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Abstract

We define Recursive Markov Chains (RMCs), a class of finitely presented
denumerable Markov chains, and we study algorithms for their analysis. In-
formally, an RMC consists of a collection of finite-state Markov chains with
the ability to invoke each other in a potentially recursive manner. RMCs of-
fer a natural abstract model for probabilistic programs with procedures. They
generalize, in a precise sense, a number of well studied stochastic models, in-
cluding Stochastic Context-Free Grammars (SCFG) and Multi-Type Branching
Processes (MT-BP).

We focus on algorithms for reachability and termination analysis for RMCs:
what is the probability that an RMC started from a given state reaches another
target state, or that it terminates? These probabilities are in general irrational,
and they arise as (least) fixed point solutions to certain (monotone) systems
of nonlinear equations associated with RMCs. We address both the qualitative
problem of determining whether the probabilities are 0, 1 or in-between, and
the quantitative problems of comparing the probabilities with a given bound, or
approximating them to desired precision.

We show that all these problems can be solved in PSPACE using a deci-
sion procedure for the Existential Theory of Reals. We provide a more practical
algorithm, based on a decomposed version of multi-variate Newton’s method,
and prove that it always converges monotonically to the desired probabilities.
We show this method applies more generally to any monotone polynomial sys-
tem. We obtain polynomial time algorithms for various special subclasses of
RMCs. Among these: for SCFGs and MT-BPs (equivalently, for 1-exit RMCs)
the qualitative problem can be solved in P-time; for linearly-recursive RMCs the
probabilities are rational and can be computed exactly in P-time.

We show that our PSPACE upper bounds cannot be substantially improved
without a breakthrough on longstanding open problems: the square-root sum
problem and an arithmetic circuit decision problem which captures P-time on
the unit-cost rational arithmetic RAM model. We show that these problems
reduce to the qualitative problem and to the approximation problem (to within
any nontrivial error) for termination probabilities of general RMCs, and to the
quantitative decision problem for termination (extinction) of SCFGs (MT-BPs).
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1 Introduction

We study and provide algorithms for analysis of Recursive Markov Chains (RMCs),
a natural model for systems that involve both probability and recursion. Informally,
a Recursive Markov Chain consists of a collection of finite-state component Markov
chains which can call each other in a potentially recursive manner. RMCs are a
probabilistic version of Recursive State Machines (RSMs) ([AEY01, BGR01]). These
and other expressively equivalent non-probabilistic models, e.g., Pushdown Systems
(PDSs), have been studied extensively in recent research on software model checking
and program analysis, because of their applications to modeling and verification of
sequential programs with procedures (i.e., subroutines). RMCs are in turn a nat-
ural abstract model for probabilistic procedural programs. Probabilistic models of
programs are of interest for a number of reasons. First, the program may use random-
ization, in which case the transition probabilities reflect the random choices of the
algorithm. Second, we may want to model and analyse a program under statistical
conditions on its behavior or on the behavior of its input environment. Under such
assumptions, we may want to determine the probability of properties of interest, e.g.,
that the program terminates, and/or that it terminates in a certain state. Beyond
the analysis of probabilistic programs, the RMC model is of interest in its own right
as a basic model that combines two very common modelling primitives: probability
and recursion.

We now give an example and a brief description of RMCs to facilitate intuition
(formal definitions are provided in section 2). Figure 1 visually depicts an example
of a Recursive Markov Chain with two component Markov chains, A1 and A2. Each
component has certain designated entry and exit nodes. For example, component
A1 has one entry, en, and two exits, ex1 and ex2. In this example, A2 also has one
entry and two exits, but in general, the components of an RMC may have different
numbers of entries and exits. These components may have other, ordinary, nodes,
e.g., u in A1. In addition to ordinary nodes, each component may also contain boxes,
e.g., the box b1 in A1, and the boxes b′1 and b′2 in A2. The boxes model recursive calls.
Each box is mapped to a component, and acts (just like a “function call”) as a place-
holder for a copy of the component to which it is mapped. For example, component
A1 has one box, b1, which is mapped to A2. Every box has call ports and return
ports, which correspond 1-1 to the entries and exits, respectively, of the component
to which the box is mapped. In this case note that the call ports and return ports
of box b1 correspond to the entries and exits of A2, respectively. A transition into a
box goes to a specific call port and models the invocation of the component to which
the box is mapped, starting at the entry node corresponding to the call port; this
can be viewed as a function call where the call port is the parameter value passed
to the function. When (and if) the called component terminates at an exit, then

2



ex1

ex2

1/2

A1

1

en′

A2

ex′
1

ex′
2

1

3/5

b1 : A2 b′1 : A1

b′2 : A2

z

u

3/4

1/4

2/3

1/3 1/3

en

v

1/4 1/4
2/5

1
1/3

2/3

11

1/3

1/3

Figure 1: A sample Recursive Markov Chain

the execution of the calling component resumes from the corresponding return port
of the box; this is like a return from a function, where the exit at which the call
terminated is the returned value. Probabilities label the transitions of an RMC, as
shown in the figure. Intuitively, “macro-expanding” each box using the component to
which it corresponds, and doing this “for ever” as long as there are boxes remaining,
generates the underlying denumerable Markov chain which is described by the RMC
in a concise, finite, fashion. We are interested in the properties of this underlying
denumerable Markov chain.

A basic computational question that will concern us in this paper, and which
forms the backbone of many other analyses for RMCs, is the following: given an
RMC, and given a vertex u and exit ex, both from the same component, what is the
probability that starting at u (in the empty calling context, i.e., not inside any boxes),
we will eventually terminate at ex (in the empty calling context)? This is what we call
the termination probability, q∗u,ex, associated with the pair u and ex. Computation of
such probabilities is crucial to many other analyses of RMCs. As we shall see, such
probabilities can be irrational, so we can not hope to compute them “exactly”. We
must instead either be content with approximating the probabilities, or answering
decision questions about them, such as whether the probability is at least a desired
rational value. We shall also see that the problem of computing/approximating such
probabilities encounters a number of other difficulties not encountered in the case of
finite-state Markov Chains.

It turns out that basic analysis questions about RMCs generalize related questions
about several classic probabilistic models that have been studied for decades. These
include (multi-type) Branching Processes (MT-BPs) an important class of stochas-
tic processes first defined by Kolmogorov, and studied by him and Sevastyanov and
others beginning in the 1940s and continuing to the present (see, e.g., [Har63, KS47,
Sev51, AN72, Jag75, KA02, HJV05]). The theory of Branching Processes dates back
(in the single-type case) to the 19th century and the work of Galton and Watson
on population dynamics. Multi-type BPs and their variants have been applied in
a wide variety of stochastic contexts, including population genetics ([Jag75]), mod-
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els in molecular biology ([KA02, HJV05]), and the study of nuclear chain reactions
([EU48]). Many variants and extensions of MT-BPs have also been studied. The
problem of computing extinction probabilities for MT-BPs, which was already con-
sidered by Kolmogorov and Sevastyanov in the 1940s [KS47], is in fact equivalent to
that of computing termination probabilities for a special restricted class of RMCs,
namely 1-exit RMCs, where every component has exactly one exit node. Another di-
rectly related class is Stochastic Context-Free Grammars (SCFGs). As we shall show,
the problem of computing the probability of the language generated by a SCFG is also
equivalent to computing the termination probability of a 1-exit RMC. SCFGs have
been studied extensively since the 1970s, particularly in the Natural Language Pro-
cessing (NLP) community where they are a core model (see, e.g., [MS99]) as well as
well as in biology sequence analysis (see, e.g., [DEKM99, SBH+94]). (For definitions
of MT-BPs and SCFGs, see section 2.3.)

As we shall see, general RMCs are a more expressive model and have different
complexity characteristics. A model that is expressively equivalent to general RMCs
is probabilistic Pushdown Systems (pPDSs), introduced independently and concur-
rentlly in [EKM04]. As we’ll see, there are linear time translations between RMCs
and pPDSs.

Despite the extensive study of both MT-BPs and SCFGs over many decades,
a number of basic algorithmic questions about them have not been satisfactorily
answered. For example, is the probability of the language of a given SCFG or the
extinction probability of a MT-BP ≥ p? Is it = 1? Can these questions be decided
in polynomial-time in general? What if there are only a constant number of types
in the branching process (non-terminals in the grammar)? RMCs form a natural
generalization of SCFGs and MT-BPs, however their underlying stochastic processes
appear not to have been studied in the rich branching process literature.

Our results, and the structure of this paper. The goal of this paper is to develop
the basic theory and explore the fundamental algorithmic properties of Recursive
Markov Chains. The focus will be on computation of termination probabilities and
its complexity, because, as explained, computation of these probabilities forms the
core of many other important analyses.1 We shall observe that we can easily reduce
to termination more general reachability questions: what is the probability that the
RMC starting from a given state (with empty context, i.e. no pending recursive calls)
will reach another target state (with empty context, or for some context)?

As we mentioned, the termination probabilities are generally irrational, and hence
cannot be computed exactly. We address the qualitative problem of determining

1Indeed, as described in the conclusions, a number of papers have appeared since the publication
of the conference version of this paper, which use the analyses described here as a basis for other
analyses, such as for model checking, analysis of expected termination time (hitting time), and more.
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whether the probabilities are 0, 1 or in-between, and the quantitative problems of (i)
approximating these probabilities to desired precision (the approximation problem),
and (ii) comparing the probabilities to given bounds (the decision problem). We
provide both upper and lower bounds, for the general class of RMCs and for several
important subclasses.

We first give a brief overview of the results, and we then present a more de-
tailed summary. For upper bounds, we show that the qualitative and quantitative
problems can be solved in PSPACE, using a decision procedure for the Existential
Theory of Reals, and we provide a more practical algorithm, based on a decomposed
version of multi-variate Newton’s Method, which we show converges monotonically
to the desired probabilities. We obtain more efficient algorithms for several impor-
tant subclasses of RMCs: hierarchical, linearly-recursive, bounded, and 1-exit RMCs
(these classes are defined formally in Section 2). For lower bounds, we show that our
PSPACE bounds cannot be substantially improved upon without a breakthrough on
the square-root sum problem (SQRT-SUM), a long-standing open problem in the com-
plexity of numerical computation, and on another more powerful and fundamental
problem, called PosSLP, which is complete for the class of decision problems that
can be solved in polynomial time on models with unit-cost exact rational arithmetic.
We show that these problems reduce to the quantitative decision problem for 1-exit
RMCs (and SCFGs and MT-BPs) of comparing the termination probabilities with a
given bound. They also reduce to both the qualitative and quantitative problems for
general RMCs, and furthermore to the approximation of the termination probabilities
with any nontrivial constant error.
We now summarize in more detail the main results of this paper, and we outline the
organization to help guide the reader.

Section 2: Basic definitions and background: We give the formal definition of Re-
cursive Markov Chains, and define, in one place for easy reference, several special
subclasses of RMCs: hierarchical, linear, bounded, and 1-exit RMCs (Section 2.1).
We define formally the main (qualitative and quantitative) problems addressed in
the paper concerning the termination probabilities of an RMC, and observe that the
computation of more general reachability probabilities reduces to computation of ter-
mination probabilities (Section 2.2). We then give (in Section 2.3) the definition of
SCFGs and MT-BPs, and establish formally their relationship to 1-exit RMCs: we
present polynomial time translations between SCFGs and 1-exit RMCs in both direc-
tions, such that the probability of the language of the SCFG is equal to a termination
probability of the RMC (Theorem 3). Similar translations are presented for MT-BPs
and 1-exit RMCs, establishing the equality between the extinction probabilities of a
branching process and the termination probabilities of the corresponding 1-exit RMC
(Theorem 4).
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Section 3: The nonlinear equation system for RMCs: From an RMC we construct
a system of equations, denoted x = P (x) in vector notation, where x is an n-vector
of variables corresponding to the termination probabilities, and where each of the n
equations, xi = Pi(x) (one for each termination probability), has on its right hand
side a multi-variate polynomial, Pi(x), with only positive coefficients. The particular
systems associated with RMCs have the additional property that they always have a
non-negative solution, and in fact a least non-negative solution, i.e., a non-negative
solution which is smallest in every coordinate than any other solution. This solution
is the Least Fixed Point (LFP) of the monotone operator P : R

n
≥0 7→ R

n
≥0. We show

that the LFP is precisely the vector q∗ of termination probabilities for the RMC
(Theorem 5).

The monotone nonlinear system x = P (x) for an RMC gives rise to a natural
iterative numerical algorithm with which to approximate the LFP. Namely, q∗ =
limk→∞ P k(0), where P 1(0) = P (0) and P k+1(0) = P (P k(0)). We show that this
standard iteration can be exponentially slow to converge to within i bits of q∗, and
this holds even for a fixed 1-exit RMC (Theorem 6.) (We give a superior iterative
numerical algorithm later in Section 6.) We also present a number of examples (also
in Theorem 6) to illustrate other numerical and computational pathologies which
make the problem of computing/approximating these probabilities very different than
that of finite-state Markov chains. For example, we observe that the termination
probabilities can be irrational (even for MT-BPs and SCFGs), and not solvable by
radicals. Thus we can’t hope to compute them exactly.

Section 4: Basic upper bounds: We show that for general RMCs we can decide
in PSPACE whether a termination probability is ≤ p, or = p, for some rational
p ∈ [0, 1], and we can approximate the probabilities to within any given number of
bits of precision (Theorems 8 and 9.) These results are shown by appealing to the
deep results on the complexity of decision procedures for the Existential Theory of
Reals ([Can88, Ren92, BPR03]). Better results are obtained later in Section 8 for
important special classes of RMCs.

Section 5: “Lower Bounds”: We show that one can not hope to improve substan-
tially on the PSPACE upper bounds for probabilities of RMCs without a major
breakthrough in the complexity of exact numerical computation. We do this by es-
tablishing reductions from two important open problems. The first of these is the
square-root sum problem (SQRT-SUM), which asks, given natural numbers (d1, . . . , dn)
and another natural number k, whether (

∑

i

√
di) ≥ k. This problem is known to

be in PSPACE, but its containment even in NP is a longstanding open problem first
posed in 1976 ([GGJ76]). This problem arises often especially in geometric computa-
tions where the square root sum represents the sum of Euclidean distances between
given pairs of points with integer (or rational) coordinates; for example, determining
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whether the length of a spanning tree or a TSP tour of given points on the plane
is bounded by a given threshold amounts to answering an instance of the SQRT-SUM

problem. The second problem, which is actually harder than square-root sum (via
P-time Turing reductions), is the PosSLP (Positive Straight-Line-Program) problem
considered recently by Allender et. al. in [ABKPM06]. The PosSLP problem asks
whether a given arithmetic circuit (equivalently, a straight-line program) with inte-
ger inputs, and gates {+, ∗,−}, outputs a positive number or not. The importance
of PosSLP was highlighted in [ABKPM06] which showed that this problem is hard
(under P-time Turing reductions) for the entire class of decision problems that can be
decided in polynomial time in the Blum-Shub-Smale model of computation over the
reals using rational constants [BCSS98] or equivalently, a unit-cost algebraic RAM
model in which all operations on rationals take unit time, no matter how large the
numbers. Importantly, the division operation is exact rational division, not integer
division; it is known that with integer division (the floor function) all of PSPACE
can be decided in the unit-cost model in polynomial time [Sch79, BMS81]. It is an
open question whether the unit-cost RAM model without integer division can decide
in polynomial time any problem that is not in P in the usual Turing machine model
(equivalently, RAM model with logarithmic cost); Tiwari showed in [Tiw92] that the
square-root sum problem can be solved in polynomial time in this model, as an ex-
ample of a problem that we currently do not know how to solve in P in the standard
model. Allender et. al. [ABKPM06] showed that PosSLP (and thus SQRT-SUM) can
be decided in the 4th level of the Counting Hierarchy, an analog of the polynomial-
time hierarchy for counting classes like #P . Thus it is unlikely that either of these
problems is PSPACE-hard, but it remains an important open question whether either
problem can be decided in P or even in NP.

We show that the SQRT-SUM and PosSLP problems reduce to the qualitative ter-
mination problem for RMCs (even for 2-exit RMCs), i.e., determining whether a
2-exit RMC terminates with probability 1. Furthermore, even any non-trivial ap-
proximation of the termination probability for a 2-exit RMC is at least as hard as
the SQRT-SUM and PosSLP problems. Specifically, for any ǫ > 0, both these problems
are reducible to the following problem: given a 2-exit RMC which is guaranteed to
either terminate with probability 1 or with probability ≤ ǫ, decide which of the two
is the case (Theorem 11). We also show that the SQRT-SUM and PosSLP problem are
polynomial-time reducible to the decision problem for 1-exit RMCs (Theorems 10 and
12), i.e., determining whether the termination probability is ≤ p for given p ∈ [0, 1];
this applies in particular to the problem of bounding the extinction probability of a
branching process or the probability of the language generated by a SCFG. We in
fact show that PosSLP is (many-one) reducible to the termination problem for the
further restricted class of 1-exit hierarchical RMCs (Theorem 12), which have rational
termination probabilities (but which can require exponential size).
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Section 6: RMCs and decomposed Newton’s method: It is well known that the decision
procedures for the Existential Theory of the Reals are quite impractical. We provide
here a practical iterative numerical algorithm for estimating termination probabili-
ties of RMCs. We show that a decomposed version of (multi-dimensional) Newton’s
method, where Newton’s method is applied separately to each strongly connected
component of the equation system, converges monotonically to the LFP, starting
from the all zero vector (Theorem 13), and the proof shows that it constitutes a rapid
“acceleration” of the standard iteration. Note that in general Newton’s method is
not guaranteed to converge; but when it does converge, it typically converges very
fast. We show that it always converges monotonically to the LFP in our setting.
We thus believe that in our context Newton provides an efficient practical method
for numerically estimating these probabilities for typical RMCs. (As discussed in
the conclusions, more recent work [KLE07] has revealed examples where even our
decomposed Newton’s method can converge slowly. But implementation and experi-
mental studies have confirmed that, over a wide range of examples, our decomposed
Newton’s method performs very well in practice [WE07, NS06]. )

Section 7: General monotone systems of polynomial equations: We show that essen-
tially all our analyses for the nonlinear systems for RMCs generalize to any system
of equations x = P (x), where P is a vector of multivariate polynomials with positive
coefficients. These more general systems may not have any finite non-negative solu-
tions, but if they do then they will have a finite least fixed point (LFP). We show that
the techniques developed for analysis and computation of the LFP of RMC equations
are also applicable to these more general systems, including Newton’s method , i.e.,
if the system has a solution, then the decomposed Newton’s algorithm will converge
monotonically to the LFP (Corollary 25).

Section 8: P-time algorithms for special classes of RMCs: We give efficient polynomial
time algorithms for analysis of several special classes of RMCs.

1. We show that for 1-exit RMCs, MT-BPs, and SCFGs, we can solve in polyno-
mial time the qualitative problem, of deciding whether the probability of termination
(resp., extinction, language) is exactly 1, i.e., almost sure termination (Theorem 26).

2. We show that the quantitative problems can be solved in polynomial time for
bounded RMCs, which are RMCs that have a bounded number of components, and
each component has a bounded number of entries and exits (Theorem 33). These cor-
respond to programs with a constant (‘small’) number of procedures that pass in and
out a constant amount of information; the components (the procedures) themselves
can be arbitrarily large and complex.

3. Finally, we consider the class of linearly recursive RMCs, where there are no
positive probability paths from the return port of some box to the call port of a box in
the same component (this corresponds to linear recursion in programs), and the class
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of hierarchical Markov chains (HMC), where the call graph between the components is
acyclic. These classes inherit some of the nice properties of finite-state Markov chains.
We show that for both of these classes, the termination probabilities are rational. In
the case of linearly recursive RMCs the probabilities have polynomial bit size and
can be computed exactly in polynomial time (Theorem 34). For hierarchical MCs we
can solve the qualitative problem in polynomial time. Furthermore, if the number of
levels in the hierarchy is bounded then the probabilities have polynomial bit size and
can be computed exactly in polynomial time (Theorem 36). If the number of levels
is unbounded, then the probabilities may have exponential bit size, hence cannot
be computed in polynomial time in the standard Turing machine model. We show
(Corollary 37) that the decision problem for hierarchical Markov chains is complete
(under P-time Turing reductions) for the class of problems that can be decided in
polynomial time in the BSS model mentioned earlier, with unit-cost exact rational
arithmetic.

Section 9: Relation to other models: We detail the relationship between RMCs and
several other probabilistic models. In particular, we show that RMCs are expressively
equivalent to probabilistic Pushdown Systems (pPDSs), a model introduced indepen-
dently in [EKM04], and we provide linear-time translations in both directions between
the two models (Theorem 38). We also observe that the Random Walk with Backbut-
ton model studied in [FKK+00] as a probabilistic model of web browsing/crawling,
constitutes a special subclass of 1-exit RMCs.

Related Work. There is extensive work in the verification and program analy-
sis literature on algorithmic analysis of non-probabilistic models of procedural pro-
grams, based on Pushdown Systems and related models (see, e.g., [BEM97, EHRS00,
Rep98]). Recursive state machines were introduced in [AEY01, BGR01] (see the
journal version [ABE+05]) as a more direct graphical model of procedural programs,
expressively equivalent to Pushdown Systems, and their algorithmic verification ques-
tions were thoroughly investigated.

A conference version of this paper appeared in [EY05a].2 A work directly re-
lated to this paper, done independently and concurrently, is that of Esparza, Kucera,
and Mayr [EKM04] who considered model checking for probabilistic pushdown sys-
tems (pPDSs). pPDSs and RMCs are expressively equivalent models: as we show
in section 9 there are efficient linear-time translations between the two. Among the
results in [EKM04], they showed decidability of reachability questions for pPDSs by
constructing essentially the same nonlinear system of equations for pPDSs as we con-
struct and associate with RMCs. They then appealed to results on the theory of

2Some results were not in [EY05a], e.g., Theorem 11 appeared first in a later conference paper
[EY07], and Theorem 12 appears first here.
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reals to derive EXPTIME upper bounds for reachability in pPDSs. As we point out,
the known results for the theory of reals can actually be used to obtain PSPACE
upper bounds for reachability. That is essentially the main overlap between their
results and our results in this paper. Their main focus was decidability (rather than
precise complexity) of model checking problems for pPDSs for properties expressed
by deterministic Büchi automata, and for a probabilistic branching-time temporal
logic, PCTL. Subsequent papers by ourselves and others, which build on this paper,
have developed model checking algorithms and complexity bounds for all linear-time
properties (expressed by nondeterministic Büchi automata or Linear Temporal Logic)
[BKS05, EY05b, YE05]. Since the conference publication of our paper [EY05a] and of
[EKM04], a number of conference papers have been published that build on and ex-
tend this work in various directions (see [BKS05, EKM05, BEK05, KLE07, EKL08]
and see our papers [EY05b, EY05c, YE05, EY06a, EY06b]). We will give a brief
description in the concluding section.

As mentioned earlier, SCFGs have been studied extensively in the Natural Lan-
guage Processing literature (see, e.g., [MS99]). In particular, the problem of con-
sistency of a SCFG (whether the language that it generates has probability 1) has
been studied, and its connection to the extinction problem for branching processes
is well known [Har63, BT73, Gre76, CG97]. However, none of the relevant references
provide a complete algorithm, characterization, and proof for consistency.

The branching process literature on computing extinction probabilities is old
and extensive (see [Har63, AN72, Mod71] for thorough expositions). However, even
there, no reference provides a complete algorithm and proof for deciding almost sure
termination for all branching processes in polynomial time. The most comprehen-
sive results (in Russian) are due to Sevastyanov and Kolmogorov [Sev51, KS47] (see
[Har63]). We elaborate in detail on those results in section 8.1.

Another related work is [AMP99]. They study probabilistic Pushdown Automata
(pPDA), and their relationship to SCFGs and weighted CFGs. Among their results
they show that for every pPDA there is a SCFG which yields the same probability
distribution on strings. However, that construction is not computationally useful in
the following sense: the resulting SCFG uses grammar rules whose probabilities are
given by the termination probabilities of the original pPDA, and thus in order to
actually “construct” this SCFG one first has to compute these termination proba-
bilities for pPDSs, so this computational problem is not addressed. Note also that
these probabilities may be irrational, so constructing the resulting SCFG exactly is
in fact problematic. The paper [AMP99] does not address the computation of these
probabilities for pPDAs, nor other algorithmic questions for analysis of SCFGs and
pPDA.

Another case of a model that has probabilistic and recursive features is that of
Fagin, et. al. [FKK+00], on Random walks with “back buttons”. They study a
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probabilistic model of surfing/crawling on the WWW, where from each web page,
the user with some probability either follows a link to go to a new page or pushes
the back-button to return to the previous page. They study both steady-state/limit
distributions and termination probabilities for these models, and show that semi-
definite programming can be used to approximate these probabilities in polynomial
time. It turns out, as we will explain in section 9, that the back-button model
corresponds to a (strict) subclass of 1-exit RMCs; the subclass is strict and cannot
generate various distributions that 1-exit RMCs can generate.

2 Basic definitions and background

In Section 2.1 we will define formally Recursive Markov Chains, and several special
subclasses. In Section 2.2 we define the problems that we will consider in this pa-
per concerning termination probabilities, and show that more general reachability
probabilities can be reduced to them. In Section 2.3 we will give the definitions of
Stochastic Context-Free Grammars and Multitype Branching Processes, and relate
them to 1-exit RMCs.

2.1 The RMC Model

A Recursive Markov Chain (RMC), A, is a tuple A = (A1, . . . , Ak), where each
component graph Ai = (Ni, Bi, Yi, Eni, Exi, δi) consists of:

• A set Ni of nodes.

• A subset of entry nodes Eni ⊆ Ni, and a subset of exit nodes Exi ⊆ Ni.

• A set Bi of boxes, and a mapping Yi : Bi 7→ {1, . . . , k} that assigns to every
box (the index of) one of the components, A1, . . . , Ak. To each box b ∈ Bi,
we associate a set of call ports, Callb = {(b, en) | en ∈ EnYi(b)} correspond-
ing to the entries of the corresponding component, and a set of return ports,
Returnb = {(b, ex) | ex ∈ ExYi(b)}, corresponding to the exits of the correspond-
ing component.

• A transition relation δi, where transitions are of the form (u, pu,v, v) where:

1. the source u is either a non-exit node u ∈ Ni \ Exi, or a return port
u = (b, ex) of a box b ∈ Bi,

2. The destination v is either a non-entry node v ∈ Ni \ Eni, or a call port
u = (b, en) of a box b ∈ Bi ,

3. pu,v ∈ R>0 is the transition probability from u to v,
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4. Consistency of probabilities: for each u,
∑

{v′|(u,pu,v′ ,v
′)∈δi}

pu,v′ = 1, unless

u is a call port or exit node, neither of which have outgoing transitions, in
which case by default

∑

v′ pu,v′ = 0.

For an example, see Figure 1 and its description in the Introduction.
For computational purposes, we assume that the transition probabilities pu,v are

rational, and we measure their size (bit-complexity) by the number of bits in the
numerator and denominator. We will use the term vertex of Ai to refer collectively to
its set of nodes, call ports, and return ports, and we denote this set by Qi. Thus, the
transition relation δi is a set of probability-weighted directed edges on the set Qi of
vertices of Ai. We will use all the notations without a subscript to refer to the union
over all the components of the RMC A. Thus, N = ∪k

i=1Ni denotes the set of all the
nodes of A, Q = ∪k

i=1Qi the set of all vertices, B = ∪k
i=1Bi the set of all the boxes,

Y = ∪k
i=1Yi the map Y : B 7→ {1, . . . , k} of all boxes to components, and δ = ∪iδi

the set of all transitions of A.
An RMC A defines a global denumerable Markov chain MA = (V,∆) as follows.

The global states V ⊆ B∗ × Q of MA are pairs of the form 〈β, u〉, where β ∈ B∗

is a (possibly empty) sequence of boxes and u ∈ Q is a vertex of A. The sequence
β represents the stack of pending recursive calls and u is the current vertex. More
precisely, the states V and transitions ∆ are defined inductively as follows:

1. 〈ǫ, u〉 ∈ V , for u ∈ Q. (ǫ denotes the empty string.)

2. if 〈β, u〉 ∈ V and (u, pu,v, v) ∈ δ, then 〈β, v〉 ∈ V and (〈β, u〉, pu,v , 〈β, v〉) ∈ ∆

3. if 〈β, (b, en)〉 ∈ V , (b, en) ∈ Callb, then
〈βb, en〉 ∈ V and (〈β, (b, en)〉, 1, 〈βb, en〉) ∈ ∆

4. if 〈βb, ex〉 ∈ V , (b, ex) ∈ Returnb, then
〈β, (b, ex)〉 ∈ V and (〈βb, ex〉, 1, 〈β, (b, ex)〉) ∈ ∆

Item 1 corresponds to the possible initial states, item 2 corresponds to a transition
within a component, item 3 corresponds to a recursive call when a new component is
entered via a box, and item 4 correspond to the termination of a recursive call when
the process exits a component and control returns to the calling component.

Some states of MA are terminating states and have no outgoing transitions. These
are states 〈ǫ, ex〉, where ex is an exit node. If we wish to view MA as a proper Markov
chain, we can consider the terminating states as absorbing states of MA, with a self-
loop of probability 1. To simplify notation, we will sometimes use in place of 〈ǫ, u〉
the notation 〈u〉 or simply u; so for example, we will often say that a path of the
RMC A starts at vertex u and terminates at an exit ex of the component of u, to
mean a path of MA from state 〈ǫ, u〉 to state 〈ǫ, ex〉.
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Special Classes of RMCs.
We give here, together in one place for easy reference, definitions of several special

classes of RMCs. As with procedural programs, from an RMC A we can define the
call graph of A: the graph has one node i = 1, . . . , k for each component Ai of A and
has a directed edge (i, j) if a box of Ai is mapped to Aj . RMCs whose call graph is
acyclic are called Hierarchical Markov Chains (HMCs). These are the probabilistic
version of Hierarchical State Machines [AY01]. Hierarchy is often used to structure
large models and represent them in a succinct, modular fashion. In this special case
MA is finite, but can be exponentially larger than the HMC which specifies it.

We say that an RMC is linearly recursive or simply a linear RMC, if there is no
positive probability path in any component (using only transitions of that component)
from a return port of any box to a call port of any box (neither the same nor another
box). This corresponds to the usual notion of linear recursion in procedures. As an
example, the RMC of Fig. 1 is not linear because of the back edge from the second
return port of box b1 to its call port; if this edge was not present then the RMC
would be linear.

The class of bounded RMCs (for some fixed bound c) is the set of RMCs that have
a bounded number (at most c) of components, each of which has a bounded number
(at most c) of entries and exits. The components themselves can be arbitrarily large,
i.e. have an arbitrary number of vertices, boxes, and edges. These correspond to
recursive programs with a bounded number of different procedures, which pass a
bounded number of input and output values.

The class of 1-exit RMCs is the set of RMCs all of whose components have only
one exit; there can be an arbitrary number of components with an arbitrary number of
entries. As we will see, this class encompasses well-studied models, such as Stochastic
Context-Free Grammars and (Multi-type) Branching Processes.

The number of exits measures the amount of information (number of different
return values) that a component returns when it terminates to the component that
called it; one exit means that the component does not return any information beyond
the fact that it terminated. There appears to be a distinct difference in expressiveness
and complexity between 1-exit and multiexit RMCs; for example we’ll show how to
test in polynomial time for almost sure termination in 1-exit RMCs, but we do not
know how to do it for multi-exit RMCs.

2.2 The central reachability and termination questions.

Our focus in this paper is on answering termination and reachability questions for
RMCs. Given a vertex u ∈ Qi and an exit ex ∈ Exi, both in the same component Ai,
let q∗(u,ex) denote the probability of eventually reaching the terminating state 〈ǫ, ex〉,
starting at the initial state 〈ǫ, u〉. We let q∗u =

∑

ex∈Exi
q∗(u,ex) be the probability that
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the process eventually terminates (at some exit) when started at vertex u.
Computing the termination probabilities q∗(u,ex) allows us to efficiently obtain other

reachability probabilities, in the following sense: from a RMC A, in which we want
to compute a specified reachability probability, we can construct efficiently another
RMC A′ such that the desired reachability probability in A is equal to a termination
probability in A′. We show this for two types of reachability probability. Suppose
we are given an RMC A and two vertices u, v ∈ Q of A. The first reachability
probability, denoted Pr[u, v], is the probability that the RMC A started at vertex u
with empty context (no pending recursive calls) will reach eventually vertex v with
empty context, i.e., Pr[u, v] is the probability that the infinite Markov chain MA

induced by A, started at state 〈ǫ, u〉 will reach eventually state 〈ǫ, v〉; it is easy to see
that this probability can be nonzero only if u, v are in the same component of A. The
second reachability probability, denoted Pr′[u, v], is the probability that the RMC
A started at vertex u with empty context will reach eventually vertex v with some
context; i.e., Pr′[u, v] is the probability that the infinite Markov chain MA, started
at state 〈ǫ, u〉 will reach eventually a state of the form 〈β, v〉 for some β ∈ B∗; the
vertices u, v could be from different components in this case.

Proposition 1 Given a RMC A and two vertices u, v of A, we can construct in
linear time two other RMCs C, C ′ such that the reachability probability Pr[u, v] is
equal to a termination probability in C, and the probability Pr′[u, v] is equal to a
termination probability in C ′.

Proof. For Pr[u, v], we may assume that u, v are vertices in the same component Ai

of A (otherwise, the probability is 0). Let C be the RMC that has all the components
of A, and an additional component C0 that is the same as Ai, except that we add
self-loops with probability 1 to all the exits nodes of Ai and make them non-exit
nodes, we remove all outgoing edges from v, and make v the only exit node of C0.
All the boxes of C0 are mapped to the same components as in Ai. It is easy to see
that the probability Pr[u, v] in A is equal to the termination probability q∗(u,v) in the
RMC C.

For the probability Pr′[u, v], assume that u is in component Ai and v in Aj . We
do the following transformation to A to obtain a new RMC C ′. Add a new special
exit ex⋆

h to every component Ah of the RMC A. Remove the out-edges from v and

instead add a probability 1 transition v
1→ ex⋆

j to the new exit of its component.
For every box b of every component Ah, add a probability 1 transition from the new
return port w = (b, ex⋆

Y (b)) of b to the new exit ex⋆
h of the component. Intuitively, the

effect of the new exits and the new transitions is that when we encounter vertex v in
any context, we “raise an exception”, pop the entire call stack, and exit the system.
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It follows easily that Pr[u, v] in the original RMC A is equal to the termination
probability q∗(u,ex⋆

i ) in the new RMC C ′.

The above transformation for the probability Pr′[u, v] increases the number of
exits by 1. We remark that there is also a more involved way to reduce it to a
termination probability without increasing the number of exits as shown in [EY05b].
There we consider the more general question of model checking RMCs, and show that
the termination probabilities lie at the heart of the analysis of general properties of
RMCs.

Determining whether a termination probability q∗(u,ex) is 0, can be done efficiently

(in polynomial time) using the algorithms for the analysis of (non-probabilistic) Re-
cursive State Machines. Note that q∗(u,ex) is the sum of the probabilities of all the

paths of MA that start at state 〈ǫ, u〉 and end in state 〈ǫ, ex〉, where the probability of
a path is the product of the probabilities of its edges (transitions). Thus, q∗(u,ex) = 0
if and only if there is no such path. The actual values of the transition probabilities
are clearly irrelevant in this regard, and this is simply a reachability question on the
Recursive State Machine that underlies the RMC A. For RMC A = (A1, . . . , Ak), let
ξ = maxi∈{1,...,k} |Exi| be the maximum number of exits in any component, and let
θ = maxi∈{1,...,k} min{|Eni|, |Exi|}. Reachability in RSMs was studied in [ABE+05],
where it was shown that the problem can be decided in O(|A|θ2) time for a given
vertex-exit pair (u, ex). If the RMC has v vertices and e edges, then we can compute
all the reachable vertex-exit pairs (u, ex) in time O(eξ+ vθξ). The theorem is stated
in a slightly different way in [ABE+05], but what we have stated here follows from
basically the same analysis. More specifically, [ABE+05] constructs in total time
O(eθ + vθ2), a relation Ri for each component Ai of A, which contains all reachable
vertex-exit pairs of Ai if |Exi| ≤ |Eni| (i.e., Ri = {(u, v)|u ∈ Qi, v ∈ Exi, 〈ǫ, u〉 can
reach 〈ǫ, v〉}), and Ri contains all reachable entry-vertex pairs if |Eni| < |Exi|. Once
these relations are computed, [ABE+05] shows that other reachability information
can be computed easily by replacing every box b with directed edges from the call
ports (b, en) to the exit ports (b, ex) such that (en, ex) ∈ RY (b) and performing stan-
dard graph search in the resulting ordinary (nonrecursive) graph. If a component
Ai has fewer exits than entries, then Ri gives already the information we want for
this component. Otherwise, replace as above all the boxes of Ai with edges from
the call ports to the reachable exit ports to get an ordinary graph Gi on the same
vertex set Qi and perform a search from the exit nodes to determine all the reachable
vertex-exit pairs; if Ai has vi vertices and ei edges, then Gi has at most ei +viθ edges,
and since there are at most ξ exit nodes, the search takes time O(eiξ + viθξ) time.
Summing over all the components, it follows that all the reachable vertex-exit pairs
of the RMC can be computed in time O(eξ + vθξ) .
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Theorem 2 (see [ABE+05]) Given RMC A, in time O(|A|θξ) we can determine for
all vertex-exit pairs (u, ex), whether or not q∗(u,ex) = 0.

We distinguish between the qualitative (almost sure) reachability problem and
the quantitative problem. For the latter problem, as we will see, in general the termi-
nation probabilities are irrational, thus we cannot compute them exactly. Therefore,
we will consider two types of quantitative problems: the decision and the approxi-
mation problem. More formally, we focus here on finding efficient algorithms for the
following central questions:

(1) Qualitative termination problems: Given an RMC A, vertex u and exit ex of
the same component, is q∗(u,ex) = 1? Is q∗u = 1?

(2) Quantitative termination problems:
a. Decision Problem. Given an RMC A, vertex u and exit ex of the same
component, and a rational r ∈ [0, 1] compare q∗(u,ex) to r, i.e. determine whether
q∗(u,ex) < r, = r or > r. Same question for the probability q∗u.
b. Approximation Problem. Given an RMC A, vertex u and exit ex of the same
component, and a number j in unary, approximate q∗(u,ex) to j bits of precision

(i.e. compute a value that is within an additive error ≤ 2−j of q∗(u,ex)).

Clearly, the qualitative problem is a special case of the quantitative decision prob-
lem. Furthermore, it is easy to see that if we have an algorithm for the quantitative
decision problem, then we can use it to solve the approximation problem with poly-
nomial overhead: Simply do a binary search in the interval [0,1] to narrow down the
possible range for the probability q∗(u,ex); after j iterations the interval of uncertainty

for q∗(u,ex) is at most 2−j.

2.3 Single-exit RMCs, Stochastic Context-Free Grammars, and Branch-
ing Processes.

A Stochastic Context-Free Grammar (SCFG) is a tuple G = (T, V,R, S1), where T
is a set of terminal symbols, V = {S1, . . . , Sk} is a set of non-terminals, and R is a

set of rules Si
p→ α, where Si ∈ V , p ∈ [0, 1], and α ∈ (V ∪ T )∗, such that for every

non-terminal Si,
∑

〈pj |(Si

pj
→αj)∈R〉

pj = 1. S1 is specified as the starting nonterminal.

A SCFG G generates a language L(G) ⊆ T ∗ and associates a probability p(τ) to
every terminal string τ in the language, according to the following stochastic process.
Start with the starting nonterminal S1, pick a rule with left hand side S1 at random
(according to the probabilities of the rules) and replace S1 with the string on the
right-hand side of the rule. In general, in each step we have a string σ ∈ (V ∪ T )∗;
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take the leftmost nonterminal Si in the string σ (if there is any), pick a random rule
with left-hand side Si (according to the probabilities of the rules) and replace this
occurrence of Si in σ by the right-hand side of the rule to obtain a new string σ′.
The process stops only when (and if) the current string σ has only terminals. The
probability p(τ) of a terminal string is the probability that the process terminates
with the string τ .

According to this definition, p(τ) is the sum of the probabilities of all leftmost
derivations of τ , where the probability of a (leftmost) derivation is the product of the
probabilities of the rules used in the derivation. An alternative, equivalent definition
is that p(τ) is the sum of the probabilities of all the parse trees of the string τ ,
where again the probability of the parse tree is the product of the probabilities of
the rules used in the parse tree. The probability of the language L(G) of the SCFG
G is p(L(G)) =

∑

τ∈L(G) p(τ). Note that L(G) is the probability that the stochastic
process that we described above, starting with S1 terminates. More generally, we
can define for each nonterminal Sj ∈ V an associated probability p(Sj), which is the
probability that the process starting with Sj terminates. Note that, even though
the probabilities of the rules of every nonterminal sum to 1, the probability of the
language L(G) may be less than 1; G is called consistent if p(L(G)) = 1.

We will present reductions between 1-exit RMCs and SCFGs, showing the follow-
ing Theorem.

Theorem 3 1. Every SCFG G can be transformed in linear time to a 1-exit RMC
A, such that |A| ∈ O(|G|), and there is a bijection from non-terminals Sj in G to
components Aj of A, each with a single entry enj and single exit exj, such that
p(Sj) = q∗(enj ,exj)

, for all j.

2. Conversely, every 1-exit RMC A can be transformed in linear time to a SCFG G
of size O(|A|), such that there is a map from vertices u to non-terminals Su of G,
such that q∗u = p(Su).

Proof. Given a SCFG G, we can define in a natural way a recursive Markov
chain A whose termination probability is equal to p(L(G)). The RMC A has one
component Ai for every nonterminal Si of G, the component Ai has one entry eni

and one exit exi, and has a path from eni to exi for each rule of G with left-hand-side
(lhs) Si, where the path contains a box for every nonterminal on the right-hand-
side (rhs) of the rule, the first edge has probability equal to the probability of the
rule and the other edges have probability 1. As an example, Figure 2.3 shows the
RMC corresponding to the grammar G with nonterminals V = {S1, S2}, terminals

T = {a, b} and rules R = {S1
1/2→ S1S1, S1

1/4→ a, S1
1/4→ S2aS2b, S2

1/2→ S2S1a,

S2
1/2→ ǫ}. The unshaded boxes of the figure are mapped to A1 and the shaded boxes
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Figure 2: RMC of a SCFG

are mapped to A2. All edges that do not have an attached probability label have
probability 1. Observe that there is a 1-to-1 correspondence between the leftmost
derivations of terminal strings in G starting from S1, and terminating paths in the
RMC A starting at the entry en1 of component A1, i.e. paths reaching the exit
ex1 of A1, and the correspondence obviously preserves the probabilities. Thus, the
probability q∗en1

= q∗(en1,ex1)
of termination of the RMC A, starting at en1, is equal

to the probability p(L(G)) of the language of G. And generally, p(Si) = q∗(eni,exi)
for

all nonterminals Si.
The RMCs derived from a SCFG have some special properties: all components

are acyclic, have 1 entry and 1 exit. The restriction of 1 entry is not a significant one:
every RMC A can be easily transformed, at polynomial cost, to another equivalent
RMC whose components have 1 entry each. However, the restriction of 1 exit is
significant: 1-exit RMCs are weaker than general RMCs.

There is a reverse transformation from every 1-exit RMC A (whether acyclic or
cyclic) to a SCFG G, of size linear in A, such that the probability of termination of
A starting at a vertex is equal to p(L(G)). Let A be an 1-exit RMC. We can assume
also that each node of A is labelled by a letter in a terminal alphabet T or by ǫ
as in the figure (for simplicity we don’t label call and return ports); then the set of
terminating paths starting at any vertex u defines a language L(u) of terminal strings
with an associated probability. The reduction is as follows. For each vertex u of A
the grammar G has a nonterminal Su. If u is the exit of its component and has label a

then G contains the rule Su
1→ a. If u is a call port u = (b, en) ∈ Callb and v = (b, ex)

is the return port of the box, then G contains the rule Su
1→ SenSv. Otherwise, i.e. if

u is not an exit or a call port and thus has probabilistic outgoing edges, then for each

edge (u, pu,v, v) ∈ δ, the SCFG G has a rule Su
pu,v→ aSv, where a is the label of u. It

is easy to see that there is a 1-to-1 correspondence between terminating paths of the
RMC A starting at a vertex u (i.e. paths in the corresponding Markov chain MA that
start at state 〈ǫ, u〉 and end at state 〈ǫ, ex〉 where ex is the exit of u’s component)
and leftmost derivations in G of a terminal string starting from the nonterminal Su.
The correspondence preserves probabilities (the product of the probabilities of the
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edges on the path is equal to the product of the probabilities of the rules used in the
derivation), and the concatenation of the labels of the nodes on the path is equal to
the terminal string that is derived. Thus, the termination probability q∗u is equal to
the probability p(Su) of the language generated by G starting from Su.

Note that, the SCFG G constructed above from a 1-exit RMC has a very special
form. Thus, every SCFG and 1-exit RMC can be transformed to an equivalent SCFG
in Generalized Chomsky Normal Form , where every nonterminal Su has rules that
come in one of three types:

• Type1: Su has one rule associated with it, Su
1→ a, where a ∈ T ∪ {ǫ}.

• Typerand: Su has “linear” rules associated with it of the form Su
pu,v→ aSv.

• (Typecall): Su has one rule associated with it of the form: Su
1→ SvSw.

We remark that it is similarly possible to define a kind of generalized normal form
for arbitrary (multi-exit) RMCs, but we refrain from doing so in the interest of space.

Similar proofs can be used to show that the same tight relationship holds between
1-exit RMCs and finite Multi-Type Branching Processes [Har63]. An MT-BP G =
(V,R) consists of a (finite) set V = {S1, . . . , Sk} of types, and a (finite) set R of rules

Si
p→ α, where Si ∈ V , p ∈ (0, 1], and α is a (finite) multi-set whose elements are in V ,

and such that for every type Si,
∑

〈pj |(Si

pj
→αj)∈R〉

pj = 1. The rule Si
p→ α specifies the

probability with which an entity of type i generates the multiset α of offsprings in the
next generation. The stochastic process generated by such an MT-BP is intuitively
described as follows: we start with an initial set of entities of given types; we will
usually start with one entity of some type Si. In each generation we have a set of
entities of various types, and from them we produce the set in the next generation
as follows. For each entity in the current set, independently and simultaneously, we
probabilistically choose a rule whose left hand side is the type of the entity, according
to that rule’s probability, and replace the entity with a new set of entities whose types
are specified by the right hand side of the rule. The process continues as long as the
current set of entities is not empty and terminates if and when it becomes empty.

Let p(Sj) denote the probability that, starting with one entity of type Sj , the
process will terminate, i.e., we will eventually reach extinction of all objects; p(Sj)
is called the probability of extinction of type Sj . Clearly, given these probabilities
we can easily compute the probability of termination for any initial set of entities: if
there are initially nj entities of type j = 1, . . . , k then the termination probability is
Πj(p(Sj))

nj .
Formally, the specification of a branching process is very similar to a SCFG, where

types correspond to nonterminals. The difference is that in a branching process there
are no terminals, and the right-hand sides of the rules are multisets rather than
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strings, i.e. the order of the offsprings is not important. Also, in a branching process
the rules are applied simultaneously to all the entities in each generation, whereas in
a SCFG the rules are applied sequentially in a derivation. These differences however
are clearly immaterial as far as termination of the process is concerned. If we view
the branching process G as a SCFG with nonterminals V and rules R, then the
extinction probability p(Sj) is equal to the probability of the language generated by
the grammar with starting nonterminal Sj. Clearly, the translation from a SCFG
to a MT-BP where we ignore the terminals on the right-hand sides of the rules and
change strings to multisets, is a polynomial (in fact, linear) translation. Conversely,
if the rules of the branching process specify the multisets on the right-hand side
explicitly by listing the elements as many times as they occur in the multiset, or
equivalently specify the numbers of offsprings of the various types in unary notation,
then the translation from a MT-BP to a SCFG, where we just change multisets to
strings in the rules by listing the elements in an arbitrary order, is polynomial. If the
multiplicities in the rules of the MT-BP are specified in binary, then this translation
is not polynomial, but we can still obtain a polynomial translation by introducing
additional nonterminals. Specifically, if nj is the maximum multiplicity of a type Sj on
the right-hand side of a rule of the MT-BP, then we introduce lj +1 new nonterminals
Ujt, t = 0, 1, . . . , lj , where lj = ⌊log nj⌋, and include in the SCFG rules Uj0 → Sj,
and Ujt → Uj,t−1Uj,t−1 for t = 1, . . . , lj with probabilitiy 1. Note that by these rules,
Ujt generates a string of 2t Sj’s with probability 1. For each rule of the MT-BP,
we have a corresponding rule in the SCFG with the same left-hand-side and same
probability; if the right-hand-side of the MT-BP rule contains a type Sj with positive
multiplicity mj that has binary representation alj . . . a1a0, then the string on the right
hand side of the corresponding rule in the SCFG contains a substring that includes
a (single) occurrence of Ujt iff at = 1, for each t; clearly this substring generates
with probability 1 a string of mj Sj’s. It follows then easily from the construction
that the extinction probability p(Sj) in the MT-BP is equal to the probability of the
language generated by the grammar with starting nonterminal Sj . Combining with
the translation between SCFG’s and 1-exit RMCs we have:

Theorem 4 1. Every MT-BP G can be transformed in polynomial time to a 1-exit
RMC A, such that there is a mapping from types Sj in G to components Aj of A,
each with a single entry enj and exit exj , such that p(Sj) = q∗(enj ,exj)

, for all j.

2. Conversely, every 1-exit RMC A can be transformed in linear time to a MT-BP
G of size O(|A|), such that there is a map from the vertices u of A to types Su of G,
such that q∗u = p(Su).
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3 The system of nonlinear equations associated with an
RMC, and basic properties of its Least Fixed Point

solution.

Given a Recursive Markov Chain A, we would like to compute the termination prob-
abilities q∗(u,ex) for all pairs (u, ex) where u is a vertex of A and ex is an exit of

the component that contains u. We will set up a system of (nonlinear) polynomial
equations, such that these probabilities must be a solution of the system, and in fact
precisely the Least Fixed Point solution (which we define). There is one variable
x(u,ex) for each unknown probability q∗(u,ex), i.e. for each vertex u and each exit ex
of the component that contains u, and one polynomial P(u,ex) in this set of variables.
We will often find it convenient to index the variables x(u,ex) according to an arbitrary
fixed order, so we can refer to them also as x1, . . . , xn, with each x(u,ex) identified

with xj for some j. We thus obtain a vector of variables: x = (x1 x2 . . . xn)T .

Definition 1 Given RMC A = (A1, . . . , Ak), we define a system of polynomial equa-
tions, SA, over the variables x(u,ex), where u ∈ Qi and ex ∈ Exi, for 1 ≤ i ≤ k.
The system contains exactly one equation of the form x(u,ex) = P(u,ex)(x), for each
variable x(u,ex), where P(u,ex)(x) is a multivariate polynomial with positive rational
coefficients, and is defined as follows. There are 3 cases, based on the Type of vertex
u:

1. Type1: u = ex. In this case, the equation is x(ex,ex) = 1.

2. Typerand: either u ∈ Ni \ {ex} or u = (b, ex′) is a return port. In this case:
x(u,ex) =

∑

{v|(u,pu,v,v)∈δ} pu,v · x(v,ex).

(If u has no outgoing transitions, i.e., u is an exit other than ex then this equa-
tion is by definition x(u,ex) = 0.)

3. Typecall: u = (b, en) is a call port. In this case:
x((b,en),ex) =

∑

ex′∈ExY (b)
x(en,ex′) · x((b,ex′),ex)

In vector notation, we denote the system of equations SA = (xu,ex = Pj(x) | u ∈
Qi, ex ∈ Exi, i = 1, . . . , k) by: x = P (x).

Note, we can easily construct the system x = P (x) from A in polynomial time: P (x)
has size O(|A|ξ2), where ξ denotes the maximum number of exits of any component
of A. We will now identify a particular solution to the system x = P (x), called the
Least Fixed Point (LFP) solution, which gives us precisely the probabilities we are
after. For vectors x,y ∈ R

n, define the partial-order x � y to mean that xj ≤ yj for
every coordinate j. For D ⊆ R

n, we call a mapping H : R
n 7→ R

n monotone on D,
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if: for all x,y ∈ D, if x � y then H(x) � H(y). Define P 1(x) = P (x), and define
P k(x) = P (P k−1(x)), for k > 1.

Recall that q∗(u,ex) denotes the probability of eventually reaching 〈ǫ, ex〉 starting

at 〈ǫ, u〉 in MA. Let q∗ ∈ R
n denote the corresponding n-vector of probabilities

(using the same indexing as used for x). For k ≥ 0, let qk denote the n-vector of
probabilities where qk

(u,ex) is the probability of reaching 〈ǫ, ex〉 starting at 〈ǫ, u〉 in at

most k steps of MA, meaning via a path in MA of length at most k. Let 0 (1) denote
the n-vector consisting of 0 (respectively, 1) in every coordinate. Define x0 = 0, and
for k ≥ 1, define xk = P (xk−1) = P k(0).

Theorem 5 Let x = P (x) be the system SA associated with RMC A, and let q∗ be
the vector of termination probabilities of A.

1. P : R
n 7→ R

n is monotone on R
n
≥0. Hence, for k ≥ 0, 0 � xk � xk+1.

2. For all k ≥ 0, qk � xk+1.

3. q∗ = P (q∗). In other words, q∗ is a fixed point of the map P .

4. For all k ≥ 0, xk � q∗.

5. q∗ = limk→∞ xk.

6. For all q′ ∈ R
n
≥0, if q′ = P (q′), then q∗ � q′.

In other words, q∗ is the Least Fixed Point, LFP(P ), of P : R
n
≥0 7→ R

n
≥0.

Proof. We prove each assertion in turn:

1. That P is monotone on R
n
≥0 follows immediately from the fact that all coeffi-

cients in the polynomials Pj defining P are non-negative. Thus, if 0 � x � y

then 0 � P (x) � P (y). By induction on k ≥ 0, 0 � xk � xk+1.

2. By induction on k ≥ 0. For k = 0: x1 = P (0) is an n-vector where P(u,ex)(0) = 1
if u = ex, and P(u,ex)(0) = 0 otherwise. Hence, for each (u, ex), x1

(u,ex) =

q0
(u,ex), the probability of reaching 〈ǫ, ex〉 from 〈ǫ, u〉 in at most 0 steps.

Inductively, suppose qk � xk+1. Consider the probability qk+1
(u,ex). There are

three cases, based on what type of vertex u is:

• Type1. If u = ex, then clearly qk
(u,e) = qk+1

(u,ex) = 1. Note that since

P(ex,ex)(x) = 1, xk
(ex,ex) = P k

(ex,ex)(0) = 1, for all k ≥ 1. Thus qk+1
(u,ex) =

xk+2.
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• Typerand. In this case, qk+1
(u,ex) =

∑

v pu,v qk
(v,ex). Thus

xk+2
(u,ex) = P(u,ex)(x

k+1)

=
∑

v

pu,v xk+1
(v,ex)

≥
∑

v

pu,v qk
(v,ex) (by inductive hypothesis)

= (qk+1)(u,ex)

• Typecall. In this case3, u = (b, en) ∈ Callb, and

qk+1
(u,ex) ≤

∑

ex′∈ExY (b)

qk
(en,ex′) · qk

((b,ex′),ex)

To see that this inequality holds, note that in order to get from u =
(b, en) to ex in at most k steps, we must first get from the entry en of the
component labeling box b to some exit ex′ in at most some number m ≤ k
step, and then get from that box-exit (b, ex′) to ex in at most m′ ≤ k
steps, such that, m + m′ ≤ k. In the formula for the upper bound, we
have relaxed the requirements and only require that each of m and m′ is
≤ k. Hence the inequality. Now, by the inductive assumption, xk+1 � qk.
Hence, using the inequality, and substituting, we get

qk+1
(u,ex) ≤

∑

ex′∈ExY (b)

xk+1
(en,ex′) xk+1

((b,ex′),ex) = P (xk+1)(u,ex) = xk+2
(u,ex).

We have established assertion (2).

3. Assertion (3) follows from the definition of q∗. The equations for vertices of
Type1, Typerand, and Typecall, can be used to define precisely the probabilities
q∗

(u,ex) in terms of other probabilities q∗
(v,ex). Hence q∗ is a fixed-point of P .

4. Note that P is monotonic, and that q∗ is a fixed-point of P . Since x0 = 0 � q∗,
it follows, by induction on k ≥ 0, that xk � q∗, for all k ≥ 0.

5. Note limk→∞ qk = q∗, and qk ≤ xk+1 ≤ q∗. Thus, limk→∞ xk = q∗.

6. Suppose q′ � 0 is a fixed-point of P . By the same argument as for q∗, we know
that for all k ≥ 0, xk ≤ q′. But since limk→∞ xk = q∗, it must be that q∗ � q′.

3This is the only case where inequality, as opposed to equality, in the inductive hypothesis becomes
necessary.
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We have thus identified q∗ as LFP(P ) = limk→∞ xk. We can view Theorem
5 as giving an iterative algorithm to compute LFP(P ), by computing the iterates
xk = P k(0), k → ∞, until we think we are “close enough”. How many iterations
do we need to gain k bits of precision? We show below that we need at least an
exponential number.

We furthermore give several simple examples to illustrate some of the difficulties
of analysing recursive Markov chains, and we point out some of the important dif-
ferences between RMCs and ordinary finite Markov chains. For example, for finite
Markov chains with rational transition probabilities, the reachability probabilities
are rational, whereas for RMCs they are in general irrational. In the finite Markov
chain case, qualitative questions, such as whether a state is reached from another
state with probability 1, only depend on the structure (the edges) of the Markov
chain, and not on the values of transition probabilities, whereas for RMCs they may
depend on the actual values. For finite Markov chains given explicitly in the input,
the reachability probabilities have polynomial bit complexity. By contrast, even in
the case of hierarchical Markov chains, which have rational reachability probabilities,
an exponential number of bits is required to differentiate a reachability probability
from 1 or from another rational number; thus approximation to a polynomial number
of bits is not sufficient to answer a decision problem or a qualitative problem. Some
of these examples will be used later on as gadgets in our lower bound proofs.

Theorem 6 There are RMCs with the following properties. Furthermore, all the
following RMCs, except the HMCs in (4.), have one component, one entry en, and
one exit ex.

1. Irrational probabilities: there is a RMC, A, such that the probability q∗
(en,ex) is

an irrational number, and is in fact not “solvable by radicals”. Thus, computing
LFP(P ) exactly is not possible in general.

2. Slow convergence: there is a fixed RMC such that it requires an exponential
number of iterations, m = 2k−3, of Pm(0) to obtain q∗ to within k bits of
precision.

3. Qualitative questions not purely structure-dependent: there are 2 “structurally”
identical RMCs, A′ and A′′, that only differ in values of non-zero transition
probabilities, but q∗

(en,ex) = 1 in A′, while q∗
(en,ex) < 1 in A′′.

4. Very small & very large probabilities: There is a HMC, with m+1 components,
and of total size O(m), where component Am has entry enm and two exits ex′m
and ex′′m, such that q∗

(enm,ex′

m) = 1
22m and q∗

(enm,ex′′

m) = 1 − 1
22m .
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Proof.

1. Consider the RMC, A, in Figure 3. There is only one component with one
entry and one exit. All boxes refer to that one component. All edges without
probability labels are probability 1 edges. We can simplify the system x = P (x)
for this RMC to the single equation in one variable, x = (1/6)x5 + 1/2, by
observing that the only probability that needs to be determined in order to
determine all others is q∗(a,b). It can easily be shown that this probability is the
LFP solution of the above equation.

Thus, LFP(P ) is a root of the polynomial (1/6)x5 − x + (1/2). Multiplying
this polynomial by 6, which doesn’t change the roots, we get the polynomial:
q(x) = x5 − 6x+ 3. q(x) is an irreducible quintic polynomial. It is well-known
that this polynomial has Galois group S5, and hence, by Galois’ theorem, all
roots are irrational and not “solvable by radicals” (see, e.g., [Ste89], Theorem
14.8). (q∗

(en,ex) happens to be ≈ .50550123 . . ..)

2. Consider the RMC A′ in Figure 4. The RMC A′ can again be “solved” using
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the simplified equation x = (1/2)x2 +1/2. The LFP solution is 1, because both
roots of the polynomial are 1. Let yk = (1 − xk) be the distance between xk

and 1, where xk is the k-th approximant. We wish to find a recursive equation
for yk instead of xk. Substituting into the original equation, we will see that
yk+1 = (1/2) ∗ (1 − x2

k) = yk − (y2
k/2).

Now, suppose that for some i ≥ 0, j is the first iteration where yj ≤ 2−i.
First, we claim that 2−(i+1) < yj ≤ 2−i. This is easy to see by induction. For
i = 0 and i = 1 it is obvious, since y0 = 1 and y1 = 1/2. For i > 1, if in
the j − 1 iteration 2−i < yj−1 ≤ 2i−1, then yj > 2−i − 2−(2i−1). Since i > 1,
yj > 2−i − 2−(i+1) = 2−(i+1).

Now, let j′ be the first iteration where yj′ ≤ 2−(i+2). Note that yj′ > 2−(i+3).
We show that j′ ≥ 2i−1 + j.

Consider the values at iterations yj, yj+1, . . . , yj′ . In each such iteration, to
compute yk+1, j ≤ k < j′ we subtract (yk)

2/2 from yk. Since yk ≤ 2−i in
every such iteration, we know that (yk)

2/2 ≤ 2−(2i+1). Thus, yj′ ≥ yj − (j′ −
j) ∗ 2−(2i+1). Thus yj − yj′ ≤ (j′ − j) ∗ 2−(2i+1). But since yj′ ≤ 2−(i+2), and
yj ≥ 2−(i+1), we have 2−(i+2) ≤ yj − yj′ , and we get 2−(i+2) ≤ (j′ − j) ∗ 2−2i−1.
But then j′ − j ≥ 2i−1. Thus, if we are within i bits of precision to 1, it will
take 2i−1 iterations to gain 2 extra bits of precision. Thus, to gain k+ 2 bits of
precision, we will need at least 2k−1 iterations.

3. Consider again the RMC A′ of Figure 4. Suppose we increase the probability of
the edge from a to the first box-entry to c > 1/2, and we reduce the probability
of the edge from a to b to d < 1/2, so that again c + d = 1. Our equation S
for such a RMC becomes x = cx2 + d. Substituting (c+ d) for 1, note that the
roots of the polynomial cx2 − (c+ d)x+ d are given by:

(c+ d)+
−

√

(c+ d)2 − 4cd

2c
=

(c+ d)+
−

√

(c− d)2

2c
= 1 or d/c.

Since d/c < 1, the LFP solution is d/c. We can make d/c as small as we want
by choosing d close to 0 and c close to 1, while still (c+ d) = 1.

4. Consider the HMC, i.e., hierarchical RMC, A, (i.e., no cycles in the call graph),
which has m + 1 components A0, . . . , Am. Figure 5 depicts A0 and Ai, for
i > 0. Ai, i > 0, has two boxes, bi1 and bi2, both of which map to Ai−1. All
edge probabilities in Ai are 1. A0 has just two edges, each with probability
1/2, from the entry to two exits. It is easy to show by induction on i, that
q(eni,ex′

i)
= 1/(22i

), and q⋆
(eni,ex′′

i ) = 1 − (1/(22i
)). Note that |A| ∈ O(m).4

4The probability 1
22m can easily be obtained with a 1-exit HMC of size O(m), by a minor mod-
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Figure 5: Hierarchical RMC, with very high & low probabilities.

4 Upper bounds: RMCs and the Existential Theory of
Reals

We now show that the central reachability questions for general RMCs can be an-
swered by appealing to algorithms for deciding the Existential Theory of the Reals,
ExTh(R). A sentence in ExTh(R) is a prenex form sentence: ∃x1, . . . , xnR(x1, . . . , xn),
where R is a boolean combination of “atomic predicates” of the form fi(x)∆0,
where fi is a multivariate polynomial with rational coefficients over the variables
x = x1, . . . , xn, and ∆ is a comparison operator (=, 6=,≥,≤, <,>).

Beginning with Tarski, algorithms for deciding the First-Order Theory of Reals,
Th(R), and its existential fragment ExTh(R), have been deeply investigated. In the
current state of the art, it is known that ExTh(R) can be decided in PSPACE [Can88]
(see also [Ren92, BPR96, BPR03]). Furthermore it can be decided in exponential
time, where the exponent depends (linearly) only on the number of variables; thus for
a fixed number of variables the algorithm runs in polynomial time. More specifically,
the following is known.5

Theorem 7 ([Can88, Ren92, BPR96]) Let ϕ be an existential first-order sentence in
prenex form in ExTh(R), which uses m distinct polynomials fi in atomic predicates,

ification of the construction. However, we note without proof here that it is impossible to design a
1-exit RMC of size O(m) such that some probability q

∗

(u,ex) = 1− 1
22m . Thus, ≥ 2 exits are required

to get probabilities “exponentially close” (but not equal) to 1 with HMCs or RMCs.
5For simplicity, we assume in the statement of Theorem 7 that given truth values for the atomic

predicates, the truth of the boolean combination R can be evaluated in constant time. This assump-
tion does not have a significant effect on the running times we state, but serves only to simplify the
statement.
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over n variables x1, . . . , xn, each fi having degree ≤ d, and with all rational coefficients
in ϕ describable in at most L bits.
There is an algorithm that decides whether ϕ is true over the real numbers, and that
runs in PSPACE and in time: O( (L logL log logL) (md)O(n) ).

Suppose we want to decide whether a nonnegative rational vector c = [c1, . . . , cn]T

is LFP (P ). Consider the sentence: ϕ ≡ ∃x1, . . . , xn
∧n

i=1 Pi(x1, . . . , xn) = xi ∧
∧n

i=1 xi = ci. The sentence ϕ is true iff c = P (c). To guarantee that c = LFP(P ),
we additionally need to check: ψ ≡ ∃x1, . . . , xn

∧n
i=1 Pi(x1, . . . , xn) = xi ∧

∧n
i=1 0 ≤

xi ∧
∨n

i=1 xi < ci. ψ is false iff there is no solution z ∈ R
n
≥0 to x = P (x) such that

c 6� z. Hence, to decide whether c = LFP(P ), we only need two queries to a decision
procedure for ExTh(R). Namely, we check that ϕ is true, and hence c = P (c), and
we then check that ψ is false, and hence c = LFP(P ).

If we want to determine whether a particular probability q∗k is smaller than a given
rational number ck then we form the sentence ϕk ≡ ∃x1, . . . , xn

∧n
i=1 Pi(x1, . . . , xn) =

xi ∧
∧n

i=1 0 ≤ xi ∧ xk < ck. This sentence says that the system x = P (x) has a
nonnegative solution with the property that xk < ck. Clearly, this is the case if
and only if the LFP has this property. Similarly we can test if q∗k ≤ ck or not (i.e.
q∗k > ck).

Theorem 8 Given a RMC A and given a vector of rational probabilities c, there is
a PSPACE algorithm to decide whether LFP(P ) = c, as well as to decide whether
q∗

k ∆ck, for any comparison operator ∆. Moreover, the running time of the algorithm
is O(|A|O(n)) where n is the number of variables in the system x = P (x). Hence the
running time is polynomial if n is bounded.

ExTh(R) gives us a way to ask questions like: “Is there a solution to x = P (x) where
a ≤ xk ≤ b ?” for any rational numbers a and b, and if we wish, with either inequality
replaced by strict inequality. Since 0 � LFP(P ) � 1, we can use such queries in
a “binary search” to “narrow in” on the value of each coordinate of LFP(P ). Via
simple modifications of sentences like ϕk we can gain one extra bit of precision on the
exact value of q∗k with each extra query to ExTh(R). So, if we want j bits of precision
for each q∗k, k = 1, ...n, we need to make j · n queries. The sizes of the queries do
not vary by much: only with an additive factor of at most j bits, to account for the
constants a and b. This discussion yields:

Theorem 9 Given RMC A, and a number j in unary, there is an algorithm that
approximates the coordinates of LFP(P ) to within j bits of precision in PSPACE.
The running time is O(j · |A|O(n)), where n is the number of variables in x.
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5 “Lower” bounds: RMCs, the Square-Root Sum Prob-
lem, and arithmetic circuit decision problems

The last section showed that problems related to the termination probability of RMCs
can be decided in PSPACE. In this section we show that any substantial improvement
of those PSPACE upper bounds will have to overcome major obstacles. Namely, we
show that even approximating the termination probability of a given RMC to within
any nontrivial additive factor is at least as hard as a long standing open problem in the
complexity of exact numerical computation, the square-root sum problem (SQRT-SUM),
and an even more difficult (and fundamental) problem on arithmetic decision circuits.

Formally SQRT-SUM is the following problem: given natural numbers (d1, . . . , dn) ∈
N

n and another number k ∈ N, decide whether
∑n

i=1

√
di ≤ k. The PosSLP (positive

Straight-Line Program) decision problem asks whether a given a straight-line pro-
gram or, equivalently, arithmetic circuit with operations +,−, ∗, and inputs 0 and 1,
and a designated output gate, outputs a positive integer or not. In the introduction,
we gave some background on the significance and the current status of these prob-
lems. Recall that both problems can be solved in PSPACE, and their complexity was
recently lowered slightly to the 4th level of the Counting Hierarchy, an analog of the
polynomial-time hierarchy for counting classes like #P .

We will show in this section that these problem reduce to the qualitative and
quantitative termination problems for RMCs. First we will give a simple direct
reduction from the SQRT-SUM problem to the quantitative decision problem for 1-exit
RMC (equivalently, SCFG); we include this reduction since it is quite simple. We
then show that the SQRT-SUM and PosSLP problems are reducible to the problem of
distinguishing for a given 2-exit RMC between the case that the RMC terminates
with probability 1 and the case that it terminates with probability ≤ ǫ where ǫ is
any positive constant. This means that the qualitative termination problem (is the
termination probabiility 1), and the approximation with any nontrivial error < 1
for 2-exit RMCs are as hard as the SQRT-SUM and PosSLP problems. Finally, we
show that these problems reduce also to the quantitative decision problem for 1-exit
hierarchical RMCs. (As we will show later, the qualitative termination problem can
be solved in polynomial time for both, the class of 1-exit and the class of hierarchical
RMCs).

Let SCFG-DEC be the following decision problem: given a SCFGG (with rational
rule probabilities) and given a rational number p ∈ [0, 1], decide whether the language
generated by the SCFG has probability ≥ p (i.e., G produces a terminal string with
probability ≥ p). From Theorems 3 and 4, this problem is equivalent to the cor-
responding decision problems, denoted 1-EXIT-DEC (respectively, MT-BP-DEC) of
determining for a given 1-exit RMC (resp. MT-BP) and rational p, whether the
termination probability of the RMC starting at a given vertex (resp. the extinction
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probability of a given type in the MT-BP) is ≥ p.

Theorem 10 SQRT-SUM is P-time reducible to SCFG-DEC, 1-EXIT-DEC and MT-
BP-DEC.

Proof. It suffices to prove it for SCFG-DEC. Given (d1, . . . , dn) ∈ N
n and k ∈ N,

we construct an SCFG, G, as follows. Let m = max1≤i≤n di. Our SCFG G, will
have non-terminals {S, S1, . . . , Sn}, and a single terminal {z}. S is the start non-

terminal. The production rules associated with S are S
1/n−→ Si, for i = 1, . . . n. Let

ci = (1 − (di/m
2))/2.

There are two productions associated with each Si:

Si
1/2−→ SiSi

Si
ci−→ z

Note that 1/2 + ci need not necessarily sum to exactly 1. If desired, we can make
this a “proper” SCFG, where production probabilities out of each non-terminal sum to
1, by adding an extra production Si → A, with the residual probability 1− (1/2+ci),
such that A is a new “dead end” non-terminal, with only one production A → A,
having probability 1.

For a non-terminal N , let pN be the probability that N terminates. Using the
standard formula for roots of quadratic polynomials, we see that:

pS =
n

∑

i=1

(1/n)pSi
= (1/n)

n
∑

i=1

(1 −
√

(1 − 2ci))

= 1 − (1/n)
n

∑

i=1

√

(di/m2) = 1 − ( (1/(nm))
n

∑

i=1

√

di)

Thus,
∑n

i=1

√
di ≤ k if and only if pS ≥ (1 − k/(nm)).

We next show that the qualitative decision problem as well as any non-trivial
approximation of the termination probabilities for 2-exit RMCs, are both SQRT-SUM-
hard and PosSLP-hard. Specifically, let the Promised Gap Decision Problem, PGD(a,b),
be the following: Given an RMC, vertex u and exit ex, and rationals a < b, and the
promise that the termination probability q∗u,ex has the property that either q∗u,ex ≤ a
or q∗u,ex ≥ b, decide which of the two is the case.

Theorem 11 For every ǫ > 0, the SQRT-SUM and PosSLP problems are P-time
(many-one) reducible to the promised gap problem PGD(ǫ,1) for the termination prob-
ability of 2-exit RMCs.
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Proof. Here we prove PosSLP-hardness. It follows from [ABKPM06] that SQRT-SUM
is also (Turing) reducible to the PGD(ǫ,1) problem for RMCs. A direct reduction from
SQRT-SUM, which we omit due to space, shows that SQRT-SUM is many-one reducible
to PGD(ǫ,1) for RMCs.

We are given an arithmetic circuit C over basis {+,−, ∗} with fan-in 2 and with
inputs 0,1, and we want to determine whether the output of the circuit, denoted
val(C), is positive. First, we observe that in the PosSLP problem we can assume,
w.l.o.g., that the only use of a subtraction gate occurs at the topmost gate of the
arithmetic circuit. We can transform any arithmetic circuit over basis {+,−, ∗} to
this form by replacing each gate g of the original circuit with two gates g+ and g− for
the positive and negative parts, such that g = (g+−g−). Viewing the transformation
bottom-up, each addition gate gk := gi + gj in the original circuit can be replaced by
two gates: g+

k := g+
i +g+

j and g−k := g−i +g−j . Likewise, a subtraction gate gk := gi−gj

can be replaced by g+
k := g+

i + g−j and g−k := g−i + g+
j . Finally, a multiplication gate

gk := gi ∗ gk can be replaced by g+
k := g+

i ∗ g+
j + g−i ∗ g−j and g−k := g+

i ∗ g−j + g−i ∗ g+
j

(note that we need two multiplication gates and one addition gate for each of these).
Clearly, the transformation only blows up the circuit linearly. For the output gate,
gout, we can add a subtraction gate gout := g+

out − g−out, thus computing the same
output as the original circuit.

Thus, the PosSLP problem is equivalent to the following problem: given two
monotone arithmetic circuits (SLPs), S1 and S2, over {+, ∗} with inputs 0 or 1,
determine whether val(S1) > val(S2), where val(S1), val(S2) are the output values
computed by the two circuits.

We shall define two 2-exit RMCs, A1 and A2, such that the probability of ter-
minating at exit 1 of Ai is val(Si)/M and the probability of terminating at exit 2
is (1 − (val(Si)/M)), where M is sufficiently large such that these define legitimate
probabilities.

We first need a normal form for the arithmetic circuits. We can assume, wlog,
that the circuits Si have the following normal form:

1. the depth of both circuits Si is the same number, say k. We can do this by
inserting dummy gates, which may have only 1 incoming edge.

2. The circuits are “leveled”, and they alternate between a + level and ∗ level.
We can again do this by inserting dummy gates.

3. We can assume furthermore that each gate has actually two incoming edges
(both incoming edges can be from the same gate at the lower level). For the
+ gates, we do this by carrying to the i’th level a gate zeroi, whose value is
0, and adding a second incoming edge from zeroi to any +-gate at level i+ 1
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that had only 1 incoming edge before. (Note that zeroi itself can be built with
alternating levels of + and ∗ gates starting from the 0 input.) For the ∗ gates,
we do this by carrying to the i’th level a gate onei, whose value is 1, and adding
a second incoming edge from onei to any ∗-gate at level i+1 that had only one
incoming edge before. We can easily build onei itself using alternating + and
∗ gates starting from 1 input and using the zeroi gates.

Given circuits S1 and S2 in this normal form, we will construct corresponding RMCs
A1, A2. Each RMC contains one component Bi for every gate gi of the corresponding
circuit; every component has one entry and two exits.

We proceed bottom up in each circuit, as follows. For each + gate of the form
gi = gj +gk, we include a component Bi in the RMC, whose entry has a 1/2 transition
to a box labeled by component Bj and a 1/2 transition to a box labeled by component
Bk. From return port 1 of both the boxes labeled Bj and Bk, we go with probability
1 to the first exit of component Bi, and from the second return port of Bj and Bk

we go with probability 1 to the second exit of Bi. For each ∗-gate gi = gj ∗ gk, we
include a component Bi in the RMC: whose entry transitions with probability 1 to a
sequence of two boxes labeled by Bj and Bk. From return port 1 of the box labeled
by Bj we go to the call port of box Bk with probability 1. From the second return
port of box Bj we go to the second exit of Bi with probability 1. From the first return
port of box Bk we go to the first exit of Bi with probability 1; from the second return
port of box Bk we go to the second exit of Bi with probability 1.

Let gm be a gate at level r. It is easy to prove by induction that the probability,
starting at the entry of Bm, of termination at exit 1 of Bm is val(gm)/Mr, and the
probability of termination at exit 2 is 1 − (val(gm))/Mr) where Mr = 2ar and the
exponent ar is defined by the recurrence ar = 2ar−1 if level r ≥ 1 consists of ∗ gates,
ar = ar−1 + 1 if level r ≥ 1 consists of + gates, with a0 = 0 (corresponding to the
inputs considered as being at level 0). Thus, if we assume wlog that odd levels of
the circuits consist of ∗ gates and even levels of + gates, then a2i−1 = 2i − 2 and
a2i = 2i − 1 for all i ≥ 1.

Let Bm1 and Bm2 be the components associated with the output gates of S1 and
S2, respectively. We will use the components Bm1 , Bm2 to construct a new compo-
nent A with one entry and one exit, such that the termination probability of A is 1
if val(S2) ≥ val(S1) and otherwise (i.e., if val(S1) > val(S2)) its termination proba-
bility is ≤ (M − 1)/M < 1, where M = Mk = 2ak is the denominator corresponding
to the common depth k of the circuits S1 and S2. The component A is based on
the RMC of part 3 of Theorem 6, i.e., the RMC depicted in Figure 4, where the
transitions from the entry node have probabilities c and d instead of 1/2. Our com-
ponent A here has one entry, one exit, and four boxes b1, b2, b3, b4. Boxes b3, b4 are
both labeled by A and are connected sequentially in the same way as the two boxes
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labeled f in Figure 4: there is a probability 1 transition from the return port of b3 to
the call port of b4 and a probability 1 edge from the return port of b4 to the exit of A.
The two boxes b1 and b2 are labeled by Bm1 and Bm2 , respectively. From the entry
of A there is 1/2 probability transition to the call ports of both b1 and b2. There are
probability 1 edges from return port 1 of b1 and return port 2 of b2 to the call port of
box b3, and probability 1 edges from the other return ports of b1 and b2, i.e., return
port 2 of b1 and return 1 of b2, to the exit of A. The component A starting from the
entry node, will transition to one of the boxes b1, b2 and after that box returns, it will
either transition to the call port of b3, or to the exit; let c be the probability of the
first event and d = 1− c the probability of the second. Then c is 1/2 times the prob-
ability that Bm1 terminates at exit 1 and the probability that Bm2 terminates at exit
2, thus, c = 1/2[(val(S1)/M) + 1 − (val(S2))/M)] = 1/2 + (val(S1) − val(S2))/2M .
The probability d = 1 − c is d = 1/2 − (val(S1) − val(S2))/2M . Thus, A is in effect
equivalent to the RMC analyzed in part 3 of Theorem 6 with the above values c, d for
the transition probabilities of the entry node. From that analysis we know that the
termination probability of A is 1 if c ≤ 1/2, and d/c if c > 1/2. Thus, the termination

probability of A is 1 if val(S1) ≤ val(S2), and it is M−val(S1)+val(S2)
M−val(S2)+val(S1) ≤ M−1

M < 1 if

val(S1) > val(S2).
We will now use the component A in order to construct another RMC. From part

4 of Theorem 6, we know how to construct a (hierarchical) RMC, C, with n levels
such that the top component of C has two exits, and the termination probability
at exit 1 is b = 1/22n

, and at exit 2 it is 1 − b. Construct an RMC G whose top
component contains an A box and a C box. We take n associated with the C box
to be much larger than the depth k of the circuits, specifically, n = c ∗ k, for some
constant c, such that b = 1/22n

< ǫ/M ; since M < 22k
it suffices to take for example

c ≥ log log(1/ǫ). The entry of G goes to the entry of the C box with probability 1.
Exit 1 of the C box goes to the exit of the G component, and exit 2 goes to the entry
of the A box. The exit of the A box goes back to the entry of the C box. Let z be
the probability of termination for G. If the termination probability of A is 1, then
z = 1. If it is 1 − a, then z satisfies: z = b + (1 − b)(1 − a)z. So z(a + b − ab) = b.
Therefore z ≤ b/a < ǫ, because a ≥ 1/M .

We now show hardness of the decision problem for hierarchical 1-exit RMCs.

Theorem 12 The PosSLP problem (SQRT-SUM problem) is P-time many-one (Tur-
ing, respectively) reducible to the decision problem for hierarchical 1-exit RMCs, i.e.
determining whether the termination probability is greater than p for a given rational
p ∈ (0, 1).

Proof. Since SQRT-SUM is P-time Turing reducible to PosSLP ([ABKPM06]), it
suffices to provide the claimed reduction from PosSLP. As in the proof of the previous
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theorem, given a circuit C over basis {+,−, ∗} with inputs 0,1, we first construct two
circuits S1, S2 over {+, ∗} such that val(C) = val(S1) − val(S2), and furthermore
the circuits S1, S2 have the same depth and are in the same normal form: each level
has gates of the same type (∗ or +) with inputs from the immediately previous level,
and the levels alternate. Let c be any positive rational constant < 1, for example
c = 1/2. We will construct a hierarchical RMC which contains two components Bi,
B′

i for each gate gi of the circuits S1, S2, each component has one entry and one exit,
and the termination probability of (the entry node of) Bi is pi = αrval(gi), where
αr depends on the depth r of the gate gi, and the termination probability of B′

i is
p′i = c− pi. Then we will add one more component on top of these to get the result.

We perform the construction bottom-up in the circuits. To begin with, we consider
the inputs 1 and 0 as being ‘gates’ g−1 and g0 at level 0, let α0 = c, and construct
trivial components B0 = B′

−1 with termination probability 0, and B′
0 = B−1 with

termination probability c. Consider a level r ≥ 1 consisting of + gates, and define
αr = αr−1/2. For an addition gate gi = gj+gk at level r we include a component Bi in
the RMC, whose entry has a probability 1/2 transition to a box labeled by component
Bj and a 1/2 transition to a box labeled by component Bk; the return ports of
both boxes have probability 1 transitions to the exit of Bi. Clearly the termination
probability of Bi is pi = (pj+pk)/2 = αr−1(val(g(j)+g(k))/2 = αrval(gi). We include
also a component B′

i which is similar to Bi except that its two boxes are mapped to
B′

j and B′
k. Its termination probability is p′i = (p′j+p

′
k)/2 = (c−pj+c−pk)/2 = c−pi.

Consider a level r consisting of ∗ gates, and let gi = gj ∗ gk be a gate at level
r. Let ρ = (1 − c)/(2 − c2); note that 0 < ρ < 1/2. Define αr = ρ(αr−1)

2. The
component Bi corrsponding to the gate gi has two boxes b1, b2 that are labeled Bj ,
Bk and are connected in series . The entry of Bi transitions with probability ρ to
the call port of b1 and with the remaining probability 1− ρ to a dead state. There is
a probability 1 transition from the return port of b1 to the call port of b2 and from
the return port of b2 to the exit of Bi. The termination probability of Bi is clearly
pi = ρpjpk = ραr−1val(gj)αr−1val(gk) = αrval(gi).

The component B′
i for the ∗ gate is a little more complex. It has four boxes

b1, b
′
1, b2, b

′
2 mapped respectively to Bj , B

′
j , Bk, B

′
k. The entry of B′

i has transitions
with probability ρ to the call ports of b′1 and b′2 and a transition with the remaining
probability 1 − 2ρ to the exit of the component. The return port of b′1 transitions
with probability 1/2 to the call port of box b2, with probability c/2 to the exit and
with the remaining probability (1 − c)/2 to a dead state. The return port of box b′2
has the symmetric transitions: probability 1/2 to the call port of b1, probability c/2
to the exit and (1− c)/2 to the dead state. The return ports of both boxes b1, b2 have
probability 1 transitions to the exit. We can calculate the termination probability p′i
of the entry node of B′

i. It is p′i = ρ(c− pj)(pk + c)/2 + ρ(c− pk)(pj + c)/2 + (1− 2ρ)
= ρc2 − ρpjpk + 1 − 2ρ. Since ρ(c2 − 2) = c− 1, we have p′i = c− ρpjpk = c− pi.
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Let gm1 and gm2 be the output gates of S1 and S2, respectively, both at the
same depth k. We add a top component C to our hierarchical Markov chain. The
component C has two boxes b1, b2, mapped respectively to the components Bm1 and
B′

m2
. The entry of C has probability 1/2 transitions to the call ports of the two boxes,

and the return ports of both boxes have probability 1 transitions to the exit of C.
The termination probability of C is pC = 1/2(pm1 +c−pm2) = c/2+(αk/2)(val(S1)−
val(S2)). Thus, pC > c/2 iff val(S1) > val(S2).

6 Numerical algorithms: RMCs and Newton’s method

This section approaches efficient numerical computation of LFP(P ), by studying how
a classical numerical solution-finding method performs on the systems x = P (x).
Newton’s method is an iterative method that begins with an initial guess of a solution,
and repeatedly “revises” it in an attempt to approach an actual solution. In general,
the method may not converge to a solution, but when it does, it is typically fast. For
example, for the bad RMC of Theorem 6, part 2, (see Figure 4) where the standard
iterative algorithm, P k(0), k → ∞, converges exponentially slowly, requiring roughly
2i iterations to gain i bits of precision, one can easily show that Newton’s method
converges exponentially faster, gaining one bit of precision per iteration (we will
make this observation more precise later). Recall that, given a univariate polynomial
f(x) (or more generally, a univariate differentiable function), and an initial guess
x0 for a root of f(x), Newton’s method computes the sequence x0, x1, . . . , xk, where

xk+1 := xk − f(xk)
f ′(xk) . There is a natural n-dimensional version of Newton’s method

(see, e.g, [SB93] and [OR70]). Given a suitably differentiable map F : R
n 7→ R

n,
we wish to find a solution to the system F (x) = 0. Starting at some x0 ∈ R

n,
the method works by iterating xk+1 := xk − (F ′(xk))

−1F (xk), where F ′(x) is the
Jacobian matrix of partial derivatives, given by

F ′(x) =







∂F1
∂x1

. . . ∂F1
∂xn

...
...
...

∂Fn

∂x1
. . . ∂Fn

∂xn







In other words, for each c ∈ R
n, F ′(c) is a real-valued matrix whose (i, j) entry

is the polynomial ∂Fi

∂xj
evaluated at c. For the method to be defined, F ′(xk) must

be invertible at each point xk in the sequence. Even when the xk’s are defined
and a solution exists, Newton’s method need not converge, and diverges even for
some univariate polynomials of degree 3. We already know one convergent iterative
algorithm for computing LFP(P ). Namely, computing the sequence xj = P j(0),
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j → ∞. Unfortunately, we saw in Thm. 6 that this algorithm can be very slow. The
question arises whether Newton’s method, applied to F (x) = P (x)−x, can guarantee
convergence to LFP(P ), and do so faster. That is essentially what we establish in this
section, after some preprocessing and using a suitable decomposition of the system.

We first preprocess the system (in polynomial time in its size, by Theorem 2) to
remove all variables x(u,ex) where q∗

(u,ex) = 0. Then we form a graph G whose nodes

are the remaining variables xi and the constant 1, and whose edges are (xi, xj) if xj

appears in Pi(x), and edge (xi, 1) if Pi(x) ≡ 1. We call G the dependency graph of the
RMC A and the system SA. We decompose the graph (and the system) into strongly
connected components (SCCs) and apply Newton’s method separately on each SCC
bottom-up, as shown in Fig.6. Namely, let C1, . . . , Cm be the strongly connected
components of G, and let H be the DAG whose nodes are the SCCs and whose edges
are (Ci, Cj), i 6= j, iff there is an edge in G from some vertex in Ci to some vertex in
Cj . Assume C1, . . . , Cm are topologically sorted, so an edge (Cj , Ck) implies k > j.
Note that the only scc with no outgoing edges is the scc that consists of the constant
node 1, because we have eliminated all the variables that have value 0: if there was
another scc with no outgoing edges, then all the variables in it will have value 0 in
the least fixed point. We can obtain, a sequence of systems 〈S1

A, . . . , S
m
A 〉 from these

SCCs as follows: If we fix an assignment of values to variables in each Ck, k > j, then
Cj can be seen as a system of equations Sj

A involving only the variables in Cj . Each

such system has a LFP, which we write as LFP(Sj
A). This corresponds to a “piece”

of the overall solution, i.e., there is an easy 1-1 correspondence between the combined
variables of Sj

A, j = 1, . . . ,m, and the coordinates of x = P (x). The algorithm in
Fig.6 specifies how we process SCCs and apply Newton’s method to the decomposed
system. In Fig.6 we have not specified explicitly how many iterations are performed.
For concreteness in the following theorem, suppose that we perform k iterations for
every SCC. Let xk be the resulting tuple of values.

Theorem 13 Given an RMC with associated system of equations, x = P (x), in the
Decomposed Newton’s Method of Fig. 6, the sequence xk, k → ∞, monotonically
converges to q∗. Moreover, for all k ≥ 0, xk � P k(0).

For convenience, we will often avoid boldface and use x for x. Likewise, when it
is clear vectors are involved, we write x ≤ y instead of x � y.
Proof. We will show by bottom-up induction on the SCCs that the algorithm
is well-defined (i.e. does no attempt to invert a singular matrix) and the vector xk

computed by performing k iterations on each SCC lies between P k(0) and q∗. This
implies then that xk → q∗ as k → ∞ since P k(0) → q∗ .

Clearly the above statement is true at the beginning after we eliminate (assign 0
to) all variables xi with q∗i = 0 and we process the bottom SCC with the singleton 1.
Suppose that we are now processing SCC Cj after having processed all the successor
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1. Preprocess x = P (x), eliminating all variables xi where q∗i = 0;

2. Construct the DAG of SCCs, H, based on the remaining system of equations.

3. While (there is a sink SCC, C, remaining in the DAG H)

(a) If C is the trivial SCC, C = {1}, then assign value 1 to the node in C.
Else, run Newton’s method, starting at 0, on the equations for the set
of variables in C, where these equations are augmented by the values of
previously computed variables.

i. Stop if a fixed point is reached and assign the variables in C the values
of the fixed point.

ii. Stop after a specified number of iterations, k, or if the solutions for
C are considered “good enough”. Assign these final values to the
variables in C and substitute these values for those variables in all
remaining equations.

(b) remove C from the DAG.

Figure 6: Decomposed Newton’s method

SCCs. If Cj is a trivial SCC, i.e. it contains a single node xi and no edges, which
means that xi depends only on variables in lower SCCs, then the statement follows
trivially from the induction hypothesis. Suppose that Cj is nontrivial, that is, the

corresponding system of equations Sj
A is recursive. Since Sj

A is obtained from the
corresponding equations in the original system SA by substituting in the right hand
side (rhs) the values obtained for the variables in lower SCCs, and these values are
less than or equal to the corresponding values in q∗ = LFP(SA), it follows that Sj

A

has a least fixpoint LFP(Sj
A) and it is less than or equal the projection of q∗ on the

variables in Cj. On the other hand, if we start with the 0 vector for the variables

in Cj and apply to it, k times, the operator on the right hand side of Sj
A , then the

vector xk that we will obtain is greater than or equal to the projection of P k(0) on
these variables, because by induction hypothesis the values that we substituted for
the variables in lower SCCs have this property. We are going to show that when
we perform k iterations of Newton’s method on the system Sj

A, we do not encounter

a singular matrix, and the computed vector lies between xk and LFP(Sj
A), which

implies the statement for the induction step. In fact we will show in particular that
if Sj

A is linear, then one iteration of Newton yields LFP(Sj
A), and if Sj

A is nonlinear
(i.e. the rhs of some equation contains a nonlinear term) then the computed vector
is strictly smaller than LFP(Sj

A) in all coordinates.
Thus, for the rest of the proof we will restrict attention to one SCCCj , after having

processed the lower SCCs. To simplify notation and avoid too many subscripts, we
we will still use x = P (x) to denote the system Sj

A of the current SCC Cj, use q∗

to denote its least fixpoint LFP(Sj
A), use xk to denote the vector obtained after k
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iterations of Newton on Sj
A, and xi = P i(0) to denote the vector obtained after i

iterations of the rhs operator P of the system Sj
A on the 0 vector.

For F (x) = P (x) − x, the Newton iterates are defined by:

xk+1 = xk − (F ′(xk))
−1F (xk)

= xk + (−F ′(xk))
−1(P (xk) − xk)

We have to show several things. First, we have to show the sequence x0, x1, . . . is
well defined. In other words, we have to show that the inverse matrix (−F ′(xk))

−1

exists for each xk. We can break things into two cases: In the first case the system
Sj

A for the SCC Cj being solved is a linear system; for example this is the case if
all the vertices of the SCC are of type rand and thus correspond to an ordinary
finite Markov chain, but the system Sj

A for a SCC may be linear even if there are
some Typecall variable because some of the variables on the right hand side of their
equations belong to lower SCCs and thus we have substituted their values. In any
case, if Sj

A is a linear system then −F ′(x0) = −F ′(x1) = . . . is a constant matrix
I − B, where B is the matrix of coefficients on the rhs. It will turn out in this case
that (I −B) is invertible and that x1 = q∗.

In the second case, the system Sj
A contains at least one nonlinear term. In this case

we will show that x0 ≤ x1 ≤ . . ., that xk < q∗ (i.e., strictly less in every coordinate)
and that (−F ′(xk))

−1 exists for all k ≥ 0, and limk→∞ xk = q∗.
We will see that the Newton iterates grow at least as fast as the iterates in the

standard LFP algorithm.
Let us now consider F ′(x) in more detail. Recall that the (i, j) entry of the

Jacobian matrix F ′ is ai,j = ∂Fi

∂xj
. Depending on the type (1, rand or call) of the

equation xi = Pi(x) from Sj
A, we have the following cases:

• Type1. This cannot happen for a nontrivial SCC, because in this case the SCC
would contain just a single node xi with an edge to the 1 node.

• Typerand. For i 6= j, then ai,j = pi,j, where pi,j is the coefficient of xj in Pi (pi,j

could be 0). ai,i = (pi,i − 1), where pi,i is the coefficient of xi in Pi. Note that
the equation for xi in the original system SA may contain some variables that
belong to lower SCCs, and which are replaced by constants in Sj

A.

• Typecall. Then Pi(x) has the form Pi(x) =
∑

k=1,...,l xik∗xjk
+

∑

k=l+1,...,m pi,jk
xjk

+
c. In the original system SA the rhs of the equation is a sum of binomials; how-
ever some of the variables may belong to lower SCCs, hence when we substitute
their computed values we may obtain some linear terms and a constant term.

In this case ai,i = −1, since we can assume that xi itself does not appear in Pi

for equations of type call. This is because a call port can be assumed to never
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be a component entry, and also never a return port. For i 6= j, ai,j is either
xik , if j = jk, for some k ≤ l, or is xjk

if j = ik for some k ≤ l, or a number
pi,jk

∈ [0, 1] if j = jk for some k ≤ l, and is otherwise 0.

Thus, we note that F ′(x) has a particular form. Namely:

F ′(x) = B(x) − I

where I is the identity matrix, and the matrix B(x) is a non-negative matrix whose
(i, j) entry bi,j is either a probability pi,j which is the coefficient of xj in the polynomial
Pi or else is xr, for some index r .

For x ≥ 0, −F ′(x) = I −B(x), where B(x) is a non-negative matrix. We use the
following fact from matrix analysis (see, e.g., [LT85], page 531):

Theorem 14 (see [LT85]) Let B ∈ Rn×n with B ≥ 0. The matrix I−B is invertible
(non-singular) and (I −B)−1 ≥ 0 if and only if ρ(B) < 1, where ρ(B) is the spectral
radius of B. If this is the case then,

(I −B)−1 = (I +B +B2 + . . .)

We will show that the spectral radius of B(x) is less than 1 for any vector x
such that x < q∗ (i.e., strictly less in all coordinates). It will follow that for such x,
(I − B(x))−1 =

∑∞
i=0(B(x))i exists (i.e., is finite) and is non-negative. First, some

key lemmas.

Lemma 15 For 0 ≤ x ≤ y,

1.
B(x)(y − x) ≤ P (y) − P (x) ≤ B(y)(y − x) (1)

2. Moreover, if Sj
A is a linear system, then B(x) = B(y), and thus B(x)(y − x) =

P (y) − P (x) = B(y)(y − x)

3. If we let q∗ denote LFP(Sj
A), then B(xi)(q∗ − xi) ≤ (q∗ − xi+1), for all i =

1, 2, . . ., where xi = P i(0)

4. And, also (q∗ − xi+1) ≤ B(q∗)(q∗ − xi), where again xi = P i(0).

5.
F ′(x)(y − x) ≤ F (y) − F (x) ≤ F ′(y)(y − x) (2)
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Proof. We only need to prove (1.), since (2.), (3.), (4.), and (5.) follow directly
from (1.). In particular, for (2.) note that in that case B(x) is a constant matrix, and
thus B(x) = B(y). For (3.) and (4.), take y = q∗ and x = xi. Lastly, for (5.), note
that F ′(x) = (B(x)− I), and F (y)−F (x) = (P (y)−P (x))− (y−x). By subtracting
(y − x) from each part of the inequality (1), we obtain the inequality (2).

Now we prove (1.). To show B(x)(y − x) ≤ P (y) − P (x), consider a variable
xi and the corresponding entry of B(x)(y − x). There are two non-trivial cases to
consider, based on the kind of the equation of xi:
Case 1: Pi(x) is linear. Then
[B(x)(y − x)]i =

∑

j pi,j(yj − xj) =
∑

j pi,jyj −
∑

j pi,jxj = Pi(y) − Pi(x).
Note that equality holds in this case, establishing (2).
Case 2: Pi(x) is nonlinear. Then

[B(x)(y − x)]i =

l
∑

k=1

[xik(y − x)jk
+ xjk

(y − x)ik ] +

m
∑

k=l+1

pijk
(y − x)jk

The expression in the brackets is

≤ yik(y − x)jk
+ xjk

(y − x)ik
= yikyjk

− xikxjk

Thus,

[B(x)(y − x)]i ≤
l

∑

k=1

yikyjk
−

l
∑

k=1

xikxjk
+

m
∑

k=l+1

pijk
yjk

−
m

∑

k=l+1

pijk
xjk

= Pi(y) − Pi(x)

The proof that P (y) − P (x) ≤ B(y)(y − x) is identical: it is the “mirror image”
of this proof and is left to the reader.

Lemma 16 Assume 0 ≤ x ≤ y, and x ≤ P (x). Then

1. (B(x))d(y − x) ≤ P d(y) − P d(x).

2. If, Sj
A is a linear system, then B(x)d(y − x) = P d(y) − P d(x).

3. If Sj
A is nonlinear, and x < q∗ = LFP (Sj

A) (in every coordinate), then for each
variable index s, there is some ds ≥ 1, such that
(B(x)ds(P (x) − x))s < (P ds+1(x) − P ds(x))s.

40



Proof.

1. By induction on d using Lemma 15.

Base case, d = 1: B(x)(y − x) ≤ P (y) − P (x).

Inductively, assuming B(x)d(y − x) ≤ P d(y)− P d(x), then since x ≤ P (x) and
P (x) is monotone, x ≤ P d(x) for all d ≥ 1. Thus, since each entry of B(x) is
non-negative and non-decreasing as a function of x ≥ 0, we have 0 ≤ B(x) ≤
B(P d(x)). Thus, by Lemma 15,
(B(x))d+1(y − x) ≤ B(P d(x))(B(x))d(y − x) ≤ B(P d(x))(P d(y) − P d(x)) ≤
(P d+1(y) − P d+1(x)).

2. Noting that in this case B(x) is a constant matrix, independent of x, use part
(2.) of Lemma 15, and part (1.) of this Lemma.

3. Suppose there is at least one nonlinear term in some equation. This means that
B(x) depends non-trivially on some coordinate xr of x. Suppose, moreover,
that x < q∗.

Since we are dealing with a system Sj
A for a strongly connected component Cj ,

the underlying weighted directed graph defined by the matrix B(x) is strongly
connected (it is equal to Cj), and it is thus easy to show that for each variable
index s there exists some power 1 ≤ d′s ≤ n, such that the sth row of Bd′s

has in some column a term that contains the variable xr. In other words,
there is some column index l, such that for any vector x′ ≥ x, where x′r > xr,
(Bd′s(x))s,l < (Bd′s(x′)s,l.

Now, since 0 ≤ x < q∗, the sequence Pm(x),m = 1, 2, . . . converges to the
LFP q∗. Thus, there exists some m such that Pm(x) > x in every coordinate.
Moreover, for all such m, and for each index l, there exists ml > m, such
that (Pml+1(x) − Pml(x))l > 0. To see this note that, since we have a non-
trivial SCC which means that every variable depends on some other variable,
and since q∗ > x, it follows by induction, that q∗ > Pm(x) for all m. Thus
since limm→∞ Pm(x) = q∗, it must also be the case that for some ml > m,
Pml+1(x)l > Pml(x)l.

Now, let ds = d′s +ml.

Bds(x)(P (x) − x) = Bd′s(x)Bml(x)(P (x) − x)

≤ Bd′s(x)(Pml+1(x) − Pml(x))

≤⋆ Bd′s(Pml(x))(Pml+1(x) − Pml(x))

≤ P ds+1(x) − P ds(x)
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Note, moreover, that Bd′s(x)s,l < Bd′s(Pml(x))s,l and (Pml+1(x) − Pml(x)))l >
0. Thus the second inequality, ≤⋆, is strict in component s. Therefore, (Bds(P (x)−
x))s < (P ds+1(x) − P ds(x))s.

Lemma 17 If x < LFP(Sj
A), then ρ(B(x)) < 1.

Proof. By standard facts about matrices ([LT85, HJ85]) ρ(B(x)) < 1 if and only
if limd→∞(B(x))d = 0, (i.e., each coordinate of the matrix (B(x))d converges to 0 in
the limit, as d→ ∞).

Let x0, x1, ... be the sequence of value vectors generated in the standard iterative
LFP algorithm, i.e., xi = P i(0). Having reduced our equations to one SCC, Sj

A, it
is easily shown that the vector xi = P i(0) is never equal to q∗ in any coordinate, for
any i > 0. (This is because for any xi, each coordinate has at least one “neighbor”
that influences its probability which also hasn’t reached its value in q∗.)

Thus (q∗ − xi) > 0. Now, by Lemma 16, part (1.), letting y = q∗, we have:
Bd(xi)(q∗ − xi) ≤ (q∗ − xi+d). The right hand side goes to 0 as d → ∞ since by
Theorem 5 limd→∞ xi+d = q∗. However, (q∗ − xi) > 0. Thus limd→∞Bd(xi) = 0.

Furthermore, note that since xi converges monotonically to q∗ as i increases, for
any x which is less than q∗ in every coordinate, there is some i such that x ≤ xi, and
thus B(x) ≤ B(xi). Hence limd→∞Bd(x) = 0. Therefore ρ(B(x)) < 1.

Thus, (−F ′(xk))
−1 = (I−B(xk))

−1 exists as long as xk < q∗, and if so, (−F ′(xk))
−1 =

(I+B(xk)+B(xk)
2 + . . .). Thus note again that, (−F (xk))

−1 is always nonnegative.
Thus, the Newton iterates become, x0 = 0, and:

xk+1 = xk + (I +B(xk) +B(xk)
2 + . . .)(P (xk) − xk) (3)

We know that B(xk) ≥ 0. To establish that xk+1 ≥ xk, we want to show that
(P (xk) − xk) ≥ 0.

Lemma 18 If xk < q∗ is the k’th Newton iterate for an SCC, Sj
A, then P (xk) ≥ xk.

Proof. We prove by induction on k. For k = 0, we have x0 = 0, and P (x0) ≥ x0.
Note that, because we have a nontrivial SCC which is not a bottom SCC, x0 < q∗.

Inductively, suppose P (xk−1) ≥ xk−1, and xk−1 < q∗. We have
xk = xk−1 + (I −B(xk−1))

−1(P (xk−1) − xk−1). Thus

xk − xk−1 = (I −B(xk−1))
−1(P (xk−1) − xk−1)
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Note that, by inductive assumption and Lemma 17, the right hand side is well-defined
and nonnegative, and thus xk ≥ xk−1. Using Lemma 15 part (5.), we have:

(P (xk) − xk) − (P (xk−1) − xk−1) = F (xk) − F (xk−1)

≥ F ′(xk−1)(xk − xk−1)

= (B(xk−1) − I)(xk − xk−1)

= (B(xk−1) − I)(I −B(xk−1))
−1(P (xk−1) − xk−1)

= −(P (xk−1) − xk−1)

Adding (P (xk−1) − xk−1) to each side of the inequality, we get (P (xk) − xk) ≥ 0.

What remains to show is that, for all k, xk ≤ q∗, and, unless xk = q∗, xk < q∗.
Note that xk+1 = xk + (I +B(xk) +B(xk)

2 + . . .)(P (xk)− xk). Since B(xk) ≥ 0,
and (P (xk)−xk) ≥ 0, we have an absolutely convergent series and by standard facts
about infinite series we can rewrite this safely as:

xk+1 = xk +

∞
∑

d=0

(B(xk))
d(P (xk) − xk)

Now, using Lemma 16 part (1.), we have

xk+1 = xk +

∞
∑

d=0

(B(xk))
d(P (xk) − xk)

≤ xk +

∞
∑

d=0

(P d+1(xk) − P d(xk))

= lim
m→∞

[xk +
m

∑

d=0

(P d+1(xk) − P d(xk))]

= lim
m→∞

Pm+1(xk) = q∗

Thus xk+1 ≤ q∗. Note also that xk+1 ≥ P (xk), by using only the first term,
I(P (xk) − xk), in the sum Σ∞

d=0(B(xk))
d(P (xk) − xk). The other terms are non-

negative. Thus, by induction, we have:

Lemma 19 For all k ≥ 0, xk+1 ≤ P (xk) ≤ xk+1 ≤ q∗.

Thus, x0 ≤ x1 ≤ . . ., converges monotonically to q∗, as long as every iteration is
defined, and the (k + 1)’st iteration is defined as long as xk < q∗.

We now show that either x0 = 0 = q∗, or x1 = q∗, or else xk < q∗ for k ≥ 0, i.e.,
strictly less in every coordinate, in which case, we have already seen that (−F (xk))

−1

always exists, and thus the iterates are defined.
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There are basically two cases to consider: either the system is linear and B(x) is
a constant matrix, or, the system is nonlinear and B(x) contains some variable.

We will show that in the first case, one iteration of Newton’s method is sufficient
to reach q∗. This follows because, by Lemma 15 part (2.), in the case where the
system is linear, we have B(x)(y − x) = P (y) − P (x). Thus

x1 = x0 + Σ∞
d=0(B(x0))

d(P (x0) − x0)

= x0 + Σ∞
d=0(P

d+1(x0) − P d(x0))

= lim
m→∞

Pm(x0)

= q∗

Note in particular that this is the case with finite Markov chains: one iteration of
Newton’s method is enough to converge to the solution. This corresponds to the
known fact that the solution for a Markov chain can be found by solving a linear
system. Observe that by partitioning the system into SCCs, we have insured that
the linear system can be solved by a matrix inversion for each component.

Next, let us consider the case where B(x) is not constant. We have to show that
xk < q∗ for all k.

Lemma 20 If B(x) is not a constant matrix, and 0 < q∗, then xk < q∗ for all k ≥ 0.

Proof. This follows by combining Lemma 16 together with the sum formula
xk+1 = xk +

∑∞
d=0(B(xk))

d(P (xk)−xk). In particular, if xk < q∗, then by Lemma 16
and the sum formula, xk+1 = xk+

∑∞
d=0(B(xk))

d(P (xk)−xk) < xk+
∑∞

d=0 P
d+1(xk)−

P d(xk) = q∗

The reason for the strict inequality is that, by Lemma 16, part (3.), for each
variable index s, there is a power ds such that (B(xk)

ds(P (xk)−xk))s < (P ds+1(xk)−
P ds(xk))s. Since this is so for every index s, i.e., in every coordinate, we see that
xk+1 < q∗

We are done with the proof of Theorem 13, and have established the monotone
convergence of the decomposed Newton’s method for computing LFP(P ).

From our proof it actually follows that Newton’s method in general constitutes a
rapid “acceleration” of the standard iteration, P k(0), k → ∞. More specifically, by
equation 3, xk+1 = xk + (

∑∞
i=0B(xk)

i)(P (xk) − xk). Now, B(xk) is a non-negative
matrix, and (P (xk) − xk) is a non-negative vector. If we replace (

∑∞
i=0B(xk)

i) by
only the first term of the infinite series, i.e., by the identity matrix, then the right
hand side becomes P (xk), i.e., we get standard iteration. Thus xk+1 � P (xk), and
when B(xk) is “large”, xk+1 will potentially be much larger than P (xk).
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In particular, for finite Markov chains, which generate linear systems, and where
B(x) is a constant matrix, note that the decomposed Newton’s method converges in
one Newton iteration to LFP(P ). This is certainly not the case for finite MCs with
standard iteration P k(0), where as long as there are cycles in the finite MC it will
only converge in the limit.

Also, observe that for the RMC A′ in Figure 4, for which we showed in Theorem
6, part 2, that P k(0) converges “exponentially slowly”, Newton’s method converges
linearly: namely, for (1/2)x2 −x+ 1/2 = 0, Newton’s method is the iteration xk+1 =
(1/2) + (1/2)xk. It is easy to see that, with x0 = 0, |1 − xk| = 2−k.

7 General monotone systems of polynomial equations

In this section we observe the fact that in prior sections, when discussing the analysis
of RMC equations via the Existential Theory of Reals and via Newton’s method,
we did not need to confine our discussion to RMC equations, but to any Monotone
System of Polynomial Equations (MSPE), x = P (x). These are systems of equations
with one equation xi = Pi(x) for each variable, xi, where Pi(x) is a (multivariate)
polynomial with positive coefficients. In this section we overview this generalization
of the theory. Since the proofs are relatively simple modifications of the proofs given
for RMCs, we forgo detailed proofs. First, we note that Theorem 5 can easily be
modified to show the following:

Corollary 21 Given any MSPE, x = P (x), if the system has a nonnegative solution
q′, then it has a LFP, i.e., a least nonnegative solution q∗ = LFP(P ), such that
q∗ = P (q∗) and P k(0) ↑ q∗ as k → ∞.

Of course, a general monotone (non)linear system may not have any nonnegative
solutions: consider x1 = x1 + 1. On the other hand, the MSPE’s corresponding
to RMCs certainly do have a nonnegative solution, and an LFP. Using identical
arguments to those of section 4, we can employ the Existential Theory of Reals to
answer queries about x = P (x), and we obtain the following:

Corollary 22 Given any monotone system of polynomial equations, x = P (x), we
can decide in PSPACE whether x = P (x) has a nonnegative solution, and if so
we can decide whether LFP(P ) = c, for given rational probabilities c, and we can
decide whether q∗j ∆cj for any comparison operator ∆. Moreover, if LFP(P ) exists
we can approximate the coordinates of LFP(P ) to within j bits of precision (j given
in unary), also in PSPACE. The running time is O(j · |c| · |A|O(n)), where n is the
number of variables in x.
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Next, we observe that a decomposed Newton’s method can also be used for finding
the LFP of a general MSPE, x = P (x), if any nonnegative solution exists. Suppose
we are given such a MSPE. To simplify our discussion, we first show that without
loss of generality we can assume our MSPE system comes in a certain normal form.
Namely, a canonical form MSPE has only three types of equations, xi = Pi(x), which
are completely analogous to the three types Type1 ,Typerand, and Typecall for RMC
equations:

1. Type1: xi = 1

2. Typerand: xi =
∑n

j=1 ajxj, with aj ≥ 0. (Note: aj ’s need not be probabilities
that sum to 1.)

3. Typecall: xi = xjxk.
(Note: because weights are arbitrary we don’t need a sum of products, as we
did for RMCs.)

Proposition 23 Any MSPE system x = P (x) can be converted in P-time to a system
in canonical form with possibly more variables, such that there is a 1-1 correspondence
between the nonnegative solutions of the two systems, which preserves the values of
the original variables x.

Proof.

We are given an MSPE x = P (x). If some variable xi occurs in some polynomial
of P (x) with exponent higher than 1 then introduce new variables to represent the
powers of xi with exponents that are powers of 2, and use them to eliminate the higher
powers from P (x). That is, introduce variables x′, y1, y

′
1, y2, y

′
2, . . . , yl, y

′
l where l is

the logarithm of the highest exponent of xi in P (x), and add equations: x′ = x,
y1 = xx′, y′1 = y1, y2 = y1y

′
1, y

′
2 = y2, and so forth. Then replace every higher

power xk
i of xi in P (x) by the expression xa0ya1

1 y
a2
2 . . . yal

l where al . . . a2a1a0 is the
binary representation of the exponent k. After this transformation, every term of
every polynomial in P (x) contains distinct variables.

If some polynomial Pi(x) contains a term with two or more variables, and Pi(x)
is not just the product of two variables, then take two of these variables xj, xk that
appear in such a term, introduce a new variable y{j,k} and replace the product xjxk

in every monomial in which it occurs (in the entire system) by y{j,k}. We also add a
new equation y{j,k} = xjxk to the system. Repeat this same procedure, adding new
variables and equations, until every Pi(x) is a constant or is linear or is the product
of two variables. Finally, at the end of this process it may be the case that a number
of equations xi = Pi(x, y) have a constant term a on the right hand side. Add a new
Type1 variable z, replace all such constant terms on right hand sides by az, and lastly
add the equation z = 1. It is easy to see that by doing this we will end up with a
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system in canonical form. Furthermore, this system is “equivalent” to our original
one in the following sense: any solution of the new system projected on to the original
variables is a solution of the old system, and any solution of the old system can be
extended uniquely to a solution of the new system.

Consider a canonical form MSPE. Since no solution may exist, we have to augment
the decomposed Newton’s Method of Figure 6, by adding the following extra stopping
condition inside the while loop:

* Stop if ever P (xk) 6≥ xk, or if (F ′(xk))
−1 does not exist, and report “no non-

negative solution”. (This check is unnecessary for RMCs.)

We also need to explain how some other steps in the algorithm in Figure 6 will
be carried out for general systems. In particular, step 1 requires us to eliminate all
variables xi where q∗i = 0. Since for general systems the LFP q∗ might not even exist,
we have to make sense of this step in a different way. Basically, as we saw in the proof
of Theorem 13, the system x = P (x) can be viewed as a graph G whose nodes are
the variables xi, and where each node is labeled according to the type of the variable.
The only sink node in this graph is the Type1 variable z, which we may assume to be
unique.

The graph G can be viewed as a game graph, where Typerand nodes belong to
player 1, and Typecall nodes belong to player 2. Now, a variable xi should be elim-
inated during preprocessing from x = P (x) (because q∗i must equal 0 if q∗ exists) if
and only if there is no strategy for player 1 to reach node z starting at node xi. It
should be intuitively obvious why the lack of such a strategy implies that q∗i = 0 if
LFP q∗ exists. This is because the equations for such variables depend only on other
such variables and do not contain any constant terms. Consequently, assigning 0 to
all such variables necessarily satisfies the equation associated with all of them.

Checking whether such a strategy exists can be done easily in linear time in the
size of the graph G, for all xi. This is essentially identical to the algorithm and proof
for Theorem 2. We thus have:

Proposition 24 For a general MSPE in canonical form, x = P (x), we can detect
and eliminate in P-time those variables xi such that if a non-negative solution to
x = P (x) exists, then q∗i = 0, where q∗ = LFP(P ).

After the preprocessing step, the rest of the decomposed Newton’s method pro-
ceeds entirely as in Figure 6, with the added stopping condition given above. We
obtain:

47



Corollary 25 If a given MSPE (in canonical form), x = P (x), has a non-negative
solution, then the (revised) decomposed Newton’s method will converge monotonically
to the LFP, q∗, i.e., limk→∞ xk ↑ q∗.

(If a non-negative solution does not exist, then the algorithm will either report
that “no non-negative solution exists”, or will simply terminate after the maximum
number of iterations k have been exhausted and report its final value.)6

The proof of this is a corollary of our proof for RMC equations. Modifying that
proof, we need to note that, because q∗ may not exist, in several places we have to
condition the statements in that proof by the assumption that q∗ exists. Importantly,
in that proof we at no point rely on the fact the coefficients in RMC equations are
probabilities. In the interests of space, we leave a detailed modification of the proof
of Theorem 13 to the reader.

Finally, we mention without further elaboration that an MSPE in canonical form
can easily be viewed as a Weighted Context-Free Grammar (WCFG) in generalized
Chomsky Normal Form. A weighted CFG is like a CFG where the rules have asso-
ciated positive weights that are not necessarily probabilities, i.e. they do not have
to be ≤ 1 and the weights of the rules with the same left hand side do not have to
add up to 1. The question of the existence of a nonnegative solution to x = P (x)
corresponds to the question whether the total weight of all finite parse trees of the
corresponding WCFG is finite. WCFG’s and their relationship to pPDSs and SCFGs
were considered in [AMP99], but they did not consider algorithms for analyzing them.

8 Polynomial-time algorithms for restricted classes of

RMCs

8.1 Almost-sure termination/extinction for 1-exit RMCs, SCFGs,
and MT-BPs

As shown in Section 2.3, 1-RMCs, MT-BPs, and SCFGs are all tightly related. In
particular, the probability of extinction of an object of a given type in a MT-BP is
the same as the probability of termination starting at the corresponding nonterminal
in the corresponding SCFG, and it is the same as the probability of termination of
the corresponding 1-exit RMC starting at the entry of the component corresponding
to the given type of the MT-BP (nonterminal of the SCFG). In particular, an SCFG
is called consistent if it generates a terminal string with probability 1. In this section
we provide a simple, concrete, and efficient algorithm to check consistency of a SCFG,

6In other words, the algorithm will not necessarily give the right answer if we don’t iterate
“enough” but it will never terminate unnaturally due to an iteration being ill defined because
(F ′(xk))−1 does not exist.
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and almost sure (i.e. probability 1) termination of a 1-exit RMC, and extinction of
a MT-BP.

Given the connection between these models, one can use classical results on
branching processes [KS47, Sev51, Har63], to “characterize” the question of con-
sistency of a SCFG as a question about the spectral radius of the moment matrix
associated with the SCFG, namely, the nonnegative matrix B(1) which is the Ja-
cobian of P (x) evaluated at the all 1 vector, i.e., where (B(x))i,j = ∂Pi(x)/∂xj .
See [Har63] for the classic text on Branching Processes, and see e.g., [BT73] for the
connection to SCFGs.

These well known “characterizations” unfortunately often leave out some special
uncovered cases (and sometimes contain errors or omit assumptions). None of the
generally available references in English that we are aware of give a complete char-
acterization and proof for all MT-BPs (and all SCFGs). The most comprehensive
results, and also among the earliest results, are due to Kolmogorov and Sevastyanov
[KS47, Sev51] (their papers are in Russian). These results are stated without proof
in the classic text on Branching Processes by Harris [Har63], which refers to [Sev51]
for the “quite complicated proofs”. As quoted in [Har63], a general result that ap-
plies to all multitype branching processes is a necessary and sufficient condition for
the probability of extinction to be 1 for all initial sets of entities, i.e. for all the
types: this is the case if and only if ρ(B(1)) ≤ 1 and the branching process has no
so-called “final classes”; these are special classes of types from which the probability
of extinction is zero. The textbook [Har63] itself proves the characterization for the
case of MT-BPs for which the nonnegative moment matrix B(1) is a primitive matrix
(see, e.g., [HJ85]). This is what [Har63] calls the “positively regular” case. Primitive
matrices allow [Har63] to apply the strongest form of the Perron-Frobenius theorem
to the matrices B(1).

More recent texts on Branching Processes, such as [Mod71, AN72, Jag75, HJV05],
typically state (and in the case of [Mod71] reprove) the results in [Har63] for the
positively-regular (primitive) case of MT-BPs, and also often mention (e.g., [Jag75])
the kinds of difficulties that arise for generalizing the results to all MT-BPs. But
none provide a complete algorithmic characterization and proof for all MT-BPs. It
is worth noting also that there are occasional errors or missing assumptions in the
statements of the theorems in some references. For example, [BT73] which is widely
cited in the SCFG literature, states that if a SCFG has ρ(B(1)) > 1 then the SCFG
is inconsistent; however, this is false for grammars where some nonterminals may
be unreachable from the start nonterminal. A recent survey on Branching Processes
([AV01]) states without proof a result (Theorem 8) for general “irreducible” MT-BPs,
namely that “for an irreducible MT-BP with moment matrix M , q∗i < 1 for all i if and
only if ρ(M) > 1”, but the statement is in fact not quite correct, precisely because it
ignores Sevastyanov’s case of “final classes”, which can exist in an irreducible MT-BP
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with ρ(M) ≤ 1, but where the extinction probability is in fact 0.
Given this state of affairs, with no complete algorithmic characterization and

proof available in English for all MT-BPs and SCFGs, in neither the Branching
Process literature nor in the SCFG literature, and with several mistakes in both the
MT-BP and SCFG literature, we feel that it is appropriate to provide a complete
characterization, a concrete polynomial time algorithm, and a complete proof for
general MT-BPs and SCFGs. That is what we do in this section.

Our proof is structurally similar to the proof of [Har63]. We extend [Har63]’s
proof by decomposing the system x = P (x) into SCCs, and analyzing each SCC
by a further decomposition into its aperiodic parts. We also simplify and modify
several aspects of [Har63]’s proof. In particular, it turns out that one direction of our
proof of the characterization via the moment matrix B(1) follows very easily from our
results about B(x) established for our analysis of the decomposed Newton’s method
in Section 6.

Given a SCFG we can write directly a system of polynomial equations x = P (x),
in the vector of variables x that contains one variable xi for every nonterminal Si, such
that the probabilities p(Si) form the LFP of the system. The polynomial Pi(x) has
one term for every rule of the grammar with lhs Si; if the rule has probability p and
the right-hand-side of the rule contains ℓj occurrences of nonterminal Sj, j = 1, . . . , d,

then the corresponding term in Pi is p
∏

j x
ℓj

j . If we form the Jacobian matrix B(x)
and evaluate it at x = 1, then the i, j entry of the resulting matrix B(1) is equal
to

∑

pℓj where the summation ranges over all rules with lhs Si, thus, B(1)i,j is the
expected number of occurrences of Sj on the rhs of a rule with lhs Si. The matrix
B(1) is called the (first) moment matrix of the SCFG.

Our algorithm for checking SCFG consistency is outlined in Fig. 7. From clas-
sical algorithms for processing context-free grammars we know how to compute all
reachable and all useless nonterminals in linear time (see eg. [HMU00]). To finish the
algorithm, we only need to explain how one can test in polynomial time whether the
spectral radius of a non-negative rational matrix B(1) is > 1. There are a number
of ways to do this. One is by appealing to the existential theory of the reals. By
the Perron-Frobenius theorem (see [LT85]), the maximum magnitude eigenvalue of a
non-negative matrix is always real. Recall that the eigenvalues of a matrix M are the
roots of the characteristic polynomial h(x) = Det(M − xI). This univariate polyno-
mial can be computed in polynomial time, and we can test whether ρ(B(1)) > 1 by
testing the 1-variable sentence in ExTh(R): ∃x(x > 1 ∧ h(x) = 0). More efficiently,
for the non-negative matrices B(1) we can also use Linear Programming to decide
whether ρ(B(1)) > 1. We will return to this point after we prove the correctness of
the algorithm.

We will actually present a somewhat more involved algorithm, given in Figure
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Input: A SCFG G, with start non-terminal S1.

Output: YES if G is consistent, NO if it is not.

1. Remove all nonterminals unreachable from S1.

2. If there is any “useless” nonterminal left (i.e., a nonterminal that does not derive
any terminal string), return NO.

3. For the remaining SCFG, let ρ be the maximum eigenvalue of the moment
matrix B(1) (the Jacobian matrix of P (x), evaluated at the all 1-vector).
If ρ > 1 then return NO; otherwise (i.e., if ρ ≤ 1) return YES.

Figure 7: SCFG consistency algorithm

8, where we classify, in one pass, the termination probability of all vertices of a 1-
exit RMC. It is not hard to show that the correctness of the algorithm in Figure 7
for classifying the start nonterminal of an SCFG follows from the correctness of the
algorithm in Figure 8 for classifying all non-terminals of an SCFG (or, equivalently,
all vertices of a 1-exit RMC). We will show this after the proof of the main theorem
of this section.

Theorem 26 Given a 1-exit RMC, A, or equivalently a SCFG or MT-BP, there is
a polynomial time algorithm to determine, for each vertex u which of the following
three cases holds: (1) q∗u = 0, or (2) q∗u = 1, or (3) 0 < q∗u < 1. In particular,
we can test SCFG consistency in polynomial time.

Proof. We are given an 1-exit RMC A and wish to determine, for all vertices u,
whether q∗u = 1, q∗u = 0, or 0 < q∗u < 1. We will label each vertex of the RMC (and
corresponding variable of the system) by 1, 0 or the symbol $ respectively according
to which of the three cases holds. The Algorithm is given in Fig. 8.

In step (1.), the preprocessing step, we identify and remove all the variables
corresponding to vertices that cannot reach an exit, hence are 0. For the vertices
that remain, all termination probabilities are > 0. Thus, we need to test if they are
1 or < 1.

We can view the system of equations SA′ for this preprocessed RMC as a cyclic
circuit that has one node for every variable. Let CA denote the cyclic circuit over
{1,+, ∗}, whose nodes are labelled by either a 1 (Type1), + (Typerand), or ∗ (Typecall).
We can merge all the type I nodes into one node labelled 1, and label all the corre-
sponding type I vertices of the RMC (and corresponding variables) by 1. The edges
from a +-node to its successors are labeled by probabilities (that may not necessarily
sum to 1, since we have already removed probability 0 nodes).
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Input: A 1-exit RMC A

Output: Marking of each vertex by 0, 1, or $ depending on whether its termi-
nation probability is 0, 1, or strictly between 0 and 1.

1. Construct the system SA : x = P (x) for A.

2. Preprocess x = P (x), to determine and eliminate all xu such that q∗u = 0.
Eliminate all such variables from SA.
This gives a new system, SA′ in which the remaining reachability probabilities
are either 1 or some p, where 0 < p < 1.

3. Decompose the system SA′ into Strongly Connected Components. Consider the
DAG of SCCs, and topologically sort the SCCs as C1, . . . , Ck.
Mark the trivial bottom SCC, containing one probability 1 node, as having
probability 1.

4. Process the remaining SCCs “bottom up”. Let Cr be the current lowest unpro-
cessed SCC. Cr must have successors (because we have already eliminated all
probability 0 nodes during preprocessing).

(a) If Cr has some successors marked “$”, meaning their probability is strictly
in between 0 and 1, then mark (all nodes in) Cr with $.

(b) Else, if Cr contains any +-node for which the sum of edge probabilities
from that node to successors is < 1, then mark all of Cr with $.

(c) Else, if Cr is a singleton (contains only 1 node) and is also acyclic (i.e.,
there are no transitions from the node to itself), then: if all its successors
are marked 1, then mark it also as 1 (otherwise, the singleton was already
marked $ in 3(a) or in 3(b)).

(d) Else, i.e., if Cr is a nontrivial SCC all of whose successors are marked 1
and in which all + nodes have outedge probabilities summing to 1, let
ρr ∈ R≥0 be the maximum eigenvalue of Br(1), the Jacobian matrix of Cr

evaluated at the all 1-vector.
If ρr ≤ 1 then mark Cr with probability 1, otherwise mark Cr with $.

Figure 8: 1-exit RMC algorithm: 0, 1, or “in between” probability.
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In step 2, we first break CA into SCCs, and we topologically sort the underlying
DAG to get SCCs C1, . . . , Ck, where if there is an edge from Ci to Cj, then j ≥ i. Let
Ck be the singleton node labelled 1 (it does not have any successors). Note that there
is no other bottom SCC (i.e. SCC that has no outgoing edges), because if there was,
all the corresponding variables must be 0 in the LFP, but we have already eliminated
all the variables that are 0. Note also that if there is a path in CA from a node xu to
a node xv, which indicates that the variable xu depends (indirectly) on the variable
xv, and if q∗v < 1, then also q∗u must be less than 1; i.e., if v should be labelled $ then
also u should be labelled $. It follows that in a SCC, all nodes must receive the same
label, either all $ or all 1. We shall process the SCCs “bottom up”, starting at Ck,
to compute whether the probabilities associated with nodes in each Ci are 1 or < 1.
We then use this information to compute the same for prior components.

Now, in step 3, assume by induction that we are about to process Cr, where all
components Cl with l > r have already been processed and whose nodes have already
been labelled with one of {1, $}.

Clearly, if there is some node in Cr that depends on a node in a lower SCC that
has been marked $ (“in between”), then every node in Cr should also be marked $
(because all of the probabilities in Cr depend on all others in Cr). That is what is
done in step 3(a) of the algorithm.

Next, if there is some +-node in Cr for which the sum of edge probabilities from
that node to successors is < 1, then that means that we have already eliminated a
0-successor of that node during preprocessing, and thus that again, since all probabil-
ities in Cr depend on all others, we can mark every node in Cr as “$” (“in between”).
That is what is done in step 3(b).

Also clearly, if a remaining SCC Cr is a singleton that does not depend on itself,
and if all of its successors have probability 1, then it also has probability 1. This is
checked in step 3(c). Note we’ve already checked in 3(b) if the node has less than full
probability coming out of its edges, and in 3(a) if it has a $ successor, and in each of
those cases would have marked it $.

What remains is a nontrivial SCC, Cr, for whose nodes we have to determine
whether the associated probability is exactly 1 or < 1. Suppose there are n nodes
in Cr. For each variable xi in Cr, define the equation xi = fi(x) to be the equation
xi = Pi(x) restricted to the variables in Cr. By this we mean that if a variable
xv appears in Pi(x) which is not in Cr, then let xv = 1 in fi(x). Note that, by
the processing we have done before, for any such variable xv, we will have already
determined that q∗v = 1. Because Cr is a non-trivial SCC, in each such equation the
right hand side fi(x) does not reduce to a constant. Let f : R

n 7→ R
n denote the

underlying maps defined by this system of polynomials for each variable xi in Cr,
restricted to the variables in Cr. In other words, where the equation associated with
xi is xi = fi(x), and f(x) = (f1(x), . . . , fn(x)).
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Let Br(1) be the Jacobian matrix of f , evaluated at the all 1 vector in R
n (see

section 6). In other words, define the (i, j)’th entry of the matrix Br(x) to be
(Br(x))i,j := ∂fi

∂xj
, and let Br(1) be the matrix where all of these entries are eval-

uated with xi := 1 for all i. Let ρr = ρ(Br(1)) be the spectral radius of Br(1),
i.e., the maximum absolute value of an eigenvalue of the matrix Br(1). Since Br(1)
is non-negative, by basic facts of Perron-Frobenius theory its maximum magnitude
eigenvalue must be real and non-negative, and equal to ρr (see, e.g., [LT85, HJ85]).

We wish to show that if ρr ≤ 1 then all nodes (i.e., variables) in Cr should get
probability 1, whereas if ρr > 1, then all nodes in Cr have “in between” probability,
and thus should get marked with $. This is what is checked in the last step, 3(d).

First we establish the following “easier” direction of our claim about ρr, using the
results established in section 6 on Newton’s method.

Lemma 27 If ρr = ρ(Br(1)) > 1, then for every node marked xu in the SCC Cr,
the probability q∗u < 1.

Proof. This is a simple corollary of Lemma 17 in Section 6, where we showed
that for x < LFP(Cr) = q∗, ρ(Br(x)) < 1. Thus, by continuity of eigenvalues (see,
e.g., [LT85]), ρ(Br(q

∗)) ≤ 1. Thus, if ρ(Br(1)) > 1, then q∗ 6= 1. If there is some
component q∗i < 1 in q∗, then all components must be < 1, because it is an SCC and
every probability depends on every other.

Now we wish to establish that if ρr ≤ 1 then every node in Cr should get proba-
bility 1. Although we don’t actually need to do this in our algorithm, it is useful for
the purposes of our proof to first consider partitioning the SCC Cr again, according
to its “period”. The period of a directed graph is the greatest common divisor of
the lengths of all directed cycles in Cr. A digraph is aperiodic if its period is 1. If
we wished to do so, there are simple algorithms (see [BV73, APY91]) that can be
used to compute the period d of Cr in linear time, and also, within the same time, to
partition the nodes of Cr into sets Cr,0, . . . , Cr,d−1, such that all edges from nodes in
each partition Cr,j lead to nodes in partition Cr,(j+1 mod d). (Again, we don’t actually
need to compute this partition in our algorithm, but it will serve us in the proof.)

Let Cd
r denote the directed graph on nodes of Cr such that there is an edge from

node xi to node xi′ if and only if there is a path of length d from xi to xi′ in Cr.
It then follows that the map fd, i.e., the d’th iterate of f , has associated with it
the dependence graph Cd

r . If d is the period of f , then Cd
r consists of d disjoint

induced subgraphs Cd
r,j, 0 ≤ j < d, each induced by the partition Cr,j, respectively.

Furthermore, each subgraph Cd
r,j consists of one aperiodic SCC, because the lengths
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of cycles in Cd
r,j are precisely the lengths of cycles in Cr divided by the gcd d, and

hence they have gcd = 1.
It is not hard to show that if d is the period of Cr, then Br(1)

d is a matrix whose
only non-zero entries are in positions (i, i′) where xi and xi′ are in the same partition
Cr,j of Cr. We can thus use the partitions Cr,j to easily compute a permutation
matrix Q such that the matrix QBr(1)

dQ−1 is a block-diagoanl matrix with blocks
BCd

r,0
(1), . . . , BCd

r,d−1
(1) as follows:

QBr(1)
dQ−1 =











BCd
r,0

(1) 0 0 0

0 BCd
r,1

(1) 0 0

0 0 . . . 0
0 0 0 BCd

r,d−1
(1)











Each submatrix BCd
r,j

(1), which we will refer to as Br,j(1) has an underlying

aperiodic SCC Cd
r,j. Hence, since the matrix is non-negative, there is a power mj

such that B
mj

r,j (1) has all entries positive. In other words Br,j(1) is a primitive matrix
and thus we will be able to apply the full power of the Perron-Frobenius theory
([LT85, HJ85]) to matrices Br,j(1).

To do so, we first set up the following branching process which has one type for
each node (variable) xi of the SCC Cr. If xi is a *-node with equation xi = α in the

subsystem x = f(x) of Cr then the process contains a rule xi
1→ α; note α is either

the product of two variables or a single variable (the latter happens if one of the two
variables in the original system x = P (x) belongs to a lower SCC). If xi is a +-node
with equation xi = p0 +

∑

j∈J pjxj in the subsystem x = f(x) of Cr (the rhs may or

may not contain a constant term p0), then we have one rule xi
pj→ xj for each j ∈ J ,

and a rule xi
p0→ 0 (no offsprings) if there is a constant term (i.e., p0 > 0). Note that

since all + nodes have outedge probabilities summing to 1,
∑

j pj = 1, and this is a
proper branching process.

Let z0 ∈ N
n be a (row) vector where z0

i denotes the number of occurences of the
type (i.e. node) xi in the initial population. Let z0, z1, z2, ... be the random sequence
of vectors generated by the branching process. The matrix Br(1) is the first moment
matrix for this process. It is not hard to see that the vector z̃m = z0(Br(1))

m is the
vector of expected numbers of each type at stage m of this process (see [Har63]). In
other words, E(zm

j ) = z̃m
j .

Lemma 28 1. Given an initial vector z0 ∈ N
n, for any z′ ∈ N

n, z′ 6= 0,
Pr(∃∞m s.t. zm = z′) = 0.
2. Thus, also, Pr(∃z′ ∈ N

n, z′ 6= 0, ∃∞m s.t. zm = z′) = 0
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Proof. Harris (see [Har63], Thm 6.1) proves this for the case where Br(1) is a
primitive matrix (positively regular in [Har63]’s terminology). We give a somewhat
different proof for any irreducible matrix Br(1). We know that q∗u > 0 for all xu ∈ Cr,
i.e. every corresponding vertex u has a terminating path in the RMC; pick one such
path for each vertex u, let n be the maximum length among these paths and let c > 0
be the minimum probability among these paths. If the branching process starts with
a single entity of any type xu ∈ Cr, then with probability at least c after n steps it
terminates.

Now, let M =
∑n

j=1 z
′
j . If zi = z′, then by the above, with probability ≥ cM > 0,

zi+n = 0. If zi+n = 0 then of course zi+n+d = 0 for all d ≥ 0. On the other hand, if
we return to z′ at zi′ for some i′ ≥ i+ n, then we repeat the experiment. Thus, the
probability of infinitely often revisiting vector z′ 6= 0 in the trajectory z0, z1, z2, . . . is
0.

The second assertion follows since there is a countable number of finite vectors
z′ ∈ N

n : Pr(∃z′ ∈ N
n, z′ 6= 0, ∃∞m s.t. zm = z′) ≤ ∑

z′∈Nn,z′ 6=0 Pr(∃∞m zm =
z′) = 0.

Note that if we instead let z0 ∈ N
kj be a vector of length kj = |Cr,j |, then

z0(Br,j(1))
m is the expected number of each type in partition Cr,j after d ∗m stages

of the original process, starting with (z0)i entities of type xi in Cr,j, and no entities
of other types.

Lemma 29 For each partition Cr,j, if ρ(Br,j(1)) ≤ 1, then for every node xi ∈ Cr,j,
q∗i = 1. Otherwise, i.e., if ρ(Bj(1)) > 1, then for every node xi ∈ Cr,j, q

∗
i < 1.

Proof. The second assertion follows from Lemma 27, because in fact if ρ(Br,j(1)) >
1 , then ρ(Br(1)) > 1, because Br,j(1) is a submatrix of Q(Br(1))

dQ−1. Thus if its
maximum eigenvalue is > 1, then so is the maximum eigenvalue of Q(Br(1))

dQ−1.
But the eigenvalues of Q(Br(1))

dQ−1 are d’th powers of the eigenvalues of Br(1).
Thus ρ(Br(1)) > 1, and therefore by Lemma 27, every node in Cr (including all of
Cr,j) has probability q∗i < 1.

For the first assertion, suppose ρ(Br,j(1)) ≤ 1. Let M = Br,j(1), and let ρ =
ρ(M). M is a primitive matrix, meaning its underlying graph is irreducible and
aperiodic. By the Perron-Frobenius Theorem for primitive matrices (see, e.g., Thm
2.3 of appendix of [Kar66]; or see chapter 8, section 8.5 of [HJ85]) Mn = ρn ∗M1 +
(M2)

n, for two matrices M1 and M2 where ρ(M2) < ρ. Thus, since ρ(M) ≤ 1, it
follows, e.g., by taking suitable matrix norms, that there is a bound t ∈ R≥0, such
that for all n, all entries of Mn are bounded above by t. For completeness, we
provide the argument here for the existence of a bound t. Consider the l1 matrix
norm, ‖A‖1 =

∑

i,j |ai,j |. Note that ‖Mn‖1 = ‖ρnM1 +Mn
2 ‖1 ≤ ρn‖M1‖1 + ‖Mn

2 ‖1.
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But ρ(M2) < 1, and hence ‖Mn
2 ‖1 → 0. Thus, there must be a bound C < ∞ such

that ‖Mn
2 ‖1 < C for any n (otherwise ‖Mn

2 ‖1 could not converge to 0). Therefore
‖Mn‖1 ≤ ρn‖M1‖ + C. But since ρ ≤ 1 we have ‖Mn‖1 ≤ ‖M1‖1 + C. Let t =
‖M1‖1 + C.

Consider the branching process with an initial vector z0 of entities from Cr,j, and
let zm be the vector of the number of entities after dm stages. As remarked before the
lemma, for all m, the expectation E(

∑n
j=1 z

m
j ) =

∑n
j=1 z̃

m
j =

∑n
j=1(z

0(Br,j(1))
m)j ≤

nt′ for some fixed t′. Thus, by the Markov inequality, for all m, and all k > 0,
Pr(

∑n
i=1(z

m)i ≥ knt′) ≤ 1/k. Thus, also, for allm and k, Pr(∀m′ ≥ m
∑n

i=1(z
m′

)i ≥
knt′) ≤ 1/k. Since this is true for any m, we have Pr(∃m s.t. ∀m′ ≥ m

∑n
i=1(z

m′

)i ≥
knt′) = limm→∞ Pr(∀m′ ≥ m

∑n
i=1(z

m′

)i ≥ knt′) ≤ 1/k. Since k > 0 is arbitrary, we
have Pr(∀k > 0 ∃m s.t. ∀m′ ≥ m,

∑n
i=1(z

m′

)i ≥ knt′) = limk→∞ Pr(∃m s.t. ∀m′ ≥
m

∑n
i=1(z

m′

)i ≥ knt′) = limk→∞ 1/k = 0
We write this last probability, which is 0, as Pr(

∑

i(z
m)i → ∞), i.e., this denotes

the probability that the sum
∑

i(z
m)i diverges and is unbounded in the limit as

m→ ∞. Likewise, let Pr(
∑

i(z
m)i → 0) be the probability of the event that we will

eventually reach the 0 vector.
By Lemma 28, the probability that some vector z′ occurs infinitely often in the

trajectory 〈zi | i = 0, 1, 2, . . .〉 is 0. Therefore, Pr(
∑

i(z
m)i → 0) + Pr(

∑

i(z
m)i →

∞) = 1, because either the process diverges, or it reaches 0, or otherwise it repeats
some vector z′ infinitely often. But we already established that Pr(

∑

i(z
m)i → ∞) =

0. Thus Pr(
∑

i(z
m)i → 0) = 1. Since the initial vector z0 was arbitrary, it could be

chosen to be the unit vector ei, with 1 in position i and 0 everywhere else. We can
thus conclude that for all xi ∈ Cr,j, q

∗
i = 1.

As we have already observed, since all probabilities in Cr depend on all others, if
the probability associated with some node in Cr is exactly 1 then the probability
associated with all nodes in Cr is also exactly 1. Thus, if ρ(Br,j(1)) ≤ 1 for some
Cr,j, then ρ(Br,j(1)) ≤ 1 for all Cr,j. Thus QBr(1)

dQ−1 also has maximum eigenvalue
≤ 1, because its eigenvalues are the union, over all j, of eigenvalues of each Br,j(1).
But since the eigenvalues of QBr(1)

dQ−1 are d’th powers of the eigenvalues of Br(1),
then ρr, the maximum eigenvalue Br(1), must also be ≤ 1.

We next explain how one can check for a nonnegative matrix B whether ρ(B) ≤ 1
in polynomial time using linear programming. This follows from well known varia-
tional characterizations of the spectral radius of a nonnegative matrix:

Lemma 30 (see, e.g., [HJ85] Theorem (8.3.2)) For B an n×n nonnegative matrix,
if there exists a vector x ≥ 0, x 6= 0 such that Bx ≥ αx, for some α ∈ R, then
ρ(B) ≥ α.
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Lemma 31 Consider a square nonnegative matrix B with at most n rows and having
rational entries with at most l bits each. If ρ(B) > 1 then ρ(B) ≥ 1 + 1/2m where
m = poly(n, l) and poly(n, l) is some polynomial in n and l.

Proof. If ρ(B) > 1 then there is a nonzero vector u ≥ 0 such that Bu = ru, with
r > 1. Suppose I ′ is the set of indices i with ui > 0 and let B′ be the corresponding
square submatrix BI′,I′ of B. The LP B′x ≥ x+ 1, x ≥ 0 has a solution (scale u[I ′]
appropriately). Therefore, it has a rational solution with at most m = poly(n, l) bits,
hence its entries are at most 2m. This solution, together with ui = 0 in the rest of
the indices satisfies Bu ≥ (1+ 1/2m)u, u ≥ 0 , u 6= 0. It follows from Lemma 30 that
ρ(B) ≥ (1 + 1/2m).

The following proposition is now immediate, and shows that we can using Linear
Programming to decide in P-time whether ρ(B(1)) ≤ 1.

Proposition 32 ρ(B) ≤ 1 if and only if the following LP constraints are not feasible:
Bx ≥ (1 + 1/2m)x, and x ≥ 0,

∑

i xi = 1.

Proof. Follows from Lemmas 30 and 31. Note that since the constraint Bx ≥
(1 + 1/2m)x is homogeneous in x, we can scale x appropriately and replace the
constraint x 6= 0 with

∑

i xi = 1.

There is an analogous algorithm to that of Figure 8 for classifying all the nontermi-
nals of a SCFG or all the types of a multitype branching process with respect to their
qualitative termination directly, without translating them first to a 1-exit RMC. We
first find the useless nonterminals, i.e. those that cannot derive any terminal strings;
these are exactly the nonterminals Si with termination probability p(Si) = 0. Then
we form the system of equations x = P (x) that has one variable for each other non-
terminal of the SCFG, decompose it into strongly connected components and process
it as in Figure 8, to determine which nonterminals have p(Si) = 1 and which have
p(Si) < 1. The algorithm is completely analogous and is left to the reader.

We now argue that the correctness of the simpler algorithm in Figure 7 for de-
termining the consistency of a given SCFG with a given start nonterminal follows
from the correctness we have established for the 1-pass algorithm in Figure 8. To see
this, consider the algorithm in Figure 7. It is clear that if there are any “useless”
nonterminals reachable from S1 (step 2), then the probability of termination from
S1 is < 1. Suppose this is not the case. Then every nonterminal reachable from
S1 has nonzero probability of termination. In the algorithm in Figure 8, this means
the preprocessing step (step 2) does not remove any nonterminals (i.e., variables)
reachable from S1 (i.e., x1). Note that step 3 of the consistency algorithm in effect
will perform the last step (step 4(d)) of the 1-pass algorithm, but not on one SCC
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at a time bottom-up, but rather on all variables reachable from x1. But it can be
shown easily that ρ(B(1)) ≤ 1 if and only if ρ(Br(1)) ≤ 1 for every SCC Cr of the
dependency graph of x = P (x) that is reachable from x1, where Br(1) is the asso-
ciated moment matrix of Cr. For the one direction, if ρ(Br(1)) > 1 for some SCC
Cr, then we can take an eigenvector of Br(1) with eigenvalue ρ(Br(1)) > 1 and pad
it with 0’s to obtain an eigenvector of B(1). For the other direction, if ρ(B(1)) > 1,
take a corresponding eigenvector u of B(1), and let Cr be a lowest SCC that contains
a nonzero coordinate of u; then the restriction of u to Cr is an eigenvector of Br(1)
with the same eigenvalue ρ(B(1)) > 1.

8.2 Bounded RMCs

In this section we show that we can compute the vector of termination probabilities
for a bounded RMC in polynomial time. Recall that a bounded RMC is one that has
a constant number of components, each with a constant number of entries and exits;
the components themselves can be arbitrarily large.

Theorem 33 Given a bounded RMC, we can decide in polynomial time whether
LFP(P ) = c, or whether q∗

k ∆ck, for any k = (u, ex), and any comparison operator
∆, and we can approximate each probability to within any given number of bits of
precision. In particular, this applies to SCFGs with a bounded number of nontermi-
nals and to MT-BPs with a bounded number of types (provided the multisets on the
right-hand sides of the rules are listed explicitly).

Proof. We will reduce our problem to the existential theory of the reals with
a bounded number of variables. This is especially easy to do for the special case
of SCFGs with a bounded number of nonterminals and MT-BPs with a bounded
number of types. Given a SCFG G with d nonterminals S1, . . . , Sd (or a MT-BP with
d types), use a variable xi for each nonterminal Si, i = 1, . . . , d. The termination
probabilities q∗i for the different nonterminals Si are the least nonnegative solution
to a system that contains one equation xi = hi(x) for each i = 1, . . . , d, where hi

is a polynomial that contains a term for each rule of G with left-hand-side Si; if
the rule has probability p and the right-hand-side of the rule contains ℓj occurrences

of nonterminal Sj, j = 1, . . . , d, then the corresponding term in hi is p
∏

j x
ℓj

j . To
determine whether q∗i ≤ c, for a given rational c, append to these equations the
constraints xj ≥ 0, j = 1, . . . , d, and xi ≤ c, and use the polynomial-time decision
procedure for ExTh(R) with d variables.

For general bounded RMCs, it is not quite as simple to reduce the problem to a
bounded number of variables. Note that even for single-entry single-exit RMCs with
a bounded number of components, the transformation to SCFGs given in Section 2
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cannot be used because it introduces one nonterminal for every vertex, hence the
number of nonterminals is unbounded.

Let A be a bounded RMC. First, we determine those entry-exit pairs (en, ex)
(of the same component) for which the corresponding probability q∗(en,ex) is 0. Recall

(Theorem 2) that this can be done in polynomial time for general RMCs. LetD be the
set of remaining entry-exit pairs (en, ex), with q∗(en,ex) > 0. We use a variable x(en,ex)

for each pair (en, ex) ∈ D; note that this is a bounded number d of variables. We will
construct a system of equations in these variables by essentially eliminating all other
variables from the fixpoint system x = P (x) of the RMC given in Definition 1, in a
manner that is efficient and does not blow up the size of the system exponentially.

For each component Ai, we replace each box b of Ai by a set of labelled edges
from the call ports to the return ports of the box: if en is an entry of the component
to which box b is mapped and ex is an exit of the component then there is an edge
directed from the call port (b, en) of b to the return port (b, ex) iff (en, ex) ∈ D and in
this case the edge is labelled x(en,ex); if (en, ex) /∈ D then we do not include an edge
from (b, en) to (b, ex). The resulting graph is an ordinary labelled graph Bi = (Qi, Ei)
(no boxes) whose edges are labelled with explicit probabilities or variables. If we
plugged in the actual probabilities for the variables, we would have an ordinary
finite Markov chain. (For some of the call ports, the sum of the probabilities of the
outgoing edges may be less than 1; if we wished we could add transitions to a new
dead absorbing state with the remaining probability, but this is not necessary for the
calculations).

As is well known, we can compute the reachability probabilities in a Markov
chain by setting up and solving a linear system of equations, whose coefficients are
the transition probabilities. Regarding the variable-labels as parameters, distinct
from the reachability variables, we can set up the linear systems and solve them
symbolically. More specifically, for every exit ex of Bi we first determine the set Q0

i

of vertices of Bi that cannot reach ex; note that these are precisely the vertices u for
which q∗(u,ex) = 0, while the remaining set Qi \Q0

i contains the vertices u for which

q∗(u,ex) > 0. For each vertex u ∈ Qi \ Q0
i we have a variable y(u,ex). (We could have

included variables also for the other vertices u ∈ Q0
i and set them to 0, but it is not

necessary.) Regarding the x-variables as symbols, we form a linear system Lex of
equations in the variables y(u,ex) as follows. If u = ex then y(ex,ex) = 1. For every
other vertex u of Qi \Q0

i , the corresponding equation is y(u,ex) =
∑

v ℓuvy(v,ex), where
the summation ranges over all v ∈ Qi \Q0

i such that there is an edge (u, v) in Bi and
ℓuv is the label of the edge (u, v), i.e. ℓuv is either the transition probability puv or
some x(en′,ex′).

Thus, we have a separate linear system Lex for each exit ex of each component.
Note that if we substitute in Lex positive values for the symbols x(en′,ex′) such that
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the sum of the labels out of each call port are at most 1, then the resulting system
has a unique solution in the variables y(u,ex). This follows from standard facts about
computing reachability probabilities for finite Markov chains. If the values x(en′,ex′)

that we substitute are equal to the termination probabilities q∗(en′,ex′), then the unique
solution gives precisely the set of termination probabilities q∗(u,ex).

Consider each system Lex. Regard the x’s as symbolic transition probabilities
and solve the system for the y variables. Every reachability probability y(u,ex) is
expressed as a function h(u,ex)(x) of the variable-labels x. By Cramer’s rule, each
function h is the ratio of two determinants of matrices whose entries are the original
probabilities on the transitions of the RMC and the variables x(en′,ex′). That is, every
vertex-exit probability is expressed as a ratio h(x) = f(x)/g(x), where f(x) and g(x)
are determinants of matrices F (x), G(x) involving the variable-labels x. Thus, f , g
are polynomials of total degree at most n, the number of vertices of Ai. Since we
have a bounded number d of entry-exit pairs, and hence variables, each polynomial
f, g has a polynomial number of terms, less than (n + 1)d. Furthermore, it can be
easily seen that the coefficients of the polynomials are rational numbers whose bit
complexity (of numerator and denominator) is bounded by a polynomial in the bit
complexity b of the input probabilities. To see this, note that by the definition of the
determinant, the determinant f(x) = det(F (x)) is the sum of n! terms, where each
term is the product of n entries of the matrix, i.e. either given transition probabilities
or variables x. Thus, the coefficient of each monomial of f(x) is the sum of at most
n! terms, where each term is the product of at most n given rational numbers whose
numerator and denominator have b bits. We can make all the terms have a common
denominator, for example the product of all the denominators of the (non-variable)
entries of the matrix F (x). Then the denominator has at most bn2 bits, and the
total numerator is the sum of at most n! terms, each with at most bn2 bits, hence
the numerator has at most bn3 log n bits.

The polynomials f , g for each vertex-exit pair can be computed in polynomial
time. Suppose that f(x) = det(F (x)), where F (x) is a matrix whose entries are
rationals and variables from x. We can compute f(x) explicitly using interpolation
as follows. Plug in n + 1 different values for each of the variables, for example 0, 1,
.., n. For each of the (n+ 1)d tuples t of variable values, compute det(F (t)), which is
a rational number of polynomial bit complexity. Then set up a linear system whose
unknowns are the coefficients of the multivariate polynomial f(x) and solve it. The
system has O(nd) variables and equations, and all the coefficients are rationals with
polynomial bit complexity, hence it can be solved in polynomial time. It can be
easily seen that the system has a unique solution. We include briefly the argument.
In the univariate case (d=1), the matrix of the system is a Vandermonde matrix
and is invertible (this is the usual univariate interpolation property: no two distinct
polynomials of degree n can agree on n + 1 points, and there exists a polynomial
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interpolant of degree n for any n + 1 points). The general d case can be shown by
induction: if the variables are x1, . . . , xd, write f(x) as a polynomial in xd whose
coefficients are polynomials in x1, . . . , xd−1: f = f0x

n
d + f1x

n−1
d + . . .+ fn where each

fi is a polynomial in x1, . . . , xd−1 of total degree at most i. For any fixed tuple τ of
the first d− 1 variables, f(x) becomes a univariate polynomial in xd. Since we plug
in n + 1 different values of xd together with τ , the resulting values of f determine
uniquely the univariate polynomial f(τ, xd) in xd. Hence they determine uniquely
each fi(τ). By induction hypothesis, the values fi(τ) for all tuples τ determine
uniquely the polynomial fi(x1, . . . , xd−1). Therefore, the set of tuples on which we
evaluate f determines f uniquely.

Thus, for every entry-exit pair (en, ex) ∈ D of each component we can compute
explicitly the corresponding rational function h(en,ex)(x) = f(en,ex)(x)/g(en,ex)(x) for
the corresponding variable y(en,ex). Hence the entry-exit probabilities q∗(en,ex) satisfy

the set of polynomial equations f(en,ex)(x) = g(en,ex)(x) ·x(en,ex). Let C(A) be the set
consisting of these constraints and the constraints x(en,ex) > 0 for every entry-exit pair
(en, ex) ∈ D of each component, and

∑

ex∈Exi
x(en,ex) ≤ 1 for each entry en of each

component Ai. We claim that the system C(A) of constraints has a unique minimal
solution and this solution is precisely the vector of nonzero entry-exit probabilities
q∗(en,ex).

First, it is clear that the probabilities q∗(en,ex) satisfy these constraints. On the

other hand, suppose that r is any other solution of C(A). Extend r to all vertex-
exit pairs (u, ex) as follows. For pairs (u, ex) ∈ Q0

i we let r(u,ex) = 0. For pairs
(u, ex) ∈ Q \Q0

i , we substitute in the linear system Lex the values of r for the edge
labels and solve in the resulting linear system Lex(r) for the variables y(u,ex), i.e., we
let r(u,ex) = f(u,ex)(r)/g(u,ex)(r); note that there is a unique solution to the system
Lex(r), and these expressions are well-defined (the denominator is nonzero). The
extended vector r is also a nonnegative fixpoint to the system x = P (x) of the RMC
A and therefore r ≥ q∗. It follows that the system C(A) has a unique minimal
solution, which is the vector of entry-exit probabilities q∗(en,ex). We can then answer
questions, comparing such a probability with a given rational number c by appending
the constraint x(en,ex) ≤ c or x(en,ex) < c, and using a polynomial-time procedure for
the existential theory of the reals with a bounded number, d, of variables.

If we want to determine whether another (nonzero) vertex-exit probability q∗(u,ex)

is less than c then we add to C(A) the constraints f(u,ex)(x) = g(u,ex)(x) · x(u,ex) and
x(u,ex) < c. Note that by the above argument, if r is any solution to C(A), then its
extension to all vertex-exit pairs as above dominates q∗, i.e. f(u,ex)(r)/g(u,ex)(r) ≥
q∗(u,ex). If we want to compare the termination probability starting from a vertex u

of Ai with a rational c, then we add the constraints f(u,ex)(x) = g(u,ex)(x) · x(u,ex) for
all ex ∈ Exi and the constraint

∑

ex∈Exi
x(u,ex) ≤ c or

∑

ex∈Exi
x(u,ex) < c.
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8.3 Linear Recursion, Hierarchical RMCs, and Piecewise Linear Re-
cursion

We will analyze first linear RMCs, and then a more general class of ‘piecewise linear
RMCs’ which includes hierarchical RMCs. Recall from the definitions in Section 2.1
that a linear RMC is one with the property that there is no positive probability path
in any component from any return port to a call port in the same component (via
transitions of that component only). This is a simple syntactic property that can
easily be checked in linear time for an RMC. The class of linear RMCs inherits all
the good properties of finite Markov chains, as we will show. That is, the reachability
probabilities are rational, they have polynomial bit complexity and can be computed
efficiently. Furthermore, qualitative questions do not depend on the precise values
of the transition probabilities. The system of equations x = P (x) for a linear RMC
is still nonlinear. However, as we will see, it can be decomposed into a sequence of
linear systems, and solved efficiently. We will show the following:

Theorem 34 In a linear recursive Markov chain A, all the termination probabilities
q∗(u,ex) are rational, with polynomial bit complexity and can be computed exactly in
polynomial time. Furthermore, the qualitative problem of classifying which probabil-
ities are 0, 1 or in-between does not depend on the values of the transition probabil-
ities, but only on the structure of the RMC A and can be solved in time O(|A|ξθ),
where ξ = maxi{|Exi|} is the maximum number of exits of the components, and
θ = maxi min{|Eni|, |Exi|}.

Proof. Let A be a linear RMC. First, we can determine all the vertex-exit pairs
(u, ex) such that q∗(u,ex) = 0 as in Theorem 2 and remove the corresponding variables

from the system x = P (x). Regard each component Ai as a directed graph on its set
of vertices Qi and let Ri be the subset of vertices that can reach a call port in this
graph and Si = Qi − Ri the remaining set of vertices. Let R = ∪Ri and S = ∪Si.
Since A is a linear RMC, S includes all the exits of the components and all the return
ports of all the boxes, but no call ports. Note that S is successor-closed: all successors
of a vertex in S are also in S. The set S of vertices induces an ordinary finite Markov
chain, where all the exits of the components are absorbing states. The corresponding
subsystem of equations of the system x = P (x) is a linear system. As is well known
from the theory of Markov chains, after we set to 0 those variables x∗(u,ex) in this
subsystem for which the reachability probability q∗(u,ex) = 0, the remaining subsystem
has a unique solution, which is precisely the set of reachability probabilities q∗(u,ex),
u ∈ S.

Now take the remaining subsystem of the system x = P (x) corresponding to the
vertices in R and substitute in the right-hand side the values of all the variables
x∗(u,ex), u ∈ S, and also set to 0 the variables x∗(u,ex), u ∈ R for which q∗(u,ex) = 0.
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Note that the resulting subsystem is a linear system because all return ports are in
S and every nonlinear term of x = P (x) includes the variable x((b,ex′),ex) of a return
port (b, ex). That is, the resulting subsystem has the form x′ = Bx′ + h where x′

is the vector of (nonzero) variables of the form x∗(u,ex), u ∈ R such that q∗(u,ex) > 0,

B is a nonnegative (constant) matrix and h is a nonnegative vector. However, this
subsystem may itself not correspond to the linear system associated with a finite
Markov chain. In particular, the matrix B may not be (sub)stochastic, and may
have rows that sum to greater than 1. We can nevertheless show that this subsystem
has a unique solution, which is then of course the vector q′ of the corresponding
nonzero probabilities q∗(u,ex), u ∈ R. One way to show this is as follows: by Theorem

5, if we start with x′ = 0 and repeatedly apply the transformation x′ = Bx′ + h, the
resulting vector x′k = (I +B +B2 + . . . Bk−1)h will converge to the true probability
vector q′ as k → ∞; note that the statement of the theorem remains valid if we
substitute the true probabilities for some of the variables and restrict the system to
the remaining variables. On the other hand q′ = Bq′ + h and iterating this equation
k times, we have q′ = Bkq′+(I+B+B2 + . . . Bk−1)h. As k → ∞ the second term on
the right hand side tends to q′, hence the first term Bkq′ must tend to the 0 vector.
Since q′ is a strictly positive vector (recall, we eliminated all the zero variables) and
B is a nonnegative matrix, if follows that Bk converges to the all-zero matrix. This
implies that there is a unique solution: If r is any solution, i.e. r = Br + h, then
r = Bkr + (I + B + B2 + . . . Bk−1)h. The right-hand side converges to 0 + q′ as
k → ∞, therefore r = q′.

Thus, to summarize, we can compute the vector q∗ of termination probabilities
by first determining those coordinates that are 0, second, solving a linear system of
equations for the coordinates corresponding to vertices u ∈ S, and third substituting
the computed values and solving a second linear system for the vertices u ∈ R.
Clearly this can be done in polynomial time, and all the computed probabilities are
rationals with polynomial bit complexity. This establishes the quantitative part of
the theorem.

For the qualitative problem, the transition probabilities of the RMC are not rel-
evant and we do not need to solve any linear system. For the vertices u ∈ S, we can
determine whether the termination probability q∗(u,ex) to each exit ex, or the total ter-
mination probability q∗u, is 0, 1 or in-between as in the case of ordinary finite Markov
chains: We decompose the subgraph induced by the set of vertices S into strongly
connected components (scc’s). Note that every exit is a bottom scc, i.e. an scc that
has no outgoing edges. Let us call the vertices that have nonzero probability of not
terminating, i.e. q∗u < 1, survivors. For a vertex u ∈ S , its termination probability
q∗u < 1 iff u can reach a bottom strongly connected component that is not an exit.
On the other hand q∗u = 0 if u cannot reach any exit. Furthermore, for an exit ex in
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the component of u, q∗(u,ex) = 1 iff the only bottom scc that u can reach is ex, and
q∗(u,ex) = 0 iff u cannot reach ex.

It remains to classify the probabilities q∗u and q∗(u,ex) for vertices u ∈ R. We can
determine the survivor vertices of R as follows. Construct the following ordinary
directed graph H on the set of vertices Q of the RMC A. The graph H contains all
the edges of A. In addition H contains for every call port (b, en) and return port
(b, ex) of the same box b of A such that q∗(en,ex) > 0 a “summary edge” from (b, en)

to (b, ex), and also H contains for every call port (b, en) of every box b a “calling”
edge from (b, en) to the entry en of the component to which b is mapped. Let D be
the union of the set of vertices of S that are survivors and the set of call ports that
have no outgoing summary edges.

Lemma 35 A vertex u is a survivor, i.e. q∗u < 1, if and only if u can reach in H a
vertex in D.

Proof. Suppose that u can reach in H a vertex v in D. Then the Markov chain MA

starting at state 〈ǫ, u〉 will follow with nonzero probability a corresponding path that
reaches a state of the form 〈β, v〉. If v is a survivor vertex in S then there is nonzero
probability that the path will not be able to reach any exit of the component of v,
and hence will not terminate. If v is a call port (b, en) with no outgoing summary
edges, then clearly from that point on the RMC will surely not exit. Thus, in either
case there is nonzero probability that the RMC will not terminate.

Conversely, suppose that u does not have any path in H to any node of D.
Consider the bottom scc’s of H. Note that every vertex of S can only reach in H
vertices of S, thus if a bottom scc contains a vertex in S then all the vertices must
be in S, and the scc is either an exit or a set of survivor vertices. If a bottom scc
contains a vertex in R, then it must also contain a call port v = (b, en) (because
every vertex in R can reach a call port); since the bottom scc does not contain any
vertex in S, it cannot contain any return port of the box b, hence the call port v has
no outgoing summary edges and hence it is in D. Thus, we see that in either case
every bottom scc of H that is not an exit contains a node in D.

Consider a trajectory of the RMC starting at vertex u of R, i.e. a path of MA

starting at 〈ǫ, u〉. Since u cannot reach inH any node inD, with probability 1 the path
will eventually reach either some exit of u’s component or a call port of a box. Every
time the path reaches the call port (b, en) of a box and initiates a new recursive call,
since the call port has an outgoing summary edge, there is nonzero probability that
the path will eventually reach a return port (b, ex) of the box; if this happens then the
process from that point on will terminate with probability 1 for the following reason.
Suppose that the state of the Markov chain MA is 〈b1 . . . bk, (b, ex)〉. Note that if the
path π of MA entered these boxes through the call ports (b1, en1), . . . (bk, enk), (b, en)
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respectively, then H contains a path from u to (b, en1) to en1 to (b, en2) to ... to (b, en)
to (b, ex). Then u can reach in the graph H the vertex (b, ex) which is in S and hence
by assumption vertex (b, ex) is not a survivor. Thus a path from 〈b1 . . . bk, (b, ex)〉
will reach with probability 1 an exit 〈b1 . . . bk, exk〉 of its component, and then in one
step it will reach a state 〈b1, . . . , bk−1, (bk, exk)〉. Since H contains a path from u
to (bk, enk) and there is a summary edge from (bk, enk) to the return port (bk, exk),
it follows again that since (bk, exk) is in S it is not a survivor, and thus the path
will go on with probability 1 to exit the box bk−1, i.e., to reach the global state
〈b1, . . . , bk−2, (bk−1, exk−1)〉, and so forth until it reaches a global exit 〈ǫ, ex′〉 of the
original component that contains the vertex u.

Every time the path enters a new box (initiates a new call) there is nonzero
probability that it will exit the box and if this happens then it will go on to terminate
almost surely. It follows that the probability that the path enters a new box infinitely
often is 0, i.e., with probability 1 the path will only enter a finite number of boxes
and hence it will terminate.

Once we have determined which vertices are survivors, we can determine easily
whether a particular vertex-exit probability q∗(u,ex) is 1 or not: q∗(u,ex) = 1 iff q∗u = 1

and q∗(u,ex′) = 0 for all other exits ex′ of the component of u.
Clearly we can compute in linear time the sets of vertices R and S, decompose

the subgraph induced by S into strongly connected components and determine the
vertices of S that are survivors. We compute then the entry-exit pairs en, ex such
that q∗(en,ex) > 0, we add the summary edges and construct the graph H. If every
component of the RMC has at most ξ exits, then the graph H has size at most
|A|ξ. We can then compute all the vertices in H that can reach a vertex of D in
time O(|H|) = O(|A|ξ), and thereby determine all the survivor vertices, and from
them classify qualitatively as above all the termination probabilities q∗(u,ex). This
establishes the second part of the theorem.

Piecewise Linear and Hierarchical RMCs

Linear RMCs can be extended to define the more general notion of piecewise-
linear RMCs, which contains the class of hierarchical Markov chains, and for which
a number of the results for RMCs carry over. The piecewise linear class is defined
as follows. From the nonlinear system x = P (x) of an RMC, A, construct the
dependency graph GA as in Section 6: the nodes are those variables x(u,ex) such that
q∗(u,ex) 6= 0, plus an additional node labeled “1”, and whose edges include edge (xi, xj)

iff xj appears in Pi(x), and edge (xi, 1) iff Pi(x) ≡ 1. Now, we can decompose the
graph GA into strongly connected components (SCCs), and we can also form the
DAG, DA, of SCCs of this decomposition. We call the original RMC A a piecewise-
linear RMC if, for every SCC C, the subsystem of x = P (x) induced by the variables
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in C (treating variables in other SCCs as constant) is linear; that is, for every SCC,
C, of GA and every Typecall variable x((b,en),ex) of C with corresponding polynomial
P((b,en),ex)(x) ≡

∑

i x(en,ex′

i)
x((b,ex′

i),ex), where the sum ranges over all exits ex′i of the
component that contains entry en, it must be the case that for each i, either x(en,ex′

i)

is not in C or x((b,ex′

i),ex) is not in C (or both are not in C).
Clearly, all linear RMCs are also piecewise linear. It is easy to see also that

all Hierarchical Markov Chains (HMCs) are piecewise-linear. Recall that a RMC
A is hierarchical if the call graph of A is acyclic. The call graph CG(A) has one
node i = 1, . . . , k for each component Ai of A and has an edge (i, j) if a box of Ai

is mapped to Aj . Every nonlinear equation of the equation system SA for A has
the form x((b,en),ex) = P((b,en),ex)(x) ≡ ∑

i x(en,ex′

i)
x((b,ex′

i),ex) where b is a box of a
component Al. The box b is mapped to a lower component Am that cannot reach
Al in CG(A) since CG(A) is acyclic. It follows that the variables x(en,ex′

i)
(which

correspond to entry-exit probabilities of Am) cannot reach the variable x((b,en),ex) (a
vertex-exit probability of Al) in the dependency graph GA, i.e. the variables x(en,ex′

i)

belong to a lower SCC. It follows that each SCC induces a linear system, and therefore
A is piecewise linear.

It should be clear to the reader that if we solve the subsystems induced by the
SCCs “bottom up” according to the DAG DA of the SCC’s, then solving each SCC will
only involve solving a purely linear system. The encountered linear systems can in fact
all be solved uniquely by matrix inversion; this can be shown by a similar argument
to the one given for the linear RMC case (Theorem 34). We remark also that the
decomposed Newton’s method will handle piecewise linear RMCs quite effectively:
after we decompose the system into strongly connected components, the subsystem
for each SCC after we substitute the values for the variables in lower SCCs is linear,
hence Newton will solve the system and converge in one iteration.

Some of the results about linear RMCs readily carry over to piecewise-linear
RMCs via simple modifications of the same proofs. In particular, all termination
probabilities are again rational values. However, although the probabilities are ratio-
nal, they are no longer necessarily concise and may require exponentially many bits
to encode if the height of the DAG DA is unbounded. An example is given by the
HMCs depicted in figure 5, which have size O(n) but where termination probabilities
are as small as 1

22n . However, if the height of DA is bounded by a fixed constant,
then the rational termination probabilities will all have size polynomial in the size
of the input RMC and can be computed efficiently via a bottom-up analysis of the
SCCs of GA.

Moreover, for the qualitative questions the height of DA is immaterial (since there
are no quantities to compute whose size might explode), and by a modification of
the proofs for linear RMCs, we can answer qualitative questions for piecewise-linear
RMCs with the same complexity, via a bottom-up analysis. We summarize these
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facts as follows:

Theorem 36 In a piecewise-linear recursive (and in particular, for a hierarchical)
Markov chain A, all the termination probabilities q∗(u,ex) are rational, and moreover if
the DAG DA has height bounded by a fixed constant, then these rationals have poly-
nomial bit complexity and can be computed exactly in polynomial time. Furthermore,
the qualitative problem of classifying which probabilities are 0, 1 or in-between does
not depend on the values of the transition probabilities, but only on the structure of
the RMC and can be solved for any piecewise-linear RMC A, even when the height of
DA is unbounded, in time O(|A|ξθ).

If we have a unit-cost RAM model with exact rational arithmetic (i.e. algebraic
operations on arbitrary rationals can be done in unit time) [BCSS98], we do not have
to worry about the size of the numbers. Computing the termination probabilities of
a piecewise linear recursive Markov chain (and in particular a hierarchical Markov
chain) involves the solution of a sequence of linear systems, one for each SCC of the
dependency graph, thus it can be done in polynomial time in that model. That is,
the exact computation of the termination probabilities is in the class of problems
solvable in polynomial time in the real model of [BCSS98] with rational constants.
On the other hand, we saw in Theorem 12 that the decision problem for HMCs is
at least as hard as PosSLP (even for 1-exit HMCs), and PosSLP is as hard as any
other (Boolean) decision problem solvable in polynomial time in the real model of
[BCSS98] with rational constants. The notation BP (P 0

R
) is used in [ABKPM06] for

this class (BP stands for Boolean part: decision problems where the inputs are finite
binary strings rather than real numbers). Thus, we have:

Corollary 37 The decision problem for hierarchical and piecewise linear recursive
Markov chains is complete (under P-time Turing reductions) for the class BP (P 0

R
) of

decision problems solvable in polynomial time with unit-cost exact rational arithmetic.

9 Relation to other models

9.1 Probabilistic Pushdown Systems

We now observe that RMCs and Probabilistic Pushdown Systems (pPDSs), studied
in [EKM04, BKS05, EKM05] (see also [AMP99]) are essentially equivalent, and can
be translated in linear time to one another. This is entirely analogous to the cor-
respondence between (non-probabilistic) RSMs and Pushdown Systems (PDSs) (for
which, see [ABE+05] for a detailed treatment).

The difference between RMCs and pPDSs (and between RSMs and PDSs) is anal-
ogous to the difference between a program that is broken down into a set of procedures
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that may call each other in a potentially recursive manner, and a non-recursive single-
procedure program that uses a stack to perform an equivalent computation. Both
models of course have the same computational power, but recursion (as well as hier-
archy) and modularity (decomposing a program or system into smaller components)
are some of the most powerful and important structuring primitives in computer sci-
ence, useful for specifying large programs and modeling large systems. The RMC
(and RSM) model incorporates these structuring primitives explicitly in the model,
to facilitate modeling the behavior of systems that have probabilistic and recursive
features. Similarly, Hierarchical Markov Chains are a useful way to structure and
represent succinctly classes of large Markov chains.

RMCs are defined to closely resemble recursive probabilistic procedural programs,
and to reflect their structure and parameters: components of an RMC correspond to
procedures, entries and exits correspond to parameter- and return values passed to
and from procedures. The translation to a pPDS loses some of this correspondence:
the maximum number of exits of the RMC corresponds precisely to the number of
states of the pPDS (in both directions of our translations), but there are no natural
analogous parameters in a pPDS corresponding to the number of components or
the number of entries of an RMC. In particular, Theorem 33, our polynomial-time
algorithm for bounded RMCs, has no natural analog in terms of general pPDSs. One
can state the theorem in terms of pPDSs that have additional structure, and this
follows from our translation below, but to do so one would have to add structure to
pPDSs in such a way that, in effect, amounts to redefining RMCs.

We now formalize the relationship between these models. A probabilistic Push-
down System (pPDS) P = (QP ,Γ,∆) consists of a set of control states QP , a
stack alphabet Γ, and a probabilistic transition relation ∆ ⊆ (QP × Γ) × [0, 1] ×
(QP × {swap(Γ), swap-and-push(Γ × Γ), pop}). That is, a transition has the form
((s, γ), p(s,γ),(s′,C), (s

′, C)), where based on the control state and the symbol on top of
the stack symbol (s, γ), with probability p, the machine updates the control state to
s′, and performs action C on the stack. If C = swap(γ′) then the action swaps the
top-of-the-stack symbol γ with a new symbol γ′. If C = swap-and-push(γ′, γ′′), then
the action both swaps γ with γ′ and then pushes γ′′ on top of the stack. Note that
the standard push transition ((s, γ), p(s,γ),(s′,push(γ′)), (s

′, push(γ′))) can be written as
((s, γ), p(s,γ),(s′,swap-and-push(γ,γ′)), (s

′, swap-and-push(γ, γ′))). Lastly, if C = pop,
then the action pops the stack. Each such transition has an associated probability
p(s,γ),(s′,C), and we assume that for each pair (s, γ) of control state and top of stack
symbol,

∑

(s′,C) p(s,γ),(s′,C) = 1. We assume there is a special stack symbol ⊥ that
marks the bottom of the stack, and constitutes the initial content of the otherwise
empty stack, and we assume that when ⊥ is popped the pPDS terminates. A stack
with letter γ at the top and remaining content ω ∈ Γ∗ (running from bottom to top)
will be written ωγ.
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A pPDS P defines a countable Markov chain M(P) in the obvious way. The
states are pairs (w, s) with s ∈ QP and w ∈ Γ∗, and, e.g., a pPDS transition
((s, γ), p, (s′, swap(γ′))) yields a transition ((wγ, s), p, (wγ′ , s′)) in M(P).

First note that a pPDS with only one control state is essentially equivalent to an
SCFG. To see this, note that the stack alphabet Γ can act as the set of nonterminals,
and the three distinct kinds of actions swap, swap-and-push, and pop correspond to a
grammar rule with 1, 2, and 0 nonterminals on the right hand side, respectively. We
saw that this is sufficient to define an SCFG in generalized Chomsky Normal Form.

For an RMC A and pPDS P, let M(A) and M(P) denote their associated count-
able Markov Chain. We now show that for every pPDS P there is a RMC A such
that M(A) and M(P) are “essentially equivalent”, and vice versa. The result is
completely analogous to similar results in [ABE+05] for non-probabilistic RSMs and
PDSs.

To make the notion of “essentially equivalent” concrete, we define the following:
in a (countable) Markov chain M with states t and t′, let t

p
; t′ mean that either

there is a direct transition (t, p, t′) in M, or there is another state t′′ such that (t, p, t′′)
and (t′′, 1, t′) are transitions of M.

Theorem 38

1. For every pPDS P, there is an easily (linear time) computable RMC A = 〈A1〉
with one component, and an easily computable one-to-one mapping f from states
of M(P ) to states of M(A) such that for every transition (t, p, t′) of M(P ), we

have f(t)
p
; f(t′) in M(A). Moreover, |A| = O(|P|), and |Ex1| = |QP |.

2. For every RSM A = 〈A1, . . . , Ak〉, with k′ = maxi |Exi|, there is a easily (linear
time) computable PDS P and one-to-one mapping f from the states of M(A)
to the states of M(P ), such that for every transition (t, p, t′) of M(A), we have

f(t)
p
; f(t′) in M(P ). Moreover, |P | = O(|A|), and |QP | ≤ k′.

Proof. First, given a pPDS P , we build RMC A. A has only one component, A1.
7

A1 has an entry en(s,γ) for every pair (s, γ) with s in QP and γ in Γ, such that there
is a transition leaving (s, γ) in P. It has one exit exs for every s ∈ QP . It also has one
box bγ associated with each stack symbol γ ∈ Γ that plays a role in some transition
of P. All boxes are, obviously, mapped to A1. The transitions of A1 are as follows:

1. For every transition ((s, γ), p, (s′, pop)) in ∆, there is a transition (en(s,γ), p, exs′)
in δ1.

7For convenience, we define A in such a way that there may also be incoming transitions into
entry nodes of a component. This richer definition of RMCs causes no problems in any of our results.
It is also not essential here and can be eliminated if we wished, using a slightly modified notion of
; in the statement of the theorem.
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2. For every transition ((s, γ), p, (s′, swap(γ′))) in ∆, there is a transition (en(s,γ), p, en(s′,γ′))
in δ1.

3. For every transition ((s, γ), p, (s′, swap-and-push(γ1, γ2))) in ∆, there is a tran-
sition (en(s,γ), p, (bγ1 , en(s′,γ2))) in δ1.

4. For every box exit (bγ , exs) of each box bγ , there is a probability-1 transition
((bγ , exs), 1, en(s,γ)) in δ1.

The intuition should be clear: each entry node en(s,γ) of A1 corresponds to the
configuration of P with control state s and top-of-stack γ. The remainder of the
content of the pushdown stack of P (with the top element excluded) is coded in
the call stack of A, with box bγ on the call stack acting like γ on the pushdown
stack. The size |A| is O(|P |), and the number of exits of A1 is |QP |. Consider
the mapping f from global states of M(P) to global states of M(A), defined by
f(〈γ1 . . . γn, s〉) = 〈bγ1 . . . bγn−1 , en(s,γn)〉 It is not hard to check that the mapping f
has the “transition preservation” property specified in the statement of the theorem.

In the other direction, given a RMC A, we now describe how to build a corre-
sponding pPDS P.

The stack symbols Γ of P correspond to all possible “locations” (j, v) in the RMC:
j gives the index of the component, and v is either a node of Aj or a box b of Aj .
The control states QP of P are {1, . . . , |ex|}, where |ex| is the maximum number
of exit nodes of any component. For every transition (v, p, v′) between vertices v
and v′ of a component Aj where v is not of the form (b, ex) and v′ is not of the
form (b′, en), there is a transition ((1, (j, v)), p, (1, swap (j, v′))) in M(A). For every
transition (v, p, (b, e)) within a component Aj where v is not of the form (b′, ex) and
where b is a box of Aj mapped to component Aj′ and e is an entry node of Aj′ , there is
a transition ((1, (j, v)), p, (1, swap-and-push((j, b), (j′ , e)))) in P. For every exit node
xi of component Aj (where xi is the ith exit of Aj), there is a probability-1 transition
((1, (j, xi)), 1, (i, pop)) in P. For every box b of Aj mapped to component Aj′ , for every
exit xi of Aj′ and every transition ((b, xi), p, v

′) with v′ not of the form (b′, e), there is a
transition ((i, (j, b)), p, (1, swap (j, v′))) in P. Finally, for every box b of Aj mapped to
component Aj′ , for every exit xi of Aj′ and every transition ((b, xi), p, (b

′, e)) with e an
entry node of Ak, there is a transition ((i, (j, b)), p, (1, swap-and-push((j, b′), (k, e))))
in P.

The size of P is linear in the size of the recursive Markov chain A. Note that in
the case where A is single-exit, P has only one control state, and is thus context-free.

It is not hard to check that the “equivalence” property stated in the theorem
holds for the following mapping: for every global state g = 〈b1 . . . bn, v〉 of M(A)
where v is not an exit node, g is mapped to the global state f(g) = 〈γ1 . . . γn+1, 1〉
of M(P) with, for all i ≤ n, γi = (ji, bi) (where bi is a box of component Aji

), and
γn+1 = (jn+1, v) with jn+1 being the index of the machine called by box bn; and
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for every global state g = 〈b1 . . . bn, xi〉 of A where xi is the ith exit node of of a
component Aj called by box bn, f(g) = 〈γ1 . . . γn, i〉 with, for all i ≤ n, γi = (ji, bi)
(where bi is a box of component Aji

). This concludes the proof of Theorem 38.

9.2 Random Walks with “Back Buttons”

Fagin, et. al. ([FKK+00]) studied a probabilistic model of web surfing which they
call a Random walk with “Back Buttons”, or a backoff process. The model extends
a finite Markov chain with a “back-button” feature: in each state, besides moving
forward probabilistically to a new state, with some probability we can press the back
button and return to the previous state from which the current state was entered. In
this section we will show that this model corresponds to a proper subclass of 1-exit
RMCs and of SCFGs.

Backoff processes can be defined formally by a simple restriction of pPDSs. (This
is essentially identical to the definition in ([FKK+00]) , only differing slightly in nota-
tion.) A backoff process P is a pPDS which has just 1 control state, and only push(γ′)
and pop transitions. In other words, no swap(γ′) and no swap-and-push(γ′, γ′′) actions
are available in transitions.

Note that the associated countable Markov chain generated by a backoff process
has the property that the global states are determined by the stack content alone, and
that the stack either grows by 1 (a push) or shrinks by 1 (a pop) in each transition
(i.e., the stack can not stay the same height during a transition).

Fagin et. al. showed, among a number of results, how to use semidefinite pro-
gramming to compute quantities such as termination probabilities for backoff pro-
cesses (which they call “revocation” probabilities), by using the system of nonlinear
equations associated with a backoff process. The primary focus of their work was
to study and compute (Cesaro) limit distributions for “local states” of the backoff
processes, where a local state is just given by the top stack symbol.

Another way to view backoff processes is as a restricted form of SCFG.
Namely, if our stack alphabet is Γ = {γ1, . . . , γk}, we can associate to each stack

symbol γi a nonterminal Si, and we have the following rules in our grammar:

• A rule Si
p→ SjSi, for every “push” transition ((1, γi), p, (1, push(γj))) ∈ ∆.

• A rule Si
p→ ǫ, for every “pop” transition ((1, γi), p, (1, pop)) ∈ ∆.

It is easy to see that a random walk (i.e., trajectory) of a backoff process P cor-
responds precisely to a leftmost (probabilistic) derivation of its corresponding SCFG,
with rules applied according to their probabilities during the derivation. Thus, the
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probability of termination starting from a given stack symbol in P corresponds ex-
actly to the termination probability starting from the corresponding nonterminal in
the SCFG.

It is also easy to see that the system of nonlinear equations x = P (x) associated
with termination probabilities for a backoff process (what [FKK+00] call revocation
probabilities), has the following form. We have one variable xi for each stack symbol
γi ∈ Γ, and the equation associated with xi is:

xi =
∑

(γi,pγi,γj
,push(γj))

pγi,γj
xixj + bi

Here bi is the probability of popping directly when the top of stack symbol is γi,
i.e., the probability of the transition ((1, γi), bi, (1, pop)). (Of course, bi = 0 if this
transition does not exists.) The LFP solution of these systems x = P (x), again,
defines the termination probabilities for backoff processes.

These restricted nonlinear systems have an important property: if we replace
xi = Pi(x) by the constraint Pi(x) − xi ≤ 0, and add the constraint x ≥ 0, then
all our constraints are convex. We can then find the LFP solution to this system
by minimizing the linear objective

∑

i xi subject to these convex constraints. This
enables Fagin, et. al., to apply powerful convex optimization techniques, in partic-
ular semidefinite programming (see, e.g., [GLS93]), to approximate the termination
probabilities for backoff processes to within any given number of bits of precision in
polynomial-time.

It is a very interesting question whether convex optimization techniques such
those employed by Fagin, et. al., can be extended to RMCs, or even to 1-exit RMCs.
Unfortunately, the richer systems x = P (x) defined by RMCs and 1-exit RMCs are
not convex in general.

10 Conclusions
We introduced Recursive Markov Chains, and studied basic algorithmic problems for
their analysis, namely termination and reachability. We observed that the key to
these problems is computation of the least fixed point solution of certain monotone
polynomial systems of equations x = P (x). A wide variety of techniques came into
play, from the existential theory of the reals, theory of branching processes, numer-
ical computing, combinatorial algorithms, etc. We showed that the qualitative and
quantitative problems for the general class of RMCs are in PSPACE. We presented a
more practical Newton-based method for numerical estimation, which we showed is
guaranteed to converge monotonically to the desired probabilities, and we presented
more efficient polynomial time algorithms for important special subclasses of RMCs.
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We also presented lower bounds, showing that both the qualitative (almost sure)
termination and the approximation problems for RMCs are at least as hard as all
of P-time in the powerful unit-cost RAM model with exact rational arithmetic (no
integer division), and for hierarchical RMCs, the decision problem is complete for
this class even in the 1-exit case.

We have built on the theory and algorithms developed in this paper, to extend
our methods to algorithms for the verification of linear time properties of RMC’s
([EY05b, YE05], see also [BKS05]). As shown there, the computation of termination
probabilities lies at the heart of the qualitative and quantitative analysis of general
properties of RMCs. Computation of other quantities for pPDS (equivalently, RMCs)
is investigated in [BEK05, EKM05]. We have studied extensions of RMCs to Recur-
sive Markov Decision Processes and Recursive Stochastic Games, where transitions
are not purely probabilistic but can also be controlled by players that are trying to
optimize their objectives [EY05c, EY06a, EY06b].

A number of questions remain open for the problems studied in this paper. The
most important of course is, can the problems be solved in polynomial time? In
view of our lower bounds, namely hardness results with respect to SQRT-SUM and
PosSLP, a positive answer would imply that, as far as solving decision problems is
concerned (and thus also, for problems with polynomial length output), unit-cost
exact rational arithmetic can be simulated with polynomial overhead in the standard
Turing machine model (equivalently, logarithmic cost RAM model). For the class
of hierarchical Markov chains, this is necessary and sufficient for polynomial time
solvability of the decision problem. Does this hold for the general class of RMCs, i.e.
is the problem solvable in polynomial time with unit-cost exact rational arithmetic?
Is there any other evidence of hardness, such as NP-hardness? Even if someone
believes that, e.g., PosSLP is solvable in polynomial time (which looks unlikely at
present), it is worth noting that even the much easier problem EquSLP, which asks
to decide whether the output of an arithmetic circuit with integer inputs and gates
{+, ∗,−} is exactly equal to 0, and which is known to be decidable in probabilistic
polynomial time (i.e., is in BPP), is P-time equivalent to the well known open problem
of polynomial identity testing (see [ABKPM06]), and therefore (by results of [KI03])
a P-time algorithm for it (in the standard Turing model) would imply non-trivial
circuit lower bounds.

We proposed a decomposed Newton method for approximating the reachability
and termination probabilities. The method has been implemented and appears to
perform well in practice [NS06, WE07]. Following an early version of this paper,
there has been significant progress in investigating the rate of convergence of the
decomposed Newton’s method for RMCs and for monotone systems of polynomial
equations [KLE07, EKL08]. These papers show that for a strongly connected system
x = F (x), after some initial number kF of iterations, Newton’s method gains at least
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one bit of precision per iteration. The upper bound shown on the initial number
kF of iterations is exponential in the input size; a polynomial bound is shown for
a subclass of systems (that includes the back-button process [FKK+00]). For non-
strongly connected systems and RMCs, an example is provided where an exponential
number of iterations is needed to gain i bits of precision. Note that an upper bound
on the number of Newton iterations implies a similar bound in the unit-cost model,
but not in the standard Turing machine (or logarithmic cost RAM) model because
the number of bits of the generated numbers may become exponential.

For the important models of branching processes, stochastic context-free gram-
mars, and 1-exit RMCs, we gave a polynomial time algorithm for the qualitative
termination problem. We also showed a lower bound for the decision problem. Can
we approximate the termination probabilities in polynomial time? For the subclass
of back-button processes, a polynomial time approximation algorithm using semidef-
inite programming was given in [FKK+00]. This does not seem to extend in any
immediate way to the more general class of 1-exit RMCs (and MT-BPs, SCFGs), but
perhaps there is a way to tackle the problem with more general convex optimization
methods.
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