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Abstract. We introduce and study Recursive Markov Chains (RMCs),
which extend ordinary finite state Markov chains with the ability to
invoke other Markov chains in a potentially recursive manner. They offer
a natural abstract model for probabilistic programs with procedures, and
are a probabilistic version of Recursive State Machines. RMCs generalize
Stochastic Context-Free Grammars (SCFG) and multi-type Branching
Processes, and are intimately related to Probabilistic Pushdown Systems.
We focus here on termination and reachability analysis for RMCs. We
present both positive and negative results for the general class of RMCs,
as well as for important subclasses including SCFGs.

1 Introduction

We introduce and study Recursive Markov Chains (RMCs), a natural model
for systems involving probability and recursion. Informally, a Recursive Markov
Chain consists of a collection of finite state component Markov chains (MC)
which can call each other in a potentially recursive manner. RMCs are a natural
probabilistic version of Recursive State Machines (RSMs) ([1, 4]), with transi-
tions labeled by probabilities. RSMs and closely related models like Pushdown
Systems (PDSs) have been studied extensively in recent research on model check-
ing and program analysis, because of their applications to verification of sequen-
tial programs with procedures. RMCs offer a natural abstract model for proba-
bilistic procedural programs. Probabilistic models of programs are of interest for
at least two reasons. First, the program may use randomization, in which case
the transition probabilities reflect the random choices of the algorithm. Second,
we may want to model and analyse a program under statistical conditions on
its behaviour (e.g., based on profiling statistics or on statistical assumptions),
and to determine the probability of properties of interest, e.g., that the program
terminates, and/or that it terminates in a certain state.

Recursive Markov chains are an interesting and important model in their
own right. RMCs provide a succinct finite representation for a natural class
of denumerable Markov Chains that generalize other well-studied models, such
as Stochastic Context-Free Grammars (SCFGs) and Multitype Branching Pro-
cesses, and they are intimately related to Probabilistic Pushdown Systems (pPDSs).

Single-exit RMCs, the special case where each component MC has exactly 1
exit (terminating state), are in a precise sense “equivalent” to SCFGs. SCFGs



have been studied extensively, especially in the Natural Language Processing
(NLP) community, since the 1970s (see, e.g., [23]). Their theory is directly con-
nected with the theory of multi-type Branching Processes (MT-BPs) initiated
by Kolmogorov and others (see, e.g., [18, 20]). BPs are an important class of
stochastic processes. Their theory dates back to the 19th century and the work
of Galton and Watson on population dynamics. Multi-type BPs and SCFGs
have been applied in a wide variety of stochastic contexts besides NLP, includ-
ing population genetics ([19]), models in molecular biology including for RNA
([27]), and the study of nuclear chain reactions ([13]). Many variants and ex-
tensions of MT-BPs have also been studied. Despite this extensive study, some
basic algorithmic questions about SCFGs and MT-BPs have not been satisfac-
torily answered. For example, is the probability of termination of a given SCFG
(i.e., the probability of its language) or MT-BP (i.e. the so-called probability of
extinction) ≥ p? Is it = 1? Can these questions be decided in polynomial time
in general? What if there are only a constant number of types in the branching
process (non-terminals in the grammar)? RMCs form a natural generalization of
SCFGs and MT-BPs, however their underlying stochastic processes appear not
to have been studied in their own right in the rich branching process literature.

Our goal in this paper is to provide efficient algorithms and to determine the
computational complexity of reachability analysis for RMCs. Namely, we are
interested in finding the probability of eventually reaching a given terminating
vertex of the RMC starting from a given initial vertex. As with ordinary Markov
chains, such algorithms are a core building block for model checking and other
analyses of these probabilistic systems. For SCFGs (MT-BPs), this amounts to
an algorithm for determining the probability of termination (extinction).

It turns out reachability probabilities for RMCs are captured by the Least
Fixed Point (LFP) solution of certain monotone systems of nonlinear polynomial
equations. We observe that these solutions can be irrational even for SCFGs, and
not solvable by radicals. Thus we can’t hope to compute them exactly.

By appealing to the deep results on the complexity of decision procedures for
the Existential Theory of Reals (see, e.g., [6]), we show that for general RMCs we
can decide in PSPACE whether the probability is ≤ p, or = p, for some rational
p ∈ [0, 1], and we can approximate the probabilities to within any given number
of bits of precision. For an SCFG where the number of non-terminals is bounded
by a constant (or a MT-BP with a bounded number of types), we can answer
these questions in polynomial time. We show that this holds more generally, for
RMCs where the total number of entries and exits of all components is bounded
by a constant. Furthermore, we show that for single-exit RMCs with an arbitrary
number of components (i.e., for general SCFGs), we can decide if the probability
is exactly 1 in P-time.

The monotone nonlinear systems for RMCs give rise to a natural iterative
numerical algorithm with which to approximate the LFP. Namely, the system
of equations has the form x = P (x), where x is a vector, such that the vector of
probabilities we are seeking is given by limk→∞ P k(0), where P 1(0) = P (0) and
P k+1(0) = P (P k(0)). We show that this iteration can be very slow to converge.



Remarkably however, we show that a multi-dimensional Newton’s method con-
verges monotonically to the LFP on a decomposed version of the system, and
constitutes a rapid “acceleration” of the standard iteration. Note that in other
contexts, in general Newton’s method is not guaranteed to converge; but when it
does converge, typically it converges very fast. We thus believe that in our con-
text Newton provides an efficient practical method for numerically estimating
these probabilities for all RMCs.

Lastly, for “lower bounds”, we show that one can not hope to improve our
PSPACE upper bounds for RMCs without a major breakthrough, by establish-
ing a connection to a fundamental open problem in the complexity of numerical
computation: the square-root sum problem. This problem is known to be in
PSPACE, but its containment even in NP is a longstanding open problem first
posed in 1976 ([16]), with applications to a number of areas including compu-
tational geometry. We show the square-root sum problem is polynomial-time
reducible to the problem of determining for an SCFG whether the termination
probability is ≤ p for some p ∈ [0, 1], and also to the problem of determining
whether a 2-exit RMC terminates with probability 1.

Due to space limitations, all proofs are omitted. Please see the full paper [15].

Related Work. The work in the verification literature on algorithmic analysis of
pushdown systems is extensive (see, e.g., [3, 10]). Recursive state machines were
introduced in [1, 4] as a more direct graphical model of procedural programs,
and their algorithmic verification questions were thoroughly investigated. A re-
cent work directly related to ours is by Esparza, Kucera, and Mayr [12]. They
consider model checking for probabilistic pushdown systems (pPDSs). pPDSs
and RMCs are intimately related models, and there are efficient P-time trans-
lations from one to the other. As part of their results [12] show decidability of
reachability questions for pPDSs by appealing to results on the theory of reals.
In particular, they derive EXPTIME upper bounds for reachability. Our work
was done independently and concurrently with theirs (a preliminary draft of our
work was made available to the authors of [12] after we learned of their work).
In any case, although their work overlaps briefly with ours, their primary focus
is on decidability (rather than precise complexity) of model checking problems
for a probabilistic branching-time temporal logic, PCTL. Our work also answers
several complexity questions raised in their work. As mentioned earlier, SCFGs
have been studied extensively in the NLP literature (see, e.g., [23]). In particular,
the problem of consistency of a SCFG (whether it terminates with probability
1) has been studied, and its connection to the extinction problem for MT-BPs is
well known [18, 7, 17, 9]. However, none of the relevant references provide a com-
plete algorithm and characterization for consistency. Another work on pPDSs is
[2]. They do not address algorithmic questions for reachability.

2 Basics

A Recursive Markov Chain (RMC), A, is a tuple A = (A1, . . . , Ak), where each
component graph Ai = (Ni, Bi, Yi, Eni, Exi, δi) consists of:



– A set Ni of nodes.
– A subset of entry nodes Eni ⊆ Ni, and a subset of exit nodes Exi ⊆ Ni.
– A set Bi of boxes. Let B = ∪k

i=1Bi be the (disjoint) union of all boxes of A.
– A mapping Yi : Bi 7→ {1, . . . , k} that assigns to every box (the index of) one

of the components, A1, . . . , Ak. Let Y = ∪k
i=1Yi denote the map Y : B 7→

{1, . . . , k} which is consistent with each Yi, i.e., Y |Bi
= Yi, for 1 ≤ i ≤ k.

– To each box b ∈ Bi, we associate a set of call ports, Callb = {(b, en) | en ∈
EnY (b)}, and a set of return ports, Returnb = {(b, ex) | ex ∈ ExY (b)}.

– A transition relation δi, where transitions are of the form (u, pu,v, v) where:
1. the source u is either a non-exit node u ∈ Ni \ Exi, or a return port
u = (b, ex) ∈ Returnb, where b ∈ Bi.

2. The destination v is either a non-entry node v ∈ Ni \Eni, or a call port
v = (b, en) ∈ Callb, where b ∈ Bi.

3. pu,v ∈ R>0 is the transition probability from u to v. (We assume pu,v is
rational.)

4. Consistency of probabilities: for each u,
∑

{v′|(u,pu,v′ ,v′)∈δi}
pu,v′ = 1,

unless u is a call port or exit node, neither of which have outgoing tran-
sitions, in which case by default

∑
v′ pu,v′ = 0.

We will use the term vertex of Ai to refer collectively to its set of nodes, call
ports, and return ports, and we denote this set by Qi, and we let Q =

⋃k
i=1Qi

be the set of all vertices of the RMC A. That is, the transition relation δi is a
set of probability-weighted directed edges on the set Qi of vertices of Ai. Let
δ = ∪iδi be the set of all transitions of A.

An RMC A defines a global denumerable Markov chain MA = (V,∆) as
follows. The global states V ⊆ B∗ ×Q of MA are pairs of the form 〈β, u〉, where
β ∈ B∗ is a (possibly empty) sequence of boxes and u ∈ Q is a vertex of A. More
precisely, the states V and transitions ∆ are defined inductively as follows:
1. 〈ε, u〉 ∈ V , for u ∈ Q. (ε denotes the empty string.)
2. if 〈β, u〉 ∈ V and (u, pu,v, v) ∈ δ, then 〈β, v〉 ∈ V and (〈β, u〉, pu,v, 〈β, v〉) ∈ ∆

3. if 〈β, (b, en)〉 ∈ V , (b, en) ∈ Callb, then
〈βb, en〉 ∈ V and (〈β, (b, en)〉, 1, 〈βb, en〉) ∈ ∆

4. if 〈βb, ex〉 ∈ V , (b, ex) ∈ Returnb, then
〈β, (b, ex)〉 ∈ V and (〈βb, ex〉, 1, 〈β, (b, ex)〉) ∈ ∆

Item 1 corresponds to the possible initial states, 2 corresponds to a transition
within a component, 3 is when a new component is entered via a box, 4 is when
the process exits a component and control returns to the calling component.

Some states of MA are terminating states and have no outgoing transitions.
These are states 〈ε, ex〉, where ex is an exit node. If we wish to view MA as a
proper Markov chain, we can consider the terminating states as absorbing states
of MA, with a self-loop of probability 1.

RMCs where the call graph between components forms an acyclic graph are
called Hierarchical Markov Chains (HMCs). In this special case MA is finite, but
can be exponentially larger than the HMC which specifies it.
The central reachability questions. Our goal is to answer termination and
reachability questions for RMCs. Given a vertex u ∈ Qi and an exit ex ∈ Exi,



both in the same component Ai, let q∗(u,ex) denote the probability of eventually

reaching the terminating state 〈ε, ex〉, starting at the initial state 〈ε, u〉. Com-
puting probabilities q∗(u,ex) will allow us to efficiently obtain other probabilities.

For a given pair of vertices u, v ∈ Q of the RMC, let [u, v] denote the proba-
bility that starting at state 〈ε, u〉 we will eventually reach a state 〈β, v〉 for some
β ∈ B∗. We can obtain the probabilities [u, v] based on the probabilities q∗(u,ex).
One way to do this is as follows: add a new special exit ex?

i to every component
Ai of the RMC, remove the out-edges from v ∈ Qj and instead add a transition

v
1→ ex?

j , and add transitions w
1→ ex?

h, for every return port w = (b, ex?
k), where

b ∈ Bh. Now, for u ∈ Qi, [u, v] in the original RMC is equal to q∗(u,ex?
i
) in the

revised RMC. (Intuitively, when we encounter v we “raise an exception”, pop
the entire call stack, and exit the system.) There is also a more involved way
to obtain the probability [u, v] from the probabilities q∗(u,ex) without increasing
the number of exits in any component. We can thus focus on finding efficient
algorithms for the following central questions:

(1) Qualitative reachability problem: Is q∗
(u,ex) = 1?

(2) Quantitative reachability problems: Given r ∈ [0, 1], is q∗(u,ex) ≥ r? Is q∗(u,ex) =
r? Compute or approximate the exact probabilities q∗(u,ex).

Single-exit RMCs and Stochastic Context-Free Grammars. A Stochastic
Context-Free Grammars (SCFG) is a tuple G = (T, V,R, S1), where T is a set
of terminal symbols, V = {S1, . . . , Sk} is a set of non-terminals, and R is a set

of rules Si
p→ α, where Si ∈ V , p ∈ [0, 1], and α ∈ (V ∪ T )∗, such that for every

non-terminal Si,
∑

〈pj |(Si

pj
→αj)∈R〉

pj = 1. Let p(Sj) denote the probability that

the grammar, started at Sj , will terminate and produce a finite string. SCFGs
are “equivalent” to single-exit RMCs in the following sense.

Proposition 1. Every SCFG G can be transformed to a 1-exit RMC A, such
that |A| ∈ O(|G|), and there is a bijection from non-terminals Sj in G to
components Aj of A, each with a single entry enj and exit exj, such that
p(Sj) = q∗

(enj ,exj)
, for all j. Conversely, every 1-exit RMC A can be transformed

to a SCFG G of size O(|A|), such that there is a map from vertices u to non-
terminals Su of G, such that if ex is u’s component exit, then q∗

(u,ex) = p(Su).

The system of nonlinear equations associated with an RMC. Consider
the probabilities q∗(u,ex) as unknowns. We can set up a system of (nonlinear)
polynomial equations, such that these probabilities must be a solution of the
system, and in fact precisely the Least Fixed Point solution (which we define).
Let us use a variable x(u,ex) for each unknown probability q∗(u,ex). We will often
find it convenient to index the variables x(u,ex) according to a fixed order, so we
can refer to them also as x1, . . . , xn, with each x(u,ex) identified with xj for some
j. We thus obtain a vector of variables: x = (x1 x2 . . . xn)T .

Definition 1. Given RMC A = (A1, . . . , Ak), we define a system of polynomial
equations, SA, over the variables x(u,ex), where u ∈ Qi and ex ∈ Exi, for 1 ≤ i ≤



k. The system contains one equation of the form x(u,ex) = P(u,ex)(x), for each
variable x(u,ex). Here P(u,ex)(x) denotes a multivariate polynomial with positive
rational coefficients. There are 3 cases to distinguish, based on the “type” of
vertex u:

1. Type I: u = ex. In this case: x(ex,ex) = 1.
2. Type II: either u ∈ Ni \ {ex} or u = (b, ex′) is a return port. In these cases:

x(u,ex) =
∑

{v|(u,pu,v,v)∈δ} pu,v · x(v,ex).

(If u has no outgoing transitions, this equation is by definition x(u,ex) = 0.)
3. Type III: u = (b, en) is a call port. In this case:

x((b,en),ex) =
∑

ex′∈ExY (b)
x(en,ex′) · x((b,ex′),ex)

In vector notation, we denote SA = (xj = Pj(x) | j = 1, . . . , n) by: x = P (x).

Note we can easily construct the system x = P (x) from A in polynomial time:
P (x) has size O(|A||Ex|2), where |Ex| denotes the maximum number of exits of
any component of A. We will now identify a particular solution to the systems
x = P (x), called the Least Fixed Point (LFP) solution, which gives us precisely
the probabilities we are after. For vectors x,y ∈ R

n, define the partial-order
x ¹ y to mean that xj ≤ yj for every coordinate j. For D ⊆ R

n, we call
a mapping H : R

n 7→ R
n monotone on D, if: for all x,y ∈ D, if x ¹ y then

H(x) ¹ H(y). Define P 1(x) = P (x), and define P k(x) = P (P k−1(x)), for k > 1.
Recall that q∗(u,ex) denotes the probability of eventually reaching 〈ε, ex〉 start-

ing at 〈ε, u〉 in MA. Let q∗ ∈ R
n denote the corresponding n-vector of proba-

bilities (using the same indexing as used for x). For k ≥ 0, let qk denote the
n-vector of probabilities where qk

(u,ex) is the probability of reaching 〈ε, ex〉 start-

ing at 〈ε, u〉 in at most k steps of MA, meaning via a path in MA of length at
most k. Let 0 (1) denote the n-vector consisting of 0 (respectively, 1) in every
coordinate. Define x0 = 0, and for k ≥ 1, define xk = P (xk−1) = P k(0).

Theorem 1. Let x = P (x) be the system SA associated with RMC A.

1. P : R
n 7→ R

n is monotone on R
n
≥0. Hence, for k ≥ 0, 0 ¹ xk ¹ xk+1.

2. For all k ≥ 0, qk ¹ xk+1.
3. q∗ = P (q∗). In other words, q∗ is a fixed point of the map P .
4. For all k ≥ 0, xk ¹ q∗.
5. q∗ = limk→∞ xk.
6. For all q′ ∈ R

n
≥0, if q′ = P (q′), then q∗ ¹ q′.

In other words, q∗ is the Least Fixed Point, LFP(P ), of P : R
n
≥0 7→ R

n
≥0.

We have thus identified q∗ as LFP(P ) = limk→∞ xk. We can (naively) view
Theorem 1 as giving an iterative algorithm to compute LFP(P ), by computing
the iterates xk = P k(0), k → ∞, until we think we are “close enough”. (But how
do we know? Please read on.) We now observe several unfortunate properties of
SA that present obstacles for efficiently computing LFP(P ).

Theorem 2. All following RMCs, except the HMCs in (4), have one component,
one entry en, and one exit ex.



1. Irrational probabilities: there is a RMC, A, such that the probability q∗
(en,ex)

is an irrational number, and is in fact not “solvable by radicals”. Thus,
computing LFP(P ) exactly is not possible in general.

2. Slow convergence: there is a RMC such that it requires an exponential number
of iterations, 2k−3, to gain k bits of precision.

3. Qualitative questions not purely structure-dependent: there are 2 “struc-
turally” identical RMCs, A′ and A′′, that only differ in values of non-zero
transition probabilities, but q∗

(en,ex) = 1 in A′, while q∗
(en,ex) < 1 in A′′.

4. Very small & very large probabilities: There is a HMC, with m+ 1 compo-
nents, and of total size O(m), where component Am has entry enm and two
exits ex′m and ex′′m, such that q∗

(enm,ex′

m) = 1
22m and q∗

(enm,ex′′

m) = 1 − 1
22m .

These facts illustrate some of contrasts between RMCs and finite Markov
chains (MCs). For example, for finite MCs reachability probabilities are rational
values that are efficiently representable and computable; moreover, qualitative
questions, such as whether a state is reached with probability 1, only depend on
the structure (edges) of the MC, and not on values of transition probabilities.

For RMC A = (A1, . . . , Ak), let θ = maxi∈{1,...,k} min{|Eni|, |Exi|}. Note
that q∗(u,ex) = 0 iff there is no path in the graph of MA from 〈ε, u〉 to 〈ε, ex〉.
Reachability in RSMs was studied in [1, 4], where it was shown that the problem
can be decided in O(|A|θ2) time, thus:

Theorem 3. (see [1, 4]) Given RMC A, we can determine in time O(|A|θ2),
for all vertices u and exits ex, whether or not q∗

(u,ex) = 0.

3 RMCs and the Existential Theory of Reals

We now show that the central reachability questions for RMCs can be answered
by appealing to algorithms for deciding the Existential Theory of the Reals,
ExTh(R). This consists of sentences in prenex form: ∃x1, . . . , xnR(x1, . . . , xn),
where R is a boolean combination of “atomic predicates” of the form fi(x)∆0,
where fi is a multivariate polynomial with rational coefficients over the variables
x = x1, . . . , xn, and ∆ is a comparison operator (=, 6=,≥,≤, <,>).

Beginning with Tarski, algorithms for deciding the First-Order Theory of
Reals, Th(R), and its existential fragment ExTh(R), have been deeply investi-
gated. In the current state of the art, it is known that ExTh(R) can be decided
in PSPACE [8, 25, 5]. Furthermore it can be decided in exponential time, where
the exponent depends (linearly) only on the number of variables; thus for a fixed
number of variables the algorithm runs in polynomial time.

Suppose we want to decide whether a rational vector c = [c1, . . . , cn]T is
LFP (P ). Consider the sentence: ϕ ≡ ∃x1, . . . , xn

∧n
i=1 Pi(x1, . . . , xn) = xi ∧∧n

i=1 xi = ci. ϕ is true iff c = P (c). To guarantee that c = LFP(P ), we addition-
ally need: ψ ≡ ∃x1, . . . , xn

∧n
i=1 Pi(x1, . . . , xn) = xi∧

∧n
i=1 0 ≤ xi∧

∨n
i=1 xi < ci.

ψ is false iff there is no solution z ∈ R
n
≥0 to x = P (x) such that c 6¹ z. Hence, to

decide whether c = LFP(P ), we only need two queries to a decision procedure
for ExTh(R). Namely, we check that ϕ is true, and hence c = P (c), and we



then check that ψ is false, and hence c = LFP(P ). Note that all multi-variate
polynomials in our systems x = P (x) have (multivariate) degree d ≤ 2.

Theorem 4. Given a RMC A and given a vector of rational probabilities c,
there is a PSPACE algorithm to decide whether LFP(P ) = c, as well as to
decide whether q∗

j ∆cj, for any comparison operator ∆. Moreover, the running

time of the algorithm is O(|A|O(1) · 2O(n)) where n is the number of variables in
the system x = P (x). Hence the running time is polynomial if n is bounded.

ExTh(R) gives us a way to ask questions like: “Is there a solution to x = P (x)
where a ≤ xi ≤ b ?” for any rational numbers a and b, and if we wish, with either
inequality replaced by strict inequality. Since 0 ¹ LFP(P ) ¹ 1, we can use such
queries in a “binary search” to “narrow in” on the value of each coordinate of
LFP(P ). Via simple modifications of sentences like ψ, we can gain one extra bit
of precision on the exact value of ci with each extra query to ExTh(R). So, if
we want j bits of precision for each ci, i = 1, ...n, we need to make j · n queries.
The sizes of the queries do not vary by much: only with an additive factor of at
most j-bits, to account for the constants a and b. This discussion yields:

Theorem 5. Given RMC A, and a number j in unary, there is an algorithm
that approximates the coordinates of LFP(P ) to within j bits of precision in
PSPACE. The running time is O(j · |A|O(1) · 2O(n)), where n is the number of
variables in x.

With a more involved construction we can handle in polynomial time all
RMCs that have a constant number of components, each with a constant number
of entries and exits; the components themselves can be arbitrarily large.

Theorem 6. Given an RMC with a bounded total number of entries and exits,
we can decide in polynomial time whether LFP(P ) = c, or whether q∗

j ∆cj, for
any comparison operator ∆, and we can approximate each probability to within
any given number of bits of precision. In particular, this applies to SCFGs with
a bounded number of terminals and MT-BPs with a bounded number of types.

4 RMCs and Newton’s method

This section approaches efficient numerical computation of LFP(P ), by studying
how a classical numerical solution-finding method performs on the systems x =
P (x). Newton’s method is an iterative method that begins with an initial guess
of a solution, and repeatedly “revises” it in an attempt to approach an actual
solution. In general, the method may not converge to a solution, but when it
does, it is typically fast. For example, for the bad RMC of Theorem 2.2, where the
Iterative algorithm converges exponentially slowly, one can show that Newton’s
method converges exponentially faster, gaining one bit of precision per iteration.
Recall that, given a univariate polynomial f(x) (or more generally, a univariate
differentiable function), and an initial guess x0 for a root of f(x), Newton’s

method computes the sequence x0, x1, . . . , xk, where xk+1 := xk − f(xk)
f ′(xk) . There



is a natural n-dimensional version of Newton’s method (see, e.g, [26] and [24]).
Given a suitably differentiable map F : R

n 7→ R
n, we wish to find a solution to

the system F (x) = 0. Starting at some x0 ∈ R
n, the method works by iterating

xk+1 := xk − (F ′(xk))−1F (xk), where F ′(x) is the Jacobian matrix of partial
derivatives. For each c ∈ R

n, F ′(c) is a real-valued matrix whose (i, j) entry is
the polynomial ∂Fi

∂xj
evaluated at c. For the method to be defined, F ′(xk) must be

invertible at each point xk in the sequence. Even when the xk’s are defined and a
solution exists, Newton’s method need not converge, and diverges even for some
univariate polynomials of degree 3. We already know one convergent iterative
algorithm for computing LFP(P ). Namely, computing the sequence xj = P j(0),
j → ∞. Unfortunately, we saw in Thm. 2 that this algorithm can be very slow.
The question arises whether Newton’s method, applied to F (x) = P (x)−x, can
guarantee convergence to LFP(P ), and do so faster. That is essentially what we
establish in this section.

– Preprocess the system x = P (x), eliminating all variables x(u,ex) where q∗

(u,ex) = 0.
– Construct the DAG of SCCs, H, based on the remaining system of equations.
– While (there is a sink SCC, C, remaining in the DAG H)

• If C is the trivial SCC, C = {1}, then associate the value 1 with this node.
Else, run Newton’s method, starting at 0, on the equations for the set of
variables in C, where these equations are augmented by the values of previously
computed variables.
Stop if a fixed point is reached, or when approximate solutions for C are
considered “good enough”.
Store these final values for the variables in C and substitute these values for
those variables in all remaining equations.

• remove C from the DAG.

Fig. 1. Decomposed Newton’s method

We cannot in general obtain convergence of Newton’s method for the entire
system x = P (x) at once, because for instance the condition on invertibility of
the Jacobian may not hold in general. But it turns out that such anomalous
cases can be avoided: we first preprocess the system (in linear time in its size,
by Theorem 3) to remove all variables x(u,ex) where q∗

(u,ex) = 0. Then we form
a graph G whose nodes are the remaining variables xi and the constant 1, and
whose edges are (xi, xj) if xj appears in Pi(x), and edge (xi, 1) if Pi(x) ≡ 1.
We decompose the graph (and the system) into strongly connected components
(SCCs) and apply Newton’s method separately on each SCC bottom-up, as
shown in Fig.1. In Fig.1 we have not specified explicitly how many iterations are
performed. For concreteness in the following theorem, suppose that we perform
k iterations for every SCC. Let xk be the resulting tuple of values.

Theorem 7. In the Decomposed Newton’s Method of Fig. 1, the sequence xk, k →
∞, monotonically converges to q∗. Moreover, for all k ≥ 0, xk º P k(0).

From our proof it actually follows that Newton’s method in general consti-
tutes a rapid “acceleration” of the standard iteration, P k(0), k → ∞. In partic-
ular, for finite MCs, which generate linear systems, the decomposed Newton’s
method converges in one iteration to LFP(P ).



Input: A SCFG G, with start non-terminal S1.
1. Remove all nonterminals unreachable from S1.
2. If there is any “useless” nonterminal left (i.e., a nonterminal that does not derive

any terminal string), return NO.
3. For the remaining SCFG, let ρ be the maximum eigenvalue of the matrix B(1)

(the Jacobian matrix of P (x), evaluated at the all 1-vector).
If ρ > 1 then return NO; otherwise (i.e., if ρ ≤ 1) return YES.

Fig. 2. SCFG consistency algorithm

5 1-exit RMCs and consistency of SCFGs

An SCFG is called consistent if it generates a terminal string with probability 1.
We provide a simple, concrete efficient algorithm to check consistency using the
connection of SCFG’s to 1-exit RMC’s and to multi-type Branching Processes.
MT-BPs model the growth of a population of objects of a number of distinct
types. The probability of extinction of a type in a MT-BP is related to the
probability of the language generated by a SCFG. Using this connection and
classical results on branching processes, one can “characterize” the question of
termination of a SCFG as a question related to eigenvalues of certain matrices
associated with the SCFG (see, e.g., [18] and [7, 17]). These “characterizations”
unfortunately often omit special uncovered cases (and sometimes contain errors,
eg. [7]) and do not give a complete algorithm.

Our algorithm for checking SCFG consistency is outlined in Fig. 2. The
matrix B(1) in the algorithm is precisely the Jacobian matrix of the system of
polynomials P (x), from section 4, where we substitute 1 for every variable xi. To
finish the algorithm, we only need to show that we can test in polynomial time
whether the spectral radius of a non-negative rational matrix B(1) is > 1. There
are a number of ways to show this. One is by appealing to the existential theory of
the reals. By the Perron-Frobenius theorem (see [21]), the maximum magnitude
eigenvalue of a non-negative matrix is always real. Recall that the eigenvalues of
a matrix M are the roots of the characteristic polynomial h(x) = Det(M − xI).
This univariate polynomial can be computed in polynomial time, and we can
test whether ρ(B(1)) > 1 by testing the 1-variable sentence in ExTh(R): ∃x(x >
1 ∧ h(x) = 0). More efficiently, for the non-negative matrices B(1) we can also
use Linear Programming to decide whether ρ(B(1)) > 1. Furthermore, with a
more involved algorithm (see [15]) we can classify in one pass the termination
probability of all the nonterminals (and all vertices of a 1-exit RMC).

Theorem 8. Given a 1-exit RMC, A, there is a polynomial time algorithm to
determine, for each vertex u and exit ex, which of the following three cases holds:
(1) q∗

(u,ex) = 0, or (2) q∗
(u,ex) = 1, or (3) 0 < q∗

(u,ex) < 1. In particular,
we can test SCFG consistency in polynomial time.

6 RMCs and the Square-Root Sum Problem

We show that the square-root sum problem is reducible to the SCFG quantitative
reachability problem, and to the general RMC qualitative reachability problem.
Let SQUARE-ROOT-SUM be the following problem: given (d1, . . . , dn) ∈ N

n



and k ∈ N, decide whether
∑n

i=1

√
di ≤ k. The complexity of this problem is

open since 1976. It is known to be contained in PSPACE (e.g., by appeal to
ExTh(R)), however, it is not even known to be contained in NP. It is a major
open problem in the complexity of exact numerical algorithms, with applications
in computational geometry and elsewhere. (See, e.g., [16, 29, 22].)

Let SCFG-PROB be the following problem: given a SCFG (with rational
edge probabilities) and given a rational number p ∈ [0, 1], decide whether the
SCFG terminates (i.e., produces a finite string) with probability ≥ p.

Theorem 9. SQUARE-ROOT-SUM is P-time reducible to SCFG-PROB.

Let 2-EXIT-SURE be the following problem: given a 2-exit RMC with rational
edge probabilities, and an entry-exit pair en and ex of some component, decide
whether q∗(u,ex) = 1. We can modify the above construction to show:1

Theorem 10. SQUARE-ROOT SUM is P-time reducible to 2-EXIT-SURE.

7 Conclusions

We introduced Recursive Markov Chains, and studied basic algorithmic prob-
lems in their analysis involving termination and reachability. A wide variety of
techniques came into play, from the existential theory of the reals, theory of
branching processes, numerical computing, etc. A number of questions remain
open, both for the problems we have investigated and for further directions.
For example, we proved that Newton’s method converges monotonically, and
dominates the iterative algorithm. We expect that this is the practical way to
approximate the probabilities, and we believe that in fact Newton gains i bits of
precision in a polynomial number of iterations in the unit-cost real RAM model.
Moreover, the reductions from the square-root sum problem to deciding whether
a probability is ≤ p does not preclude the possibility that these probabilities can
be approximated to i bits of precision in P-time without yielding a P-time solu-
tion to the square-root sum problem. Indeed, sum of square-roots itself can be
so approximated using Newton’s method.

A number of further directions are worth pursuing, building upon this work.
We have extended our methods to algorithms for the verification of linear time
properties of RMC’s ([14]). Another direction we are pursuing is the analysis of
Recursive Markov Decision Processes and Recursive Stochastic Games.
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