standard Turing model) for approximating q^* .

High level picture of proof

• For a PPS, x = P(x), with LFP $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, $P'(q^*)$ is a non-negative square matrix, and (we show)

(spectral radius of $P'(q^*)$) $\equiv \varrho(P'(q^*)) < 1$

• So, $(I - P'(q^*))$ is non-singular, and $(I - P'(q^*))^{-1} = \sum_{i=0}^{\infty} (P'(q^*))^i$.

• We can show the # of Newton iterations needed to get within $\epsilon > 0$ is

$$pprox pprox \log \|(I-P'(q^*))^{-1}\|_\infty + \log rac{1}{\epsilon}$$

• $\|(I - P'(q^*))^{-1}\|_{\infty}$ is tied to the distance $|1 - \varrho(P'(q^*))|$, which in turn is related to $\min_i(1 - q_i^*)$, which we can lower bound.

• Uses lots of Perron-Frobenius theory.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

・ロト ・(引ト ・ミト ・ミト ・ ヨー

 $(1 - q^*)$ is the vector of survival probabilities.

Lemma

If
$$\mathbf{q}^* - \mathbf{x}^{(k)} \leq \lambda (\mathbf{1} - \mathbf{q}^*)$$
 for some $\lambda > 0$, then $\mathbf{q}^* - \mathbf{x}^{(k+1)} \leq \frac{\lambda}{2} (\mathbf{1} - \mathbf{q}^*)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ へ⊙

STACS'13

17 / 38

Lemma

For any PPS with LFP
$$\mathbf{q}^*$$
, such that $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, for any i , $q_i^* \leq 1 - 2^{-4|P|}$.

The complexity of quantitative decision problems for BPs

Proposition

Given a PPS, x = P(x), and a probability p, deciding whether $q_i^* \le p$ is in PSPACE.

Proof.

$$\exists \mathbf{x}(\mathbf{x} = P(\mathbf{x}) \land x_i \leq p)$$

is expressible in the existential theory of reals. There are PSPACE decision procedures for $\exists \mathbb{R}$ ([Canny'89,Renegar'92]).

Now some bad news:

Theorem ([E.-Yannakakis,'05,'07])

Given a PPS, x = P(x), deciding whether $q_i^* \le 1/2$ (or $q_i^* \le p$ for any $p \in (0, 1)$), is both Sqrt-Sum-hard and PosSLP-hard.

STACS'13 18 / 38

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

◆□▶ ◆□▶ ◆□▶ ◆□▶

Sqrt-Sum: the square-root sum problem is the following decision problem: Given $(d_1, \ldots, d_n) \in \mathbb{N}^n$ and $k \in \mathbb{N}$, decide whether $\sum_{i=1}^n \sqrt{d_i} \leq k$. Solvable in PSPACE. Open problem ([GareyGrahamJohnson'76]) whether it is in NP (or even

the polynomial time hierarchy).

PosSLP: Given an arithmetic circuit (Straight Line Program) with gates $\{+, *, -\}$ with integer inputs, decide whether the output is > 0. PosSLP captures all of polynomial time in the unit-cost arithmetic RAM model of computation.

[Allender, Bürgisser, Kjeldal-Petersen, Miltersen, 2006] Gave a (Turing) reduction from Sqrt-Sum to PosSLP and showed both can be decided in the Counting Hierarchy: $P^{PP^{PP}^{PP}}$. Nothing better is known.

3

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

SQ (A

The quantitative **decision** problem for PPSs is PosSLP-equivalent

Theorem ([E.-Stewart-Yannakakis'12])

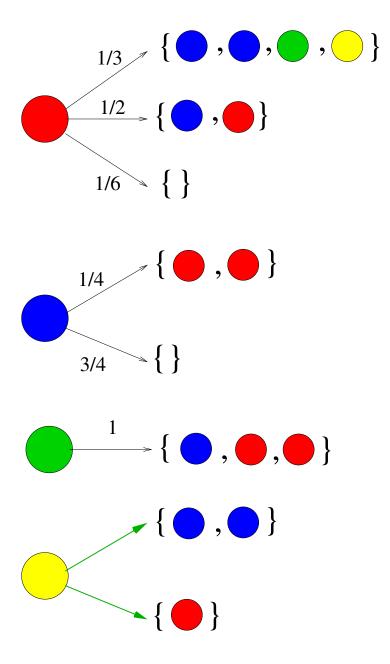
Given a PPS, x = P(x), and a probability p, deciding whether $q_i^* < p$ is P-time (many-one) reducible to PosSLP. (And thus PosSLP-equivalent.)

• Thus it captures the full power of polynomial time in the unit-cost arithmetic RAM model of computation.

And by [Allender, et. al.'06], it is also in the Counting Hierarchy.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- (目) (三) (三) (三)

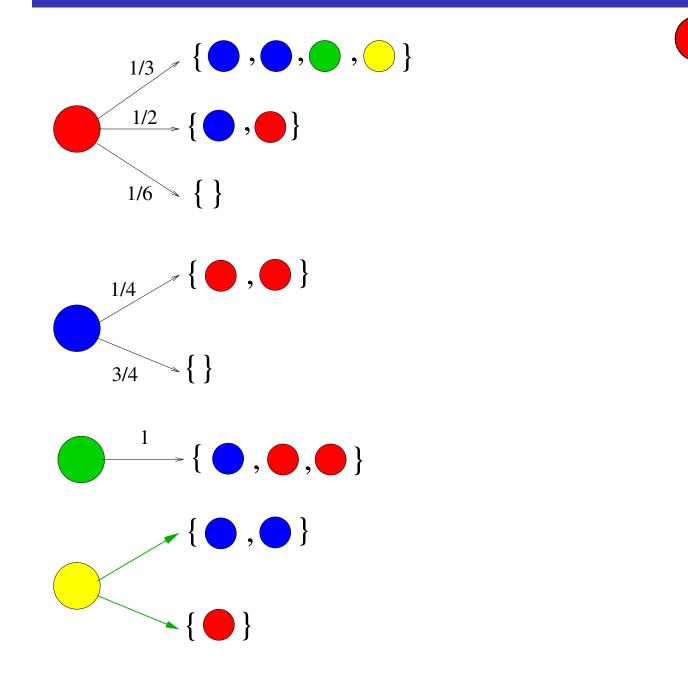


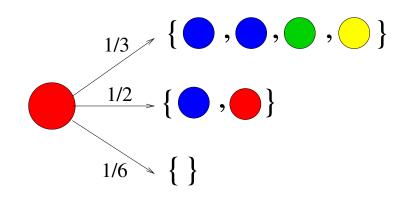
STACS'13 21 / 38

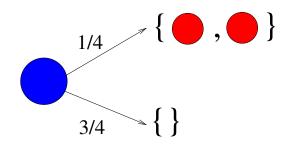
590

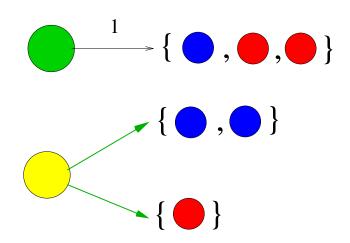
▲□▶ ▲ 글▶ ▲ 글▶ = 글

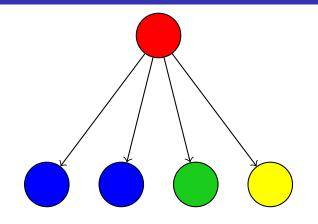
< □ ▶

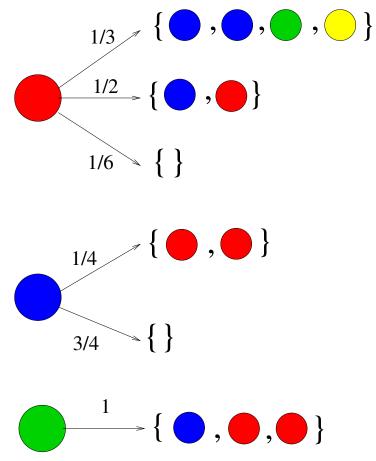


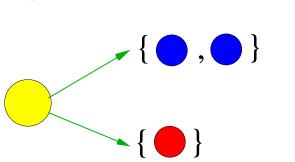


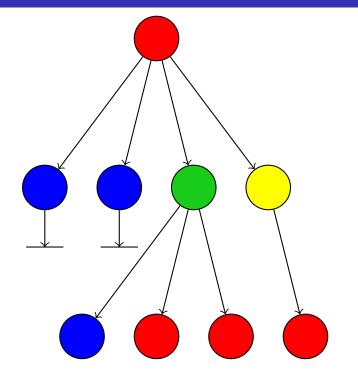




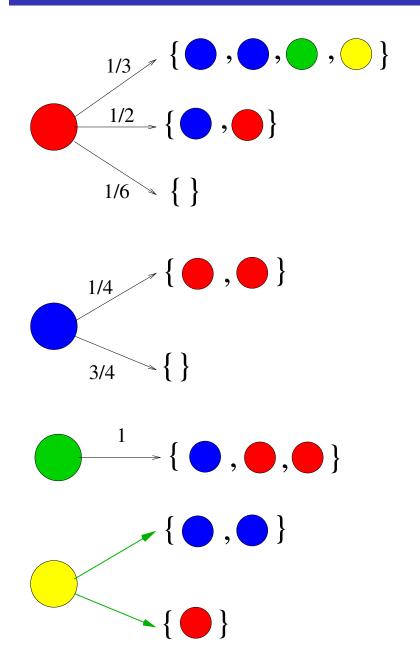


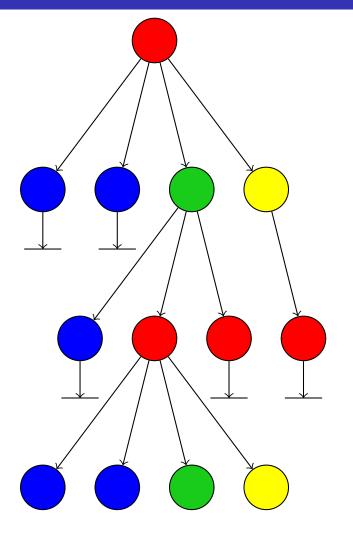






▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□



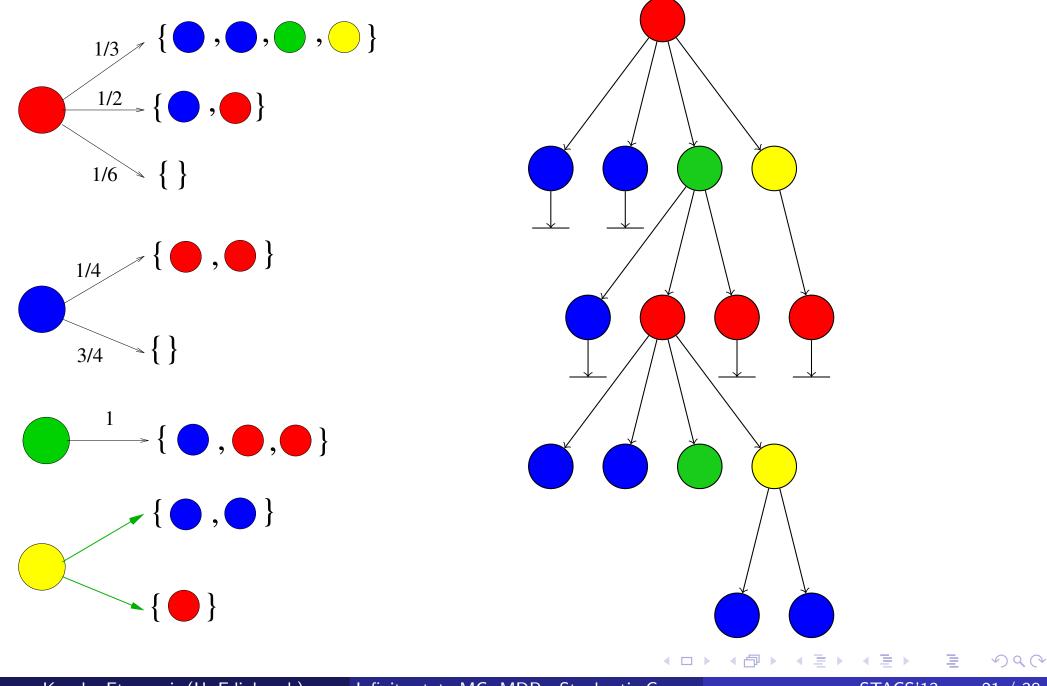


< □ ▶

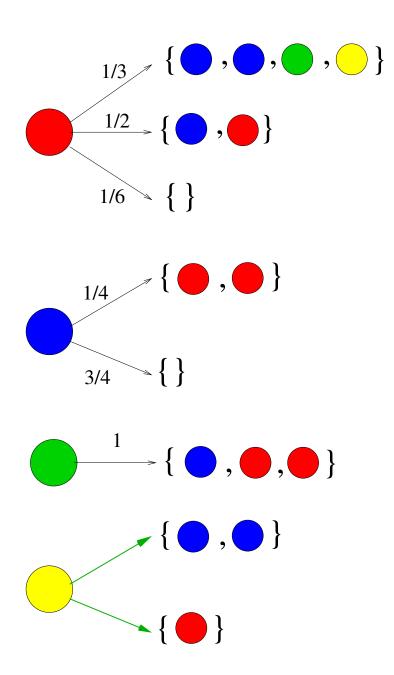
STACS'13 21 / 38

 \mathcal{A}

▲圖▶ ▲필▶ ▲필▶ _ 트



STACS'13 21 / 38



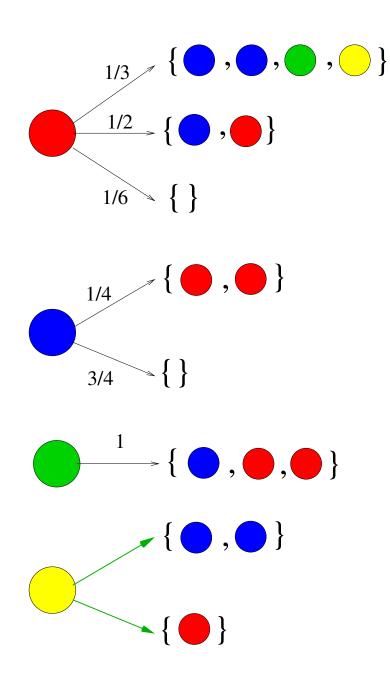
What is the maximum probability of extinction, starting with one ?

3

- < ≣ ▶ < ≣ ▶

< □ ▶

< 47 ▶

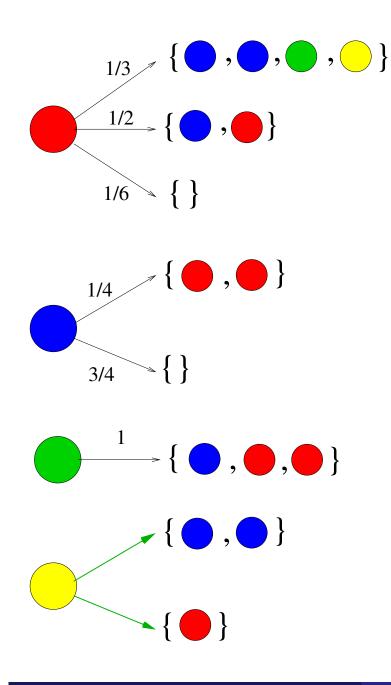


What is the maximum probability of extinction, starting with one $x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{Y} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$ $x_B = \frac{1}{4}x_R^2 + \frac{3}{4}$ $x_G = x_B x_R^2$ XY

< □ ▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲□ ▲ 三 ▲ 三 ▲ 三

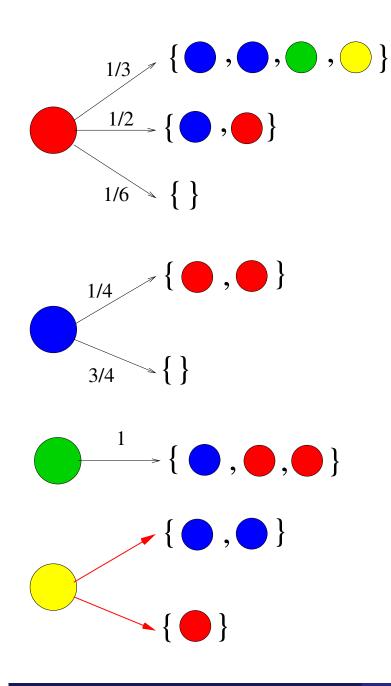


What is the maximum probability of extinction, starting with one $x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{Y} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$ $x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$ $x_G = x_B x_R^2$ $x_{\mathbf{Y}} = \max\{x_{\mathbf{R}}^2, x_{\mathbf{R}}\}$

We get fixed point equations, $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Fact [E.-Yannakakis'05]

The maximum extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0, 1]^3$, of $\mathbf{\bar{x}} = P(\mathbf{\bar{x}})$.



What is the minimum probability of extinction, starting with one $x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{Y} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$ $x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$ $x_G = x_B x_R^2$ $x_{\mathbf{Y}} = \min\{x_{\mathbf{R}}^2, x_{\mathbf{R}}\}$

We get fixed point equations, $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Fact [E.-Yannakakis'05]

The minimum extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0, 1]^3$, of $\mathbf{\bar{x}} = P(\mathbf{\bar{x}})$.

A Maximum Probabilistic Polynomial System (maxPPS) is a system

$$\mathbf{x}_i = \max\{p_{i,j}(\mathbf{x}) : j = 1, \dots, m_i\}$$
 $i = 1, \dots, n$

of *n* equations in *n* variables, where each $p_{i,j}(x)$ is a probabilistic polynomial. We denote the entire system by:

$$\mathbf{x} = P(\mathbf{x})$$

Minimum Probabilistic Polynomial Systems (minPPSs) are defined similarly.

These are **Bellman optimality equations** for maximizing (minimizing) extinction probabilities in a BMDP.

We use max/minPPS to refer to either a maxPPS or an minPPS.

SQ A

· < E > < E >

 $P: [0,1]^n \rightarrow [0,1]^n$ defines a monotone map on $[0,1]^n$.

Proposition. [E.-Yannakakis'05]

- Every max/minPPS, x = P(x) has a least fixed point, $q^* \in [0, 1]^n$.
- $q^* = \lim_{k \to \infty} P^k(\mathbf{0}).$
- *q*^{*} is vector of optimal extinction probabilities for the BMDP.

Question

Can we compute the probabilities q^* efficiently (in P-time)?

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Theorem ([E.-Stewart-Yannakakis,ICALP'12])

Given a max/minPPS, $\mathbf{x} = P(\mathbf{x})$, with LFP $\mathbf{q}^* \in [0, 1]^n$, we can compute a rational vector $\mathbf{v} \in [0, 1]^n$ such that

$$\|\mathbf{v} - \mathbf{q}^*\|_{\infty} \le 2^{-j}$$

in time polynomial in the encoding size |P| of the equations, and in j.

We establish this via a Generalized Newton's Method that uses linear programming in each iteration.

An iteration of Newton's method on a PPS, applied on current vector $y \in \mathbb{R}^n$, solves the equation

$$P^{\mathbf{y}}(\mathbf{x}) = \mathbf{x}$$

where $P^{\mathbf{y}}(\mathbf{x}) \equiv P(\mathbf{y}) + P'(\mathbf{y})(\mathbf{x} - \mathbf{y})$ is a linear (first-order Taylor) approximation of P(x).

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- 4 戸 2 4 三 2 4 三 2 三

Generalised Newton's method

Linearisation

Given a maxPPS

$$(P(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{x}) : j = 1, \dots, m_i\} \qquad i = 1, \dots, n$$

We define the linearisation, $P^{y}(x)$, by:

$$(P^{\mathbf{y}}(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{y}) + \nabla p_{i,j}(\mathbf{y}).(\mathbf{x} - \mathbf{y}) : j = 1, \dots, m_i\} \qquad i = 1, \dots, n$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんぐ

28 / 38

Generalised Newton's method

Linearisation

Given a maxPPS

$$(P(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{x}) : j = 1, \dots, m_i\} \qquad i = 1, \dots, n$$

We define the linearisation, $P^{y}(x)$, by:

$$(P^{\mathbf{y}}(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{y}) + \nabla p_{i,j}(\mathbf{y}).(\mathbf{x} - \mathbf{y}) : j = 1, \dots, m_i\} \qquad i = 1, \dots, n$$

Generalised Newton's method, applied at vector y

For a maxPPS, For a minPPS, These can both be phrased as linear programming problems. Their optimal solution solves $P^{\mathbf{y}}(\mathbf{x}) = \mathbf{x}$, and yields the GNM iteration we need.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Algorithm for max/minPPSs

Find and remove all variables x_i such that q_i^{*} = 0 or q_i^{*} = 1.
 (q_i^{*} = 1 decidable in P-time using LP [E.-Yannakakis'06]: reduces to a spectral radius optimization problem for non-negative square matrices.)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

< □ ▶

Algorithm for max/minPPSs

- Find and remove all variables x_i such that q_i^{*} = 0 or q_i^{*} = 1.
 (q_i^{*} = 1 decidable in P-time using LP [E.-Yannakakis'06]: reduces to a spectral radius optimization problem for non-negative square matrices.)
- On the resulting system of equations, run Generalized Newton's Method, starting from 0. After each iteration, round down to a multiple of 2^{-h}.
 Each iteration of GNM can be computed in P-time by solving an LP.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Algorithm for max/minPPSs

Find and remove all variables x_i such that q_i^{*} = 0 or q_i^{*} = 1.
 (q_i^{*} = 1 decidable in P-time using LP [E.-Yannakakis'06]: reduces to a spectral radius optimization problem for non-negative square matrices.)

On the resulting system of equations, run Generalized Newton's Method, starting from 0. After each iteration, round down to a multiple of 2^{-h}.

Each iteration of GNM can be computed in P-time by solving an LP.

Theorem [ESY'12]

Given a max/minPPS $\mathbf{x} = P(\mathbf{x})$ with LFP $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, if we apply rounded GNM starting at $\mathbf{x}^{(0)} = \mathbf{0}$, using h := 4|P| + j + 1 bits of precision, then $\|\mathbf{q}^* - \mathbf{x}^{(4|P|+j+1)}\|_{\infty} \leq 2^{-j}$.

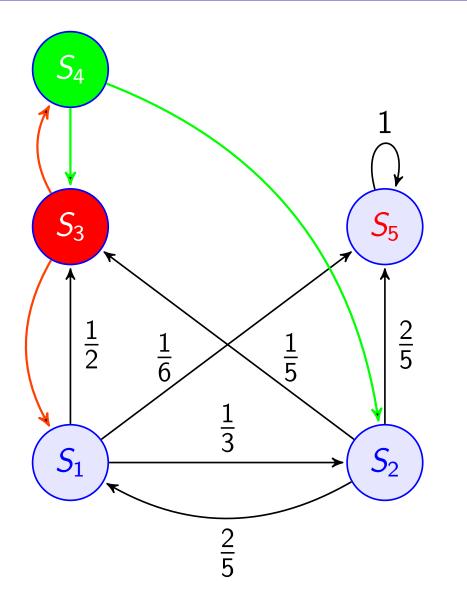
We can do all this in time polynomial in |P| and j.

E.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲□▶ ▲□▶ ▲□▶ ▲三▶

finite-state Simple Stochastic Games



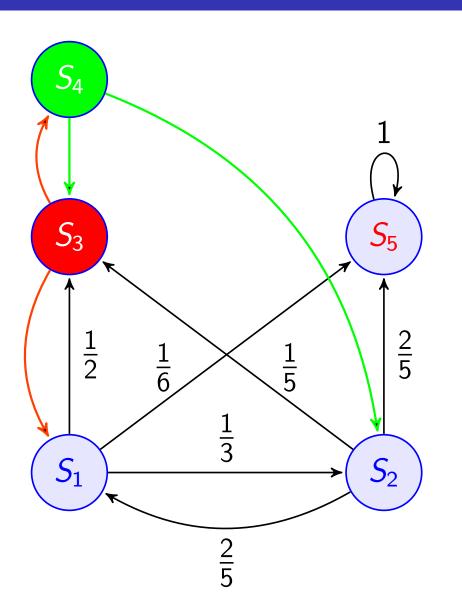
王

590

< ∃ > < ∃ >

< □ ▶

▲ 🗗 🕨



hitting S_5 starting at S_1 ? (These games are determined.)

 $x_1 =$

Ξ.

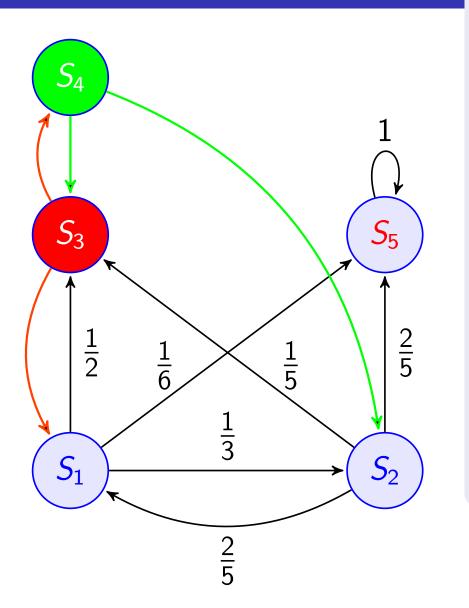
 $\mathcal{A} \mathcal{A} \mathcal{A}$

< ⊒ ▶

< □ ▶

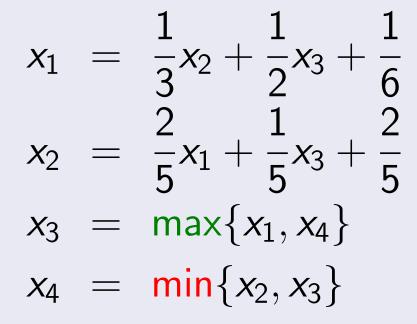
< 4 ▶

< ∃ >



hitting S_5 starting at S_1 ? (These games are determined.)

< □ ▶

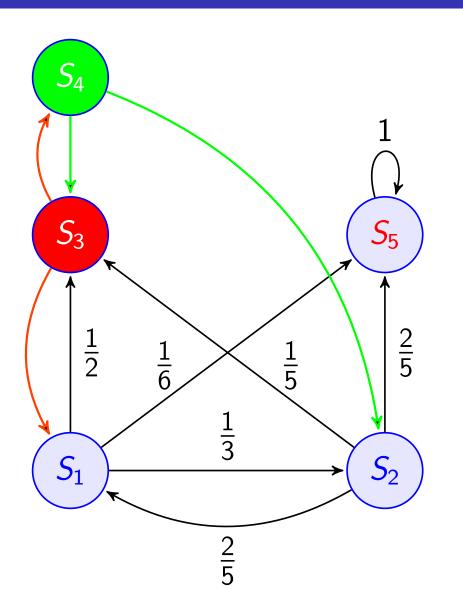


3

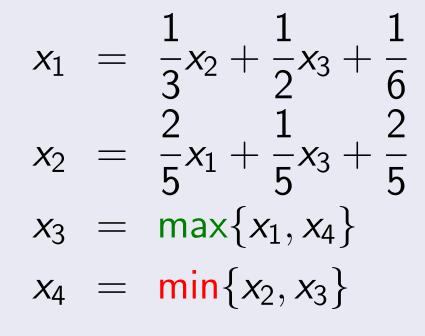
 $\mathcal{A} \mathcal{A} \mathcal{A}$

-∢∃≯

< ∃ >



hitting S_5 starting at S_1 ? (These games are determined.)

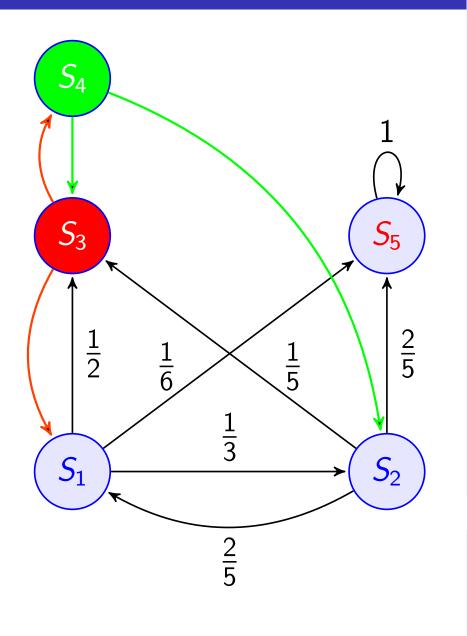


We get linear-min-max equations, $\bar{\mathbf{x}} = P(\bar{\mathbf{x}}).$

< □ ▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< ∃ ► < ∃ ►</p>



hitting S_5 starting at S_1 ? (These games are determined.)

$$x_{1} = \frac{1}{3}x_{2} + \frac{1}{2}x_{3} + \frac{1}{6}$$

$$x_{2} = \frac{2}{5}x_{1} + \frac{1}{5}x_{3} + \frac{2}{5}$$

$$x_{3} = \max\{x_{1}, x_{4}\}$$

$$x_{4} = \min\{x_{2}, x_{3}\}$$

We get linear-min-max equations, $\bar{\mathbf{x}} = P(\bar{\mathbf{x}}).$

Fact: [Shapley'53,Condon'92] Hitting values are the least fixed point, $q^* \in [0, 1]^4$, of $\mathbf{x} = P(\mathbf{x})$.

< 47 ▶

< □ ▶

500

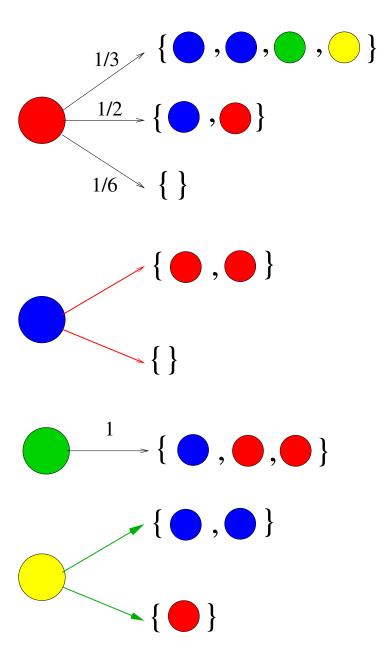
< = > < = >

- In any finite-state SSG, both max and min, have optimal positional strategies (i.e., deterministic and memoryless optimal strategies).
- Thus [Condon'92]: deciding whether the game value q^{*}_i ≤ 1/2, is in NP ∩ coNP.

And computing the (exact, rational) values q^* is in **FNP**.

 Long standing open problem whether SSGs are solvable in P-time. (Subsumes parity games and mean payoff games.)

· • = • • = •

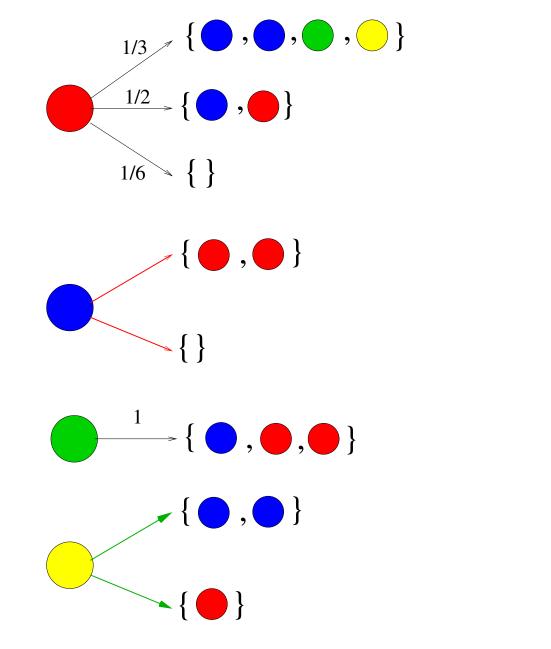


STACS'13 32 / 38

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲□▶ ▲ 글▶ ▲ 글▶ = 글

< □ ▶



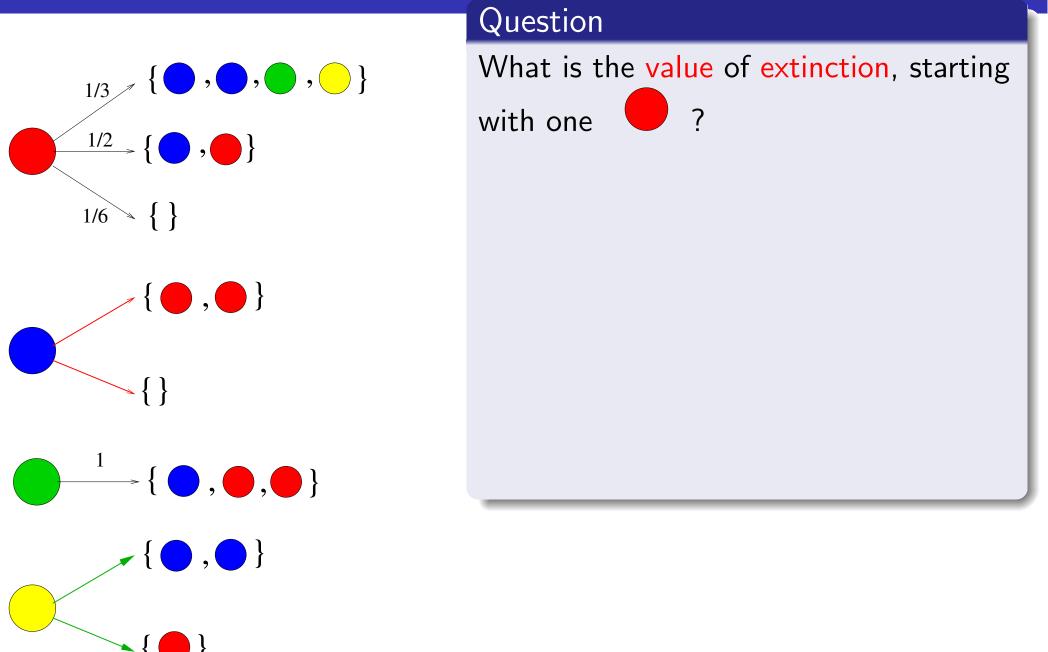
Types belonging to min:

Types belonging to max:

< □ ▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- 4 戸 ト - 4 三 ト - 三 -

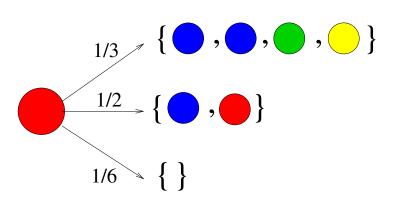


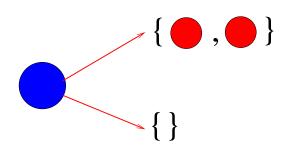
 \mathcal{A}

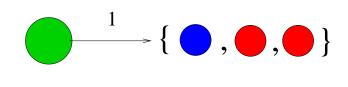
- **-**

- < ≣ ▶ < ≣ ▶

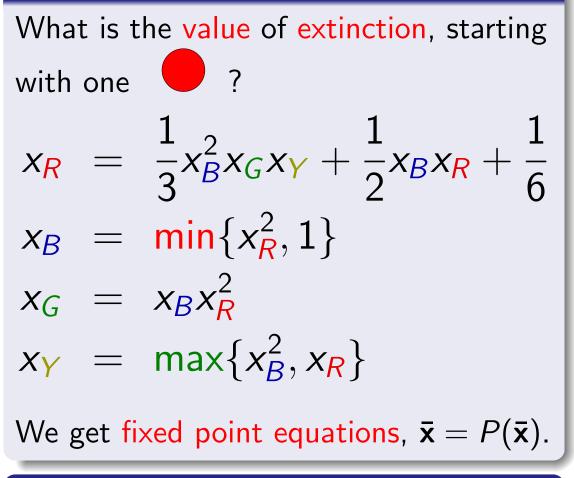
< □ ▶







Question



Fact [E.-Yannakakis'05]

The extinction values are the LFP, $\mathbf{q}^* \in [0, 1]^3$ of $\mathbf{\bar{x}} = P(\mathbf{\bar{x}})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶

32

Theorem ([E.-Yannakakis'05])

For any BSSG, both players have static positional optimal strategies for maximizing (minimizing) extinction probability.

A static positional strategy is one that, for every type belonging to the player, always deterministically chooses the same single rule. (i.e., it is deterministic, memoryless, and "context-oblivious".)

Theorem ([E.-Yannakakis'06])

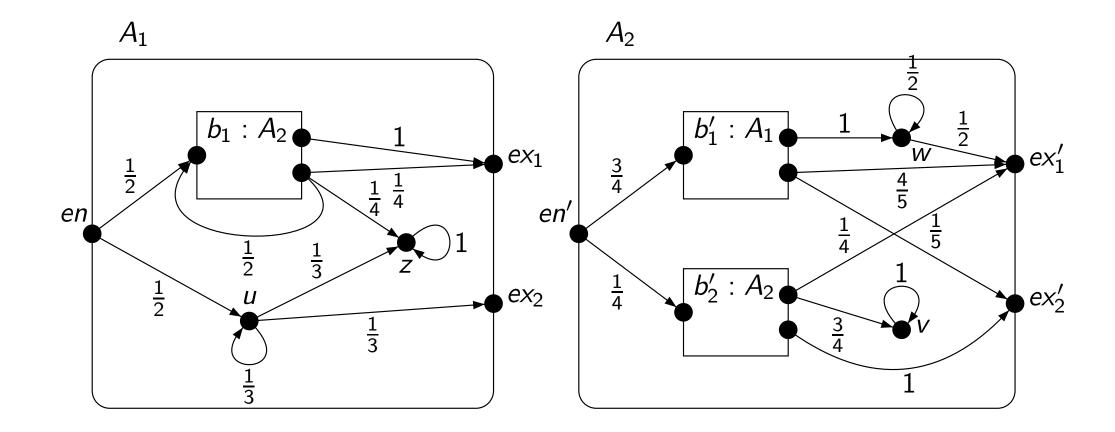
Given a BSSG, deciding if the extinction value is $q_i^* = 1$ is in NP \cap coNP, & is at least as hard as computing the exact value for a finite-state SSG.

Theorem ([ESY'12])

Given a BSSG, and given $\epsilon > 0$, we can compute a vector $v \in [0, 1]^n$, such that $||v - q^*||_{\infty} \le \epsilon$, in **FNP**.

- Many other analyses: expected total reward, discounted reward, expected limiting average reward, model checking.
- Many analyses require termination probabilities q* as a prerequisite, but they also require non-trivial additional work.
- Recursive Markov Chains (RMCs) form a more general class of countable infinite-state discrete-time MCs. (BPs and SCFGs correspond to 1-exit RMCs.)

Recursive Markov Chain



STACS'13 2 / 2

王

590

★ E ► < E ►</p>

< □ ▶

< 47 ▶

- RMCs also have MPSs (not PPSs) whose LFP q* ∈ [0, 1]ⁿ gives their termination probabilities.
- However, any non-trivial approximation of q* for RMCs is PosSLP-hard ([E.-Yannakakis'07]).
- For RMDPs and RSSGs any non-trivial approximation of their value vector is uncomputable! ([E.-Yannakakis'05]).

- But other subclasses of RMCs, corresponding to other important stochastic processes, are analyzable.
- 1-box RMCs correspond to (discrete-time) Quasi-Birth-Death processes (QBDs), and to probabilistic one-counter automata (OC-MCs).
- For QBDs we can approximate *q*^{*} in P-time ([E.-Wojtczak-Yannakakis'08], [Stewart-E.-Yannakakis'13]).
- Many problems for OC-MDPs and OC-SSGs are also decidable ([Brazdil-Brozek-E.-Kucera-Wojtczak'10,'10,'11]), but for many we don't know good complexity bounds.

<! ■ > < ■ >

- A very rich landscape, with still many open questions.
- Can we solve finite-state SSGs in P-time?
- Can we obtain any better upper bounds for PosSLP??
- Deciding $q^* \ge 1/2$ for Branching SSGs subsumes both of these problems.

- -

< = > < = >

< □ ▶