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FAIR SIMULATION RELATIONS, PARITY GAMES, AND STATE
SPACE REDUCTION FOR BÜCHI AUTOMATA∗

KOUSHA ETESSAMI† , THOMAS WILKE‡ , AND REBECCA A. SCHULLER§

Abstract. We give efficient algorithms, improving optimal known bounds, for computing a
variety of simulation relations on the state space of a Büchi automaton. Our algorithms are derived
via a unified and simple parity-game framework. This framework incorporates previously studied
notions like fair and direct simulation, but also a new natural notion of simulation called delayed
simulation, which we introduce for the purpose of state space reduction. We show that delayed
simulation—unlike fair simulation—preserves the automaton language upon quotienting and allows
substantially better state space reduction than direct simulation.

Using our parity-game approach, which relies on an algorithm by Jurdziński, we give efficient
algorithms for computing all of the above simulations. In particular, we obtain an O(mn3)-time and
O(mn)-space algorithm for computing both the delayed and the fair simulation relations. The best
prior algorithm for fair simulation requires time and space O(n6). Our framework also allows one
to compute bisimulations: we compute the fair bisimulation relation in O(mn3) time and O(mn)
space, whereas the best prior algorithm for fair bisimulation requires time and space O(n10).
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1. Introduction. There are at least two distinct purposes for which it is useful
to compute simulation relationships between the states of automata: (1) to efficiently
establish language containment among nondeterministic automata; and (2) to reduce
the state space of an automaton by obtaining its quotient with respect to the equiv-
alence relation underlying the simulation preorder.

For state machines without acceptance conditions, there is a well-understood
notion of simulation with a long history (see, e.g., [20, 16]), mainly aimed at comparing
the branching behavior of such machines (rather than just their sets of traces). For
ω-automata, where acceptance (fairness) conditions are present, there are a variety of
different simulation notions (see, e.g., [14, 11]). At a minimum, for such a simulation
to be of use for purpose (1), it must have the following property:

(*) whenever state q′ “simulates” state q, the language of the automaton with
start state q′ contains the language of the automaton with start state q.

As we will see in section 5, however, this property alone is not sufficient to assure
usefulness for purpose (2), which requires the following stronger property:

(**) the “simulation quotient” preserves the language of the automaton.
We will state precisely what is meant by a simulation quotient later.

In [14], a number of different simulation notions for ω-automata were studied
using a game-theoretic framework. The authors also introduced a new natural notion
of simulation, titled fair simulation. They showed how to compute fair simulations
for both Büchi and, more generally, Streett automata. For Büchi automata, their
algorithm requires O(n6) time to determine, for one pair of states (q, q′), whether q′

∗Received by the editors January 6, 2003; accepted for publication (in revised form) August 18,
2004; published electronically June 3, 2005. This paper is based on the conference paper [9].

http://www.siam.org/journals/sicomp/34-5/42067.html
†University of Edinburgh, Edinburgh, Scotland EH8 9YL (kousha@inf.ed.ac.uk).
‡Christian-Albrechts-Universität, 24098 Kiel, Germany (wilke@ti.informatik.uni-kiel.de).
§Cornell University, Ithaca, NY 14853 (reba@math.cornell.edu).

1159



1160 K. ETESSAMI, TH. WILKE, AND R. A. SCHULLER

fairly simulates q. Their algorithm relies on an algorithm for tree automaton emptiness
testing developed in [19]. In this paper, we present a new comparatively simple
algorithm for Büchi automata. Our algorithm reduces the problem to a parity game
computation, for which we use a recent elegant algorithm by Jurdziński [17], along
with some added enhancements to achieve our bounds. Our algorithm determines in
time O(mn3) and space O(mn) all such pairs (q, q′) of states in an input automaton A
where q′ simulates q. Here m denotes the number of transitions and n the number of
states of A. In other words, our algorithm computes the entire maximal fair simulation
relation on the state space in the stated time and space bound.

In [14], the authors were interested in using fair simulation for purpose (1) and
thus did not consider quotients with respect to fair simulation. The question arises
whether fair simulation can be used for purpose (2), i.e., whether it satisfies property
(**). The answer is no: we show that quotienting with respect to fair simulation fails
badly at preserving the underlying language, under any reasonable definition of a quo-
tient. (Closely related observations were also made in [15].) On the other hand, there
is an obvious and well-known way to define simulation so that quotients do preserve
the underlying language: direct simulation1 [6] simply accommodates acceptance into
the standard definition of simulation [20] by asserting that only an accept state can
simulate another accept state. Direct simulation has already been used extensively
(see, e.g., [8, 22]) to reduce the state space of automata. See also [5], where simulation
minimization for ordinary Kripke structures was studied. Both [8] and [22] describe
tools for optimized translations from linear temporal logic to automata, where one
of the key optimizations is simulation reduction. However, as noted in [8], direct
simulation alone is not able to reduce many obviously redundant state spaces. Recall
that, in general, it is PSPACE-hard to find the minimum equivalent automaton for a
given nondeterministic automaton. Thus, there is a need for efficient algorithms and
heuristics that reduce the state space substantially.

We introduce a natural intermediate notion between direct and fair simulation,
called delayed simulation, which satisfies property (**). We show that delayed simu-
lation can yield substantially greater reduction—by an arbitrarily large factor—than
direct simulation. We provide an algorithm for computing the entire delayed simu-
lation relation which arises from precisely the same parity-game framework and has
the same complexity as our algorithm for fair simulation.

Last, our parity-game framework also easily accommodates computation of bisim-
ulation relations (which are generally less coarse than simulation). In particular, we
show that the fair bisimulation relation on Büchi automata can be computed in time
O(mn3) and space O(mn). Fair bisimulation was studied in [15] for Büchi and Streett
automata, where for Büchi automata they gave an O(n10)–time and space algorithm
to compute whether one state is fair bisimilar to another.

This paper is based on the conference paper [9]. Several papers have since ap-
peared that build on and/or use our work: [13, 10, 7, 4]. Independent of [9], in [3]
Bustan and Grumberg obtained an algorithm for computing fair simulation which,
while it did not improve the O(n6)-time complexity of [14], improved the space com-
plexity to O(mn). The algorithms described here have been implemented in the TMP
tool, available for download at http://www1.bell-labs.com/project/TMP/.

The paper is organized as follows: in section 2, we define all (bi)simulation notions
used in the paper. In section 3 we show how for each simulation notion (and fair
bisimulation), given a Büchi automaton, we can define a parity game that captures

1Direct simulation is called strong simulation in [8].
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the (bi)simulation. In section 4, we use our variant of Jurdziński’s algorithm for parity
games to give efficient algorithms for computing several such (bi)simulation relations.
In section 5, we prove that the delayed simulation quotient can be used to reduce
automaton size, and yields better reduction than direct simulation, but that the fair
simulation quotient cannot be so used. We conclude in section 6.

For background on simulation and its versions incorporating acceptance, see, e.g.,
[20, 16] and [14], respectively. For background on Büchi automata and automata on
infinite words in general, see [23, 24, 12].

We thank an anonymous referee for pointing out that an earlier version of the
algorithm in Figure 2 was too complicated.

2. Simulation and bisimulation relations. We now define various notions
of simulation, including fair and the new delayed simulation, in terms of appropriate
games.

2.1. Büchi automata. As usual, a Büchi automaton A = 〈Σ, Q, qI ,Δ, F 〉 has
an alphabet Σ, a state set Q, an initial state qI ∈ Q, a transition relation Δ ⊆ Q ×
Σ×Q, and a set of final states F ⊆ Q. We will henceforth assume that the automaton
has no dead ends; i.e., from each state of A there is a path of length at least 1 to some
state in F . Unless the automaton is trivial (i.e., has an empty ω-language), it is easy
to make sure this property holds without changing the accepting runs from any state,
using a simple search to eliminate unnecessary states and transitions. (Also, it is easy
to check nontriviality while doing the same search. The running time of the search is
linear in the size of the automaton.)

Recall that a run of A is a sequence π = q0a0q1a1q2 . . . of states alternating
with letters such that for all i, (qi, ai, qi+1) ∈ Δ. The ω-word associated with π is
wπ = a0a1a2 . . . The run π is initial if it starts with qI ; it is accepting if there exist
infinitely many i with qi ∈ F . The language defined by A is L(A) = {wπ ∈ Σω |
π is an initial, accepting run of A}. We may want to change the start state of A to a
different state q; the revised automaton is denoted by A[q].

2.2. Simulation relations. As in [14], we define simulation game-theoretically.
We will focus on simulations between distinct states of the same automaton (“autosim-
ulations”), because we are primarily interested in state space reduction. Simulations
between different automata can be treated by considering autosimulations between
the states of the automaton consisting of their disjoint union. In [14], the authors
presented their work in terms of Kripke structures with fairness constraints. We
use Büchi automata directly, where labels are on transitions instead of states. This
difference is inconsequential for our results.

We will consider four kinds of simulations: ordinary simulation, which ignores
acceptance, as well as three variants which incorporate acceptance conditions of the
given automaton, in particular, our new delayed simulation. All four simulations are
based on the same game, which is described first. They differ only in the winning
condition.

Let A be a Büchi automaton as above and q0 and q′0 arbitrary states of A. The
basic game GA(q0, q

′
0) is played by two players, Spoiler and Duplicator, in rounds,

where, at the beginning and at the end of each round, two pebbles, Red and Blue, are
placed on two states (possibly the same). At the start, round 0, Red and Blue are
placed on q0 and q′0, respectively. Assume that, at the beginning of round i, Red is
on state qi and Blue is on q′i. Then:

1. Spoiler chooses a transition (qi, a, qi+1) ∈ Δ and moves Red to qi+1.
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2. Duplicator, responding, must choose a transition (q′i, a, q
′
i+1) ∈ Δ and moves

Blue to q′i+1. If no a-transition starting from q′i exists, then the game halts and Spoiler
wins.

Either the game halts, in which case Spoiler wins, or the game produces two infinite
runs, π = q0a0q1a1q2 . . . and π′ = q′0a0q

′
1a1q

′
2 . . . , built from the transitions visited

by the two pebbles (and such that the same word is associated with them). The pair
(π, π′) is called an outcome of the game. Given such an outcome, the following rules
are used to determine the winner.

Definition 1 (simulation games). Let A be a Büchi automaton, let (q0, q
′
0) ∈

Q2, and let (π, π′) be an outcome of GA(q0, q
′
0) with π = q0a0q1a1q2 . . . and π′ =

q′0a0q
′
1a1q

′
2 . . .

1. The ordinary simulation game, denoted by Go
A(q0, q

′
0), is the basic game

GA(q0, q
′
0) extended by the rule that the outcome (π, π′) is winning for Duplicator

(i.e., as long as the game does not halt, Duplicator wins).
2. The direct (strong) simulation game, denoted by Gdi

A (q0, q
′
0), is the basic game

GA(q0, q
′
0) extended by the rule that the outcome (π, π′) is winning for Duplicator iff,

for all i, if qi ∈ F , then also q′i ∈ F .
3. The delayed simulation game, denoted by Gde

A (q0, q
′
0), is the basic game

GA(q0, q
′
0) extended by the rule that the outcome (π, π′) is winning for Duplicator

iff, for all i, if qi ∈ F , then there exists j ≥ i such that q′j ∈ F .

4. The fair simulation game, denoted by Gf
A(q0, q

′
0), is the basic game GA(q0, q

′
0)

extended by the rule that the outcome (π, π′) is winning for Duplicator iff there are
infinitely many j such that q′j ∈ F or there are only finitely many i such that qi ∈ F .

In all other cases, Spoiler wins.

In other words, in ordinary simulation games, fairness conditions are ignored;
Duplicator wins as long as the game does not halt. And in fair simulation games,
Duplicator’s winning condition is as follows: if there are infinitely many i such that
qi ∈ F , then there are also infinitely many j such that q′j ∈ F .

Remark 1. Let A be a Büchi automaton and � ∈ {di , de, f}. If (π, π′) is the
outcome of a play of G�

A(q, q′) which Duplicator wins, then π′ is accepting if π is.

Let � ∈ {o, di , de, f}. A strategy for Duplicator in game G�
A(q0, q

′
0) is a partial

function f : Q(QΣQ)∗ → Q which, given the history of the game up to a certain point,
determines the next move of Duplicator. Formally, f is a strategy for Duplicator if
f(q0) = q′0 and (q′i, ai, q

′
i+1) ∈ Δ holds for every sequence q0q

′
0a0q1q

′
1a1 . . . aiqi+1 with

(qj , aj , qj+1) ∈ Δ and q′j = f(q0q
′
0a0 . . . ajqj) for j ≤ i. Observe that the existence

of a strategy implies that Duplicator has a way of playing such that the game does
not halt. A strategy f for Duplicator is a winning strategy if, no matter how Spoiler
plays, Duplicator always wins. Formally, a strategy f for Duplicator is winning if
whenever π = q0a0q1a1 . . . is a run through A and π′ = q′0a0q

′
1a1q

′
2 . . . is the run

defined by

q′i+1 = f(q0q
′
0a0q1q

′
1a1 . . . qi+1),(1)

then (π, π′) is winning for Duplicator (as specified in Definition 1). Observe that π′

is well-defined.

Definition 2 (simulation relations). Let A be a Büchi automaton. A state q′

ordinary, direct, delayed, fair simulates a state q if there is a winning strategy for
Duplicator in G�

A(q, q′) where � = o, di, de, or f , respectively. We denote such a
relationship by q 	� q′ (where A is implicit).
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Our game definition of fair simulation deviates very slightly from that given in
[14], but is equivalent since we consider only automata with no dead ends.

We first prove fundamental properties of the defined simulation relations.
Proposition 3. Let A be a Büchi automaton.

1. For � ∈ {o, di , de, f}, 	� is a reflexive, transitive relation (also called pre-
order or quasi-order) on the state set Q.

2. The relations are ordered by containment: 	di ⊆ 	de ⊆ 	f ⊆ 	o.
3. For � ∈ {di , de, f}, if q 	� q′, then L(A[q]) ⊆ L(A[q′]).

Proof. Reflexivity is obvious, as is part 2. To prove transitivity, suppose that
q0 	� q′0 	� q′′0 for some � ∈ {o, di , de, f}. Then, by definition, Duplicator has
winning strategies in both G�

A(q0, q
′
0) and G�

A(q′0, q
′′
0 ), say f and f ′. We combine

these to get a winning strategy f ′′ for Duplicator in the game G�
A(q0, q

′′
0 ) as fol-

lows. If f(q0q
′
0a0q1q

′
1a1 . . . qi+1) = q′i+1 and f ′(q′0q

′′
0a0q

′
1q

′′
1a1 . . . q

′
i+1) = q′′i+1, we set

f(q0q
′′
0a0q1q

′′
1a1 . . . qi+1) = q′′i+1. It is easy to see that this defines a strategy for Du-

plicator. To see that f ′′ is in fact winning, let π = q0a0q1a1 . . . be a run through A
and let π′′ = q′′0a0q

′′
1a1 . . . be the run defined by

q′′i+1 = f ′′(q0q
′′
0a0q1q

′′
1a1 . . . qi+1).(2)

We need to argue that (π, π′′) is winning for Duplicator. By induction, one easily
proves that if π′ = q′0a0q

′
1a1 . . . is defined by (1), then

q′′i+1 = f ′(q′0q
′′
0a0q

′
1q

′′
1a1 . . . q

′
i+1).(3)

This means that (π, π′) is winning for Duplicator in G�
A(q0, q

′
0) and (π′, π′′) is winning

for Duplicator in G�
A(q′0, q

′′
0 ). For instance, when � = de, this implies the following: if

qi ∈ F , there exists j ≥ i such that q′j ∈ F , which, in turn, means there exists k ≥ j

such that q′′k ∈ F . That is, (π, π′′) is winning for Duplicator in Gde
A (q0, q

′′
0 ). Similar

arguments apply in the other cases.
To prove part 3, assume � ∈ {di , de, f}, q0 	� q′0, and w ∈ L(A[q0]) with w =

a0a1 . . . . Then there exists a winning strategy f for Duplicator in G�
A(q0, q

′
0) and

an accepting run π = q0a0q1a1 . . . of A starting with q0. Imagine Spoiler plays in
G�

A(q0, q
′
0) just as π prescribes this and Duplicator replies according to f . Then a

run π′ = q′0a0q
′
1a1 . . . of A is built up according to (1). Since π is accepting and f is

winning, π′ will also be accepting; see Remark 1.
Thus, delayed simulation is a new notion of intermediate “coarseness” between

direct and fair simulation. We will see in section 5 why it is more useful for state
space reduction.

2.3. Bisimulation relations. For all the mentioned simulations there are cor-
responding notions of bisimulation, defined via a modification of the game. We will
not provide detailed definitions for bisimulation; instead we describe intuitively the
simple needed modifications.

The bisimulation game differs from the simulation game in that Spoiler gets to
choose in each round which of the two pebbles, Red or Blue, to move, and Duplicator
has to respond with a move of the other pebble.

The winner of the game is determined very similarly: if the game comes to a
halt, Spoiler wins. If not, the winning condition for fair bisimulation (see [15]) is
as follows: “if an accept state appears infinitely often on one of the two runs π and
π′, then an accept state must appear infinitely often on the other as well.” The
winning condition for delayed bisimulation is as follows: “if an accept state is seen at
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position i of either run, then an accept state must be seen thereafter at some position
j ≥ i of the other run.” The winning condition for direct bisimulation becomes “if an
accept state is seen at position i of either run, it must be seen at position i of both
runs.”

Strategies and winning strategies for the bisimulation games are defined similarly.
Note, however, that the definitions have to take into account that Spoiler may choose
his pebble.

Bisimulations define an equivalence relation ≈bi
� (not only a preorder) on the state

space, and the following containments hold: ≈bi
di ⊆ ≈bi

de ⊆ ≈bi
f ⊆ ≈bi

o . Generally,
bisimulation is less coarse than the equivalence derived from the simulation preorder,
which we describe in section 5, i.e., ≈bi

� ⊆ ≈�.

3. Reformulating simulations and bisimulations as parity games.

3.1. Simulation. We now show how, given a Büchi automaton A and � ∈
{o, di , de, f}, we can obtain in a straightforward way a parity-game graph G�

A such
that the winning vertices in G�

A for Even (a.k.a. Player 0) in the parity game deter-
mine precisely the pairs of states (q, q′) of A where q′ �-simulates q. Importantly, the
size of these parity-game graphs will be O(|Q||Δ|), and the nodes of the game graphs
will be labeled by at most three distinct “priorities.” In fact, only one priority will
suffice for Go

A and Gdi
A , while Gde

A and Gf
A will use three priorities.

We briefly review here the basic formulation of a parity game. A parity-game
graph G = 〈V0, V1, E, p〉 has two disjoint sets of vertices, V0 and V1, whose union is
denoted V . There is an edge set E ⊆ V × V , and p : V → {0, . . . , d− 1} is a mapping
that assigns a priority to each vertex.

A parity game on G, starting at vertex v0 ∈ V , is denoted P(G, v0), and is played
by two players, Even and Odd. The play starts by placing a pebble on vertex v0.
Thereafter, the pebble is moved according to the following rule: with the pebble
currently on a vertex vi, and vi ∈ V0 (V1), Even (Odd, respectively) plays and moves
the pebble to a neighbor vi+1, that is, such that (vi, vi+1) ∈ E.

If ever the above rule cannot be applied, i.e., someone can’t move because there are
no outgoing edges, the game ends, and the player who cannot move loses. Otherwise,
the game goes on forever and defines a path π = v0v1v2 . . . in G, called a play of
the game. The winner of the play is determined as follows. Let kπ be the minimum
priority that occurs infinitely often in the play π, i.e., so that for infinitely many i,
p(vi) = kπ and kπ is the least number with this property. Even wins if kπ is even,
whereas Odd wins if kπ is odd.

We now show how to build the game graphs G�
A. All the game graphs are built

following the same general pattern, with some minor alterations. We start with Gf
A.

The game graph Gf
A = 〈V f

0 , V f
1 , Ef

A, p
f
A〉 will have three priorities (i.e., the range of pfA

will be {0, 1, 2}). For each pair of states (q, q′) ∈ Q2, there will be a vertex v(q,q′) ∈ V f
0

such that Even has a winning strategy from v(q,q′) iff q′ fair simulates q. Formally,

Gf
A is defined by

V f
0 = {v(q,q′,a) | q, q′ ∈ Q ∧ ∃q′′((q′′, a, q) ∈ Δ)},(4)

V f
1 = {v(q,q′) | q, q′ ∈ Q},(5)

Ef
A = {(v(q1,q′1,a), v(q1,q′2)

) | (q′1, a, q
′
2) ∈ Δ}

∪ {(v(q1,q′1)
, v(q2,q′1,a)) | (q1, a, q2) ∈ Δ},(6)



FAIR SIMULATION RELATIONS 1165

pfA(v) =

⎧⎨
⎩

0 if v = v(q,q′) and q′ ∈ F ,
1 if v = v(q,q′), q ∈ F , and q′ /∈ F ,
2 otherwise.

(7)

Let’s first explain the underlying idea. The parity game mimics the simulation game.
Even takes over the role of Duplicator and Odd takes over the role of Spoiler: when
in the parity game the current position is node v(q,q′), it denotes the situation in
the simulation game when the red pebble is on q, the blue pebble is on q′, and it is
Spoiler’s turn to move; v(q,q′,a) denotes the situation where the red pebble is on q,
the blue pebble is on q′, it is Duplicator’s turn to move, and the last transition taken
by Spoiler was labeled by a. The priority function is defined in such a way that every
time Duplicator visits a final state, the priority function returns 0. It returns only 1 if
Spoiler visits a final state, but Duplicator does not. In all other cases, 2 is returned.
That is, Spoiler wins iff he visits an accept state infinitely often but Duplicator does
not. This is exactly what is needed.

We now describe how Gf
A can be modified to obtain Go

A and Gdi
A , both of which

require only trivial modification to Gf
A. The parity-game graph Go

A is exactly the

same as Gf
A, except that all nodes will receive priority 0, i.e., po

A(v) = 0 for all v. This
reflects the winning condition of the ordinary simulation game.

The parity-game graph Gdi
A is just like Go

A, meaning every vertex has priority 0,
but some edges (the ones into and out of states of the form v(q,q′) where q ∈ F but
q′ /∈ F ) are eliminated in order to take care of the winning condition of the direct
simulation game:

Edi
A = Ef

A \ ({(v, v(q,q′)) | q ∈ F ∧ q′ /∈ F} ∪ {(v(q,q′), w) | q ∈ F ∧ q′ /∈ F}).(8)

Finally, to define Gde
A we need to modify the game graph somewhat more. For

each vertex of Gf
A there will be at most two corresponding vertices in Gde

A :

V de
0 = {v(b,q,q′,a) | q, q′ ∈ Q ∧ b ∈ {0, 1} ∧ ∃q′′((q′′, a, q) ∈ Δ)},(9)

V de
1 = {v(b,q,q′) | q, q′ ∈ Q ∧ b ∈ {0, 1} ∧ (q′ ∈ F → b = 0)}.(10)

The extra bit b encodes whether or not, thus far in the simulation game, the red
pebble has witnessed an accept state without the blue pebble having witnessed one
since then. The edges of Gde

A are as follows:

Ede
A = {(v(b,q1,q′1,a), v(b,q1,q′2)

) | (q′1, a, q
′
2) ∈ Δ ∧ q′2 /∈ F}

∪ {(v(b,q1,q′1,a), v(0,q1,q′2)
) | (q′1, a, q

′
2) ∈ Δ ∧ q′2 ∈ F}

∪ {(v(b,q1,q′1)
, v(b,q2,q′1,a)) | (q1, a, q2) ∈ Δ ∧ q2 /∈ F}

∪ {(v(b,q1,q′1)
, v(1,q2,q′1,a)) | (q1, a, q2) ∈ Δ ∧ q2 ∈ F}.(11)

Last, we describe the priority function of Gde
A :

pdeA (v) =

{
b if v = v(b,q,q′),
2 if v ∈ V de

0 .
(12)

In other words, we will assign priority 1 to only those vertices in V1 that signify that
an “unmatched” accept has been visited by the red pebble.2 The priority function

2Note that it is possible to use only two priorities in pde
A by assigning a vertex v the priority b,

where b is the indicator bit of v. However, it turns out that using two priorities is a disadvantage
over three because the encoding would not have property 3 of Lemma 4, which we need for our
complexity bounds.
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makes sure that the smallest number occurring infinitely often is 1 iff from some point
onwards the bit in the first component is 1. Now observe that this bit is 1 iff a final
state has been visited by Spoiler but not yet matched by Duplicator. In this way the
winning condition of the delayed simulation game is transferred to the parity game.

The following lemma gathers a collection of facts we will need.

Lemma 4. Let A be a Büchi automaton.

1. For � ∈ {o, di , f}, Even has a winning strategy in P(G�
A, v(q0,q′0)

) iff q′0 �-
simulates q0 in A.
For � = de, this statement holds if v(q0,q′0)

is replaced by v(b,q0,q′0)
, letting b = 1 if

q0 ∈ F and q′0 �∈ F , and b = 0 otherwise.
2. For � ∈ {o, di , de, f}, |G�

A| ∈ O(|Δ||Q|), i.e., the number of vertices and the
number of edges is O(|Δ||Q|).

3. For � ∈ {f, de}, |{v ∈ V �
A | p�A(v) = 1}| ∈ O(|Q|2).

Proof. Part 1 is obvious from the explanations given above.

To prove part 2, first consider the case where � ∈ {f, o}. In this case, V �
1 contains

exactly |Q|2 vertices, and since by assumption every state of A has a transition leaving
it, |Q|2 ≤ |Δ||Q|. Similarly, V �

0 has, for every q′, a state v(q,q′,a) iff there is a transition
to q labeled by a. Thus |V0| ≤ |Δ||Q|.

As far as |Ef
A|, for every transition (q, a, q′) ∈ Δ, and every q′′ ∈ Q, there is

an edge (v(q,q′′), v(q′,q′′,a)) ∈ E�. There are |Δ||Q| such edges. Likewise, there are

≤ |Δ||Q| edges from V �
0 to V �

1 . So |Ef
A| ∈ O(|Δ||Q|). Thus, the size of G�

A is
O(|Δ||Q|). Now observe that if � = o, the vertices do not change and the edge set is
a subset, and if � = de, the number of vertices and edges is larger by at most a factor
of 2.

Last, since the vertices labeled by priority 1 in both Gf and Gde are a subset of
V0, clearly |p−1(1)| ∈ O(|Q|2).

Since vertices of Go
A and Gdi

A only get assigned a single priority, we can dispense
with algorithms for computing ordinary and direct simulation right away, matching
the best known upper bounds:

Proposition 5 (see [16, 2]). Given a Büchi automaton A, with n states and m
transitions, both 	o and 	di can be computed in time and space O(mn).

Proof. G�
A here has size O(|Δ||Q|) and only one priority. For such game graphs, we

can compute the winning set for Even using a variant of AND/OR graph accessibility,
which can be computed in linear time (see, e.g., [1]). The only vertices in the game
graph that have no outgoing edges are in V0. These are losing positions for Even, as
are any other vertices from which these are accessible in the and/or sense (vertices
from V0 are considered “and nodes” and vertices from V1 are considered “or nodes”).
All the remaining vertices are winning positions for Even.

Algorithms for computing the other simulation relations will be presented in sec-
tion 4.

3.2. Bisimulation. For � ∈ {o, di , de, f}, �-bisimulations can also be reformu-
lated as parity games. For improving the complexity, such a reformulation helps only
for fair bisimulation. Ordinary and direct bisimulation have known O(m log n)-time
algorithms (see [21]), and we will see that delayed bisimulation corresponds to di-
rect bisimulation after some linear-time preprocessing on accept states of the Büchi
automaton.

We formulate fair bisimulation with a parity-game graph Gfbi
A as follows. The
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vertex sets of Gfbi
A are

V fbi
0 = {v(q,q′,a,b1,b2) | q, q′ ∈ Q ∧ b1, b2 ∈ {0, 1} ∧ ∃q′′((q′′, a, q) ∈ Δ)},(13)

V fbi
1 = {v(q0,q1,b2) | q, q′ ∈ Q ∧ b2 ∈ {0, 1}}.(14)

The two bits b1 and b2 will encode (1) which pebble was moved by Spoiler in this
round, and (2) which of the two pebbles was latest to visit an accept state (prior to
this round and with precedence for the red pebble, with 0 encoding the red pebble).
For q0, q1 ∈ Q and b2 ∈ {0, 1}, let

new(q0, q1, b2) =

⎧⎨
⎩

0 if q0 ∈ F ,
1 if q0 �∈ F and q1 ∈ F ,
b2 otherwise.

(15)

The edge set Efbi
A is the union of

{(v(q0,q1,b2), v(q′0,q
′
1,a,b1,new(q0,q1,b2))) | (qb1 , a, q

′
b1) ∈ Δ ∧ q1−b1 = q′1−b1}(16)

and

{(v(q0,q1,a,b1,b2), v(q′0,q
′
1,b2)

) | (q1−b1 , a, q
′
1−b1) ∈ Δ ∧ qb1 = q′b1}.(17)

The priority of a vertex is determined using the following function. For q0, q1, b let

pr(q0, q1, b) =

⎧⎨
⎩

0 if q1−b ∈ F ,
1 if q1−b �∈ F and qb ∈ F ,
2 otherwise.

(18)

For v ∈ V0, p
fbi
A (v) = 2, and for v(q0,q1,b2) ∈ V1,

pfbi
A (v(q0,q1,b2)) = pr(q0, q1, b2).(19)

The correspondence of this parity game and fair bisimulation is as follows, similar
to Lemma 4.

Lemma 6. Let A be a Büchi automaton.
1. Even has a winning strategy in P(Gfbi

A , v(q0,q1,0)) iff q0 and q1 are fair-
bisimilar in A.

2. |Gfbi
A | ∈ O(|Δ||Q|) and |{v ∈ V fbi

A | pfbi
A (v) = 1}| ∈ O(|Q|2).

Proof. It is clear that the parity game models the bisimulation game in a straight-
forward way as far as the sequence of the visited positions is concerned. We show
that the winning condition is also taken care of.

Assume π = q0a0q1a1 . . . and π′ = q′0a0q
′
1a1 . . . are two runs. Let b0b1 . . . be the

sequence of bits defined by b0 = 0 and bi+1 = new(qi, q
′
i, bi). Finally, let pi be defined

by pi = pr(qi, q
′
i, bi). This describes exactly what happens in the game. We proceed

by a case distinction.
Clearly, if π and π′ are not accepting, then pj = 2 for all j large enough and Even

wins, which is required. Next, assume π is accepting, and π′ is not. Then there exists
i such that q′j /∈ F for j ≥ i and qj ∈ F for infinitely many j, say i0 < i1 < i2 < · · ·
are such that qij ∈ F for every j. Assume ik > i. According to the definition of new,
bij = 0 for j > k. Thus, by definition of pr, for every j > ik, pj = 1 if j = il for
some l > k and pj = 2 otherwise—Even loses. The same argument applies if π is not
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accepting but π′ is. (The precedence for red does not play any role here.) Finally,
assume π and π′ are accepting. Let i0 < i1 < · · · be an infinite sequence such that
qij ∈ F for all j. For j, let i′j be the least k > ij such that q′k ∈ F . We will have
bk = 0 for ij < k ≤ i′j , which means pi′

j
= 0 for every j—Even wins.

The claim about the size of Gfbi
A and the number of its vertices of priority 1 can

be proved along the same lines as Lemma 4.

This enables us to give an efficient algorithm for computing fair bisimulation in
section 4.

To compute delayed bisimulation efficiently, we show that the delayed bisimu-
lation relation corresponds to the direct bisimulation relation after some linear-time
preprocessing on the accept states of the Büchi automaton. Consider the following
closure operation on the set of accept states. Let cl(A) be the Büchi automaton ob-
tained from A by repeating the following until a fixed point is reached: while there is
a state q such that all of its successors are in F , put q in F . Call the revised set of
accept states F ′. Clearly, cl(A) can be computed in linear time and L(A) = L(cl(A)).

Proposition 7. Let A be a Büchi automaton. For any two states q and q′,
q ≈bi

de q′ in A iff q ≈bi
di q

′ in cl(A).

Proof. We show that for every pair (q, q′) of states, a winning strategy for Du-
plicator in the delayed bisimulation game on (q, q′) in A is a winning strategy for
Duplicator in the direct bisimulation game on (q, q′) in cl(A), and vice versa. By
definition of the bisimulation relations, this proves the proposition.

First, let f be a winning strategy for Duplicator in the delayed bisimulation game
on (q0, q

′
0) in A. Suppose that with Duplicator playing according to strategy f the

direct bisimulation game reaches (qi, q
′
i) after i rounds. We have to show that qi ∈ F ′

iff q′i ∈ F ′. Suppose, for contradiction, that qi /∈ F ′, while q′i ∈ F ′ (the other situation
is symmetric). We will show how Spoiler can win the delayed bisimulation game.
Since qi /∈ F ′, there is an infinite path leaving qi such that no state on this path is
an accepting state. Spoiler’s strategy is to play this path. Since q′i ∈ F ′, there is no
such path (without an accept state on it) starting at q′i. Therefore, regardless of how
Duplicator plays, when (q0a0q1a1 . . . , q

′
0a0q

′
1a1 . . . ) is the outcome of the play, then

q′i ∈ F ′, but qj /∈ F ′ for all j ≥ i—Spoiler wins the delayed bisimulation game.

Second, let f be a winning strategy for Duplicator in the direct bisimulation
game on (q, q′) in cl(A) and suppose Duplicator plays according to f in the delayed
bisimulation game. Let (q0a0q1a1 . . . , q

′
0a0q

′
1a1 . . . ) be any outcome of such a play.

We have to show that it satisfies Duplicator’s winning condition. So let i be any index
such that qi ∈ F . Then, by definition of F ′, qi ∈ F ′. But since f is a winning strategy
in the direct bisimulation game, this implies q′i ∈ F ′. As every infinite path out of q′i
contains an accept state, there must be a j ≥ i such that q′j ∈ F . Symmetrically, if
q′i ∈ F , then there exists j ≥ i such that qj ∈ F .

Taking into account that direct bisimulation can be computed in time O(m log n)
(see [21]), we conclude with the following result.

Corollary 8. Delayed bisimulation can be computed in time O(m log n).

4. Fast parity-game algorithm to compute simulations (and bisimula-

tions) efficiently. Using the parity-game graphs Gf
A, Gfbi

A , and Gde
A , we give fast

algorithms for computing the relations 	f , ≈bi
f , and 	de . To this effect, we describe

an efficient implementation of an algorithm for solving parity games presented by
Jurdziński in [17]. This algorithm uses progress measures (see also [18, 25]) to com-
pute the set of vertices in a parity game from which Even has a winning strategy.
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Henceforth, we assume all parity-game graphs have neither self loops nor dead
ends. (We can always obtain an “equivalent” such graph in linear time.) We start with
some terminology, closely following the notation of [17]. Let G be a parity-game graph
as before, n′ its number of vertices, m′ its number of edges. For computing simulations,
we only need assume there are only three priorities, that is, p : V → {0, 1, 2}. However,
we will present the algorithm in its full generality, i.e., p : V → {0, 1, . . . , d− 1}, since
the algorithm is of much broader interest.

Let [n] = {0, . . . , n − 1}, and let ni = |p−1(i)|. The algorithm assigns to each
vertex a “progress measure” from M∞

G = MG ∪ {∞}, where

MG =

{
[1] × [n1 + 1] × [1] × [n3 + 1] × · · · [1] × [nd−1 + 1] if d is even,
[1] × [n1 + 1] × [1] × [n3 + 1] × · · · [1] × [nd−2 + 1] if d is odd.

(20)

In other words, a progress measures is either ∞ or a length d vector which at even
index positions is 0, and at odd index positions i ranges over {0, . . . , ni}.

Initially, every vertex is assigned 0, the all-zero vector. The measures are repeat-
edly “incremented” in a certain fashion until a fixed point is reached.

We first explain the increment operation, which is at the heart of Jurdziński’s
algorithm. For i < d and x ∈ M∞

G we define 〈x〉i as follows. For x = (l0, . . . , ld−1),
〈x〉i = (l0, . . . , li, 0, 0, . . . , 0). In other words, we set positions indexed > i to 0.
Moreover, 〈∞〉i = ∞. We define a lexicographic total order on M∞

G , denoted >.
Here, index 0 is the most significant position, and ∞ is greater than all other vectors.
In addition, for d-vectors x and y, we write x >i y iff 〈x〉i > 〈y〉i according to the
above ordering. For example, (0, 3, 0, 1) >1 (0, 2, 0, 3). Note that x > y iff x >d−1 y.
Now, we can say what it means to “increment” a progress measure. For each i ∈ [d],
let

incri(x) =

⎧⎨
⎩
〈x〉i if i is even x �= ∞,
min{y ∈ M∞

G | y >i x} if i is odd, x �= ∞,
∞ if x = ∞.

(21)

Observe that, for a fixed i, the operation incri(·) is monotone with respect to the
ordering <; that is, if x ≤ x′, then incri(x) ≤ incri(x

′).
For simplicity in notation, if v ∈ V , we write 〈x〉v and incrv(x) for 〈x〉p(v) and

incrp(v)(x), respectively. For every assignment ρ : V → M∞
G of progress measures to

the vertices of a game graph, which we call an assignment for short, and for v ∈ V ,
let

best-nghb-ms(ρ, v) =

{
〈min({ρ(w) | (v, w) ∈ E})〉v if v ∈ V0,
〈max({ρ(w) | (v, w) ∈ E})〉v if v ∈ V1.

(22)

Here, best-nghb-ms(ρ, v) stands for the set of best neighbors of v with respect to the
measure we have defined. Jurdziński defines a “lifting” operator, which, given an
assignment ρ and v ∈ V , gives a new assignment. In order to define it, he first defines
how an individual vertex’s measure is “updated” with respect to those of its neighbors:

update(ρ, v) = incrv(best-nghb-ms(ρ, v)).(23)

The “lifted” assignment, lift(ρ, v) : V → D, is then defined as follows:

lift(ρ, v)(u) =

{
update(ρ, v) if u = v,
ρ(u) otherwise.

(24)
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1 for v ∈ V do
2 ρ(v) := 0
3 endfor
4 while there exists a v such that update(ρ, v) �= ρ(v) do
5 ρ := lift(ρ, v)
6 endwhile

Fig. 1. Jurdziński’s lifting algorithm.

Observe that for every v, the operator lift(·, v) is a monotone operator with respect
to the complete partial ordering where ρ ≤ ρ′ if ρ(v) ≤ ρ′(v) for all v ∈ V .

Jurdziński’s algorithm is depicted in Figure 1. The outcome determines the win-
ning set of vertices for each player as follows.

Theorem 9 (see [17]). Let G be a parity game. Even has a winning strategy
from precisely the vertices v such that, after the lifting algorithm depicted in Figure 1
halts, ρ(v) < ∞.

Jurdziński’s algorithm needs at most n′NG iterations of the while loop where

NG = |M∞
G | = 1 +

∏
i : 0<2i+1≤d−1

n2i+1.(25)

More precisely, Jurdziński argues as follows. Each vertex can only be lifted NG times.
A lifting operation at v can be performed in time O(|Sucs(v)|), where Sucs(v) denotes
the set of successors of v. So, overall, he concludes, the running time is O(m′NGd).
In this analysis, it is implicitly assumed that one can, in constant time, decide if there
is a vertex v such that update(ρ, v) �= ρ(v), and find such a vertex. We provide an
implementation of Jurdziński’s algorithm that achieves this.

Our algorithm, depicted in Figure 2, maintains a set L of “pending” vertices v
whose measure needs to be considered for lifting, because a successor has recently
been updated resulting in a requirement to update ρ(v). This set L is implemented
as a list together with a bit array; extracting an element, adding an element, and
membership test can then be carried out in constant time. Further, we maintain
arrays B and C that store, for each vertex v, the value best-nghb-ms(ρ, v) and the
number of successors u of v with 〈ρ(u)〉v = best-nghb-ms(ρ, v), denoted cnt(ρ, v).

Whether a vertex w needs to be placed on L is determined in constant time
by maintaining, for each vertex w, the current “best measure” B(w) of any of its
successors, as well as the count C(w) of how many such neighbors there are with the
“best measure.” This is only necessary for w ∈ V0, because if this is the case we need
to be able to realize when all neighbors with the current minimum value have “died
out,” while for w ∈ V1 we look at the maximum of all neighbors.

Lemma 10. The lifting algorithm depicted in Figure 2 computes the function ρ
from Jurdziński’s algorithm in time O(m′NGd) and space O(dm′).

Proof. The correctness follows from the above explanation. The running time
follows because each vertex can enter L at most n1 + 1 times, and the time taken
by the body of the while loop is proportional to the number of edges incident on the
vertex.

The bound on the running time can be explained as follows. The initialization
(lines 1–4) takes time O(m′d). If a vertex enters L in the body of the while loop, then
its ρ-value will be incremented next time the vertex is removed from L. That means
every vertex enters L at most NG times. The time it takes to process a vertex v taken
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1 foreach v ∈ V do
2 B(v) := 0; C(v) := |{w | (v, w) ∈ E}|; ρ(v) := 0;
3 endfor
4 L := {v ∈ V | p(v) is odd};
5 while L �= ∅ do
6 let v ∈ L; L := L \ {v};
7 t := ρ(v);
8 B(v) := best-nghb-ms(ρ, v); C(v) := cnt(ρ, v); ρ(v) := incrv(B(v));
9 P := {w ∈ V | (w, v) ∈ E};

10 foreach w ∈ P such that w /∈ L do
11 if w ∈ V0, 〈t〉w = B(w), and 〈ρ(v)〉w > B(w) then
12 if C(w) = 1 then L := L ∪ {w};
13 if C(w) > 1 then C(w) := C(w) − 1;
14 if w ∈ V1 and 〈ρ(v)〉w > B(w) then
15 L := L ∪ {w};
16 endfor
17 endwhile

Fig. 2. Efficient implementation of the lifting algorithm.

from the loop is O(# vertices incident on v). This means that lines 5–17 take time
O(m′NGd). This proves the claim.

We can now state one of our main theorems.
Theorem 11. For a Büchi automaton A, the relations 	f , ≈bi

f , and 	de can all

be computed in time O(|Δ||Q|3) and space O(|Q||Δ|).
Proof. The theorem follows from Lemmas 4 and 10. Observe that in the (bi)sim-

ulation games involved we have NG = n1 + 1 = O(|Q|2).
As mentioned, in prior work O(|Q|6)–time and space [14], and O(|Q|10)–time

and space [15] algorithms were given for deciding whether q 	f q′, and, respectively,
q ≈bi

f q′, hold for a single pair of states (q, q′).

5. Reducing state spaces by quotienting: Delayed simulation is bet-
ter. In this section, we show that (1) quotienting with respect to delayed simulation
preserves the recognized language; (2) this is not true with fair simulation; and (3)
quotients with respect to delayed simulation can indeed be substantially smaller than
quotients with respect to direct simulation, even when the latter is computed on the
“accept closure” cl(A) (unlike what we saw with delayed bisimulation). We first define
quotients.

Definition 12. For a Büchi automaton A, and an equivalence relation ≈ on
the states of A, let [q] denote the equivalence class of q ∈ Q with respect to ≈. The
quotient of A with respect to ≈ is the automaton

A/≈ = 〈Σ, Q/≈,Δ≈, [qI ], F/≈〉,(26)

where

Δ≈ = {([q], a, [q′]) | ∃ q0 ∈ [q], q′0 ∈ [q′] such that (q0, a, q
′
0) ∈ Δ}.(27)

In order to apply our simulation relations, we define, corresponding to each sim-
ulation preorder, an equivalence relation ≈o , ≈di , ≈de , and ≈f , where q ≈� q′ iff
q 	� q′ and q′ 	� q. Note that both ≈� and A/≈� can be computed from 	� re-
quiring no more time (asymptotically) than that needed to compute 	� on A. The
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quotient with respect to ≈di preserves the language of any automaton, while this is
obviously not true for ≈o . We will later see that this is not true for ≈f either. But
first we show that this is true for ≈de .

We start with a lemma.

Lemma 13. Let A be a Büchi automaton.

1. If q0 	de q′0 and (q0, a, q1) ∈ Δ, then there exists q′1 with q1 	de q′1 and
(q′0, a, q

′
1) ∈ Δ.

2. If q0 	de q′0 and [q0]de a0 [q1]de a1 . . . is a finite or infinite run of A/≈de ,
then there exists a run q′0a0q

′
1a1 . . . of A of the same length such that qi 	de q′i for

every i.
3. If q0 	de q′′0 and [q0]de a0 [q1]de a1 . . . is an infinite run of A/≈de with q0 ∈ F ,

then there exists a finite run q′′0a0 . . . ar−1q
′′
r of A such that qj 	de q′′j for j ≤ r and

q′′r ∈ F .

Proof. For the first part, recall that by definition of 	de , we know Duplicator wins
Gde

A (q0, q
′
0). Let f be a winning strategy for him, and let q′1 = f(q0q

′
0aq1). Then, by

definition, (q′0, a, q
′
1) ∈ δ. Also, it is easy to see that f ′ defined by f ′(ρ) = f(q0q

′
0aρ)

is a winning strategy for Duplicator in Gde
A (q1, q

′
1). Therefore, the claim holds.

For the second part, observe that by definition of A/≈de there exist q̂0 and q̂1
such that (i) q0 ≈de q̂0, (ii) q1 ≈de q̂1, and (iii) (q̂0, a0, q̂1) ∈ Δ. From (i), we obtain
q̂0 	de q′0 by transitivity of 	de . So, from (iii) and the first part of the lemma, we
can conclude there exists (q′0, a, q

′
1) ∈ Δ such that q̂1 	de q′1. From (ii), we obtain

q1 	de q′1. Hence, we have constructed the first transition of the desired run and are
in a completely analogous situation. The rest follows by induction.

For the third part, first set q′0 = q0. Let q′0a0q
′
1a1 . . . be the infinite run which

we know exists by the second part. Next, let f be a winning strategy of Duplicator
in Gde

A (q′0, q
′′
0 ). Consider q′′0a0q

′′
1a1 . . . defined by q′′i+1 = f(q′0q

′′
0a0 . . . q

′
i). Just as in

the proof of the first part, it can be argued that qj 	de q′j 	de q′′j holds for every j.
Because of q′0 = q0 ∈ F , we conclude there exists r such that q′′r ∈ F , which completes
the proof.

Theorem 14. For any Büchi automaton A, L(A) = L(A/≈de).

Proof. To see that L(A) ⊆ L(A/≈de), consider any accepting run π = q0a0q1a1 . . .
of A. By definition of A/≈de , [q0]a0[q1]a1 . . . is an accepting run of A/≈de . This holds
for any of our simulation notions.

To show L(A/≈de) ⊆ L(A), consider an accepting run [q0]a0[q1]a1 . . . of A/≈de .
Although we cannot guarantee that q0a0q1a1 . . . is a run of A, we can construct
another accepting run over the same word.

We may assume that q0 = qI and that there are infinitely many i such that qi ∈ F .
We construct a sequence ρ0, ρ1, . . . of finite runs of A on prefixes of a0a1 . . . where
ρl+1 strictly extends ρl and contains at least l + 1 elements from F . So the limit of
the ρi’s will be the run we are looking for.

We start with ρ0 = q0. Assume ρl = q′0a0 . . . q
′
i has already been constructed in

such a way that qi 	de q′i. There exists j > i such that qj ∈ F . So, by the second
part of the previous lemma, we know there exists a run q′iai . . . q

′
j such that qj 	de q′j .

By the third part of the lemma, we know there exists k ≥ j and a run q′jaj . . . q
′
k such

that qk 	de q′k and q′k ∈ F . We set ρl+1 = ρaiq
′
i+1 . . . q

′
k.

We can thus use A/≈de to reduce the size of A, just as with direct simulation. In
fact, A/≈de can be smaller than A/≈di (as well as cl(A)/≈di) by an arbitrarily large
factor.

Proposition 15. For n ≥ 2, there is a Büchi automaton An with n + 1 states
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Fig. 3. Family of automata An.
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Fig. 4. Family of automata Bn.

such that An/≈de has 2 states but An/≈di has n + 1 states (and An = cl(An)).
Proof. Consider automaton An in Figure 3. It is not hard to establish that in An

each outer state delayed simulates each other outer state. Thus An/≈de has 2 states.
On the other hand, An = cl(An), and no state of An direct simulates any other state
of An. Thus An/≈di = An and has n + 1 states.

Next we see that Theorem 14 fails badly for fair simulation and bisimulation; that
is, fair (bi)simulation cannot be used for state space reduction via quotienting under
any reasonable definition of quotient. [15] already makes a very closely related obser-
vation, showing an automaton whose fair bisimulation quotient is not fair bisimilar
to itself.

Proposition 16. For n ≥ 2, there is a Büchi automaton Bn with n states, each
of which fairly (bi)simulates every other state, but such that no Büchi automaton with
fewer than n states accepts L(Bn). In particular, L(Bn) �= L(Bn/≈bi

f ).
Proof. Consider the automaton Bn shown in Figure 4. It has n states and an

alphabet Σ = {a1, . . . , an−1}. To see that every state of Bn fair simulates (and fair
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bisimulates) every other state, first note that because the automaton is deterministic
Duplicator has no choice in her strategy. A run (played by Spoiler) goes through
the accept state infinitely often iff each ai is encountered infinitely often. But this
statement holds no matter which state the run begins from. Thus Duplicator’s unique
strategy from the initial state pair will be a winning strategy. The language L(Bn)
contains precisely those ω-words where each ai occurs infinitely often. It is not hard
to show that there are no Büchi automata recognizing L(Bn) with fewer than n
states.

6. Conclusions. We have presented a unified parity-game framework in which
to understand optimal known algorithms for a variety of simulation notions for Büchi
automata. In particular, we have improved upon the best bounds for fair simulation
(and fair bisimulation), matched the best bound for ordinary simulation, and pre-
sented an algorithm for the new notion of delayed simulation. Our algorithms employ
a relatively simple fixed point computation, an implementation of an algorithm by
Jurdziński for parity games, and should perform well in practice.

Our own main aim in using simulations is efficient state space reduction, as in [8].
We introduced delayed simulation and showed that, unlike fair simulation, delayed
simulation quotients can be used for state space reduction, and allow greater reduction
than direct (strong) simulation, which has been used in the past. Optimization of
property automata prior to model checking is an ingredient in making explicit state
model checkers such as SPIN more efficient. Preliminary results indicate that in
practice delayed simulation does outperform direct simulation on many inputs; further
studies need to be carried out to get a clearer picture of the relative advantages of
delayed simulation.
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