
automata-theoretic model checking

Kousha Etessami
Bell Labs

(starting next week, my affiliation will be U. of Edinburgh)



overview

• The purpose of my lectures: 
– to cover the fundamental algorithms used in the 

automata-theoretic approach to (LTL) model checking, 
as practiced in tools such as SPIN.

• In doing so, we must cover key models and formalism:  
transition systems, Büchi automata, (linear) temporal logic, 
……….

• We will only briefly touch on other approaches and more 
advanced algorithms. 

• Apology: I won’t provide thorough references to original 
research.  Please see, e.g., references in the book [CGP’00].



basic picture of model checking

system model

M

property

ψ

model checker

(Does M ² ψ ?)

Yes!

No! +
“counterexample”



where do we get the system model?

hardware

e.g., Verilog or VHDL, 
source code

state machine-based 
system model

abstraction & other 
(semi-)automated 
transformations

software

e.g., C, C++ , or 
Java, source 

code

hand-built design models



where do we get the properties?

requirements  
documentation

+
(insight)

formal properties

(typically based on 
temporal logic or 

automata)  

canned standard properties & templates 

(e.g., “deadlock-freedom”)



choosing a system model:
what do we want to model?

• systems have a state that evolves over time.

• they manipulate data, accessed through variables, whose 
values change as the state changes.

• non-determinism does not exist in real systems, but it lets us 
model unknowns of the system and its environment, allowing 
many possible evolutions of system state.

• concurrency: systems have interacting processes
– asynchronous/synchronous,
– message passing or shared data communication.

• possibly: dynamic memory allocation & process creation,  
procedure call stack,  clocks and real time, etc., etc., 
………………….

• wait! don’t get carried away….



we need models to be:
• amenable to efficient algorithmic analysis,
• yet to faithfully model as many relevant aspects of real 

systems as possible.



Example: simple Promela implementation of a semaphore
(Promela is the input language of the SPIN model checker)

chan semaphore = [0] of { bit }; 
proctype dijkstra()  { 

byte count = 1; 
loop:

if
:: (count == 1)  ! semaphore!P;   count = 0 ; goto loop
:: (count == 0)  ! semaphore?V;  count = 1 ; goto loop
fi   } 

proctype user()  { 
repeat: 

semaphore?P;  /* put critical section here …. */ 
semaphore!V;   /* put non-critical section here …..*/ 
goto repeat

} 
init { run dijkstra();   run user();   run user() } 



An EFSM is given by M = (Q, V,Guards, Actions, ∆, init) :

• Q is a finite set of control states.

• V = { v1, v2, v3,…,vm} is a set of variables.  Each vi 2 V takes 
values from a finite domain D(vi).

• Guards = { grd1, grd2, …, grdr} , are a set of predicates
grdi(v1,…,vm) , that evaluate to true or false given an 
assignment α 2 D(v1) x D(v2) x … x D(vm) to the variables.
– guard example:    “v2 ¸ v4”.

• Actions = { act1, act2 , …, actd} are a set of functions  
acti: D(v1) x …. x D(vm)  a D(v1) x …. x D(vm) that given one 
assignment to the variables, produce another assignment. 
– action example:   “v3 :=  v1 + v2 + 1;”.

• ∆ µ Q x Guards x Actions x Q is a set of transitions.

• init = (qinit , αinit) is an initial control state qinit 2 Q together 
with an initial assignment αinit to the variables.

our choice for system models:  
Extended Finite State Machines



justifying our choice

What happened to concurrency?

• No problem. If we have processes Proc1, …. , Procn, with sets 
of control states Q1, …., Qn, respectively, let the product 
Q1 x …. x Qn be our set of control states Q of M. 

• in asynchronous concurrency, the transition relation ∆ would 
modify the control state of only one process per transition.

• in synchronous concurrency, all process states could be 
modified in the same transition. 

• bounded message buffers (“channels” in Promela) can be 
modeled by variables.  



Doesn’t this hide the state explosion of the product Q1 x … x Qn?

• Not really.  Variables already yield state explosion.    In fact, 
we can eliminate control states entirely, encoding them as 
variables: let variable pci encode the “program counter” value 
for process Proci.    Transitions of M are then just pairs in 
Guards x Actions, that update program counters appropriately. 



• In principle, EFSMs are finite state and do not model systems 
whose state space can be unbounded.

What about dynamic process creation and dynamic memory allocation?

But tools like SPIN allow dynamic process creation, don’t they?

• Yes, but no problem.   The algorithms we describe for EFSMs apply 
to a more general model, where the state space could be infinite, 
but without any guarantee of halting.

• To keep things simple, we confine our descriptions to EFSMs.   This 
already conveys the essence of all the algorithms.

• But we will soon describe more general assumptions, sufficient for 
the algorithms to be applicable.

What about procedure calls?  What about clocks and real time?

• See J. Esparza’s and K. Larsen’s lectures, respectively.



The underlying transition system of an EFSM

• An EFSM,  M, provides a concise representation of an 
underlying state transition system K = (S,R,init) :

– S = Q x (D(v_1) x…x D(v_m)) is the set of (full) states of  K, 
given by control state + data values in M. 

– R µ S x S, the transitions of  K,  are:   
for all states  s = (q,α) 2 S and s0 = (q0 , α0) 2 S
(s,s0) 2 R iff   9 (q, grd , act, q0) 2 ∆ such that 

grd(α) = true and act(α) = α0 .

– init = (qinit , αinit) 2 S, is also the initial state of  K. 

• Each execution of M defines an (infinite) path π, called a run

through states in K, where π =  s0 ! s1 ! s2 ! ……. such that           

s0 = init, and (si,si+1) 2 R,  8 i ¸ 0.



• Suppose we’re interested in certain “observations”  or 
“propositions”   P = { p1, …, pk } regarding states of K.   Each

pi: S a {true,false} 

is a predicate on states 

(i.e., a predicate on control state + data values in M).  

– Examples:  “counter ¸ 1”     

“the control-state is q or else c = 0”

• We can label state s with the propositions L(s) µ P that hold 
true at s.  Thus, L: S a ΣP, where the alphabet ΣP = 2^P is the 
set of subsets of P.

• We thus get a labeled transition system (Kripke structure)                  

KP =    (S , ΣP , R , L , Init)

labeling the transition system



associating an ω-language with an EFSM

• For a run π = s0 ! s1 ! s2 …… of KP, we let 

L(π) , L(s0) L(s1) …. 2 (ΣP)ω

 be the ω-word associated with the run.

• We define LP(M) , L(KP) , { L(π)| π is a run of KP}

to be the  ω-language associated with M

(with respect to proposition set P) .



assumptions about K for our algorithms & their analysis

• We assume S is at most countable, and hence each  s 2 S has a 
finite description.  (For EFSMs, S is finite.)

• For each  s 2 S, 
– we assume there are a finite set of successor states 

Succ(s) = {s’ | (s,s’) 2 R}, and that you can “efficiently” 
compute them. 

– Thus, Guards & Actions are assumed to be “efficiently” 
computable.

– We also assume each proposition pi 2 P (a predicate on 
states s) is  “efficiently” computable. 



A quick detour: Büchi automata

• If we add a set F µ S of “accepting” states to a Kripke 
structure we get a Büchi automaton:  

A = (S , Σ , R , L , Init, F)

• A run π = s0 ! s1 ! s2 !….. of A is now called an accepting
run iff  for infinitely many i 2 N, si 2 F.

• We’ll allow a set of initial states Init µ S, rather than just 
one.  A run π must now have s0 2 Init.

• We associate with A the ω-language   
L(A) = { L(π) | π is an accepting run of A}.

• We say ω-word  w 2Σω is accepted by A if w 2 L(A).

• In a generalized Büchi automaton, instead of one accepting 

set F, we have a family F = { F1, …, Fd } , and π is accepting iff 

for all F 2 F, for infinitely many i 2 N, si 2 F.



specification of properties:  temporal logic

• What is temporal logic?

– It is a language for describing relationships between the 
occurrence of events over time.

– It comes is several flavors, e.g., Linear vs. Branching time.   
We focus on (propositional) Linear Temporal Logic (LTL) . 

– Example 1:  
“Until event stop occurs, every occurrence of event request is 
eventually followed by an occurrence of event response”:

(request ! “eventually” response) “Until” stop
In LTL syntax:

(request  ! } response)  U stop

– Example 2: 
“infinitely often pulse”:   “always”  “eventually” pulse
In LTL syntax: ¤ } pulse



Why use temporal logic to specify properties?

• [Pnueli’77] and others recognized that correctness assertions 
for reactive systems are best phrased in terms of occurrence 
of events during the entire, potentially indefinite, execution of 
the system.    Not just what it outputs when it halts. 

• Indeed, systems like the Windows OS aren’t really supposed to 
“halt and produce output”.  Rather, they should forever react
to stimuli from their  environment in a “correct” manner.



• There exist properties that we might wish to express that 
aren’t expressible in LTL, nor in other temporal logics.

• But we need to balance expressiveness of the specification 
language with algorithmic efficiency of checking such 
properties.

• temporal logics, and the related formalism of ω-automata,  
provide a reasonable balance. 

• more on LTL vs. branching-time logics later…..



syntax of LTL
• LTL formulas (with base propositions P) are built from:

– atomic propositions : P = { p1, …., pk } ,
– boolean connectives:  { : , Ç , Æ } , 
– temporal operators:  { ° , } , ¤ , U , V } .    

( we also use parentheses to disambiguate formulas)
• Inductively, the set of LTL formulas are:

– pi, for all pi 2 P.   

– if ψ1 and ψ2 are LTL formulas, then so are

:ψ1 , ψ1 Ç ψ2 , ° ψ1 , and  ψ1  U ψ2 .

• The other connectives & operators are expressively redundant:   

ψ1 V ψ2 ´ :( : ψ1 U : ψ2) ,
}ψ ´ true U ψ,         (where true , p1 Ç : p1 )

¤ ψ ´ : } : ψ



semantics of LTL

• We interpret a formula ψ as expressing a property 
of ω-words, i.e., an  ω-language L(ψ) µ (ΣP)ω.

• For ω-word w = w0w1w2 ….. 2 (ΣP)ω, let               
w[i] = wiwi+1wi+2.….. be the suffix of w starting at 
position i.   We define the “satisfies” relation, ² , 
inductively:
– w ² pj iff   pj 2 w0 (for any pj 2 P).
– w ² :ψ iff  w 2 ψ.
– w ² ψ1 Ç ψ2 iff    w ² ψ1 or w ² ψ2.
– w ² °ψ iff  w[1] ² ψ.
– w ² ψ1 U ψ2 iff    9 i ¸ 0 such that  w[i] ² ψ2 ,  

& 8j, 0·j< i, w[j] ² ψ1. 
• Let L(ψ) = { w |  w ² ψ }.



semantics of LTL continued………….

Extending our definition of “satisfies” to transition
systems, and EFSMs, we say:

• K  ² ψ iff  for all runs π of KP,  L(π) ² ψ, 

i.e.,  L(KP) µ L(ψ).

• M ² ψ iff  K ² ψ (where K is the underlying      

transition system of M.)



a few words about branching-time TL’s

• Branching-time (BT) temporal logics allow us to speak about 
many executions of M at the same time, using quantification 
over paths π.

• Example:   “In all executions, at all times there is a
a way to reach the ‘reset’  state”, would in the branching-
time logic CTL be expressed as:

A ¤ E } reset

• Thus, unlike LTL, we interpret BT logics not on ω-words, but 
on ω-trees, consisting of all runs rooted at the initial state, 
labeled by ΣP.



linear vs. branching-time logics

some advantages of LTL

• LTL properties are preserved 
under “abstraction”:   i.e., if M
“approximates” a more complex 
model M’, by introducing more 
paths, then

M ² ψ ) M’ ² ψ
• “counterexamples” for LTL are 

simpler: consisting of single 
executions (rather than trees).

• The automata-theoretic approach 
to LTL model checking is simpler
(no tree automata involved).

• anecdotally, it seems most 
properties people are interested 
in are linear-time properties. 

some advantages of BT logics

• BT allows expression of some 
useful properties like ‘reset’.

• CTL, a limited fragment of the 
more complete BT logic CTL*, 
can be model checked in time 
linear in the formula size (as 
well as in the transition 
system). But formulas are 
usually far smaller than system 
models, so this isn’t as 
important as it may first seem.

• Some BT logics, like µ-calculus
and CTL, are well-suited for 
the kind of fixed-point 
computation scheme used in 
symbolic model checking. 

My bias: linear: LTL and more generally ω-regular properties on words.



The automata-theoretic approach to LTL model checking

[Vardi-Wolper’86]:
(informed by much prior work: [C-E’81,Q-S’81,L-P’85,K’85,.….])

system model

M

LTL
property

ψ

model checker
Yes!

No! +
“counterexample”

Convert :ψ to

Büchi automaton

A:ψ, so that 
L(:ψ) = L(A:ψ)

Check that M ² ψ
by checking that 

L(KP)Å L(A:ψ) = ;



why does this scheme work?

M ² ψ , LP(M) µ L(ψ)  

, L(KP)   µ L(ψ)  
, L(KP) Å (ΣP

ω nL(ψ))  =  ;
, L(KP) Å L(:ψ)      =  ;
, L(KP) Å L(A:ψ)   =  ; .



our algorithmic tasks

We have reduced LTL model checking to two tasks:

1. Convert an LTL formula ϕ (=:ψ) to a Büchi automaton Aϕ,      
such that L(ϕ) = L(Aϕ).

– Can we in general do this?  yes……

2. Check that M ² ψ, by checking that the intersection of   
languages L(KP) Å L(A:ψ) is empty.

– It would be unwise to first construct all of  KP from M, 
because  K can be far too big (state explosion).

– Instead, we shall see how to construct states of KP only as 
needed.



Translating LTL to Büchi automata: basic ideas 

• First, let’s put LTL formulas ϕ in normal form where:
– :‘s have been “pushed in”, applying only to propositions.
– the only temporal operators are U and its dual, V.

• States of Aϕ will be  sets of subformulas of ϕ, thus if we have             
ϕ = p1 U :p2 ,  a state is given by Φ µ { p1 , :p2  ,p1U:p2 }.

• Consider a word w =  w0 w1 w2 ………, such that w ² ϕ, where, 
e.g., ϕ = ψ1Uψ2 .

• Mark each position i with the set of subformulas Φi of ϕ that 
hold true there:

Φ0 Φ1 Φ2 …………
w0 w1 w2 …………

• Clearly, ϕ 2 Φ0 .  But then, by consistency, either:

– ψ1 2 Φ0, and ϕ 2 Φ1, or
– ψ2  2 Φ0 .

• Such consistency rules will dictate our states & transitions ….



The translation: LTL to (generalized) Büchi

Let  sub(ϕ) denote the set of subformulas of ϕ.
We define Aϕ = ( Q, Σ , R, L, Init, F ) as follows.

First, the state set:

• Q = { Φ µ sub(ϕ)  | s.t. Φ is internally consistent }. 

– For Φ to be internally consistent we should, e.g., have:
• if ψ Ç γ 2 Φ, then ψ 2 Φ or  γ 2 Φ.
• if ψ Æ γ 2 Φ, then ψ 2 Φ and γ 2 Φ.
• if p 2 Φ then :p∉Φ, & if :p2Φ then p∉Φ . 

• if ψ U γ 2Φ, then (ψ 2 Φ or  γ 2 Φ).

• if ψ V γ 2Φ, then γ 2 Φ.

• (some of these  are not strictly  necessary, but we get a  
smaller automaton by using them to eliminate redundant 
states).



the translation continued…….

Now, labeling the states of Aϕ: 

• The alphabet is Σ = 2P∪¬P , where :P = { :p |  p 2 P }.                     

• The labeling, L: Q a Σ, is L(Φ) = {  l 2 P[:P |  l 2 Φ }.

• Note: σ = { l1,…,lm } 2Σ denotes a boolean term
(a conjunct of literals)  l1 Æ … Æ lm, not one symbol of  ΣP = 2P.

– Now, a word w = w0w1 … 2 (ΣP)ω is in L(Aϕ) iff there’s a 
run     π =Φ0 !Φ1 ! Φ2 … of Aϕ, s.t., 8i 2 N, wi “satisfies” 

L(Φi), i.e., is a “satisfying assignment” for the term L(Φi) .

– This constitutes a slight redefinition of Büchi automata, but 
it is important for facilitating a much more compact Aϕ.



translation continued….
Now, the transition relation, and the rest of Aϕ :

• R µ Q x Q , where (Φ, Φ’) 2 R iff:

– if °ψ 2 Φ, then ψ 2 Φ’.

– if ψUγ2Φ then γ2Φ, or (ψ2Φ and ψUγ2Φ’).

– if ψVγ2Φ then  γ2Φ, and  ψ2Φ or ψVγ2Φ’.

• Init = { Φ 2 Q  | ϕ 2 Φ }.

• For each χ 2 sub(ϕ) of the form χ = ψUγ,   there is a set Fχ2F,  
such that Fχ = { Φ 2 Q |  χ ∉ Φ or γ 2 Φ}.

Lemma:  L(ϕ) = L(Aϕ) .

but, at this point Aϕ is a generalized Büchi automaton…..



From generalized-Büchi automata to Büchi automata

From A = ( Q, Σ , R, L, Init, F = {F0, …, Fd}) , 
we construct  A’ = ( Q’, Σ , R’, L’, Init’, F’) :

• Q’ = Q x {0, …,d} .

• R’ µ Q’ x Q’, where ((q,i),(s,j)) 2 R’ iff (q,s) 2 R, & 

either q ∉ Fi and i=j, or q2Fi and j=(i+1) mod (d+1) .

• L’((q,i)) = L(q).

• Init’ =  { (q,0)  | q 2 Init }.

• F’  =    { (q,0)  | q 2 F0 }.

Lemma: L(A’) = L(A) .



We have shown:

THEOREM:  Every LTL formula ϕ can be converted to a Büchi

automaton Aϕ, such that L(ϕ)=L(Aϕ). Furthermore, |Aϕ|22O(|ϕ|) .
---------------------------------------------------------------

We need Aϕ to be as small as possible.  But it is PSPACE-hard to
find an optimal Aϕ.
• [GPVW’95] give a more efficient algorithm, constructing only 

states as needed, in practice yielding smaller automata. Related
translations based on alternating-automata,[MSS’88,V’94,GO’01], 
yield further improvements. 

• Beyond optimizing the translation itself, key optimizations are:
– [EH’00, SB’00]:“massage” LTL formulas before translation, 

using “proof-theoretic” rewrite rules.
– [EH’00,SB’00, EWS’01,E’02]:  make Büchi automata smaller 

after translation, using various “fair” simulation quotients……
• In the worst case, exponential blowup is unavoidable.  Consider:

} p1 Æ } p2 Æ …..  Æ } pn



Can we go in the other direction? i.e.,  can every Büchi
automaton A be converted to an LTL formula ψA, such
that  L(A) = L(ψA) ?

• No, not quite.   But there are relatively simple 
modifications to LTL ([Wolper’83]) that make it as 
expressive as Büchi automata.  

• For example, LTL formulas prefixed by quantification 
of one proposition, 9p ψ , suffice to express all          
ω-regular languages ([T’82,E’00]).

What about ω-automata with other acceptance
criteria?   Rabin, Streett, Muller, ……………..



what’s with all these names?
• Each such acceptance condition simply defines a different 

family of boolean formulas over predicates  inf(q) meaning 
“state q occurs infinitely often in the run”.

• Theorem: all of these can be converted to equivalent (non-
deterministic) Büchi automata.  (but translation costs vary.)   

ÆF∈F Çq∈F inf(q)(generalized) Büchi

truth table shorthand for arbitrary boolean formulas Muller

your favorite formulas (with desirable properties)your name here

Æi∈[k] (    (Çq∈Li inf(q))  ! (Çi∈Ri  inf(q)) )Streett

Çi∈[k] ( : (Çq∈Li  inf(q))  Æ (Çi∈Ri  inf(q)) )Rabin

Çq∈F inf(q)Büchi

Class of acceptance formulasPerson’s name



step 2: determining whether L(KP) Å L(Aϕ) = ; :
first, the basic product construction

Given KP = (S,R,L, init) and Aϕ = (Q,ΣP,R’,L’,Init’,F’),
we define the “product”  Büchi automaton:

KP ­ Aϕ = (S­, ΣP , R­, L­ , Init­, F­)

S­ :=  { (s,q) 2 S x Q  |   L(s) satisfies L’(q) } , 

(recall: L’(q) is a term)

R­ :=  { ((s,q),(s’,q’)) 2 S­ x S­|  (s,s’) 2 R  & (q,q’) 2 R’ },

L­((s,q))  :=  L(s),

Init­ :=  { (init,q) 2 S­ |   q 2 Init’ } ,

F­ :=  { (s,q) 2 S­ |   q 2 F’ } .

Fact 1:    L(KP ­ Aϕ) = L(KP) Å L(Aϕ) .

But how do we determine whether L(KP ­ Aϕ) = ; ?



determining whether L(KP) Å L(Aϕ) = ; , continued……

Fact 2:  L(KP ­ Aϕ) = ; iff there is no reachable cycle in the

Büchi automaton KP­Aϕ containing a state in F­.

So, it appears we are left only with the task of finding whether
there is such a reachable cycle.  

But, NOTE: we are not given KP. We’re given M!

We won’t first build KP from M, because KP can be HUGE!!



on-the-fly bad cycle detection

• Given M and Aϕ , we will explore the state space of  KP­Aϕ,  
but only constructing states as we need them.  If we find a bad 
cycle, we stop before exploring all of KP­Aϕ.

• We begin with the set of initial states Init­, which we can 
obtain directly from M and Aϕ.

• For s 2 S­, by assumption we can compute Succ­(s) efficiently,   
so we can do Depth First Search, to find all reachable states of 
KP ­ Aϕ.

• But how do we find bad cycles efficiently?

– We could simply compute the SCCs of KP ­ Aϕ using the 
standard DFS algorithm, and check if 9 a reachable 
(nontrivial) SCC containing a state of F­.

– But this is too inefficient in practice.  We will use a cool 
nested DFS [CVWY’90].



The [CourcobetisVardiWolperYannakakis’90] algorithm

Input: M and Aϕ,
Initialize:  Stack1:=; , Stack2:=; ,

Table1:=; , Table2:=; ;
procedure Main() {

foreach  s 2 Init­

{ if  s ∉ Table1 then DFS1(s); }
output(“no bad cycle”);
exit;

} 
procedure DFS1(s)  {    

push(s,Stack1); 
hash(s,Table1);
foreach  t 2 Succ­(s)
{ if t ∉ Table1 then DFS1(t); }

if  s 2 F­ then {  DFS2(s);  } 
pop(Stack1); 

}

procedure DFS2(s){ 
push(s,Stack2);
hash(s,Table2) ;
foreach t 2 Succ­(s) do {
if t ∉ Table2 then 

DFS2(t) 
else  if t is on Stack1 {  
output(“bad cycle:”);
output(Stack1,Stack2,t);
exit;
}

}
pop(Stack2);

}
/*note: upon finding a bad cycle,

Stack1,Stack2,+t, determines
a counterexample: a bad cycle 
reached from an init state.*/



Theorem: The [CVWY’90] algorithm outputs  “no bad cycle”  iff 
L(KP) Å L(Aϕ ) = ;.   If it  outputs “bad cycle:…”, then content of
Stack1 + Stack2 + t defines a (looping) execution of M that does
not satisfy property ϕ.  
The  algorithm (properly implemented) runs in (worst-case) time 
and space:  O(|KP|x|Aϕ|), i.e. ,  O( 2O(|M|) x |Aϕ|).
-----------------------------------------------------
• If we find a bad cycle, we can get lucky and find it much faster

than the worst-case time.

• The crux of the state explosion problem is the 2O(|M|) factor.

• Note that we are better off having Aϕ as small as possible 
before running this check.



methods for mitigating the state explosion problem
We’ll look briefly at: 
• Bit-state hashing. 
• Partial-order reduction.

We will not look at:
• Symbolic model checking: See A. Cimatti’s lecture.

idea: view R compactly as a boolean formula
R(b1,…,bn,b’1,…,b’n), represented & manipulated as an OBDD.

• Abstraction & Compositional model checking:
See  M. Huth’s &  L. de Alfaro’s lectures, respectively.

• Symmetry considerations: 
idea: often, a system consists of related or identical 
components.  Exploit non-trivial symmetries in state space to 
restrict the search space. (See, e.g., the book [CGP’00].) 

• SAT-based bounded model checking:    (see [BCCZ’99],…..) 
idea:  construct a boolean formula that is satisfiable iff   
“there is a counterexample to M ² ψ of ‘length’ at most k”, 
and check its satisfiability using a SAT-solver. 



bit-state hashing [H’88]

• Ordinarily, collisions in hash tables (used, e.g., in the 
[CVWY’90] algorithm) are resolved by, e.g., chaining or 
open addressing.

• In practice, this has a high cost.
• “Bit-state hashing” reduces this cost by having each 

location of the hash table contain only one bit.  If any 
state hashes to that location, the bit is set to 1. 

• Thus, because of collisions, the algorithm might over-
approximate what states it thinks have already been 
processed.  

• Hence, some of the state space might not be searched, 
and errors (bad cycles) might be missed.  

• But experiments suggest that variations on this scheme   
([H’88,GH’93])  perform reasonably well in many 
circumstances.



partial-order reduction
[V’90],[GW’91],[P’93],[HP’94],……

• In an asynchronous concurrent system  
M = Proc1‖….‖ Procn, with control states Q1 x ….x Qn, 
sometimes actions occuring on different processes are 
independent, and can be commuted without changing any 
relevant fact about the execution.
Example:  if Proc1 and Proc2 each increment a local counter, 
we might not care in what order this happens.

• The idea of partial-order reduction is to group together 
executions that differ merely by commutations of independent 
transitions, and try to confine the search to only explore one 
representative from each such “equivalence class”.

• There are several techniques for choosing a subset of 
transitions during, e.g., nested DFS search, so that these 
transitions will “cover” all equivalence classes of executions, 
with hopefully little redundancy.  

• There are many details involved.  See the above references 
and [CGP’00].



review

We have:
• defined EFSMs as system models, and defined their 

underlying transition systems.
• defined (linear) temporal logic (LTL) as a specification 

formalism.
• defined Büchi automata.
• provided an algorithm for model checking an EFSM against 

an LTL specification, using:
– an algorithm to translate an LTL formula to a Büchi 

automaton.
– an “on-the-fly” algorithm to determine if the 

intersection of the language associated with an EFSM 
and that of a Büchi automaton is empty.

• discussed some approaches to coping with state explosion.



The END

( I rue the day I decided to use PowerPoint for this. )


