
EUROGRAPHICS 2010 / T. Akenine-Möller and M. Zwicker
(Guest Editors)

Volume 29 (2010), Number 2

Real-time Rendering of Heterogeneous Translucent Objects
with Arbitrary Shapes

Yajun Wang†‡§¶ Jiaping Wang† Nicolas Holzschuch‡¶ Kartic Subr‡¶ Jun-Hai Yong§ Baining Guo†§

† Microsoft Research Asia § Tsinghua University
‡ INRIA Grenoble Rhône-Alpes ¶ CNRS and Université de Grenoble, Laboratoire Jean Kuntzman

Figure 1: Rendering results at 22 frames per-second of the Stanford Thai Statue (157 K triangles) with our system.

Abstract
We present a real-time algorithm for rendering translucent objects of arbitrary shapes. We approximate the scatter-
ing of light inside the objects using the diffusion equation, which we solve on-the-fly using the GPU. Our algorithm
is general enough to handle arbitrary geometry, heterogeneous materials, deformable objects and modifications
of lighting, all in real-time. In a pre-processing step, we discretize the object into a regular 4-connected structure
(QuadGraph). Due to its regular connectivity, this structure is easily packed into a texture and stored on the GPU.
At runtime, we use the QuadGraph stored on the GPU to solve the diffusion equation, in real-time, taking into ac-
count the varying input conditions: Incoming light, object material and geometry. We handle deformable objects,
provided the deformation does not change the topological structure of the objects.

1. Introduction

Subsurface scattering of light is a complex phenomenon that
occurs in many materials such as jade, marble and human
skin. It plays an important role in the realism of rendered
scenes, but unfortunately is also challenging to simulate. In
translucent objects, the outgoing radiance at each point on
the surface depends on three factors: Incoming radiance at
all points on the surface, the path followed by the light inside
the object as well as the optical properties along this path.

Accurately rendering a translucent object can take sev-
eral hours with off-line physical simulation. To accelerate
the rendering process, Jensen et al. [JMLH01, JB02] intro-
duced the diffusion approximation: Assuming homogeneous
materials and infinite planar boundaries, multiple scattering
effects can be simulated efficiently using a dipole approxi-

mation. However, the constraints for this diffusion approx-
imation are not fully satisfied by many real-world objects,
that have complex shapes and are composed of heteroge-
neous scattering materials.

The diffusion equation [Ish78] fully describes subsurface
multiple-scattering effects in translucent objects, including
heterogeneous materials. In practice, solving the diffusion
requires a discretized model of the interior of the translucent
object. Wang et al. [WZT∗08] used a regular grid, the poly-
grid; this grid had to be built manually, and is not suited for
complex geometry (high genus or thin features).

In this paper, we present the first method to solve the dif-
fusion equation, in real-time, on objects of arbitrary shapes
with heterogeneous materials. Our method is based on a
4-connected structure, the QuadGraph. In a pre-processing

submitted to EUROGRAPHICS 2010.

2 1316 / Real-time Rendering of Heterogeneous Translucent Objects

step, we build the QuadGraph automatically as the connec-
tivity graph of a tetrahedralization of the object. At each
node, we store the diffusion coefficients of the material. This
QuadGraph is then stored on the GPU in a compact way,
exploiting the regular connectivity. At run-time, we use the
GPU to solve the diffusion equation at each node of the
QuadGraph, in real-time, accounting for dynamic material
properties and deformations to the geometry. Our algorithm
is robust enough to handle objects with arbitrary genus and
arbitrarily thin features (see figures 1 and 10).

We first review the literature on translucent materials and
subsurface scattering (section 2). Next, we present the back-
ground on the diffusion equation (section 3). In section 4 we
describe our datastructure, the QuadGraph, its construction
and the linearization of the diffusion equation. Practical im-
plementation details including compact storage of the Quad-
Graph on the GPU, solving the equation and rendering are
explained in section 5. In section 6, we present experimental
results and timings. Finally, in section 7, we propose direc-
tions for future work.

2. Related Work

Translucent Materials: Subsurface scattering ef-
fects can be simulated using Monte-Carlo meth-
ods [DEJ∗99, PH00, LPT05] or Photon Mapping [JC98].
These methods are physically accurate, and apply to any
object or material, but require considerable rendering time
for each frame (usually hours). Jensen et al. [JMLH01]
introduced the diffusion approximation for homogeneous
materials with an infinite planar boundary. With this
approximation, the rendering time is lowered to minutes.
Dachsbacher and Stamminger [DS03] extended this work to
achieve real-time rendering, using the same approximation.
Several papers have extended this work to multi-layered
translucent materials, e.g. [DJ05], and especially human
skin [GHP∗08, DWd∗08]. Arbree et al. [AWB08] used the
lightcuts approach [WFA∗05, WABG06] to render objects
of arbitrary shape, with homogeneous materials. Several
papers have presented algorithms for fast rendering of par-
ticipating media [MSM∗04, ZRL∗08, SKLU∗09], but they
are restricted to regular volumetric shape representation.

Acquisition: A different line of research targets the
acquisition of material properties, for translucent objects:
Tong et al. [TWL∗05] for quasi-homogeneous translucent
materials, Goesele et al. [GLL∗04] for acquiring the
properties of an entire object, Peers et al. [PvBM∗06] for
capturing the properties of a flat sample. These methods
sample the complete light transport operator for the object
or for a material sample. Consequently, they store very
large data sets that restricts editability of material properties.

Precomputed Radiance Transfer: Recently Precom-
puted Radiance Transfer [SKS02] has been extended

Figure 2: Rendering with diffusion equation.

to render translucent objects in real-time, through pre-
computation of the light transport due to subsurface
scattering [HV04, WTL05]. Xu et al. [XGL∗07] and
Wang et al. [WCPW∗08] precomputed the subsurface
scattering of a series of 1D homogeneous basis scattering
profiles and linearly combined them on-the-fly with varying
weights to achieve runtime alteration of optical proper-
ties. These methods require precomputation of the light
transport, with fixed material properties and/or geometrical
shape of the object. They are not suited for applications
that require dynamic editing of the material or the geometry.

Diffusion Equation: Multiple scattering effects can
be modeled by the diffusion process [Ish78], described by
a PDE– the diffusion equation– that can be numerically
solved. The Diffusion Equation was first introduced in com-
puter graphics [Sta95] for rendering participating media.
Haber et al. [HMBV05] extended this work to objects of
arbitrary shapes, using embedded boundary discretization.
Wang et al. [WZT∗08] achieved real-time rendering of
translucent objects on the GPU, using a quasi-regular
6-connected structure, the polygrid. However, this method
is restricted to objects with simple geometry (low genus, no
sharp features).

Our algorithm is also based on the diffusion equation, al-
lowing us to handle heterogeneous materials. However, the
main difference with previous work is that we discretize
translucent objects using tetrahedra instead of cubic grids.
This allows us to handle arbitrary geometry, in real-time.

3. The Diffusion Equation

Light entering a translucent object interacts with the material
of the object and is scattered several times before leaving the
object. If we focus only on this multiply-scattered compo-
nent, light within the object is related to the light entering the
object by a PDE, the diffusion equation [Ish78, Sta95] with
incoming radiance being the boundary condition (see figure
2). The solution to the diffusion equation expresses the dis-
tribution of light throughout the object and light leaving the
object is obtained by computing the outgoing radiance at the
surface.

More formally, consider an object Ω with boundary ∂Ω,
composed of a highly scattering, non-emissive, heteroge-
neous material, defined by its absorption coefficient μ(x)
and reduced scattering coefficient σ′s(x) [JMLH01]. The dif-
fusion equation defines the radiant flux φ(x) within this ob-

submitted to EUROGRAPHICS 2010.

1316 / Real-time Rendering of Heterogeneous Translucent Objects 3

Figure 3: QuadGraph (c) is constructed from the tetrahe-
dralization (b) of a surface mesh by taking centroid of tetra-
hedra as nodes and faces as edges. (d) zooms in the blue box
region of (c). Green line: a link between inner nodes. Red
line: a link between inner node and surface node.

ject as:

∇ ⋅ (κ(x)∇φ(x))−μ(x)φ(x) = 0, x ∈Ω (1)

where κ(x) = [3μ(x)+σ ′s(x)]−1.

We use the diffusive source boundary condition as de-
scribed by Arbree [AWB09] based on the Robin boundary
condition [HST∗94, SAMD95], which relates the incoming
radiance Li on the surface of the object ∂Ω to the radiant flux
as

φ(x)+2Aκ(x)
∂φ(x)

∂ n⃗
=

4
1−Fdr

q(x), x ∈ ∂Ω (2)

where
q(x) =

∫
2π
Li(x,ωi)(⃗n ⋅ωi)Ft(ωi)dωi , (3)

A = (1+Fdr)/(1−Fdr) and q(x) is the diffused incoming
light at the surface point x. Ft and Fdr are the diffuse Fresnel
transmittance and Fresnel reflectance coefficients, respec-
tively [JMLH01]. Both are functions of the refraction index
η .

Once radiant flux φ(x) inside the object is determined, we
compute the outgoing radiance on the boundary Lo(xo,ωo)
as its derivative along the normal n⃗ at point xo ∈ ∂Ω
[AWB09]:

Lo(xo,ωo) =
Ft(ωo)
4π

[(
1+

1
A

)
φ(x)− 4

1+Fdr
q(x)

]
(4)

4. Solving the Diffusion Equation on QuadGraph

We represent the boundary condition and solve the diffusion
equation in a discrete domain. A regular 4-connected volu-
metric graph called QuadGraph is proposed to serve as such
a domain, which is automatically constructed given the sur-
face geometry of the object. In this section, we describe how
to construct the QuadGraph and solve the diffusion equation
on it.

4.1. QuadGraph

The QuadGraph is a volumetric graph; nodes are connected
to either 1 other node (surface nodes), or to 4 other nodes

Figure 4: Four types of tetrahedron (C0−3) with 0-3 out-
side face(s). Outside faces, rely on the volume boundary, are
filled with solid color. C2/C3 tetrahedra are split by adding
a new vertex and four edges shown in blue. Splitting a C2
tetrahedron results in two C0 tetrahedra and two C1 tetrahe-
dra. Splitting a C3 tetrahedron results in one C0 tetrahedra
and three C1 tetrahedra.

(inner nodes). Surface nodes (N∂ Ω) are positioned at the sur-
face of the object, and they sample the incoming radiance
and represent the boundary condition. Inner nodes (NΩ), dis-
tributed inside the volume, sample volumetric optical prop-
erties and represent the solution of the diffusion equation,
radiant flux. The entire graph (NΩ+) is the union of surface
nodes and inner nodes, NΩ∪N∂ Ω.

As shown in figure 3, to build the QuadGraph, we start
with an automatic tetrahedralization of the triangle mesh
[ACSYD05, LS07]. After the tetrahedralization, a given
tetrahedron can have from 0 to 3 of its faces on the boundary
of the object (we assume that there are no isolated tetrahe-
dra).

We split all tetrahedra with 2 or 3 faces on the boundary by
adding a new vertex at their centroids as shown in figure4, so
that the resulting tetrahedral mesh only contains tetrahedra
with 0 or 1 faces on the boundary.

We then build the QuadGraph as the connectivity graph
of this tetrahedral mesh as illustrated in figure 5: each tetra-
hedron is converted into a graph node, located at its cen-
troid. If two tetrahedra share a given face, then their cen-
troids are connected in the graph. Tetrahedra with one face
on the boundary of the object are converted into a set of two
connected nodes: an inner node and a surface node. The geo-
metric position of the surface node is determined as the clos-
est intersection between the surface mesh and the ray linking
it to the inner node. Figure 3 shows an example of the Quad-
Graph. Once we have built the initial QuadGraph, we refine

Figure 5: Construction QuadGraph from tetrahedron mesh.
Left: a C0 tetrahedron is converted to an inner node (Green).
Right: a C1 tetrahedron is converted to an inner node
(Green) and a surface node (Red).

submitted to EUROGRAPHICS 2010.

4 1316 / Real-time Rendering of Heterogeneous Translucent Objects

the position of the inner nodes for even distribution by ap-
plying reaction-diffusion [Tur91] to the 3D points.

Our method is based on the tetrahedralization method of
Alliez et al. [ACSYD05], which produces nearly equilat-
eral tetrahedra of regular size. It takes a single parameter, K,
which controls how much larger tetrahedra inside the object
are, compared to those near the surface.

4.2. Discretized Diffusion Equation

Once we have built the QuadGraph {NΩ,N∂ Ω}, we dis-
cretize the Diffusion Equation (Equations 1 and 2) into lin-
ear equations using a Finite Difference Method (FDM), as
in [Sta95]:

4

∑
j=1

1
d2i j

κ(n j)φ(n j)− (wκ(ni)+μ(ni))φ(ni) = 0 (5)

φ(ns)+2Aκ(ns)
φ(ns)−φ(nk)

dsk
=

4
1−Fdr

q(ns) (6)

ni ∈ NΩ ns ∈ N∂ Ω

The sum in Equation 5 is over the four nodes nj connected
to the node ni. In Equation 6, nk is the single inner node
connected to the surface node ns. In equation 5, we use w=

∑4j=1 1/d2i j , and d∗∗ denotes the distance between two nodes,
or the length of the graph edge connecting them.

We sample optical properties (κ and μ) at the graph
nodes. q(ns) is the diffused incoming light for each surface
node. We approximate the coefficients of Laplacian operator
with the inverse distance (α = −2) [Tau95]. Once we have
solved the diffusion equation described in section 4.3, we
find the outgoing radiance Lo(ns,ωo) according to the radi-
ant flux of the corresponding surface node φ(ns):

Lo(ns,ωo) =
Ft(ωo)(φ(ns)−2q(ns))

2π(1+Fdr)
, ns ∈ N∂ Ω (7)

4.3. Solving the linearized equation

We solve the linearized equations (5, 6) on the Quad-
Graph using the relaxation scheme as in [Sta95,WZT∗08]:
we start by initializing the value of the radiant flux at each
node to φ0(n) (e.g. zero), and iterate the following steps until
reach a user defined number of iterations.

φt+1(ni) =
∑4j=1 κ(n j)φt(n j)/d2i j
wκ(ni)+μ(ni)

ni ∈ NΩ (8)

φt+1(ns) =
2Aκ(ns)φt(nk)+dsk

4q(ns)
1+Fdr

2Aκ(ns)+dsk
ns ∈ N∂ Ω (9)

To speed-up the convergence, we use a multi-resolution
scheme, similar to [WZT∗08]. We design multiple levels h
of the QuadGraph, {NhΩ,Nh∂ Ω}. Each level is built, indepen-
dently, as a tetrahedralization of a simpler version of the sur-
face mesh, with the number of surface points decreasing by
a factor of four between two hierarchical levels. Note that

the finest level uses the exact full QuadGraph, so no approx-
imation is introduced by using the multi-resolution scheme
if convergence is fulfilled.

After we have these multi-resolution representations of
the object, we start by solving at the coarsest level, h = 0,
use this solution as the starting point for solving at the next
level, and iterate. The coarse level generates a blurred solu-
tion (figure 14b) with correct overall distribution and serves
as the initialization for the finer level. Specifically, initial ra-
diant flux at the level h+1 is sampled from the solution of b
nearby nodes on level h, with interpolation weights propor-
tional to the square of the inverse distance [She68]:

φ(nh+1x) =
b
∑
y=1
wxyφ

(
nhy
)

(10)

wxy =
w′xy

∑by=1w′xy
w′xy =

∥∥∥nh+1x −nhy
∥∥∥−2 .

We treat surface nodes and inner nodes independently in
this hierarchical sampling process. We used b= 4 for surface
nodes, and b= 8 for inner nodes, i.e. each surface node at a
finer level is computed by interpolating the values from 4
surface nodes at the coarser level. The interpolation weights
between the different levels of the QuadGraph (wxy) are pre-
computed as part of the pre-processing step. They are inde-
pendent of the optical properties of the material, and invari-
ant to smooth shape deformation.

5. GPU Implementation and Rendering

Our algorithm solves the diffusion equation inside the
translucent object at each frame, without precomputation
of the light transport, thus allowing for dynamic illumina-
tion, optical properties and shape deformations. We store the
QuadGraph in textures on the GPU as a pre-processing step.
At each frame, we first sample the incoming illumination us-
ing shadow mapping on the surface of the translucent object,
then solve the Diffusion Equation on the GPU using it as a
boundary condition.

5.1. Storage

We store the QuadGraph itself on the GPU using 2D textures
(see figure 6). Each node of the QuadGraph corresponds to

Figure 6: Textures for encoding parameters. Upper row (a):
16-bits float textures that encode variables. Bottom row (b):
32-bits integer textures that encode constants.

submitted to EUROGRAPHICS 2010.

1316 / Real-time Rendering of Heterogeneous Translucent Objects 5

Figure 7: Texture packing. Topologically nearby nodes (red)
are packed in the same texture block (blue).
a single index (u,v), applying to all the textures. The tex-
tures are subdivided along one dimension (v) between sur-
face nodes and inner nodes, so that the node type is easily
determined by a simple test.

Connectivity is encoded using two 32-bits RGBA inte-
ger textures, encoding for each node the indices of the con-
nected nodes (two channels per index). We also use 2 RGBA
textures of 16-bits floating-point numbers to encode the ge-
ometric position of each node and its optical properties
(κ(n),μ(n)). We uses 16-bits floating-point instead of 32-
bits in any situation if the precision is sufficient, which re-
duced the amount of video memory to be accessed.

A separate set of textures encodes the hierarchical lev-
els of the QuadGraph: 32-bits RGBA integer textures to en-
code the connectivity between the different levels, and 16-
bits floating point numbers to encode the weights used for
sampling results on the next hierarchical level. The entire
GPU memory cost for our algorithm is roughly 20 MB for
models with roughly 100 K vertices (see Table 1).

A crucial point for a practical GPU implementation is im-
proving the cache hit rate of graphics memory access on the
GPU. We pack together nearby nodes (see figure 7): the tex-
ture is subdivided into multiple blocks of r× r texels, and
each block is filled with a set of connected nodes. We use a
greedy approach for filling the texture: starting from a seed
node, we do a breadth-first traversal on the graph, and as-
sign them to the block until we have reached r2 nodes. The
next node is then used as a new seed node, to fill the next
block. When the traversal finds an already assigned node, it
does not assign it to another block, but it still visits all the
nodes that are connected to it. We iterate this process until
all graph nodes have been assigned. In our experiments, we

bind texture φt+1 to a FBO as the render target
render a rectangle covering the texels containing the nodes
to be updated, with fragment shader.
for each fragment:
fetch indices of neighbouring nodes nj
fetch positions and optical properties for ni,nj
compute Laplace weights based on distance between nodes
compute value for φt+1 based on Eq. 9 or 8.

end for

Figure 8: Pseudocode for a single iteration

use r = 32. Such a chosen is based on the tetrahedralization
density of the geometry models used in our experiments.

For packing together inner nodes, we use the connectivity
inside the graph. For surface nodes, we use proximity on
the surface. In our experiments, this localized storage of the
QuadGraph in textures results in a 30 % to 60 % speedup
over random storage.

5.2. Solving the Equation

We solve the diffusion equation at each frame, recursively
on each hierarchical level of the QuadGraph, starting with
the coarsest level (h = 0) (see figure 9 for a pseudo-code of
our algorithm).

For each level, we start by evaluating the incoming dif-
fuse illumination on the surface, including shadows (using
shadow mapping) and multiply with Fresnel transmission
coefficient . Incoming light is stored in a 16-bits floating
point texture, for each surface node of the QuadGraph.

We then solve the diffusion equation iteratively, using two
auxiliary textures to store the radiant flux, before and after
the current iteration (see figure 8 for the pseudo-code of a
single iteration). After computing an iteration, we test for
convergence. If we have converged at this hierarchical level,
we move on to the next level, using the results at this level as
a starting point, after re-sampling. Otherwise, we swap the
two textures and compute the next iteration.

5.3. Displaying Results

We do not display the geometry of the original object; in-
stead, we build a surface ϒ that maps directly to the Quad-
Graph, by triangulating all its surface nodes. Once we have
computed the solution of the Diffusion Equation, we use it
to compute the outgoing radiance Lo for all surface nodes ns
using Eq. 7, then we render ϒ.

6. Experimental Results

We have implemented our algorithm on an Intel Core2Duo
2.13GHz CPU, with 2GB memory and an NVIDIA Geforce
8800GTX GPU with 768MB graphics memory. We used
GLSL to implement the algorithm on the GPU.

At each new frame:
for each multi-resolution level h
compute incoming light q(ns) on all surface nodes
initialize φ(n) by sampling from level h−1
while not converged
update φ(ns) for all surface nodes (Eq. 9)
update φ(ni) for all inner nodes (Eq. 8)

end while
end for
compute radiance Lo(ns,ωs) for all surface nodes (Eq. 7)
render the object surface using Lo

Figure 9: Pseudocode for our linear solver.

submitted to EUROGRAPHICS 2010.

6 1316 / Real-time Rendering of Heterogeneous Translucent Objects

Scene Fig. QuadGraph Mem Prep Iter FPS
Ns Ni K L (MB) (min)

Thai 1 157k 369k 1 4 35 24 40 21.8
Gargoyle 10a 62k 139k 0.5 3 18 10 50 46.4
Topmod 10b 121k 260k 0.2 3 36 15 40 29.4
Buddha 10c 66k 120k 0.5 3 17 9 30 57.6
Fertility 10d 82k 182k 0.3 3 25 12 50 34.4
Twirl 10e 82k 226k 0.1 3 27 16 60 22.1
Heptoroid 10f 82k 178k 0.2 2 24 11 80 21.6
Lucy 10g 150k 363k 0.2 4 33 20 40 21.0

Table 1: Statistics of test scenes: Ns and Ni are the number of
surface and inner nodes, respectively, of the QuadGraph at
the finest level. L is number of multi-resolution levels; Mem
is the total size of textures over all levels; Prep is the prepro-
cessing time including tetrahedralization, QuadGraph con-
struction and texture packing; Iter is the number of iterations
of the solver at each level.

All images are rendered at 1024×1024 with 2×2 super-
sampling for antialiasing. We added surface shading to all
results using the Cook-Torrance BRDF model [CT81]. We
have tested our algorithm on several complex objects, with
sharp geometric features (see figures 1 and 10). Rendering
statistics for all our models can be found in Table 1.

6.1. Test Scenes

Figure 1 shows the rendering results of the Stanford Thai
model with the colorful agate material. Our system generates
the subsurface effects due to the highly heterogeneous ma-
terial. Complex surface details and small geometry features,
such as the trunk in the middle and claw in the bottom, are
well preserved and exhibit rich visual effects with different
lighting conditions. Please refer to the accompanying video
for animated sequences.

Figure 10 shows rendering results with various objects.
Objects with high genus (b, c, f), high curvature (b, e, f) and
thin features (a, c, e, g) are well handled. We can also han-
dle any kind of material and heterogeneities, such as wax (a,
c, e, f), jade (b), and marble (d, g). Our algorithm produces
convincing results in all cases, which demonstrates various
visual effect on translucent materials, such as color bleed-
ing (a, d, e, g), back-lighting (b, c, d, f) and blurring of the
geometry features (a, c, g).

6.2. Computation time

Figure 12 shows the computation time (in ms) for several test
scenes, as a function of the number of tetrahedra. For three
of our models, the Stanford Bunny, the double-hole donut
(figure 3) and the Fertility statue (figure 10d), we have sev-
eral tetrahedralization: they are plotted as lines. Other mod-
els, for which we have a single tetrahedralization, appear as

 0

 50

 100

 150

 0 250000 500000 750000 1e+06

R
en

de
rin

g
tim

e
(m

s)

Number of tetrahedra

Bunny
Double hole Donut

Fertility
Other models

Lucy
Thai statue

Budha

Gargoyle

Heptoroid Twirl

Topmod ball

Figure 12: Computation time, in ms, as a function of the
number of tetrahedra. Models with several tetrahedraliza-
tions are plotted as straight lines (Bunny, Donut, Fertility).
Other models appear as points in the graph. For most of the
models, the rendering time varies linearly with respect to
the number of tetrahedra. The two outliers (Twirl and Hep-
toroid) have thinner features and require more iterations.

points on the graph. For most of the models, the rendering
time appears to vary linearly with respect to the number of
tetrahedra. The two outliers are the Twirl (figure 10e) and
the Heptoroid (figure 10f). These two models have thinner
features, and require more iterations for convergence.

6.3. Comparison with Ground Truth

To study the effect of the parameter K on the results of our
algorithm, we compared resulting images for different val-
ues of K against a ground truth reference image that was
computed using photon mapping. Figure 11 tabulates these
results for four different values of K and shows difference
images to the reference and scanline plots. A lower value for
K constrains the sizes of surface and internal tetrahedra to
vary less. While reducing K increases the number of tetra-
hedra and hence computation time, it results in rendered im-
ages that are closer to the ground truth. However, even the
increased quality images render at interactive rates (8 fps).
By increasing K, we can further increase the efficiency at
the appropriate compromise of fidelity to the ground truth.
The plots in the image show our result (blue) across two dif-
ferent scanlines compared against the ground truth (black).
For K = 0.1, the blue curve is quite close to the reference
black curve.

To obtain intuition about the “sweet spot”, or the value
of K at which we achieve a suitable trade-off between qual-
ity and efficiency, we plotted the relative root mean squared
(RMS) error of our result (in comparison with the ground
truth) against K for multiple models (see figure 13). This
plot reveals that even at K = 1.0 the RMS error is less than

submitted to EUROGRAPHICS 2010.

1316 / Real-time Rendering of Heterogeneous Translucent Objects 7

Figure 10: We have tested our algorithm on several complex objects, including objects with high genus (b, c, f), high curvature
(b, e, f) and with sharp geometric features (a, c, e, g).

Ground Truth K = 1, N = 141k K = 0.5, N = 246k K = 0.3, N = 468k K = 0.1, N = 973k
21 ms 35 ms 68 ms 122 ms

Im
ag
e

D
iff
er
en
ce

y=
30
0

y=
40
0

Figure 11: Comparison between ground truth and our method, for different values of K [ACSYD05]. For this figure, we com-
puted only the translucency effects, with no reflections on the surface, to ensure a fair comparison. First row: the actual pictures
computed. Second row: pixel-by-pixel difference with reference image (top left). Third and fourth row: 1D plot of pixel values
along a scanline. The positions of the two scanlines appear on the leftmost image of the second row. The values for the reference
image are in black, our results are in blue. For K = 0.1, our results are quite close to the reference. Note that for all values of
K, our algorithm finds the salient features of illumination, resulting in a good visual quality.

submitted to EUROGRAPHICS 2010.

8 1316 / Real-time Rendering of Heterogeneous Translucent Objects

 0

 0.02

 0.04

 0.06

 0.08

 0 0.25 0.5 0.75 1

R
M

S
 e

rr
or

K

Bunny
Doublehole donut

Fertility

Figure 13: RMS error of the images computed with our al-
gorithm (compared to a reference image), as a function of
K.

10 %. The plot also shows that we can achieve errors as low
as 2 % at slight costs in efficiency.

Finally, we verified the contribution of the multi-
resolution scheme to convergence rate by plotting relative
errors against execution time, with and without the multi-
resolution solver. Figure 14 shows that the use of a multi-
resolution solver significantly increases convergence rate.

6.4. Shape Deformation and Material Editing

Our system also supports runtime shape deformation as
shown in figure 15 and the accompanying video. Any de-
formation algorithm that is able to apply a deformation field
to the object volume (e.g. [SP86, JSW05, LLCO08]), can
be applied to drive the deformation of QuadGraph. Defor-
mation described here is only changing on geometry shape,
the material changing due to deformation (e.g. condensed by
squeezing) is not considered. Runtime editing of the optical

Figure 14: The plot (a) compares relative error achieved
with (blue) and without (red) the multi-resolution solver. (b)
the solution of the coarse level. (c) the solution of the finer
level with (b) as initialization.

Figure 15: Our algorithm can handle deforming objects, as
long as the deformation does not break the underlying tetra-
hedralization.

Figure 16: Our algorithm can handle changing the optical
properties at runtime.

properties is demonstrated in figure 16 (and accompanying
video)

We can only handle deformations that maintain the under-
lying tetrahedralization. Deformations are therefore limited
in scope and amplitude: we cannot change the topology of
the object.

Although we only show simple material optical editing
operations, our system is flexible enough to work with com-
plicated editing operations since the rendering takes the op-
tical property volume as input directly.

6.5. Discussion

Real-time solver: The main advantage of our QuadGraph
algorithm is its ability to solve the diffusion equation in real-
time. Since there are no precomputations besides the tetrahe-
dralization of the input geometry, our algorithm can handle
dynamically changing the incoming lighting, material prop-
erties, and even limited deformations of the geometry, with-
out the need for precomputing the light transport.

submitted to EUROGRAPHICS 2010.

1316 / Real-time Rendering of Heterogeneous Translucent Objects 9

Quality vs. efficiency: The parameter K can be used to
trade-off accuracy for efficiency: large values of K result in
a smaller number of inside tetrahedra, thus making the al-
gorithm run faster, at the expense of accuracy. Small values
of K give results that are more accurate, at the expense of
rendering time. But even in its fast, low-quality version, our
algorithm identifies the salient lighting features, resulting in
a good visual quality, and it maintains RMS error under 10 %
(see figure 13).

Sampling: Just as any discretization scheme, our Quad-
Graph domain requires adequate sampling for capturing
high-frequency effects. That is, the tetrahedralization needs
to be dense enough to capture variations in (1) incident il-
lumination at the surface as well as (2) the optical proper-
ties of heterogenous materials. The former is less of a prob-
lem since multiple scattering results in a decimation of high-
frequencies in the incident surface radiance. The latter prob-
lem limits the range of editable materials that can be faith-
fully rendered without re-tetrahedralization.

Arbitrary shape: The dipole approximation [JMLH01]
breaks down at points with high curvature, while the poly-
grid method [WZT∗08] is unable to handle thin features
or geometries with high genuses. Since our discretization is
based on the input geometry, our algorithm is robust to vari-
ations in these features.

Discretization method: Our algorithm uses a Finite Dif-
ference Method for discretizing the diffusion equation.
Other algorithms have used a Finite Element Methods in-
stead [AWB08,AWB09]. The latter is more accurate, but the
former maps well to the GPU, allowing us to better take ad-
vantage of the computing power of this architecture.

7. Conclusion and Future Work

In this paper, we introduced an algorithm for real-time ren-
dering of translucent objects, of arbitrary shape, with hetero-
geneous materials. Our algorithm is robust enough to handle
objects with arbitrary genus and fine sharp features. Since
all illumination computations are conducted in real-time, we
can handle deformable objects as well as dynamic changes
in the optical properties and lighting conditions. Our algo-
rithm is based on a simple 4-connected graph, the Quad-
Graph, built automatically from a tetrahedralization of the
triangle mesh defining the surface of the object.

As most existing algorithms for approximating subsurface
scattering, our algorithm is restricted to the multiple scatter-
ing component of subsurface scattering. While this compo-
nent is usually the most visible for optically dense materials,
recent research [DLR∗09,WZHB09] have shown that low-
order scattering effects can be quite impressive in some cir-
cumstances. In future work, we will investigate computation
of low-order scattering effects for increased realism.

Although our algorithm handles deformable objects, de-
formations are limited, in the sense that the underlying

tetrahedralization must remain valid. We cannot change the
topology of the object, or break it into pieces. Future work
will include handling arbitrary deformations of the object.

Finally, we would like to extend our algorithm to de-
couple the local scattering and handle it by texture space
filtering as in [dLE07], for fine detailed material variation.

Acknowledgements: We are grateful to Adam Arbree,
Bruce Walter and Kavita Bala for sharing their latest work
on the new diffusion equation formula and the helpful dis-
cussions on its accuracy and robustness. We thank Shuang
Zhao and Yue Dong for their source code, as reference, for
the forward diffusion equation and photo-tracing. We also
thank Jean-Claude Paul for the helpful discussions.

The authors from Tsinghua University were supported
by the National Science Foundation of China (60625202,
60911130368) and Chinese 863 Program (2007AA040401).
This work was funded in part by ANR (ANR-07-BLAN-
0331 "HFIBMR"). Yajun Wang is supported by an INRIA
internship grant.

Geometry model credits: Gargoyle, fertility and twirl in
figure 10(a,d,e) are downloaded from the AIM@SHAPE
Shape Repository (http://shapes.aim-at-shape.net/). Thai
Statue, Buddha and Lucy in figure 1 and figure 10(c,g) are
downloaded from the Stanford 3D Scanning Repository
(http://graphics.stanford.edu/data/3Dscanrep/). Heptagonal
Toroid in figure 10(f) is generated with Carlo Séquin’s
sculpture generator (http://www.eecs.berkeley.edu/∼sequin
/SFF/spec.heptoroid.html). Topmod Ball in figure 10(b) is
obtained from David Morris and is originally created by
Torolf Sauermann (http://www.evolution-of-genius.de/).

References
[ACSYD05] ALLIEZ P., COHEN-STEINER D., YVINEC M.,
DESBRUN M.: Variational tetrahedral meshing. ACM Trans.
Graph. 24, 3 (2005), 617–625. 3, 4, 7

[AWB08] ARBREE A., WALTER B., BALA K.: Single-pass scal-
able subsurface rendering with lightcuts. Computer Graphics Fo-
rum (Eurographics’08) 27, 2 (2008), 507–516. 2, 9

[AWB09] ARBREE A., WALTER B., BALA K.: Diffusion
formulation for heterogeneous subsurface scattering. Cor-
nell Computer Science Technical Report, Cornell University
(http://hdl.handle.net/1813/14199) (Dec 2009). 3, 9

[CT81] COOK R. L., TORRANCE K. E.: A reflectance model for
computer graphics. Computer Graphics (SIGGRAPH ’81) 15, 3
(1981), 307–316. 6

[DEJ∗99] DORSEY J., EDELMAN A., JENSEN H. W., LEGAKIS
J., PEDERSEN H. K.: Modeling and rendering of weathered
stone. In Proc. ACM SIGGRAPH (1999), pp. 225–234. 2

[DJ05] DONNER C., JENSEN H. W.: Light diffusion in multi-
layered translucent materials. ACM Trans. Graph. 24, 3 (2005),
1032–1039. 2

[dLE07] D’EON E., LUEBKE D., ENDERTON E.: Efficient Ren-
dering of Human Skin. In Rendering Techniques (Eurographics
Symposium on Rendering) (June 2007), pp. 147–157. 9

submitted to EUROGRAPHICS 2010.

10 1316 / Real-time Rendering of Heterogeneous Translucent Objects

[DLR∗09] DONNER C., LAWRENCE J., RAMAMOORTHI R.,
HACHISUKA T., JENSEN H. W., NAYAR S.: An empirical bssrdf
model. ACM Trans. Graph. 28, 3 (2009), 1–10. 9

[DS03] DACHSBACHER C., STAMMINGER M.: Translucent
shadow maps. In Rendering Techniques (Eurographics Workshop
on Rendering) (2003), pp. 197–201. 2

[DWd∗08] DONNER C., WEYRICH T., D’EON E., RAMAMOOR-
THI R., RUSINKIEWICZ S.: A layered, heterogeneous reflectance
model for acquiring and rendering human skin. ACM Trans.
Graph. 27, 5 (2008), 1–12. 2

[GHP∗08] GHOSH A., HAWKINS T., PEERS P., FREDERIKSEN
S., DEBEVEC P.: Practical modeling and acquisition of layered
facial reflectance. ACM Trans. Graph. 27, 5 (2008), 1–10. 2

[GLL∗04] GOESELE M., LENSCH H. P. A., LANG J., FUCHS
C., SEIDEL H.-P.: DISCO: acquisition of translucent objects.
ACM Trans. Graph. 23, 3 (2004), 835–844. 2

[HMBV05] HABER T., MERTENS T., BEKAERT P., VAN REETH
F.: A computational approach to simulate light diffusion in ar-
bitrarily shaped objects. In Proc. Graphics Interface (2005),
pp. 79–85. 2

[HST∗94] HASKELL R. C., SVAASAND L. O., TSAY T.-T.,
FENG T.-C., MCADAMS M. S., TROMBERG B. J.: Boundary
conditions for the diffusion equation in radiative transfer. J. Opt.
Soc. Am. A 11, 10 (1994), 2727–2741. 3

[HV04] HAO X., VARSHNEY A.: Real-time rendering of translu-
cent meshes. ACM Trans. Graph. 23, 2 (2004), 120–142. 2

[Ish78] ISHIMARU A.: Wave Propagation and Scattering in Ran-
dom Media. Academic Press, 1978. 1, 2

[JB02] JENSEN H. W., BUHLER J.: A rapid hierarchical render-
ing technique for translucent materials. ACM Trans. Graph. 21,
3 (2002), 576–581. 1

[JC98] JENSEN H. W., CHRISTENSEN P.: Efficient simulation of
light transport in scenes with participating media using photon
maps. In Proc. ACM SIGGRAPH (1998), pp. 311–320. 2

[JMLH01] JENSEN H. W., MARSCHNER S. R., LEVOY M.,
HANRAHAN P.: A practical model for subsurface light trans-
port. In Proc. ACM SIGGRAPH (2001), pp. 511–518. 1, 2, 3,
9

[JSW05] JU T., SCHAEFER S., WARREN J.: Mean value coor-
dinates for closed triangular meshes. ACM Trans. Graph. 24, 3
(2005), 561–566. 8

[LLCO08] LIPMAN Y., LEVIN D., COHEN-OR D.: Green coor-
dinates. ACM Trans. Graph. 27, 3 (2008), 1–10. 8

[LPT05] LI H., PELLACINI F., TORRANCE K. E.: A hybrid
monte carlo method for accurate and efficient subsurface scat-
tering. In Rendering Techniques (Eurographics Symposium on
Rendering) (June 2005), pp. 283–290. 2

[LS07] LABELLE F., SHEWCHUK J. R.: Isosurface stuffing:
fast tetrahedral meshes with good dihedral angles. ACM Trans.
Graph. 26, 3 (2007), 57. 3

[MSM∗04] MAX N. L., SCHUSSMAN G., MIYAZAKI R.,
IWASAKI K., NISHITA T.: Diffusion and multiple anisotropic
scattering for global illumination in clouds. Journal of WSCG
12, 1-3 (February 2004). 2

[PH00] PHARR M., HANRAHAN P. M.: Monte Carlo evaluation
of non-linear scattering equations for subsurface reflection. In
Proc. ACM SIGGRAPH (2000), pp. 275–286. 2

[PvBM∗06] PEERS P., VOM BERGE K., MATUSIK W., RA-
MAMOORTHI R., LAWRENCE J., RUSINKIEWICZ S., DUTRÉ P.:
A compact factored representation of heterogeneous subsurface
scattering. ACM Trans. Graph. 25, 3 (2006), 746–753. 2

[SAMD95] SCHWEIGER M., ARRIDGE S., M. H., D.T. D.: The
finite element method for the propagation of light in scattering
media: Boundary and source conditions. Medical Physics 22, 11
(1995), 1779–1792. 3

[She68] SHEPARD D.: A two-dimensional interpolation function
for irregularly-spaced data. In ACM National Conference (New
York, NY, USA, 1968), ACM, pp. 517–524. 4

[SKLU∗09] SZIRMAY-KALOS L., LIKTOR G., UMENHOFFER
T., TÓTH B., KUMAR S., LUPTON G.: Parallel solution to the
radiative transport. Parallel Graphics and Visualization Sympo-
sium 2009 (2009). 2

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precomputed
radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. ACM Trans. Graph. 21, 3
(2002), 527–536. 2

[SP86] SEDERBERG T. W., PARRY S. R.: Free-form deformation
of solid geometric models. SIGGRAPH Comput. Graph. 20, 4
(1986), 151–160. 8

[Sta95] STAM J.: Multiple scattering as a diffusion process. In
Eurographics Workshop on Rendering (June 1995), pp. 41–50.
2, 4

[Tau95] TAUBIN G.: A signal processing approach to fair surface
design. In Proc. ACM SIGGRAPH (1995), pp. 351–358. 4

[Tur91] TURK G.: Generating textures on arbitrary surfaces using
reaction-diffusion. Computer Graphics 25, 4 (1991), 289–298. 4

[TWL∗05] TONG X., WANG J., LIN S., GUO B., SHUM H.-Y.:
Modeling and rendering of quasi-homogeneous materials. ACM
Trans. Graph. 24, 3 (2005), 1054–1061. 2

[WABG06] WALTER B., ARBREE A., BALA K., GREENBERG
D. P.: Multidimensional lightcuts. ACM Trans. Graph. 25, 3
(2006), 1081–1088. 2

[WCPW∗08] WANG R., CHESLACK-POSTAVA E., WANG R.,
LUEBKE D., CHEN Q., HUA W., PENG Q., BAO H.: Real-time
editing and relighting of homogeneous translucent materials. The
Visual Computer Journal (Proceedings of Computer Graphics In-
ternational 2008) 24, 7-9 (2008), 565–575. 2

[WFA∗05] WALTER B., FERNANDEZ S., ARBREE A., BALA K.,
DONIKIAN M., GREENBERG D. P.: Lightcuts: a scalable ap-
proach to illumination. ACM Trans. Graph. 24, 3 (2005). 2

[WTL05] WANG R., TRAN J., LUEBKE D.: All-frequency inter-
active relighting of translucent objects with single and multiple
scattering. ACM Trans. Graph. 24, 3 (2005), 1202–1207. 2

[WZHB09] WALTER B., ZHAO S., HOLZSCHUCH N., BALA K.:
Single scattering in refractive media with triangle mesh bound-
aries. ACM Trans. Graph. 28, 3 (2009). 9

[WZT∗08] WANG J., ZHAO S., TONG X., LIN S., LIN Z., DONG
Y., GUO B., SHUM H.-Y.: Modeling and rendering of hetero-
geneous translucent materials using the diffusion equation. ACM
Trans. Graph. 27, 9 (2008). 1, 2, 4, 9

[XGL∗07] XU K., GAO Y., LI Y., JU T., HU S.-M.: Real-time
homogenous translucent material editing. Computer Graphics
Forum 26, 3 (2007), 545–552. 2

[ZRL∗08] ZHOU K., REN Z., LIN S., BAO H., GUO B., SHUM
H.-Y.: Real-time smoke rendering using compensated ray
marching. ACM Trans. Graph. 27, 3 (2008), 36. 2

submitted to EUROGRAPHICS 2010.

