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Abstract. This paper describes PReMo, a tool for analyzing Recursive
Markov Chains, and their controlled/game extensions: (1-exit) Recursive
Markov Decision Processes and Recursive Simple Stochastic Games.

Introduction. Recursive Markov Chains (RMCs) [4, 5] are a natural abstract
model of probabilistic procedural programs and other systems involving recur-
sion and probability. They are formally equivalent to probabilistic Pushdown
Systems (pPDSs) ([2, 3]), and they define a class of infinite-state Markov chains
that generalize a number of well studied stochastic models such as Stochastic
Context-Free Grammars (SCFGs) and Multi-Type Branching Processes. In a
series of recent papers ([4–7]), the second author and M. Yannakakis have devel-
oped algorithms for analysis and model checking of RMCs and their controlled
and game extensions: 1-exit Recursive Markov Decision Processes (1-RMDPs)
and 1-exit Recursive Simple Stochastic Games (1-RSSGs). These extensions al-
low modelling of nondeterministic and interactive behavior.

In this paper we describe PReMo, a software tool for analysing models based
on RMCs, 1-RMDPs, and 1-RSSGs. PReMo allows these models to be speci-
fied in several different input formats, including a simple imperative-style lan-
guage for specifying RMCs and RSSGs, and an input format for SCFGs. For
RMCs/RSSGs, PReMo generates a graphical depiction of the model, useful for
visualizing small models (see Figure 1). PReMo has implementations of numeri-
cal algorithms for a number of analyses of RMCs and 1-RSSGs. From an RMC,
PReMo generates a corresponding system of nonlinear polynomial equations,
whose Least Fixed Point (LFP) solution gives precisely the termination prob-
abilities for vertex-exit pairs in the RMC. For 1-RSSGs, it generates a system
of nonlinear min-max equations, whose LFP gives the values of the termination
game starting at each vertex. Computation of termination probabilities is a key
ingredient for model checking and other analyses for RMCs and pPDSs ([4, 5,
2]). PReMo provides a number of optimized numerical algorithms for comput-
ing termination probabilities. Methods provided include both dense and sparse
versions of a decomposed Newton’s method developed in [4], as well as versions
of value iteration, optimized using nonlinear generalizations of Gauss-Seidel and
SOR techniques. The latter methods also apply to analysis of 1-RSSGs.

In addition to computing termination probabilities, PReMo can compute the
(maximum/minimum/game) expected termination time in 1-RMCs, 1-RMDPs,
and 1-RSSGs. It does so by generating a different monotone system of linear
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Fig. 1. Source code of an RMC, and its visualization generated by PReMo
(min-max) equations, whose LFP is the value of the game where the objectives
of the two players are to maximize/minimize the expected termination time
(these expected times can be infinity). (This analysis extends, to a game set-
ting, the expected reward analysis for pPDSs (equivalently, RMCs) studied in
[3]. The generalization works for 1-RMDPs and 1-RSSGs, which correspond to
controlled/game versions of stateless pPDSs, also known as pBPAs. We do not
explicate the theory behind these game analyses here. It is a modification of
results in [6, 7], and will be explicated elsewhere.)

PReMo is implemented entirely in Java, and has the following main compo-
nents: (1) A parsers for text descriptions of RMCs, RSSGs, and SCFGs, using
one of several input formats; (2) A menu-driven GUI (using the Standard Wid-
get Library(SWT)), with an editor for different input formats, and menu choices
for running different analyses with different methods; (3) A graphical depiction
generator for RMCs and RSSGs, which produces output using the dot format.
(4) Optimized solvers: Several solvers are implemented for computation of ter-
mination probabilities/values for RMCs and 1-RSSGs, and also computation of
expected termination times for 1-RMCs, 1-RMDPs, 1-RSSGs. We conducted a
range of experiments. Our experiments indicate very promising potential for sev-
eral methods. In particular, our decomposed Sparse Newton’s method performed
very well on most models we tried, up to quite large sizes. Although these nu-
merical methods appear to work well in practice on most instances, there are no
theoretical guarantees on their performance, and there are many open questions
about the complexity of the underlying computational problems (see [4–7]).

We can see PReMo source code for an RMC, together with a visualization
that PReMo generates for it, in Figure 1. Informally, an RMC consists of several



component Markov Chains (in Fig. 1, these are named A and B) that can call
each other recursively. Each component consists of nodes and boxes with pos-
sible probabilistic transitions between them. Each box is mapped to a specific
component so that every time we reach an entry of this box, we jump to the
corresponding entry of the component it is mapped to. When/if we finally reach
an exit node of that component, we will jump back to a respective exit of the box
that we have entered this component from. This process models, in an obvious
way, function invocation in a probabilistic procedural program. Every potential
function call is represented by a box. Entry nodes represent parameter values
passed to the function, while exit nodes represent returned values. Nodes within
a component represent control states inside the function. Documentation about
the input languages is available on the PReMo web page.

The core numerical computation for all the analyses provided by PReMo
involves solving a monotone systems of nonlinear min-max equations. Namely,
we have a vector of variables x = (x1, . . . , xn), and one equation per variable
of the form xi = Pi(x), where Pi(x) is a polynomial-min-max expression with
rational coefficients. In vector notation, this system of equations can be denoted
x = P (x). The goal is to find the Least Fixed Point solution, i.e., the least non-
negative solution, q∗ ∈ Rn

≥0, of these equations, which is limk→∞ P k(0). In brief,
the solvers in PReMo work as follows (see [4, 6] for more background). First, we
decompose the equations into SCCs and calculate the solution “bottom-up”,
solving the Bottom SCCs first and plug in the solution as constants in higher
SCCs. To solve each SCC, PReMo provides several methods:
Value iteration: nonlinear Jacobi & Gauss-Seidel. Optimized forms of nonlinear
value iteration have been implemented for computing the LFP of x = P (x).
Jacobi, or basic iteration, just computes x0 = 0,x1,x2, . . ., where xi = P (xi−1).
Gauss-Seidel iteration optimizes this slightly: inductively, having computed xk+1

j

for j < i, let xk+1
i := Pi(xk+1

1 , . . . , xk+1
i−1 , xk

i , xk
i+1, . . . , x

k
n). Successive Overrelax-

ation (SOR) is an “optimistic” modification of Gauss-Seidel, which isn’t guar-
anteed to converge in our case.
Dense and sparse decomposed Newton’s method. Newton’s method attempts to
compute solutions to F (x) = 0. In n-dimensions, it works by iterating xk+1 :=
xk − (F ′(xk))−1F (xk) where F ′(x) is the Jacobian matrix of partial derivatives
of F . In our case we apply this method for F (x) = P (x)−x. It was shown in [4]
that if the system is decomposed into SCCs appropriately, convergence to the
LFP is guaranteed, if we start with x0 = 0. The expensive task at each step of
Newton is the matrix inversion (F ′(xk))−1. Explicit matrix inversion is too ex-
pensive for huge matrices. But this matrix is typically sparse for RMCs, and we
can handle much larger matrices if instead of inverting (F ′(xk)) we solve the fol-
lowing equivalent sparse linear system of equations: (F ′(xk))(xk+1−xk) = F (xk)
to compute the value of xk+1 − xk, and then add xk to obtain xk+1. We used
the solver library MTJ (Matrix Toolkit for Java) and tried various sparse linear
solvers. Our Dense Newton’s method uses LU decomposition to invert (F ′(xk)).

Iterative numerical solvers can only converge to within some error to the ac-
tual solution. PReMo provides different mechanisms for users to choose when to



stop the iteration: absolute tolerance, relative tolerance, and a specified number
of iterations. In, e.g., the absolute tolerance mode, the algorithm stops after the
first iteration when the absolute difference in the value for all variables changed
less than a given ε > 0. This does not in general guarantee closeness to the actual
solution, but it behaves well in practice.
Experimental results. We ran a wide range of experiments on a Pentium 4
3GHz with 1GB RAM, running Linux Fedora 5, kernel 2.6.17, using Java 5.0.
Please see the appendix more details about our experimental results.
SCFGs generated from the Penn Treebank NLP corpora. We checked the consis-
tency1 of a set of large SCFGs, with 10,000 to 50,000 productions, used by
the Natural Language Processing (NLP) group at University of Edinburgh and
derived by them from the Penn Treebank NLP corpora. These SCFGs were
assumed to be consistent by construction. Our most efficient method (Sparse
Newton) solved all these SCFGs in a few seconds (see Table 1). Two out of
seven SCFGs were (very) inconsistent, namely those derived from the brown
and switchboard corpora of Penn Treebank, with termination probabilities as
low as 0.3 for many nonterminals. This inconsistency was a surprise to our NLP
colleagues, and was subsequently identified by them to be caused by annotation
errors in Penn Treebank itself ([1]). Note that both dense and sparse versions
of decomposed Newton’s method are by far the fastest. Since the largest SCCs
are no bigger than 1000 vertices, dense Newton also worked on these examples.
Most of the time for Newton’s method was in fact taken up by the initialization
phase, for computing all the partial derivatives in entries of the Jacobian F ′(x).
We thus optimized the computation of the Jacobian in several ways.

name #prod max-scc Jacobi Gauss Seidel SOR ω=1.05 DNewton SNewton

brown 22866 8 448 312.084(9277) 275.624(7866) diverge 2.106(8) 2.115(9)
lemonde 32885 X 527 234.715(5995) 30.420(767) diverge 1.556(7) 2.037(7)
negra 29297 X 518 16.995(610) 4.724(174) 4.201(152) 1.017(6) 0.499(6)
swbd 47578 8 1123 445.120(4778) 19.321(202) 25.654(270) 6.435(6) 3.978(6)
tiger 52184 X 1173 99.286(1347) 16.073(210) 12.447(166) 5.274(6) 1.871(6)

tuebadz 8932 X 293 6.894(465) 1.925(133) 6.878(461) 0.477(7) 0.341(7)
wsj 31170 X 765 462.378(9787) 68.650(1439) diverge 2.363(7) 3.616(8)

Table 1. Performance results for checking consistency of SCFGs derived from Penn
Treebank. Time is in seconds. In parentheses is the number of iterations for the biggest
SCC. Stopping condition: absolute tolerance ε = 10−12. SCFG was declared “consis-
tent” if all nonterminals had termination probability ≥ (1− 10−4). The SCFGs brown
and swbd failed consistency by a wide margin.

Randomly generated RMCs and 1-RSSGs. We tested PReMo on randomly gener-
ated RMCs of different sizes, ranging from 10,000 to 500,000 nodes (variables).
In random large instances, with very high probability most nodes are in one
huge SCC with small diameter (“small world phenomenon”). Dense Newton’s
method did not work at all on these huge SCCs, because inverting such large
matrices is too costly, but both Gauss-Seidel and Sparse Newton did very well.

1 An SCFG is called consistent if starting at all nonterminals in the grammar, a random
derivation terminates, and generates a finite string, with probability 1.



In particular, Sparse Newton handled instances with 500,000 variables in ∼ 45
seconds. For random 1-RSSGs, although we have no Newton’s method available
for 1-RSSGs, value iteration performed well (see the appendix).
Quicksort. For expected termination time analyses, we considered a toy model
of randomized Quicksort, using a simple hierarchical 1-RMC. The model has
n components, Qi, i = 1, . . . , n, corresponding to invocations of Quicksort on
arrays of size i. Component Qi takes time i to pivot and split the entries, and
then recurses on the two partitions. This is modeled by transitions of probability
1/(i− 1), for each d ∈ {1, . . . , i− 1}, to two sequential boxes labeled by Qd and
Qi−d. We computed expected termination time for various sizes n. We also tried
letting the pivot be controlled by the minimizer or maximizer, and we computed
optimal expected running time for such 1-RMDPs, in order to consider best-
case and worst-case running times of Quicksort. As expected, the results fitted
the well-known theoretical analysis of Θ(n log n) and Θ(n2) for running times of
randomized/best-case, and worst-case Quicksort, respectively.
Future work. The next important step is to extend the RMC language to allow
variables and conditional branching, i.e., probabilistic Boolean Programs. We are
working toward implementation of a full-fledged linear-time model checker for
RMCs. This is a major challenge because there are very difficult numerical issues
that have to be overcome in order to enable general model checking.

PReMo 1.0 is available at: http://homepages.inf.ed.ac.uk/s0571094/PReMo
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A Appendix

PReMo 1.0 is available at: http://homepage.inf.ed.ac.uk/s0571094/PReMo

Fig. 2. A screenshot of source code editing on the left, and running a solver on
the system of equations generated from it on the right.

We can see a screenshot of PReMo in Fig. 2. PReMo has a source code editor
that supports syntax highlighting, auto-indentation and error line highlighting
for parsing errors. The user can save code source, generate visual depiction of
RMCs, generate the corresponding equations, find solutions using various meth-
ods, obtain performance data, and export these to external files.

A.1 Experimental results, continued.

In Table 1, on page 4, size is indicated in # of productions, and the maximum
number of variables in any SCC after decomposition of the nonlinear equations.
Time is measured in seconds. In parentheses is the number of iterations needed
for the biggest SCCs. The stopping condition for the iteration was that absolute
tolerance with ε = 10−12. There is a Xif the grammar was found to be be con-
sistent (to within 10−4 error), and a 8 otherwise. In fact, in the two inconsistent
SCFGs, many nonterminals had termination probability as low as 0.3. Note that
both dense and sparse versions of decomposed Newton’s method are by far the
fastest. Since the largest SCCs are no bigger than 1000 vertices, dense Newton
also worked on these examples. Most of the time for Newton’s method was in
fact taken up by the initialization phase, for computing all the entries of the
Jacobian F ′(x). We thus optimized the computation of the Jacobian in several
ways.
Randomly generated RMCs and 1-RSSGs. We tested PReMo on ran-
domly generated RMCs of different sizes, ranging from 10,000 and 500,000 nodes
(variables). Random generation was done in two ways. First we generated 1-
RMCs (SCFGs) in a normal form by directly generating their nonlinear equa-
tions of three possible kinds: (1) xi = xjxk, (2) xi = pxj + (1 − p)xk, and (3)



Fig. 3. Random 1-RMCs. For each size n that was tried, (2× 106)/n instances of size
n were generated and the running time was averaged. The termination condition was
absolute tolerance ε = 10−12.

xi = p1xj +p2xk +p3, where p1 +p2 +p3 = 1. We chose type (1) with 0.2 proba-
bility, type (2) with 0.6 probability (and then p ∈ [0, 1] uniformly), and (3) with
0.2 probability (and p1, p2, p3, were chosen uniformly in [0, 1] and then normal-
ized, dividing by p1 +p2 +p3, so they sum to 1). See Fig. 3 for the running times.
Size was measured in number of variables, n. The number of random instances
generated for each size n, was (2× 106)/n, and running time was averaged over
all instances of size n.

On these random large instances, with very high probability most nodes
are in one huge SCC with small diameter (by the so called “small world phe-
nomenon”). Dense Newton’s method did not work at all on these huge SCCs,
because inverting such large matrices is too expensive. On the other hand, as
can be seen both Gauss-Seidel and Sparse Newton’s method did very well.

Newton’s method does not apply to 1-RSSGs, with nonlinear min-max equa-
tions, but Gauss-Seidel does. We applied a similar random generation technique
to generate 1-RSSGs (this time with min and max nodes as well) and obtained
the results in Figure 4.

Finally, for multi-exit RMCs, we had a difficult time finding a direct random
generation scheme that was simple to define. We instead chose to randomly gen-
erate more general monotone nonlinear polynomial equations, where equations
can be of the form xi = xjxj + xr, in addition to the possible equations we
generated for 1-RMCs. These equation systems could potentially have no LFP
solution, in which case the methods diverge to infinity, and create overflow error
(or may not be defined, in the case of Newton’s method, because the jacobians



Fig. 4. Random 1-RSSGs. Average running time for computing termination
probability of 2 instances for each size n, n = 50, 000 ∗ i, i = 1, . . . , 7, with
absolute tolerance ε = 10−12.

may not be invertible). But the equations generated form a superset of the equa-
tions for multi-exit RMCs. We generated these equations and tested to see if the
methods do converge. Two generated instances were discarded because the re-
sults were diverged to infinity. The results for the instances that did converge
are in Figure 5.

A.2 Quicksort

We modeled the performance of the Quicksort algorithm, using a simple hierar-
chical 1-RMC. In our model we have n components, Qi, i = 1, . . . , n, correspond-
ing to invocations of Quicksort on arrays of size i. Each such component takes
time i to pick the pivot and split the entries. We modeled this as “expected”
time i, by having a self-loop at the entry node of component i with probability
(1− 1/i). and transitioning to the “pivot choice” node with probability 1

i . After
the transition, the pivot d is chosen, uniformly at random. We have to recursively
solve two instances of Quicksort, of sizes d and i−d. We modeled this by random
transitions of probability 1/i, for each d ∈ {1, . . . , i − 1}, to a sequence of two
boxes labeled by Qd and Qi−d, and then to the terminal exit of the component.

We computed the expected time for termination for these models, to see
whether the excepted running time of the algorithm matches the known theo-
retical average-case analysis of Θ(n log n). We also tried letting the pivot node
be controlled by the minimizer or maximizer, and generated the corresponding
linear min-max equations for expected running time for such 1-RMDPs, in order
to consider best-case and worst-case running times of Quicksort. Our models, as



Fig. 5. Random RMCs and general monotone polynomial systems. Average run-
ning time for computing termination probability of 3 instances for each size n,
n = 50, 000 ∗ i, i = 1, . . . , 10, with absolute tolerance ε = 10−12. Two generated
instances that diverged were discarded.

would be expected, matched the known theoretical analysis of running times for
(randomized) Quicksort. Namely, for constants the expected running time for
random pivot choices is cn log n, the expected running time best pivot choice is
c′n log n, and the expected time for the worst pivot choice is c′′n2. In our model
we found c = 2.76 and c′ = 2.18. This would suggest that random pivot choice
runs 1.26 times slower than the optimal possible choice of pivots. It would be in-
teresting to know whether the exact analytically derived constants for Quicksort
can confirm this relationship.

A.3 Long chains

It is easy to construct examples of simple, even finite state Markov chains, where
the behavior of Newton’s method can in principle be exponentially better than
Gauss-Seidel iteration. This occurs, for example, when a finite Markov chain
consists of a “long chain” with n nodes v1, . . . , vn, where vn is the terminal

state, and where there are transitions of the form vi
1/2→ vi+1 and vi

1/2→ v1, for
i = 1, . . . (n−1). In these examples, clearly the probability of termination from all
nodes vi is 1. Let xj

i be the value of basic value iteration (jacobi) after j iterations,
starting at 0, for a variable xi representing the probability of termination from
vi. It is easy to show that, in order that xj

1 ≥ 1/2, it must be the case that
j ∈ 2Ω(n). On the other hand, Newton iteration on Markov chains converges
in 1 iteration, because the Jacobian is a constant, invertible, matrix. We ran



Jacobi, Gauss-Seidel, and both Dense and Sparse Newton iteration on such long
chains. Interestingly, although Dense Newton performed as expected, solving the
required single iteration in very little time (for the sizes where it could handle the
matrix inversion), Sparse Newton iteration encountered numerical problems with
all the sparse linear solvers we tried for one iteration of Newton. It appears that
the small probabilities that arise in solving this linear system causes problems
for the available sparse linear solvers. The results of the running times for Jacobi,
Gauss-Seidel, and Dense Newton, are in Figure 6.

Fig. 6. Running times for long chains, absolute tolerance ε = 10−12. Note that
dense Newton takes essentially no time for these sizes.


