


Chapter 1

Introduction

Georges-Louis Leclerc, Comte de Buffon is often credited with having used the first

known Monte Carlo1 algorithm in his famous “needle experiment”, in 1777, to esti-

mate the value of π. He was one of several mathematicians in the seventeenth and

early eighteenth centuries who were motivated by games of chance to form sequences

of random events based on observations of successive trials. However, it was not

until the nineteenth and early twentieth centuries when mathematicians made the

observation that the mean of a function of continous random variables took the form

of an integral. It was followed by the realization that, in principle, one could ran-

domly draw numbers and proscribe transformations such that the random numbers

could be used to approximately solve integration problems that contained no inherent

probabilistic structure.

By the late nineteenth century, Lord Rayleigh [87] showed that a one dimensional

random walk could be used to approximately solve a parabolic differential equation.

Following this result, Courant et al. [4] demonstrated that a particular finite differ-

1The term “Monte Carlo” was coined almost 200 years later. Today, Monte Carlo methods
encompass all techniques that use statistical sampling to approximate solutions to quantitative
problems.
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ence equation could be used to approximate a solution to the Dirichlet boundary-value

problem of partial differential equations. Subsequently, they showed that a recursive

form of the solution to a two dimensional random walk on a square grid within a closed

regions, under certain conditions, produced an identical difference equation. Around

the same time, Kolmogorov derived the relationship between Markov stochastic pro-

cess and certain integro-differential equations. Petrowsky generalized the result of

Courant et al. by showing the asymptotic connection between a random walk whose

sequence of locations formed a Markov chain and the solution to an elliptic partial

differential equation; Petrowsky called this the generalized Dirichlet problem.

In the early thirties, Enrico Fermi used the Monte Carlo method to run simulations

of particle transport through isotropic media (neutron diffusion) that were central to

the research towards building the atomic bomb. Fermi later developed the Fermiac

which was a Monte Carlo mechanical device used to calculate criticality in nuclear

reactors. The associated multidimensional problems proved too formidable for the

popular difference equation approach and inspired John von Neumann and Stanislaw

Ulam to suggest that sampling experiments using random walk models on the newly

developed digital computer could provide useful approximations.

Ulam is credited with inventing the name “Monte Carlo”2 and, with the help of

von Neumann and Nicholas Metropolis, the name soon caught on to refer to methods

that employed statistical sampling to approximate solutions to quantitative problems.

2Ulam described the incident as follows: “The first thoughts and attempts I made to practice
[the Monte Carlo Method] were suggested by a question which occurred to me in 1946 as I was
convalescing from an illness and playing solitaires. The question was what are the chances that a
Canfield solitaire laid out with 52 cards will come out successfully? After spending a lot of time
trying to estimate them by pure combinatorial calculations, I wondered whether a more practical
method than abstract thinking might not be to lay it out say one hundred times and simply observe
and count the number of successful plays. This was already possible to envisage with the beginning
of the new era of fast computers, and I immediately thought of problems of neutron diffusion and
other questions of mathematical physics, and more generally how to change processes described
by certain differential equations into an equivalent form interpretable as a succession of random
operations. Later [in 1946, I] described the idea to John von Neumann, and we began to plan
actual calculations.”

2



Figure 1.1: Left: A portrait of Georges-Louis Leclerc, Comte de Buffon by the French
painter François-Hubert Drouais. Middle: Stanislaw M. Ulam. Right: John von
Neumann. Although Count Buffon is commonly credited with the earliest known use
of a Monte Carlo algorithm, Ulam was responsible for naming and formalizing the
method. Much of the theoretical foundation for the method was laid by John von
Neumann.

Ulam and Metropolis published the first paper [69] describing this method, as it is

known today. The use of Monte Carlo methods spread rapidly to several different

scientific disciplines.

Developments in the field of computational complexity, in the seventies, began to pro-

vide a more precise and persuasive rationale for using the Monte Carlo method. The

theory identified a class of problems for which exact solutions often led to algorithms

that executed in times that were, at best, exponential with respect to the size of the

input. The identification of a certain structure in these problems could be exploited

to provide exact solutions in times that were bounded, above, by polynomials in the

size of the input. Without this structure, problems that belonged to this class seemed

to pose a formidable hurdle to solve.

There was a rising interest in trying to resolve the question of whether Monte Carlo

could be used to estimate solutions to problems in this intractable class to within some
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Figure 1.2: The Monte Carlo casino in Monaco. Ulam named the method after this
casino where his uncle would borrow money to gamble.

statistical accuracy in a time bounded, above, by a polynomial in the size of the input.

Several attempts were made in the eighties: Karp estimated reliability in a planar

multiterminal network with randomly failing edges [53] ; Dyer et al. estimated the

volume of a convex body in m-dimensional euclidean space [38]; Broder estimated

the permanent of a matrix or, equivalently, the number of perfect matchings in a

bipartite graph [17].

Integro-differential equations were applied to problems in radiative transfer [22] which

inspired research in neutron transport [100] and hydrologic optics [83]. Recognizing

the similarities of these problems to that of light transport for global illumination (see

Section 1.2), Kajiya presented a simplified integro-differential equation [52] that he

called the rendering equation. The rendering equation sufficiently represented the flow

of radiant light energy under the many assumptions that were considered practical for

use in computer graphics related problems. Further, it provided the means to express
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Figure 1.3: Stanislaw M. Ulam, Richard P. Feynman and John von Neumann. The
Monte Carlo method was inspired by the problems encountered conducted during the
development of the atomic bomb. (Picture scanned at the American Institute of
Physics)

the transformations of radiant light energy while accounting for several geometric

optical effects. The realization that the solution of the rendering equation (and its

many variants) would yield global illumination effects like multiple inter-reflection,

refractions, scattering within media, penumbrae of shadows, etc. sparked off a flurry

of Monte Carlo research within the graphics community.

Despite the mathematical sophistication that the Monte Carlo method is often imbued

with, it is the simplicity of the method that has brought about much of its popularity.

Ulam, von Neumann and others recognized that the Monte Carlo method could be

modified in ways that produced solutions to the original problems with a specified

error bound, at considerably reduced cost. Although some of these variance reduction

techniques were already commonly used by statisticians, others owe their origin to

the Monte Carlo method. Collectively, these procedures now represent the central

focus of the Monte Carlo method by exploiting available structure that the method

fundamentally ignores.
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During the early years of the “computer age”, the application of variance reduction

techniques was essential in practicably estimating solutions to large numerical prob-

lems. The design of these techniques was far from trivial and thus took a considerable

amount of time to develop. Although many of these techniques were general, the ef-

ficiency to be gained by tailoring them to a particular application was so large that

analysts typically spent a large amount of time performing the customization.

The dramatic increase in computational power over the last couple of decades trig-

gered two remarkable changes: it became feasible to run Monte Carlo simulations on

small, commodity microcomputers; supercomputing power became powerful enough

that problems of much larger scale were solvable. The result of this stupendous in-

crease in computational power also spawned the need for assessing whether it was

more beneficial to just throw large amounts of computing power at problems rather

than recruit analysts to design specialized variance reduction schemes.

Nevertheless, the motivations for sophisticated variance reduction techniques are

many: Problems of substantial size still remain; certain applications demand that

problems be solved in lesser time than currently possible; certain other problems de-

mand extremely high statistical accuracy in the estimated solutions. Thus, the benefit

of using and designing new variance reduction techniques cannot be undermined.

Variance reduction strategies can be classified, based on their philosophy, into at least

two different categories: Some strategies modify the way in which random samples

are generated and adjust the parameter estimator of interest in a way that variance

is reduced. e.g. Importance sampling, stratified sampling, correlated sampling, etc.;

Other strategies operate by leaving the sampling mechanism unaffected—instead,

they collect ancillary data that are used to estimate already known parameters. The

variance reduction due to the latter is achieved by incorporating these data into the

estimator of the unknown parameter of interest. e.g. Control variates.
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In this dissertation, we focus on the first of the two classes of variance reduction

schemes. We exploit certain structure that is known to exist in some light transport

problems in computer graphics to propose sampling strategies that cause a variance

reduction in estimated solutions for those problems. We also present an adaptation of

the statistical framework for testing hypotheses, that can be used to assess qualities

of estimators, upto specified levels of statistical significance.

1.1 Digital image synthesis

Digital photography produces images where each pixel represents the incoming radi-

ant light energy over a small area on the sensor within a small set of directions in

a controlled length of time. Light energy propagates from light sources in the scene

and potentially travels through a sequence of infinite bounces on multiple objects

before passing through the camera lens and aperture and finally impinging on the

camera sensor. The image obtained is a snapshot of the result of several physical

processes involving the transport of light energy from luminaires through the scene

to the sensor in the camera.

A popular problem in the field of computer graphics is to produce images by mim-

icking photography starting from geometric and physical descriptions of the scene of

interest (see Figure 1.4). This transformation, from geometric and physical informa-

tion into images is called image synthesis. One way of solving this problem to obtain

“realistic” images, is to make certain assumptions about the scene and to simulate

the process, respecting physical laws to some degree. This is referred to as physically

based image synthesis. The ultimate goal of physically based image synthesis is to

produce images that are indistinguishable from photographs of the real world, by

simulating the physical process involved.
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Figure 1.4: Physically based mage synthesis is the process of producing images by
simulation of light transport to mimic the photographic process. Suitable models are
chosen for the camera and objects in the scene.

Physically based image synthesis incorporates results from four large fields of study:

(1) mathematical, physical and structural representation of objects, (2) digital signal

processing, (3) the interaction of matter and light and (4) the human visual sys-

tem. Extensive research in these fields has resulted in a large body of literature and,

consequently, sophisticated methods for several interesting problems in the field of

physically based image synthesis.

1.2 Light transport

A significant fraction of the computational effort in physically based image synthesis

is dedicated towards simulation of specific optical phenomena. The simulation of

the propagation of light energy is referred to as the light transport problem. Several

light transport algorithms exist for simulations with varying degrees of accuracy and

subject to dramatically different constraints. For example, the focus is on absorption
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Figure 1.5: Measured, simulated and error images of a scene. This famous scene,
called the Cornell Box, was setup by researchers in Cornell University’s Light Mea-
surement Laboratory. The potential for multiple interreflections between diffuse sur-
faces and the availability of measured parameters of illumination of reflection made
this scene a popular choice for verifying global illumination algorithms. (Source: Cor-
nell University Light Measurement Laboratory)

and scattering processes in biomedical imaging while, in image synthesis, a lot of effort

is directed towards improving reflection models. Applications in hydrologic optics [83],

like biomedical imaging applications, consider scattering processes in great detail but

demand higher precision of the estimates.

Global illumination algorithms are those that solve the light transport problem for

physically based image synthesis. These algorithms approximately simulate the po-

tentially infinite interactions of light with matter, before finally entering the optical

system of the virtual camera. The degrees of accuracy to which simulations are run

in physically based image synthesis—since the goal is to produce images that are

indistinguishable from photographs—is governed by the limits of human perception.

Solutions to several light transport problems are inspired by transport solutions

adopted in heat transfer [31] and neutron transport [100]. In a seminal work in

image synthesis, Kajiya proposed an integral equation [52] which expressed the radi-

ant light energy leaving a point, along a certain direction, as the sum of the emitted

radiant energy in that direction and reflectance-weighted radiant energy incident at

the point from all possible directions. The presentation of the light transport prob-
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lem in this form, captured the commonality of different global illumination algorithms

that existed at the time.

The potentially unpredictable behaviour of the functions in the rendering equation,

coupled with the high dimensionality of the domain and the complex interaction

of multiple physical processes make general analytical solutions unfathomable. The

equation is usually solved either using Monte Carlo or finite element methods.

1.3 The Monte Carlo method

Ulam and Metropolis proposed a strategy [69] that used statistical sampling to nu-

merically solve quantitative problems, which they called the Monte Carlo method.

They were inspired by large and complex quantitative problems for which analytical

methods were hopeless and typical numerical methods collapsed.

Monte Carlo methods typically consist of two distinct processes: transformation of

the problem into an expectation and simulation. The former reduces the problem

to one of estimating E pXq where X is a random variable. Although this is usually

simple, as in the case of Monte Carlo integration, it can be a tricky problem if the

goal is, say, to solve parabolic or elliptical equations.

The second step involves the simulation of random variables under the distribution of

X. Mathematically, this means that a sequence of random variables pXi, 1 ¤ X ¤ Nq
is obtained, such that the Xi follow the distribution of X. This is typically achieved

by computationally transforming random variables uniformly distributed in the unit

interval into the appropriate domain. Finally the required expectation is approxi-
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mately estimated as

E pXq � 1

N
pX1 �X2 � ...�XNq (1.1)

One of the most popular uses of Monte Carlo methods has been for estimating the

value of integrals. The rest of this section provides a basic introduction to Monte Carlo

integration with the help of simple examples. Consider the numerical estimation of

the integral

1»
0

fpxq dx. (1.2)

There exist many numerical methods of the form
°

n

0
wifpxiq where the wi are non-

negative weights that sum to unity and xi P r0, 1s. e.g. Trapezoidal integration

(wi � 1{n, 0   i   n, w0 � wn � 1{p2nq and xi � 1{n), Gaussian integration,

Simpson’s rule, etc. The basic Monte Carlo integration algorithm assumes the same

form, with wi � 1{n, 1 ¤ i ¤ n and xi that are randomly drawn from the domainr0, 1s. The convergence of this Monte Carlo integration scheme is Op1{?nq. Although

the rate of convergence seems poor when compared to other methods for this one

dimensional integration, the great advantage of this method is that it is insensitive

to the dimensionality of the domain. Typically numerical integration methods will

require nd points when the domain is the d-dimensional unit hypercube r0, 1sd for

estimates with constant error.

Consider the multidimensional integral

I � »
D

fpxq dx, (1.3)
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where the domain D � r0, 1sd and the variable of integration x � px1, x2, ...., xdq P D.

Following the first step of the Monte Carlo method, we set X � fpU1, U2, ..., Udq
where pU1, ..., Udq are independent random variables distributed uniformly in r0, 1s so

that we can write

E pXq � E pfpU1, U2, ..., Udqq � »
D

fpxq dx. (1.4)

Thus, we have completed the first stage of the Monte Carlo method, by writing the

quantity that we wish to compute as an expectation.

In the simulation phase, a sequence pUiq is generated such that each Ui is uni-

formly distributed in r0, 1s. Then random variables Xi are constructed so that

X1 � fpU1, U2, ..., Udq, X2 � fpUd�1, Ud�2, ..., U2dq, etc. The required integral is

estimated as

I � 1

N
pX1 � X2 � ... � XNq (1.5)

Often, the integrand is expressible as the product of two functions, fpxq � gpxqhpxq
where h is non-negative and integrates to unity. In such cases, the integral can be

written in the form E pgpY qq if Y is a random variable distributed according to hpxq.
Consequently, the integral can be approximated as

I � 1

N
pgpY1q � gpY2q � ... � gpYNqq (1.6)

where the Yi are distributed according to hpxq. Thus the problem of integration is re-

duced to one of generating samples according to a certain distribution. This technique

is referred to as importance sampling in Monte Carlo literature, and hpxq is called

the importance function. Two of the most attractive features of importance sampling
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are that 1) the distribution used to reduce variance need only be an approximation,

and 2) no bias is introduced so long as we can correctly compute the density of the

samples generated.

The use of this deceptively simple method for general integration problems often

warrants sophisticated mathematical verification to ensure that the correct quantity

is being estimated, and with an acceptable amount of error in the estimates.

The strong law of large numbers imposes a theoretical limit on the Monte Carlo

method: The method can only be used with integrable random variables. The central

limit theorem can be used to derive a random variable, that is asymptotically equal

to the error, which suggests that the distribution of E pXq � 1

N
pX1 �X2 � ... �XNq

resembles a centered guassian.

1.4 The problem of sampling

The sampling process assumes different flavours, depending on the application do-

main. In statistics, a number of interesting sampling strategies were born out of

the need for estimating characteristics about populations [27] that were too large for

complete surveys to be conducted. In survey sampling, a small but carefully chosen

sample3 is used to represent the population. The sample is selected so that it reflects

the characteristics of the population that are of interest. In this context, the benefit

is that characteristics about the general population may be inferred from the samples,

without having to incur the cost of a comprehensive survey.

In signal processing, sampling refers to periodic measurements of a signal4. Thus,

3In statistics the term sample is used to mean a set of observations. In computer graphics, each
of the observations is called a sample.

4A physical quantity, usually measurable through time or space.
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sampling is central to all digital signal processing problems that deal with analog sig-

nals. When digital signals are involved, clever sampling strategies allow for compact

representations. If the original signals need to be reconstructed from sampled repre-

sentations, care is taken that the sampling strategies possess desireable characteristics

so that the reconstruction is of high fidelity.

Monte Carlo techniques use samples, drawn from meticulously designed parent dis-

tributions, to solve a host of different computational problems. One of the most

popular uses has been to solve integration problems. As seen in Section 1.3, Monte

Carlo integration reduces the integration problem to one of sampling.

Sampling methods are broadly classified as either probabilistic or non-probabilistic.

In probabilistic sampling, each member of the population has a known non-zero prob-

ability of being selected. eg. random sampling, systematic sampling and stratified

sampling. In non-probabilistic sampling, members are selected from the population

in some deterministic manner. eg. convenience sampling, judgment sampling, quota

sampling and snowball sampling. The advantage of probabilistic sampling is that

sampling error 5 can be calculated.

1.5 Sampling problems in image synthesis

In a Monte Carlo path tracer, an image is formed by computing the solution to the

light transport problem at each pixel, which is obtained by adding contributions from

a set of light paths. Each of the paths in a path tracer is constructed using a random

sequence of sampling procedures. The paths begin at the eye and are shot through

chosen locations on the virtual camera sensor. Subsequent vertices are chosen by

randomly choosing a direction and finding the first point along that direction where

5Sampling error is the degree to which a sample might differ from the population.
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the next interaction occurs. The random direction chosen at each vertex, is based on

a distribution that characterises the interaction of light with matter at that vertex.

A plethora of sampling strategies have been proposed in the literature that account

for several different types of light-matter interactions along the path.

Using Monte Carlo integration in the physically based image synthesis process reduces

the problem of light transport to a series of sampling problems: (1) sampling the pixel

area on the sensor or prefiltering; (2) sampling the camera aperture for simulating

depth of field; (3) sampling in time to simulate controlled camera shutter speed; (4)

sampling the reflectance or transmittance function to simulate glossy reflection or

transmission; (5) sampling the solid angle subtended by luminaires for simulating

penumbrae; (6) sampling paths for indirect illumination (due to interreflection); (7)

sampling in wavelength to account to simulate spectral effects (see Figure 1.6).

1.6 Importance sampling in image synthesis

Variance reduction strategies are crucial elements of Monte Carlo global illumina-

tion algorithms. Without them, it is generally regarded as impractical to obtain

adequately converged Monte Carlo solutions, particularly for environments that in-

corporate challenging lighting distributions and/or surface scattering functions. Since

the earliest systematic study of Monte Carlo algorithms in image synthesis [52, 29, 94],

both importance sampling and stratification have been recognized as being particu-

larly relevant variance reduction strategies, although it has often been a challenge to

incorporate them without simultaneously introducing statistical bias [57, 58]. Both

importance sampling and stratification are now commonplace in illumination com-

putations, and often appear in several guises within a single algorithm. While im-

provements to both strategies continue to be an active area of research, importance
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Visible spectrum: Monte Carlo
sampling of the visible wavelengths of
light allows simulation of optical phe-
nomena like dispersion [46, 39, 119,
33].

Image space: Adaptive image sub-
sampling algorithms allow fewer rays
to be cast and result in reduced alias-
ing artifacts [34, 28, 72, 101, 10, 70,
71].

Aperture: Depth of field effects are
simulated by integrating light paths
sampled over the aperture [81, 28].

Exposure time: Integrating light
paths sampled over time produces mo-
tion blur effects [30, 82, 55].

Reflectance functions: Glossy re-
flection and transmission are simu-
lated by integrating paths distributed
according to the reflectance distribu-
tion [11, 116, 62, 12, 64, 24].

Light sources: Direct illumination
computation involves integration of
paths over the solid angle subtended
by the light source [94, 2, 6, 8, 48, 26,
24].

Indirect illumination: Integrating
paths that perform multiple bounces
before reaching a light source simu-
lates indirect illumination due to in-
terreflections [79, 105].

Figure 1.6: Each step of the image synthesis pipeline can be simulated using Monte
Carlo integrations [30, 65]. Therefore the problem can be reduced to a series of sam-
pling problems over different domains. A number of solutions have been proposed for
each of these sampling problems. The integration domains are described on the right
with references to existing solutions for each domain.
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sampling offers the largest potential payoff, with the total elimination of variance be-

ing theoretically achievable [88]. The remainder of this section describes the evolution

of importance sampling in image synthesis chronologically.

1990-1995

Shirley compared the effectiveness of importance sampling in reducing variance, in

his thesis [93], against stratified sampling. He described how the method of inverting

the cumulative distribution may be used to generate samples according to a given dis-

tribution. The technique was later extended by Arvo and used for stratified sampling

of 2-manifolds.

Smits et al. defined importance [98] with respect to a viewpoint by propagating

importance from the viewpoint. similar to the transport of light energy from light

sources. While the paper showed a significant gain in computational efficiency by

performing low resolution radiosity solutions for less important areas, the notion of

importance is very different from the use of importance functions in Monte Carlo

algorithms.

Dutré et al. presented an importance sampling algorithm [37] for efficiently estimating

solutions to the rendering equation. They introduced the concept of adaptive proba-

bility distribution functions (pdfs), where the sampling density underwent sequential

modifications after each sample was drawn. To begin with, samples are drawn from

a constant density. Then, the domain is partitioned and the sample drawn, at each

step, is used to estimate the integral; based on the computed estimate density in the

corresponding interval of the pdf is modified.

Veach and Guibas presented a new perspective on importance sampling [112], with a

conservative strategy that avoided insufficient sampling of regions where the integrand
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was large. They decomposed the integrand into functions, identified regions in the

domain where any of these functions was large and ensured heavy sampling of these re-

gions. Although regions where the integrand is low could potentially be over-sampled,

they demonstrated the effectiveness of their technique using compelling experimental

evidence. They called their technique Multiple Importance Sampling (MIS).

MIS could be viewed as an extension to stratified sampling where the strata are not

strictly partitions of the sampling domain. That is, there could be overlap between

strata. In such a situation, samples drawn from different strata may correspond to

the same region of the sampling domain and, thus, need to be combined appropriately

to avoid bias. To address this problem, the estimate—which is obtained as a weighted

average of the results of a host of different estimators—is chosen to be produced by

an estimator that outperforms the others.

1996-2000

Shirley et al. further stressed the effectiveness of importance sampling as a variance

reduction strategy in a paper [95] where they derived densities for estimating direct

illumination. They derived the densities to sample the solid angle subtended by

illuminaires of a few common shapes, making the calculation of direct illumination

from several sources more efficient. Their importance function did not account for

the BRDF or visibility.

La Fortune et al. invented a class of primitive functions [62] with non-linear pa-

rameters for representing reflectance functions. They approximated the reflectance

distributions by sets of cosine lobes which made them simple, flexible and easy to use

in a Monte Carlo algorithm for sample generation. The class was powerful enough

to represent a wide variety of materials. This work was a significant contribution in

the context of importance sampling because sampling reflectance distributions, which
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poses a significant hurdle for realistic materials, was simply reduced to appropriately

sampling cosine lobes. Another similar method that unified definitions for a good

visual approximation for many materials was presented by Neuman et al. [74]. Their

model allowed fast importance sampling of physically plausible reflectance functions.

Since the notions of probability density and variance are not applicable in the context

of deterministic quasi Monte Carlo (QMC), the extension of importance sampling

is not straightforward to a QMC setting. Szirmay-Kalos et al. presented a QMC

algorithm with importance sampling [106], by using variable transformation. The

transformation was designed so that its Jacobian matrix was inversely proportional to

the integrand, thus resulting in a constant transformed integrand (which corresponds

to minimum quadrature error). They derived this transformation was derived by first

propagating direct illumintion using a photon tracing procedure.

Pietrek and Peter presented a method to adaptively construct pdfs for sampling

indirect illumination [79]. This work was an extension to the work by Dutré et al.

and was similar, in concept, to Szirmay-Kalos et al.’s method. Pietrek and Peter built

a hierarchical set of density functions that were successively refined as the estimate for

indirect illumination was estimated to more precision. By considering diffuse surfaces

and tesselating the surfaces into large patches, they reduced the 6 dimensional density

down to two dimensions per patch. They demonstrated using experiments with two

representations for the density functions— Haar and linear B-spline bases— that

there was no advantage of using higher order basis functions over piecewise constant

Haar bases. They concluded that, while the use of B-spline bases avoided certain

artifacts in specifically constructed examples, Haar wavelet bases performed better

for larger scenes without visible artifacts.

Bekaert et al. introduced the notion of weighted importance sampling (WIS) to the

image synthesis community, and used it to estimate form factors between patches
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while accounting for partial occlusion. In WIS, samples are drawn from an “easy-to-

sample” source function and are used in a way that suggests that they were drawn

from a different, more effective, target importance function. For unbiased estimates,

multiplication is required by weights given as the ratio of the target and source func-

tions evaluated at the sample locations. In their paper, Bekaert et al. used uniform

area sampling of patches in a radiosity solution as the source importance function

and mimicked a target importance function corresponding to cosine distributed di-

rectional sampling. Their experimental results indicate a reduced variance, although

they reported a bias when only a small number of samples were drawn.

2001-2008

Agarwal et al. defined an importance metric [3] for sampling direct, distant illumi-

nation by conservatively accounting for visibility and illumination. While sampling

direct illumination, giving importance purely to the magnitude of solid angle sub-

tended undersamples small bright lights. On the other hand, considering illumination

without accounting for the solid angle subtended oversamples small bright sources.

In an attempt to strike a balance, Agarwal et al. proposed the use of an importance

function that considered a carefully chosen combination of both, illumination energy

and solid area subtended. The precise blend was based on an empirical analysis of

visibility maps.

The environment map was first stratified based on thresholding functions applied to

the radiance values associated with each pixel. Then, sample allocation within strata

was based on the importance metric, and the pixels of each stratum were clustered

according to the allocation. During rendering, a random location was chosen within

each cluster and used to compute the estimate for direct illumination. Their paper

also describes a few optimizations: (1) approximating the environment map with a

20



number of directional sources in a preprocess step; (2) eliminating banding artifacts

in (1) by using jittered sampling for visibility testing; (3) sorting light sources based

on their contribution and only considering the first few in the list so that the error in

the estimate is below a certain threshold.

Lawrence et al. presented a BRDF factorization technique [64] that allowed efficient

importance sampling of bidirectional reflectance functions (BRDFs) while simulata-

neously maintaining compact representation. They demonstrated, using analytic and

measured BRDFs, that their technique was more efficient than fitting Lafortune or

Blinn-Phong lobes and also more compact than tabulating the reflectance functions.

They represented the 4D, reparameterized BRDFs as the sum of a number of terms,

each of which was the product of a view-dependent 2D function and two 1D functions.

Importance sampling was achieved by numerical inversion of the 1D factors.

Ostromoukhov et al. presented a robust and practical algorithm [77] for generating

samples according to a 2D density function. While the method is effective in generat-

ing samples that satisfy desirable blue noise properties and with aspecified sampling

density within a local neighborhood, it is unclear how the weights associated with

these samples are to be normalized when used in the context of Monte Carlo integra-

tion. The paper demonstrates the use of this sampling algorithm to estimate direct

illumination from environment maps.

The use of control variates as a variance reduction strategy has not been explored in

depth by the image synthesis community. Szécsi et al. discussed the effectiveness of

using control variates (also called correlated sampling) [104] for sampling in Monte

Carlo integration in their paper which also presented a scheme to combine the benefits

of importance sampling and correlated sampling. Their approach was to introduce a

parameter which governed the weightage of estimates resulting from each sampling

strategy and then optimize the resulting estimate for minimum variance.
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Typically importance sampling had been used for drawing samples distributed accord-

ing to the local reflectance distribution, or illumination (both distant and nearby illu-

minaires) independently. Clarberg et al. [23] generalized wavelet products to higher

dimensions and applied it to sample from a product of the local reflectance function

and distant illumination. The algorithm exploits the property of wavelet products

that they can be evaluated top down. The paper then warped a set of uniformly

distributed points to match the approximated product distribution. However, the

constraint that all BRDFs in the scene be resampled as wavelets, makes it imprac-

tical in scenes with a large number of BRDFs. Also, the choice of wavelets as bases

inherently restricts rotation into local coordinate frames (in which BRDFs are con-

veniently represented). To work around this problem, wavelet decomposition of the

environment map was stored for different orientations. Cline et al. presented [25] a

similar approach, except that they use hierarchical partitioning of the environment

map à la McCool and Harwood [67] in conjunction with summed area tables instead

of wavelets.

Another work that sampled from both illumination and reflectance function was in-

vented in the same year by Burke et al. [19] who performed the sampling in two

stages: samples were drawn from the first distribution and then resampled according

to the second distribution. They introduced the terminology sampling-importance

resampling to represent a process that is quite similar to WIS. Two forms of bidi-

rectional importance sampling (BIS) were presented: one using rejection and another

using resampling. While rejection leads to increased sampling expense, resampling

only allows samples to be drawn from an approximate distribution.
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1.7 Original contributions

The original contributions of this thesis are described chapterwise, below.

• Linear stratified sampling (Chapter 2):

We derive parameterizations whose Jacobian determinants are proportional to

a linear density. Then we use this to generate linear stratified samples over

triangular and tetrahedral domains, where the linear densities are specified by

vertex weights.

• Steerable importance sampling (Chapter 3):

We define a new technique that uses a steerable function as an importance

function.

Parameterized probability tree: We define a data structure, called the pa-

rameterized probability tree, where the traversal is probabilistic with branching

probabilities defined as a function of some parameter.

Efficient direct illumination: We construct a low variance estimator for di-

rect illumination from distant illumination by defining a piecewise linear, steer-

able importance function which is the product of incident illumination and the

local clamped cosine lobe. The reduction in variance is due to a combination

of the importance function and stratification that is achieved using the param-

eterized probability tree and linear stratification algorithm.

• Adaptive, bandwidth-based sampling(Chapter 4):

We use conservative estimates of local bandwidth for efficient simulation of

depth of field effects.

Fourier depth of field: We present a novel analysis of finite aperture camera

models in the Fourier domain.
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Adaptive image subsampling: Using the theoretical analysis of depth of

field we design a new frequency propagation scheme that allows conservative

prediction of bandwidth, locally over the image. We show that these bandwidth

estimates are used to obtain sampling densities that are close to optimal for

non-objectionable reconstruction of the images.

Adaptive aperture sample allocation: We use the bandwidth prediction

algorithm to estimate the variance of the integrand over the aperture, in depth

of field simulations. Since the error in Monte Carlo is proportional to the

variance of the integrand and inversely dependant on the number of samples,

we increase the number of samples where the variance is estimated to be high.

• Assessing Monte Carlo estimators (Chapter 5):

We use an adaptation of the statistical hypothesis testing framework to compare

first and second order statistics of estimators.

Comparing estimators: We design tests to compare means and variances of

estimators. These tests allow the assertion of hypotheses regarding bias and

efficiency of estimators, upto a chosen level of significance. We confirm the

dependability of the tests by comparing estimators with known qualities.

Verifying sample distributions: By adapting a goodness-of-fit test, we verify

the correctness of analytic sampling algorithms by comparing them against

samples generated using rejection.

Detecting errors in estimators: We introduce errors into common estima-

tors and demonstrate the ability to use the framework for error detection.
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