PReMo:
an analyzer for Probabilistic Recursive Models

Dominik Wojtczak and Kousha Etessami

School of Informatics, University of Edinburgh

Abstract. This paper describes PReMo, a tool for analyzing Recursive
Markov Chains, and their controlled/game extensions: (1-exit) Recursive
Markov Decision Processes and Recursive Simple Stochastic Games.

Introduction. Recursive Markov Chains (RMCs) [4, 5] are a natural abstract
model of probabilistic procedural programs and other systems involving recur-
sion and probability. They are formally equivalent to probabilistic Pushdown
Systems (pPDSs) ([2, 3]), and they define a class of infinite-state Markov chains
that generalize a number of well studied stochastic models such as Stochastic
Context-Free Grammars (SCFGs) and Multi-Type Branching Processes. In a
series of recent papers ([4-7]), the second author and M. Yannakakis have devel-
oped algorithms for analysis and model checking of RMCs and their controlled
and game extensions: 1-exit Recursive Markov Decision Processes (1-RMDPs)
and 1l-exit Recursive Simple Stochastic Games (1-RSSGs). These extensions al-
low modelling of nondeterministic and interactive behavior.

In this paper we describe PReMo, a software tool for analysing models based
on RMCs, 1-RMDPs, and 1-RSSGs. PReMo allows these models to be speci-
fied in several different input formats, including a simple imperative-style lan-
guage for specifying RMCs and RSSGs, and an input format for SCFGs. For
RMCs/RSSGs, PReMo generates a graphical depiction of the model, useful for
visualizing small models (see Figure 1). PReMo has implementations of numeri-
cal algorithms for a number of analyses of RMCs and 1-RSSGs. From an RMC,
PReMo generates a corresponding system of nonlinear polynomial equations,
whose Least Fixed Point (LFP) solution gives precisely the termination prob-
abilities for vertex-exit pairs in the RMC. For 1-RSSGs, it generates a system
of nonlinear min-max equations, whose LFP gives the values of the termination
game starting at each vertex. Computation of termination probabilities is a key
ingredient for model checking and other analyses for RMCs and pPDSs ([4, 5,
2]). PReMo provides a number of optimized numerical algorithms for comput-
ing termination probabilities. Methods provided include both dense and sparse
versions of a decomposed Newton’s method developed in [4], as well as versions
of value iteration, optimized using nonlinear generalizations of Gauss-Seidel and
SOR techniques. The latter methods also apply to analysis of 1-RSSGs.

In addition to computing termination probabilities, PReMo can compute the
(maximum/minimum/game) ezpected termination time in 1-RMCs, 1-RMDPs,
and 1-RSSGs. It does so by generating a different monotone system of linear

A(2,2);
B(1,2);

A{
L1(A);
L2(B);
entry 0:
0.5: goto L3; 0.5: call L2(0);
entry 1:
0.3: call L1(0); 0.7: call L1(1);
L1 {
exit 0:
0.8: goto L3; 0.2: call L2(0);
exit 1:
1.0: return 1;

}
L2 {
exit 0:
1.0: goto L3;
exit 1:
1.0: return 0;

}
L3 {
0.5: return 0; 0.5: return 1;

}

L4(A);
entry 0:
0.3: call L4(0); 0.3: call L4(1); 0.4: goto L5;
L4 {
exit 0:
0.5: return 0; 0.5: return 1;
exit 1:
0.5: return 0; 0.5: goto L5;

}
L5 {
0.4: goto L5; 0.6: return 1;

}

Fig. 1. Source code of an RMC, and its visualization generated by PReMo

(min-max) equations, whose LFP is the value of the game where the objectives
of the two players are to maximize/minimize the expected termination time
(these expected times can be infinity). (This analysis extends, to a game set-
ting, the expected reward analysis for pPDSs (equivalently, RMCs) studied in
[3]. The generalization works for 1-RMDPs and 1-RSSGs, which correspond to
controlled/game versions of stateless pPDSs, also known as pBPAs. We do not
explicate the theory behind these game analyses here. It is a modification of
results in [6, 7], and will be explicated elsewhere.)

PReMo is implemented entirely in Java, and has the following main compo-
nents: (1) A parsers for text descriptions of RMCs, RSSGs, and SCFGs, using
one of several input formats; (2) A menu-driven GUI (using the Standard Wid-
get Library(SWT)), with an editor for different input formats, and menu choices
for running different analyses with different methods; (3) A graphical depiction
generator for RMCs and RSSGs, which produces output using the dot format.
(4) Optimized solvers: Several solvers are implemented for computation of ter-
mination probabilities/values for RMCs and 1-RSSGs, and also computation of
expected termination times for 1-RMCs, 1-RMDPs, 1-RSSGs. We conducted a
range of experiments. Our experiments indicate very promising potential for sev-
eral methods. In particular, our decomposed Sparse Newton’s method performed
very well on most models we tried, up to quite large sizes. Although these nu-
merical methods appear to work well in practice on most instances, there are no
theoretical guarantees on their performance, and there are many open questions
about the complexity of the underlying computational problems (see [4-7]).

We can see PReMo source code for an RMC, together with a visualization
that PReMo generates for it, in Figure 1. Informally, an RMC consists of several

component Markov Chains (in Fig. 1, these are named A and B) that can call
each other recursively. Each component consists of nodes and boxes with pos-
sible probabilistic transitions between them. Each box is mapped to a specific
component so that every time we reach an entry of this box, we jump to the
corresponding entry of the component it is mapped to. When/if we finally reach
an exit node of that component, we will jump back to a respective exit of the box
that we have entered this component from. This process models, in an obvious
way, function invocation in a probabilistic procedural program. Every potential
function call is represented by a box. Entry nodes represent parameter values
passed to the function, while exit nodes represent returned values. Nodes within
a component represent control states inside the function. Documentation about
the input languages is available on the PReMo web page.

The core numerical computation for all the analyses provided by PReMo
involves solving a monotone systems of nonlinear min-max equations. Namely,
we have a vector of variables x = (z1,...,2,), and one equation per variable
of the form z; = P;(x), where P;(x) is a polynomial-min-max expression with
rational coefficients. In vector notation, this system of equations can be denoted
x = P(x). The goal is to find the Least Fixed Point solution, i.e., the least non-
negative solution, q* € R%, of these equations, which is limj_. P*(0). In brief,
the solvers in PReMo work as follows (see [4, 6] for more background). First, we
decompose the equations into SCCs and calculate the solution “bottom-up”,
solving the Bottom SCCs first and plug in the solution as constants in higher
SCCs. To solve each SCC, PReMo provides several methods:

Value iteration: nonlinear Jacobi & Gauss-Seidel. Optimized forms of nonlinear
value iteration have been implemented for computing the LFP of x = P(x).
Jacobi, or basic iteration, just computes x° = 0,x!,x?,..., where x’ = P(x'~1).
Gauss-Seidel iteration optimizes this slightly: inductively, having computed z***

J
for j < 1, let xf“ = Pi(;vlf+17 e 7mf_+11, zk, xfﬂ, ..., xk). Successive Overrelax-

ation (SOR) is an “optimistic” modification of Gauss-Seidel, which isn’t guar-
anteed to converge in our case.
Dense and sparse decomposed Newton’s method. Newton’s method attempts to
compute solutions to F(x) = 0. In n-dimensions, it works by iterating x**+! :=
xF — (F'(x*))1F(x*) where F'(x) is the Jacobian matrix of partial derivatives
of F. In our case we apply this method for F'(x) = P(x) —x. It was shown in [4]
that if the system is decomposed into SCCs appropriately, convergence to the
LFP is guaranteed, if we start with x° = 0. The expensive task at each step of
Newton is the matrix inversion (F’(x*))~!. Explicit matrix inversion is too ex-
pensive for huge matrices. But this matrix is typically sparse for RMCs, and we
can handle much larger matrices if instead of inverting (F’(x*)) we solve the fol-
lowing equivalent sparse linear system of equations: (F’(x*))(x¥*1—x*) = F(x¥)
to compute the value of x**! — x*, and then add x* to obtain x**!. We used
the solver library MTJ (Matrix Toolkit for Java) and tried various sparse linear
solvers. Our Dense Newton’s method uses LU decomposition to invert (F’(x¥)).
Tterative numerical solvers can only converge to within some error to the ac-
tual solution. PReMo provides different mechanisms for users to choose when to

stop the iteration: absolute tolerance, relative tolerance, and a specified number
of iterations. In, e.g., the absolute tolerance mode, the algorithm stops after the
first iteration when the absolute difference in the value for all variables changed
less than a given € > 0. This does not in general guarantee closeness to the actual
solution, but it behaves well in practice.

Experimental results. We ran a wide range of experiments on a Pentium 4
3GHz with 1GB RAM, running Linux Fedora 5, kernel 2.6.17, using Java 5.0.
Please see our fuller report [9] for more details about our experimental results.
SCFGs generated from the Penn Treebank NLP corpora. We checked the consis-
tency' of a set of large SCFGs, with 10,000 to 50,000 productions, used by
the Natural Language Processing (NLP) group at University of Edinburgh and
derived by them from the Penn Treebank NLP corpora. These SCFGs were
assumed to be consistent by construction. Our most efficient method (Sparse
Newton) solved all these SCFGs in a few seconds (see Table 1). Two out of
seven SCFGs were (very) inconsistent, namely those derived from the brown
and switchboard corpora of Penn Treebank, with termination probabilities as
low as 0.3 for many nonterminals. This inconsistency was a surprise to our NLP
colleagues, and was subsequently identified by them to be caused by annotation
errors in Penn Treebank itself ([1]). Note that both dense and sparse versions
of decomposed Newton’s method are by far the fastest. Since the largest SCCs
are no bigger than 1000 vertices, dense Newton also worked on these examples.
Most of the time for Newton’s method was in fact taken up by the initialization
phase, for computing all the partial derivatives in entries of the Jacobian F’(x).
We thus optimized the computation of the Jacobian in several ways.

name |#prod |max-scc Jacobi Gauss Seidel SOR w=1.05 DNewton SNewton
brown | 22866 X| 448 [312.084(9277) 275.624(7866) diverge 2.106(8) 2.115(9)
lemonde| 32885 v'| 527 [234.715(5995) 30.420(767) diverge 1.556(7) 2.037(7)
negra | 29297 v/| 518 | 16.995(610) 4.724(174) 4.201(152) 1.017(6) 0.499(6)
swbhd |47578 X| 1123 |445.120(4778) 19.321(202) 25.654(270) 6.435(6) 3.978(6)
tiger | 52184 v/| 1173 | 99.286(1347) 16.073(210) 12.447(166) 5.274(6) 1.871(6)
tuebadz| 8932 v| 293 | 6.894(465) 1.925(133) 6.878(461) 0.477(7) 0.341(7)
wsj | 31170 v/| 765 |462.378(9787) 68.650(1439) diverge 2.363(7) 3.616(8)

Table 1. Performance results for checking consistency of SCFGs derived from Penn
Treebank. Time is in seconds. In parentheses is the number of iterations for the biggest
SCC. Stopping condition: absolute tolerance ¢ = 10712, SCFG was declared “consis-
tent” if all nonterminals had termination probability > (1 — 10™*). The SCFGs brown
and swbd failed consistency by a wide margin.

Randomly generated RMCs and 1-RSSGs. We tested PReMo on randomly gener-
ated RMCs of different sizes, ranging from 10,000 to 500,000 nodes (variables).
In random large instances, with very high probability most nodes are in one
huge SCC with small diameter (“small world phenomenon”). Dense Newton’s
method did not work at all on these huge SCCs, because inverting such large
matrices is too costly, but both Gauss-Seidel and Sparse Newton did very well.

1 An SCFG is called consistent if starting at all nonterminals in the grammar, a random
derivation terminates, and generates a finite string, with probability 1.

In particular, Sparse Newton handled instances with 500,000 variables in ~ 45
seconds. For random 1-RSSGs, although we have no Newton’s method available
for 1-RSSGs, value iteration performed well (see [9]).

Quicksort. For expected termination time analyses, we considered a toy model
of randomized Quicksort, using a simple hierarchical 1-RMC. The model has
n components, Q;, i = 1,...,n, corresponding to invocations of Quicksort on
arrays of size 7. Component @; takes time ¢ to pivot and split the entries, and
then recurses on the two partitions. This is modeled by transitions of probability
1/(i—1), for each d € {1,...,7— 1}, to two sequential boxes labeled by Q4 and
Qi_4. We computed expected termination time for various sizes n. We also tried
letting the pivot be controlled by the minimizer or mazimizer, and we computed
optimal expected running time for such 1-RMDPs, in order to consider best-
case and worst-case running times of Quicksort. As expected, the results fitted
the well-known theoretical analysis of ©(nlogn) and ©(n?) for running times of
randomized /best-case, and worst-case Quicksort, respectively.

Future work. The next important step is to extend the RMC language to allow
variables and conditional branching, i.e., probabilistic Boolean Programs. We are
working toward implementation of a full-fledged linear-time model checker for
RMCs. This is a major challenge because there are very difficult numerical issues
that have to be overcome in order to enable general model checking.

PReMo 1.0 is available at: http://homepages.inf.ed.ac.uk/s0571094/PReMo

Acknowledgements. Thanks to Mihalis Yannakakis: the second author’s work
on analysis of RMCs/RSSGs, on which PReMo is based, is joint work with him.
Thanks to Mark-Jan Neiderhof and Giorgio Satta for pointing us in the direction
of large SCFG libraries used in NLP, and telling us about their own current work
on implementing these methods [8]. Thanks to Amit Dubey and Frank Keller
for providing us SCFGs from their NLP work.

References

1. A. Dubey and F. Keller. personal communication, 2006.

2. J. Esparza, A. Kucera, and R. Mayr. Model checking probabilistic pushdown au-
tomata. In Proc. LICS’04, 2004.

3. J. Esparza, A. Kucera, and R. Mayr. Quantitative Analysis of Probabilistic Push-
down Automata: Expectations and Variances. In Proc. LICS’05, 2005.

4. K. Etessami and M. Yannakakis. Recursive markov chains, stochastic grammars,
and monotone systems of nonlinear equations. In Proc. STACS’05, 2005.

5. K. Etessami and M. Yannakakis. Algorithmic verification of recursive probabilistic
state machines. In Proc. TACAS’05, 2005.

6. K. Etessami and M. Yannakakis. Recursive markov decision processes and recursive
stochastic games. In Proc. ICALP’05, 2005.

7. K. Etessami and M. Yannakakis. Efficient qualitative analysis of classes of recursive
markov decision processes and simple stochastic games. In Proc. STACS 06, 2006.

8. M. J. Neiderhof and G. Satta. Using Newton’s method to compute the partition
function of a PCFG, 2006. unpublished draft manuscript.

9. D. Wojtczak and K. FEtessami. PReMo: an analyzer for Probabilis-
tic Recursive Models. Fuller report, with more experimental data.
http://homepages.inf.ed.ac.uk/s0571094/PReMo/tacas07premo-long.pdf

