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Abstract

Image synthesis algorithms are commonly compared on
the basis of running times and/or perceived quality of the
generated images. In the case of Monte Carlo techniques,
assessment often entails a qualitative impression of conver-
gence toward a reference standard and severity of visible
noise; these amount to subjective assessments of the mean
and variance of the estimators, respectively. In this paper
we argue that such assessments should be augmented by
well-known statistical hypothesis testing methods. In par-
ticular, we show how to perform a number of such tests to
assess random variables that commonly arise in image syn-
thesis such as those estimating irradiance, radiance, pixel
color, etc. We explore five broad categories of tests: 1) de-
termining whether the mean is equal to a reference stan-
dard, such as an analytical value, 2) determining that the
variance is bounded by a given constant, 3) comparing the
means of two different random variables, 4) comparing the
variances of two different random variables, and 5) verify-
ing that two random variables stem from the same parent
distribution. The level of significance of these tests can be
controlled by a parameter. We demonstrate that these tests
can be used for objective evaluation of Monte Carlo estima-
tors to support claims of zero or small bias and to provide
quantitative assessments of variance reduction techniques.
We also show how these tests can be used to detect errors
in sampling or in computing the density of an importance
Sfunction in MC integrations.

1 Introduction

Novel rendering algorithms are often proposed in order
to compute a given image faster or to allow effective trade-
offs between speed and accuracy. In either case, the ques-
tion naturally arises as to how one can demonstrate that a
proposed algorithm meets the stated criteria. Presently it
is widespread practice within the rendering community to
employ a combination of objective and subjective criteria;
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running time is an objective criterion that is easy to mea-
sure and compare, while image quality, which presents a
much greater challenge, generally rests upon subjective cri-
teria such as visual inspection of two images or variance-
plots.

In the context of Monte Carlo image synthesis one is
often faced with the task of supporting an assertion that a
given algorithm is superior in that it can produce images
with the same first-order statistics (generally the expected
value at each pixel), while exhibiting different second-order
statistics (generally a reduction in variance). For exam-
ple, algorithms for importance sampling or stratified sam-
pling, when properly implemented, will exhibit precisely
these characteristics; that is, reducing variance while leav-
ing the mean intact. On the other hand, biased estimators
are sometimes specifically constructed, primarily to reduce
variance in the estimate or to simplify the algorithm. Such
results are commonly demonstrated with comparison im-
ages showing a reduction in the “graininess” of the image
and/or a reduction in running time by virtue of the proposed
algorithm. Plots of the first- and second- order statistics of
the estimators are used to help in the assessment.

There are numerous disadvantages to relying on subjec-
tive assessments such as visual comparison of images or
plots: 1) they are only weakly quantitative, since compar-
isons are usually binary 2) the absolute variance is not a
useful indicator of the quality of the estimator unless some
assertions can be made about the mean 3) subtle errors can
go undetected, and 4) the comparison cannot be automated.

While completely automatic ranking of estimators is an
enormous challenge, in this paper we present initial steps in
that direction. We propose the use of well-known statisti-
cal methods to make objective comparisons among Monte
Carlo estimators, and in some cases quantitatively. Specif-
ically, we employ hypothesis tests to provide objective an-
swers to several very basic queries about random variables
(r.v’s). If X and Y are r.v.’s, we answer queries such as “Is
the mean value of X equal to ;44?” or “Is the mean value of
X equal to the mean value of Y'?” or “Is the variance of X
less than that of Y'?”. The structure of such queries is to first



pose a null hypothesis, such as (X) = (Y') and competing
alternative hypotheses such as (X) # (Y), (X) < (Y) and
(X) < (Y). Then, solely based on samples drawn from
the parent distributions of X and Y the null hypothesis is
either accepted or rejected with a given level of confidence.
The null hypothesis is only accepted if the data do not pro-
vide enough evidence to reject it. If the null hypothesis is
rejected, further tests are made to decide which alternative
hypothesis may be accepted. See, for example, Freund and
Walpole [9] for a concise introduction to hypothesis testing.

Previous work in computer graphics has drawn upon
similar tools, such as the Chi-Square and Student-t distri-
butions, although previous applications have focused on the
problem of estimating true variance using sample variance
for the purpose of stochastic anti-aliasing [6, 16, 17]. Our
approach differs in that we set up a variety of significance
tests for assessing both the mean and variance of the r.v.’s
themselves for the purpose of verifying that they are indeed
estimating what they are intended to estimate; that is, we
do not directly assess the accuracy of an approximation, but
the correctness and efficiency of the estimator.

2 Review: Hypothesis Tests
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Figure 1. Notation

There are numerous types of statistical tests, associated
with different forms of application problems, such as sig-
nificance tests that determine whether a hypothesis ought
to be rejected, parametric tests to verify hypotheses con-
cerning parameter values, goodness of fit tests to determine
whether an observed distribution is compatible with a the-
oretical one, etc. Statistically significant results are those
that are unlikely to have occurred by chance. Significance
Tests are procedures for establishing the probability of an
outcome, on a null hypothesis of no effect or relationship.
In contrast to the Bayesian approach to inductive inference
which is based on the inverse probability Pr(H|z) of a hy-

pothesis H given the data z, Fisher urged the adoption of
direct probability Pr(z|H) in an attempt to argue “from
observations to hypotheses” [7]. If the data deviated from
what was expected by more more than a specified criterion,
the level of significance, the data was used to reject the null
hypothesis. However, Fisher’s significance tests are diffi-
cult to frame in general since often there exist no natural or
well-defined complements to null hypotheses eg. Hy: The
sample was drawn from the unit normal distribution.

The terminology Hypothesis Testing was made popular
by Neyman and Pearson [10, 11] who formulated two com-
peting hypotheses called the null hypothesis (Hy) and the
alternative hypothesis (H,). Given a sample ! from an arbi-
trary population, the goal of hypothesis testing is to test Hy
against H; according to the given data. Hypothesis tests
are carried out with the aid of a fest statistic which is a pre-
scription according to which a number is computed from
a given sample; that is, a real-valued function of the sam-
ple. Sometimes the test statistic could be a function of two
samples, and in such cases the test is called a two sample
test. Given a sample, its associated value of the test statistic
is used to decide between accepting the null and the alter-
native hypotheses. Thus there exist probabilities associated
with false rejection (Type I) and false acceptance (Type II)
errors which are typically denoted by « and 3 respectively.
Although the Neyman-Pearson theory was criticised [8] for
only being suited to situations in which repeated random
sampling has meaning, it fits well in the context of assess-
ing MC estimators used in image synthesis. While Fisher’s
view of inductive inference focused on the rejection of the
null hypothesis, the Neyman-Pearson theory sought to es-
tablish rules for making decisions between two hypotheses.
This fundamental difference is exploited in all the tests that
are discussed in this paper.

The general algorithm for testing hypotheses proceeds in
a number of steps. The first step involves formalization of
the null hypothesis. After stating the hypothesis in a way
that allows the probabilities of samples to be calculated as-
suming that the hypothesis is true, the next step is to set up
a statistical test that will aid in likely reject the null hypoth-
esis in favour of the alternative hypothesis. An acceptable «
along with the test statistic defines a region of the parent dis-
tribution where Hj is rejected in favor of H1; this region is
called the critical region. o defines the maximum probabil-
ity of the test statistic falling in the critical region despite the
null hypothesis being true and corresponds to the fraction of
the time that the null hypothesis is erroneously rejected. If
the critical region is chosen to lie either completely at the
left tail of the parent distribution or completely at the right
tail, the test is called a one-tailed test or assymetrical or one-

'Here we shall use the term sample as it is used in statistics; that is, to
refer to a set of observations of a population, not a single observation, as it
is commonly used in the graphics literature.
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Figure 2. General Algorithm for Hypothesis Testing

sided test. If the critical region is chosen to equally cover
the left and right tails, the test is called a two-tailed test or
symetrical or two-sided test. o is an input parameter and is
typically chosen to be low.

With the hypothesis and test statistic set up and having
identified the critical region, the data is examined for evi-
dence to reject the null hypothesis. The test statistic is cal-
culated for the given sample data and tested to check if it lies
in the critical region. If this is the case, then the conclusion
is that either the null hypothesis is incorrect or an erroneous
result of probability less than « has occurred and in either
case we accept the alternate hypothesis. Parametric hypoth-
esis tests that hypothesize about parameters of the parent
distribution, such as mean and variance, are intimately tied
to the distribution of the population under study and most
of the existing techniques only apply to distributions of a
restricted type. In fact, the vast majority of the existing the-
ory has been developed for populations with normal distri-
butions.

One-tailed Tests : Tests in which the critical region lies
at either the left or right of the distribution p(x) followed
by the test statistic. Given the max probability of false re-
jection «, the two critical values are obtained as P~1(«)
and P~!(1 — «) which are the the inverse cumulative dis-
tribution evaluated at o and 1 — « respectively. The null hy-
pothesis is rejected if the test statistic that is computed from
the data lies below or above the critical values respectively.
The appropriate alternate hypothesis may be accepted.

Two-tailed Tests : Tests in which the critical region

is equally distributed at both ends of the distribution p(x)
followed by the test statistic. Given the max probability
of false rejection «, two critical values are obtained as
P~'(a/2) and P~1(1 — «/2). The null hypothesis is re-
jected if the test statistic that is computed from the data does
not lie between these two critical values.

Two important hurdles in trying to apply statistical tests
to populations defined as the outputs of MC estimators are :

e dealing with estimators whose estimates are not dis-
tributed normally

e formulating the null hypothesis and setting up the sta-
tistical tests

By the central limit theorem, the distribution of the es-
timated means of samples of MC estimator F rapidly ap-
proaches a normal distribution as the size of each sample is
increased. To overcome the first of the two hurdles, rather
than assess the primary estimator, we simply use distribu-
tions obtained from secondary estimators F; (see Figure 5)
in our assessment.

To overcome the latter hurdle, we first need to define the
goal of the test. In the context of MC estimators two pa-
rameters are of interest— mean and variance. Our goal is to
hypothesize about each of these parameters in two distinct
settings: comparing an estimator with analytically obtained
results and comparing two estimators (one- and two- sample
tests). We address each of the four different combinations
of problems describing the null hypotheses and describe the
corresponding well-known statistical tests. In addition, we
describe a non-parametric two-sample goodnes of fit (GoF)
test which tests that two samples stem from the same parent
distribution. The rest of this section is simply a review of
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the above tests, while the applications of these tests in the
context of MC estimators in image synthesis are presented
in Section 3.

2.1 One Sample Mean Test

The goal of this test is to assert with some confidence
that the mean of the distribution from which a sample y of
size m is drawn, is a specific value 1. The test assumes that
the distribution from which the sample is drawn is normal
but does not make any assumption about its true variance.
The null and alternative hypotheses for this test are

HO :y:MOa
H,y 1@##07
H;r 1Y > po,
Hl_ Yy < Ug-
The test statistic is
Y — Mo
t, =L L (1)

s/vn

which follows the Student’s t-distribution with v = n — 1
degrees of freedom. The null hypothesis is tested against the
first alternative hypothesis with a two-tailed test and against
the other two alternative hypotheses with the appropriate
one-tailed tests. If the data do not provide enough evidence,
at the given « probability of false rejection, to reject the null
hypothesis in favour of any of the alternate hypotheses then
we accept that the mean of the sample is not significantly
different from pg.

2.2 One Sample Variance Test

This test allows the variance of the distribution from
which a sample y of size n is drawn, to be compared with
some confidence against a specific value 03. The test as-
sumes that the distribution from which the sample is drawn
is normal but does not make any assumption about its true
mean. The null and alternative hypotheses for this test are

Hy: 0% =,

H f‘ 10?2 > of,

Hi :0% < i
The distribution of observed variances s2 for samples drawn
from some numerical population follows the chi-square dis-

tribution, which we use as the test statistic in this case. The
test statistic is

Xy = —3 2

where again the degrees of freedom v = n — 1. An interest-
ing property of this distribution is that the s? values average
o2, the actual (usually unknown) variance of the distribu-
tion. Two one-tailed tests are performed to test if the data
provides enough evidence to reject the null hypothesis in
favour of either of the alternative hypotheses.

2.3 Comparing Means of Two Samples

This test compares the means of two distributions, each
of which is represented by one sample, to check for equality
without making any assumptions about the variances of the
distributions. If the two samples are y; and y» of sizes n;
and ng respectively, the null and alternative hypotheses are

Hy :y; = 7o,
Hy:y, #Ys.

The test statistic is
Y1 — Y

T, = 3)

V8% /n1 + s3/no
which follows the Student’s t-distribution with

(s1/n1 + 53/n2)?
(s1/n1)?/(n1 = 1) + (s3/n2)?/ (n2 — 1)
degrees of freedom. A two-tailed test is used to determine

whether the samples provide enough evidence to reject the
null hypothesis in favour of the alternative hypothesis.

V=

2.4 Comparing Variances of Two Samples

To compare the variances of two distributions, each of
which is represented by one sample, we use the standard F-
test. If the two samples are y; and yo of sizes ny and nq
respectively, the null and alternative hypotheses are

Hy: 82 = s3,
Hi 152 > 52,

Hy 183 < s3.
The test statistic is

st
F vi,vp — ;% (4)
which follows the F-distribution with (11 = n; — 1, vy =
ng — 1) degrees of freedom. The null hypothesis is tested
against the alternative hypotheses using two one-tailed tests.



2.5 2-Sample Goodness of Fit

Given two samples y; and yo of sizes n; and no,
we would like to test if they were drawn from the same
parent distribution. We use the 2-sample Kolmogorov-
Smirnov (K-S) test for this purpose. This is the only
non-parametric test that we use in this paper and doesn’t
make any assumptions about the distributions so long as
they are continuous. The null and alternative hypotheses
are Hy : {y1 and yo come from the same distribution} and
Hy : {y1 and yo come from different distributions}. The
test statistic for the 2-sample K-S test is

Dy = max{n W(F,1(x),Gn2(2)) |Fui(z) — Gpa(x)|}

where n = (nina/(n1 + n2))*/? and W(u,v) is a two-
sample weighting function. F,;(z) and G2 () are the cu-
mulative distributions computed from the samples y; and

Y2,
Fnl(x) = Z Ly
T <T, T;€Y1
Gra(x) = Z ;.
z;<x, T;EY2

The inclusion of the weighting function allows for a fam-
ily of K-S tests, of which we choose the one described by
Canner [4] where

W (u,v) = [2(1—2)]7 /2
z = (niu+ngv)/(ng + na).

We use the critical values provided by Canner in his paper
and compare the test statistic computed from the data with
the appropriate critical value to decide whether the null hy-
pothesis is to be rejected.

An attractive feature of this test is that the distribution of
the K-S test statistic itself does not depend on the underly-
ing cumulative distribution function being tested. Another
advantage is that it is an exact test (the chi-square GoF test
depends on an adequate sample size for the approximations
to be valid). The K-S test has received criticism for possess-
ing some important limitations:

1. It only applies to continuous distributions.

2. It tends to be more sensitive near the center of the dis-
tribution than at the tails.

3. Perhaps the most serious limitation is that the distribu-
tion must be fully specified. That is, if location, scale,
and shape parameters are estimated from the data, the
critical region of the K-S test is no longer valid. It typ-
ically must be determined by simulation.

We will use this test in a context where none of these limi-
tations prove to be very important, making this an effective
tool for testing GoF in our application.

3 Testing Image Synthesis Estimators

Testing for bias: The bias of an estimator is defined as the
difference between the estimator’s expectation and the ac-
tual value of the estimand, which is the quantity being es-
timated. Given a new estimator F, often we would like to
test that £ is unbiased at a certain level of significance. If
we can either compute the estimand yy of £ from an anlytic
expression or from well converged simulation, then we can
draw a sample of estimates y using E and apply the one-
sample test to compare y with 1.

Testing variance of an estimator: For a newly proposed
estimator F/, we may verify that its variance is less than an
allowable variance limit 02 by drawing a sample of esti-
mates y using E and applying the one-sample test to com-
pare its variance with 3.

Comparing Means of two estimators: There are at least
two scenarios when we would like to compare the mean of
an estimator E' with that of an estimator that has already
proven unbiased. First, if there exists no analytic expres-
sion for the estimand of E or if obtaining well-converged
estimates using existing techniques is impractical, we could
not use a one-sample test to test if £ is biased. Second, this
test could be used to detect erroneous implementation like
non-uniform sampling, missing cosine factors, etc. The test
is performed by drawing samples of estimates from each es-
timator and performing the two-sample test for comparing
means. Rejection of the null hypothesis indicates that the
means are not equal.

Comparing Variances of two estimators: If one has ac-
cess to an unbiased estimator, such as a brute-force Monte
Carlo estimator that is trivial to verify, one can automate
the testing of new lower-variance estimators to verify that
they are unbiased or nearly unbiased. While checks of this
nature can often be performed “by eye,” either through vi-
sual comparison of images, or by comparing numbers, the
latter techniques are subjective and not conducive to either
automation or quantitative testing. To compare the vari-
ances of two estimators, we draw samples from each and
perform the two-sample test for comparing variances. Fail-
ure to reject the null hypothesis allows us to conclude that
the variance of the new technique is not worse than that of
the existing technique. If the new technique is easier to im-
plement, or executes faster than existing techniques, assert-
ing that its variance is not demonstrably worse can be use-
ful. On the other hand, if the null hypothesis is rejected and
H : s? < s3 is accepted for some «, we are justified in
asserting that the new technique has lower variance.

The rest of this section presents multiple scenarios where
the properties of popular MC estimators used by the ren-
dering community are assessed. The applications presented
include testing an estimator for bias, comparison of the
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Figure 4. All combinations of four estimators were tested (see Section 3.1) to compare their means and variances. Rows and

columns in each matrix of plots correspond to estimators U, C, A and S respectively. Frequencies of the results “less than”,

“equal to” and “greater than” for 2-sample mean (red) and variance (blue) tests are shown in each cell of the matrix from a sequence

of 100 runs of each. The results clearly confirm that the means of all the estimators are equal and that oy > oc > o4 > 0s. The

diagonals correspond to testing an estimator against itself and, as expected, we see that the mean and variance tests report equality.

When the comparisons were repeated for lower values of o, we see fewer false rejections. Note that there is no clear winner in the

test for variance between U and C but on average oy > oc.

means of two estimators, comparison of the variances in
estimates due to different sampling schemes, verification of
reflectance function sampling schemes and detecting com-
mon errors in implementations. We set up the testing sce-
nario, in each of the subsections below, in a way that allows
us to demonstrate the benefits of objective assessment using
hypothesis testing.

3.1 Irradiance Tests

Consider the irradiance at a point x with normal n due
to a triangular uniform, lamberitian emitter in the absence
of occluders. The existence of an analytical solution, com-
monly known as Lambert’s formula [1], combined with the
availability of several MC solutions for comparison make
this problem a good candidate for case study. The irradi-
ance at point x is given by

Ex) = /7-(2 L(x,w)(n-w)dw, ®)

where L(x,w) is the incident radiance at a along w and
H? is the hemisphere of directions defined by n. E(x) is
estimated using the following methods:

1. Estimator U: uniformly sampling the hemisphere of
directions and averaging the cosine weighted incident
radiance along those directions.

2. Estimator C': sampling the projected hemisphere and
averaging the incident radiance along those directions.

3. Estimator A: sampling the area of the triangle uni-
formly and averaging the estimates of irradiance due
to each individual area element.

4. Estimator S: uniformly sampling the solid angle sub-
tended by the triangle and averaging the estimates of
irradiance along each direction.

We compare means and variances of the above estima-
tors against each other and also compare against the ana-
lytical mean obtained using Lambert’s formula. The tests
are valid in this setting because the secondary estimators
for the above yield roughly normal distributions (see Fig-
ure 5). Thus, each of the tests is repeated a number of times
and the average result is reported. All the above estimators
are known to be unbiased and the mean tests confirm this
on average. We observe that sometimes, depending on the
data, the mean test fails. By reducing the value of «, we can
verify that the failures approximately correspond to false re-
jections allowed by the factor «. The result of the variance
tests confirm that on average, oy > o¢c > 04 > 0g (see
Figure 4).

3.2 Testing BRDF Sampling Schemes

One of the many desirable properties of a BRDF is its
suitability to be used in a MC rendering setup. This usu-
ally involves being able to sample from the reflectance func-
tion or an approximation of this function. In the latter case,
so long as the exact density associated with each direction
in the sample is known there is no risk of introducing a
bias while estimating reflected radiance using the sample,
regardless of how weak the approximation. However, the
closer the approximation, the lower the variance in the esti-
mated reflected radiance.

The goal of this case study is to use two popular
BRDF models proposed by Ashikhmin and Shirley [3] and
Ward [26, 25] and test whether the distributions sampled
by the two techniques significantly differ from their corre-
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sponding reflectance functions. We select an input direction
arbitrarily and obtain a sample containing many output di-
rections according to the BRDF. We bin these samples and
visualize the 2D histogram as a greyscale image where im-
age intensity is proportional to bin frequency. For compari-
son, we visualize the histograms obtained by sampling each
BRDF using rejection sampling. The test is set up so that
the size of the sample obtained using rejection is equal to
the size of the sample obtained by sampling the BRDF.
Visual inspection of the histograms is sufficient to as-
sert that the sampling of the Ward’s BRDF does not match
the actual reflectance distribution. In the case of the
Ashikhmin-Shirley BRDF however, it is not obvious. To as-
sess the Ashikhmin-Shirley BRDF sampling algorithm we
use the 2-sample GoF test. Since the test is applicable only
to univariate distributions and we have a 2D distribution for
a fixed outgoing direction, we linearize this 2D space by
using a space filling curve such as Morton-order [21].
Since the GOF test is not a parametric test, we do not
make any assumptions about the distribution other than that
it is continuous [3]. Also since we can afford to repeat the
experiment multiple times, two of the three major limita-
tions of the K-S test are no longer major concerns in our ap-

Figure 6. Histograms of sample directions for two
anisotropic BRDF’s (Ward and Ashikhmin-Shirley) are
shown, for a given outgoing direction. Multiple peaks are
observed due to the anisotropy. Rows and columns in the
image correspond to polar and azimuthal angles respec-
tively. Sampling from the reflectance distribution (left) vs
sampling using rejection (right) is shown. While it is evi-
dent that the distributions do not match for Ward’s BRDF
(top row), it is not obvious from visual inspection if the two
samples for the Ashikhmin-Shirley BRDF (bottom row) rep-
resent the same distribution.

plication. The third limitation of the K-S test suggests that
it will be less likely to detect sampling anomalies near the
pole or near the horizon. We show that this is not a major
concern in practice. If need be this decreased sensitivity to
the tails may be made insignificant by adopting a parameter-
ization scheme for the BRDF such as the half-angle param-
eterization [19] in conjunction with a linearization scheme,
thus keeping the interesting changes of the BRDF in the
middle of the distribution. The fact that the K-S test does
not make assumptions about the distribution from which the
samples are drawn is key.

The results of the 2-sample K-S test for a sample di-
rectly drawn from Ward’s BRDF against one drawn using
rejection failed for all levels of significance and any num-
bers of samples drawn. On the other hand, a similar test
for the Ashikhmin-Shirley BRDF passed with a = 0.005
for a sample size of less than 100. For larger samples
the Ashikhmin-Shirley BRDF failed the test indicating that
the distribution being drawn from does not match the re-
flectance distribution exactly. This is consistent with the
sampling technique [3] which derives the scheme for a dis-
tribution that is very close to the reflectance function but not
identical.

3.3 Reflected Radiance

Testing the BRDF sampling using GoF tests can provide
useful insight into the potential variance in the estimates of
reflected radiance off a glossy surface. If it has been con-
firmed that the sampled distribution does not exactly match
the reflectance distribution, it is of interest to know whether
the correct weights are being used with each direction while
estimating reflected radiance using the sample. Since we
have already verified that the sampling of Ward’s BRDF
does not follow the actual reflectance distribution, we per-
form a test to verify that the true function sampled from can
be used as an importance function without introducing bias.

The reflected radiance from a surface with Ward’s BRDF
was estimated m times along an outgoing direction by
(1)sampling the BRDF and (2) sampling the BRDF using
rejection. That is, for a given outgoing direction, we ob-
tained m estimates of the reflected radiance using each sam-
pling scheme from which we constructed two samples of
size m. By performing a 2-sample test for the means of
these two samples, we tested that they have the same mean.
The process was repeated k times along each outgoing di-
rection, for 1000 outgoing directions uniformly distributed
over the hemisphere with m = 50. 98.6% of the tests with
a = 0.01 reported that the means were equal. Therefore,
this random variable can be used for unbiased importance
sampling.



Figure 7. Results of the 2-sample tests comparing the mean of an estimator against a trusted estimator before and after three errors
were introduced in the former. The tests were performed with oo = 0.01 and detected the difference in means after introduction of the
erroneous when tested against the trusted estimator. Images generated using the erroneous estimators are shown for a scene with

shiny, textured and glossy (Ward’s BRDF) spheres. a) Before introducing errors b) Missing cosine term; c¢) Non-uniform sampling of

the illuminaire; d) Incorrect change of variables in Equation (3.4). The errors are not always be obvious from just visual inspection.

3.4 Detecting Errors

One of the applications of the hypothesis testing ap-
proaches we have described is catching unintended sources
of bias, and determining whether an experimental variance
reduction technique is in fact effective.

As graphics researchers often discover, it is difficult to
construct low-variance estimators that remain unbiased, ei-
ther because of the intrinsic difficulty of correctly normal-
izing the probability density functions, or simply because
there are so many opportunities for error. For example, it
is easy to forget a factor of a cosine or , or incorrectly
perform a change of variables (e.g. cosine over distance
squared) which will lead to erroneous results that neverthe-
less look plausible and may therefore go unnoticed. Indeed,
many sources of bias would be nearly impossible to detect
without an objective comparison with either an analytic so-
lution, or a trusted Monte Carlo estimator. For example, if
stratified sampling over a 2-manifold is used with a map-
ping that is not uniform (i.e. a mapping that does not map
equal areas in the parameter domain to equal areas on the
manifold), there will be a systematic bias unless the strata
are weighted according to their respective areas. Similarly,
if samples are used both to estimate the mean and to guide
adaptive sampling, the result is systematically biased down-
ward [14]. In both cases, the bias may be arbitrarily large,
yet offers no obvious visual clue of its existence. Such er-

rors are relatively easy to catch with hypothesis testing.

We intentionally introduce three common unintended
sources of bias in the estimator A(see Section 3.1) and
demonstrate that they could be detected by using the tests
described in Section 2. In constructing A, Equation (3.1) is
rewritten, using a change of variables, as

B n-zna-z
Bx) = /Amm Lo G e @ ©

where the integral is now over the area of the triangle as

opposed to the sphere of directions, with y as the variable
of integration. nx is the triangle’s normal and z = x — y
is a vector along w. The term (na - z/||z]|*) is a factor
that appears in the integral due to the change of variables.
Specifically, we made the following three alterations

1. Omitting the cosine term (n - z/||z||) in Equation (3.4)

2. Non-uniform sampling of the area of the triangle by
using uniform random variables in [0, 1] as barycentric
coordinates.

3. Incorrect change of variables by omitting the
(na - z/|z]|*) in Equation (3.4).

All three errors were promptly detected by running the
2-sample test for means when tested against the unmodified
trusted estimator S(see Figure 7).



4 Conclusion

We have demonstrated how the well-known idea of sta-
tistical hypothesis testing can be applied to Monte Carlo
image synthesis. Specifically, we have shown its utility in
testing whether a given estimator has the correct expected
value or a variance bounded by a given value. We have also
shown how to test whether two estimators have the same
expected value, and whether one estimator has a smaller
variance than another. At present, such conclusions are typ-
ically drawn in an informal way, either by subjective eval-
uation of images, or by comparing sample means and vari-
ances, subjectively allowing for statistical variation.

We have demonstrated how to set up the correct statis-
tical tests in each of the scenarios mentioned above, and
have illustrated their use in prototypical computations such
as computing irradiance at a given point on a surface and
computing reflected radiance at a given point along a given
direction.

The techniques that we have described here are not lim-
ited in any way to the specific scenarios we have used as
illustrations. They could be used to objectively compare a
sophisticated path tracing technique (eg. Metropolis mu-
tation strategy [24]) with a brute-force strategy(eg. brute-
force Monte Carlo) that is guaranteed to produce the cor-
rect result, albeit very slowly. Other applications of the pro-
posed techniques include objective comparison of different
variance reduction techniques and statistical verification of
sampling algorithms.
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