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ABSTRACT

While incomplete information is ubiquitous in all data
models – especially in applications involving data trans-
lation or integration – our understanding of it is still not
completely satisfactory. For example, even such a ba-
sic notion as certain answers for XML queries was only
introduced recently, and in a way seemingly rather dif-
ferent from relational certain answers.

The goal of this paper is to introduce a general ap-
proach to handling incompleteness, and to test its ap-
plicability in known data models such as relations and
documents. The approach is based on representing de-
grees of incompleteness via semantics-based orderings
on database objects. We use it to both obtain new re-
sults on incompleteness and to explain some previously
observed phenomena. Specifically we show that cer-
tain answers for relational and XML queries are two in-
stances of the same general concept; we describe struc-
tural properties behind the näıve evaluation of queries;
answer open questions on the existence of certain an-
swers in the XML setting; and show that previously
studied ordering-based approaches were only adequate
for SQL’s primitive view of nulls. We define a general
setting that subsumes relations and documents to help
us explain in a uniform way how to compute certain
answers, and when good solutions can be found in data
exchange. We also look at the complexity of common
problems related to incompleteness, and generalize sev-
eral results from relational and XML contexts.
Categories and Subject Descriptors. H.2.1 [Database
Management]: Logical Design—Data Models ; I.7.2
[Document and Text Processing]: Document
Preparation—XML
General Terms. Theory, Languages, Algorithms
Keywords. Incompleteness, naive tables/evaluation,
certain answers, XML, orderings, homomorphisms
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1. INTRODUCTION

In most database applications, one has to deal with in-
complete data – this fact has been recognized almost im-
mediately after the birth of the relational model. And
yet for a long time the treatment of incomplete infor-
mation did not receive the attention that it deserved.
The design of SQL, for example, is notorious for its
nulls-related features, which, as [14] nicely put it, are
“in some ways fundamentally at odds with the way the
world behaves” (a well-known example of such an odd-
ity is that the statements |X | > |Y | and X −Y = ∅ are
logically consistent in SQL!). On the theoretical side,
foundational research from the 1980s, first by Imielinski
and Lipski [25] and then by Abiteboul, Kanellakis, and
Grahne [3] provided models of incompleteness appropri-
ate for handling queries in different relational languages,
and established the computational costs of the key tasks
associated with these models. However, until recently,
the topic has seen only sporadic activity.

The situation changed rather dramatically over the past
several years though, and handling of incompleteness in
databases was brought to the fore of database research.
This happened mainly due to a number of new applica-
tions such as those dealing with data on the web, inte-
grated data, or data that was moved between different
applications. In them, the issue of incompleteness is
essential. For example, in data integration and data
exchange, null values and associated concepts such as
representation systems and certain answers play a cen-
tral role [1, 6, 18, 28]. Representation and querying of
uncertain data has also been an active field of study [5,
32]; another active direction that borders incomplete-
ness is handling of probabilistic data [35].

Most of the classical theory of incompleteness has been
developed in the relational context, where the key con-
cepts (such as, e.g., certain answers) are well under-
stood. A number of attempts were made in the 1990s to
develop a general theory of incompleteness in databases,
applicable to multiple data models [9, 10, 30, 31, 34].
This was done by using techniques from semantics of
programming languages [21]. The connection is rather
natural: in programming semantics, a program is as-
signed a meaning in an ordered set, where the order
describes how partial, or incomplete, a function is. In



databases, we deal with domains of objects, rather than
functions, but these are still ordered based on the degree
of incompleteness.

Those general theories, while achieving some success
with nested relations [29, 30], fell well short of handling
incomplete information in more complex data models,
notably XML. We shall elaborate on the reasons for
it later in the paper. Incompleteness in XML was ad-
dressed recently [4, 7, 15], and one issue that required a
complete reworking was the concept of certain answers
for queries that return XML documents (i.e., the notion
of certain information in a family of trees).

Such certain answers were defined in [15] using an ap-
proach that, on the surface looked very different from
the relational approach. But does it mean that incom-
pleteness in XML is really different from relational in-
completeness? And if it is not – as we shall argue –
then what is the general theory that encompasses them
all and can be applied to other models?

Our main goal is to develop such a general theory of in-
completeness in databases, that subsumes in a uniform
way existing relational and XML results, is easily ex-
tendible to other data models, and is useful in the main
applications of incompleteness.

Our theory will again be based on the notion of an infor-
mation ordering, to represent the degree of an incom-
pleteness of a database object. Unlike investigations
from the 1990s, however, we shall use orderings that are
closely tied with the semantics of instances that most
commonly arise in applications (more precisely, we deal
mainly with näıve tables and their analogs). In view of
this, we start by examining two different approaches to
handling incompleteness: in relational databases, and in
XML documents. We reformulate (and in some cases,
strengthen) known results to demonstrate the useful-
ness of information ordering for query answering.

We then present a very general and datamodel-
independent framework for handling incompleteness,
that allows us to make two conclusions. First, the
notions of certainty in relational and XML contexts,
while very different on the surface, are really identical,
and correspond to computing greatest lower bounds in
ordered sets. Second, we find an easily verified crite-
rion for queries that ensures that certain answers can
be computed by näıve evaluation, i.e., treating nulls as
if they were usual attribute values.

After that, we define the most natural ordering for both
relational and XML databases: namely, an object x is
less informative than an object y if x denotes more com-
plete objects (indeed, no information means that every
instance is possible, so the more objects are possible as
the denotation of x, the less informative x is). These
orderings can be characterized in terms of the existence
of homomorphisms between instances. This immedi-
ately allows us to adapt techniques from graph theory,
where lattices of graphs and their cores with respect

to homomorphism-based orderings have been studied
[23] (note, however, that homomorphisms of database
instances are not identical to graph homomorphisms,
so some work is required in adapting graph-theoretic
techniques). We show how to compute greatest lower
bounds for finding certain answers, and use this new
view of the problem to answer several open problems
about the existence of certain answers for XML queries.

To demonstrate that this approach is not limited to re-
lational or XML data, we consider a general setting,
reminiscent of data models in [13, 22, 27]. It separates
structural and data aspects of a model, which is, essen-
tially, a colored relational structure, where the color of
a node determines the length of a tuple of data values
attached to it. In relational databases, the underlying
structure is just a set; in XML, it is, as expected, a tree.

It turns out that it is often easier to reason about
such general models, deriving particular results (say,
for XML) as corollaries. For example, the model im-
mediately makes it clear how to compute lower bounds
for certain answers – it is the only solution that “type-
checks”. We also look at upper bounds and explain that
they are naturally related to building universal solutions
in data exchange.

We conclude by studying computational problems typ-
ical in the context of incomplete information. As
the underlying structure in our general model conveys
some schema information, it gives rise to the consis-
tency problem for incomplete objects. We also look
at the membership problem: whether a complete in-
stance represents a possible world for an incomplete
one. For this problem, we prove a strong generaliza-
tion of polynomial-time algorithms for both relational
[3] and XML [7] cases under the Codd-interpretation of
nulls (when each null occurs at most once). Finally, we
look at query answering, and provide broad classes of
queries for which upper bounds coincide with those for
XML, even for much more general data models.

Organization In Section 2 we review incompleteness
in relational and XML models (stating some new re-
sults along the way). In Section 3 we present a gen-
eral model based on orderings. In Section 4 we study
homomorphism-based orderings for relations and XML.
In Section 5 we present a general data-model that sub-
sumes relations and XML and study incompleteness in
it. Section 6 studies common computational problems
associated with incompleteness in the general model.

2. INCOMPLETENESS IN RELATIONS
AND XML

2.1 Incompleteness in relations

We start with a few standard definitions. We assume
two disjoint sets of values: C of constants, and N of nulls
(which will be denoted by ⊥, with sub/superscripts). A



relational schema is a set of relation names with asso-
ciated arities. An incomplete relational instance asso-
ciates with each k-ary relation symbol S a k-ary relation
over C ∪ N , i.e., a finite subset of (C ∪ N )k. When the
instance is clear from the context we shall write S for
the relation itself as well.

Such incomplete relational instances are referred to as
näıve databases [2, 25]; note that a null ⊥ ∈ N can
appear multiple times in such an instance. If each
null ⊥ ∈ N appears at most once, we speak of Codd
databases. If we talk about single relations, it is com-
mon to refer to them as näıve tables and Codd tables.

The semantics [[D]] of an incomplete database D is the
set of complete databases it can represent. These are
defined via homomorphisms. We write C(D) and N (D)
for the sets of constants and nulls, resp., that occur
in D. A homomorphism h : D → D′ between two
databases of the same schema is a map h : N (D) →
C(D′) ∪ N (D′) such that, for every relation symbol S,
if a tuple ū is in relation S in D, then the tuple h(ū) is in
the relation S in D′. As usual, we extend h to constants
by letting h(c) = c for every c ∈ C. The semantics of an
incomplete database D, denoted by [[D]] is then defined
as the set of complete databases R such that there is a
homomorphism h : D → R.

For example, given a näıve table D below, the relation
shown next to it is in [[D]], as witnesses by homomor-
phism h(⊥1) = 4, h(⊥2) = 3, and h(⊥3) = 5:

D:
1 2 ⊥1

⊥2 ⊥1 3
⊥3 5 1

R:

1 2 4
3 4 3
5 5 1
3 7 8

Certain answers and näıve evaluation Given an
incomplete database D and a query Q, one normally
tries to compute certain answers:

certain(Q, D) =
⋂

{Q(R) | R ∈ [[D]]},

that are true regardless of the interpretation of nulls.

Note that when Q is a Boolean (true/false) query, we
normally associate true with the set containing the
empty tuple, and false with the empty set. Then
the above definition says that for a Boolean query,
certain(Q, D) is true iff Q is true in every R from [[D]].

The problem of finding certain answers is undecidable
for FO queries (as it becomes finite validity), but for
positive relational algebra queries there is a simple
polynomial-time algorithm, described below.

Define Qnäıve(D) as follows: first, evaluate Q as if nulls
were values (e.g., ⊥1 = ⊥1, ⊥1 6= ⊥2, ⊥1 6= c for
every c ∈ C), and then eliminate tuples with nulls from
the result. A classical result from [25] states that if Q
is a union of conjunctive queries, then certain(Q, D) =
Qnäıve(D). We can actually show that this is essentially

optimal: one cannot find a larger subclass of FO for
which näıve evaluation would compute certain answers.

Proposition 1. If Q is a Boolean FO query and
certain(Q, D) = Qnäıve(D) for all näıve databases D,
then Q is equivalent to a union of conjunctive queries.

Certain answers via preorders Note that each näıve
database D is naturally viewed as a Boolean conjunc-
tive query (CQ) QD. For example, the näıve database
shown earlier is viewed as a CQ

∃x1, x2, x3 D(1, 2, x1) ∧ D(x2, x1, 3) ∧ D(x3, 5, 1),

that is, each null ⊥i is replaced by an existentially quan-
tified variable xi. Likewise, each Boolean CQ Q can be
viewed as a näıve database DQ (its tableau).

By viewing incomplete databases as logical formulae,
we can restate the definition of the semantics in terms
of satisfaction of formulae: R ∈ [[D]] iff R |= QD.

We now relate certain answers to two standard pre-
orders (recall that a preorder is a relation that is re-
flexive and transitive). The first is what we referred to
as the information ordering in the introduction: a näıve
database D1 is less informative than D2 if it represents
more databases, i.e. D1 � D2 iff [[D2]] ⊆ [[D1]]. Notice
that this is a preorder rather than a partial order: if
[[D]] = [[D′]], then both D � D′ and D′ � D hold.

For queries, we have a well-known preorder: contain-
ment (denoted, as usual, by Q1 ⊆ Q2). The following
is essentially a restatement of known results:

Proposition 2. For a Boolean conjunctive query Q and
a näıve database D, the following are equivalent:

1. certain(Q, D) = true;

2. DQ � D;

3. QD ⊆ Q.

This also immediately implies that certain(Q, D) is the
greatest lower bound of the set {Q(D′) | D � D′},
where by Q(D′) we mean running a query over an in-
complete database as if it were a complete database.

These indicate that information ordering and lower
bounds have a close connection with certain answers;
this will be made much more precise later in the paper.

2.2 Incompleteness in XML

Although rather elaborate models of incompleteness for
XML exist [4, 7], for our purposes we shall present only
a fairly simple model, with nulls occurring as attribute
values. This will suffice to explain the main concept
used for defining certain answers for XML queries.

The data model is unranked trees, with nodes labeled by
letters from a finite alphabet Σ. For each letter a ∈ Σ,
we have an associated arity ar(a) telling us the number
of attributes such nodes carry. More precisely, a tree
over Σ is defined as T = 〈V, E, λ, ρ〉, where



• 〈V, E〉 is a rooted directed unranked tree, with
nodes V and the child relation E;

• λ : V → Σ is a labeling function; if λ(v) = a then
we refer to v as an a-labeled node;

• the function ρ assigns to each a-labeled node an
ar(a)-tuple of data values from C ∪ N .

An example is shown below. Here the alphabet is
{a, b, c}, the arity of a is 2, both b and c have arity
1, and data values are shown next to the labels.

r

a(1,⊥1)

b(⊥1)

a(⊥2, 2)

c(⊥3) c(⊥2)

If all the data values in ρ(v) come from C and the root
is labeled by a designated root symbol r ∈ Σ, then
we refer to a complete tree T ; otherwise we speak of
incomplete trees. The semantics of incomplete trees is
again defined by means of homomorphisms which act
on both tree nodes and data values.

Given a tree T , we use the notation C(T ) for the set
of constants in C that appear as data values in T , and
N (T ) for the set of nulls that appear in it. A homomor-
phism h : T → T ′ from a tree T = 〈V, E, λ, ρ〉 into a tree
T ′ = 〈V ′, E′, λ′, ρ′〉 is a pair of mappings h1 : V → V ′

and h2 : N (T ) → C(T ′) ∪ N (T ′) such that:

1. if (x, y) ∈ E then (h1(x), h1(y)) ∈ E′;

2. if x is labeled a in T , then h1(x) is labeled a in T ′,
i.e., λ′(h1(x)) = λ(x); and

3. the data values of h1(x) are the result of h2 on the
data values of x, i.e., ρ′(h1(x)) = h2(ρ(x)).

As usual, we extend h2 to be the identity on constants.

Now the semantics [[T ]] of an incomplete tree T is de-
fined as the set of all complete trees T ′ such that there
is a homomorphism h : T → T ′.

Certain answers via max-descriptions To define
relational certain answers, we used intersection. But
how do we define them for trees – what is an analog of
intersection then? Most papers addressing incomplete-
ness in XML only looked at queries returning relations,
to find a way around this problem.

For proper XML-to-XML queries, the problem was ad-
dressed in [15]. If T is an incomplete XML tree, and Q
is a query returning XML trees, then certain answers
certain(Q, T ) should be the certain information in the
set Q([[T ]]) = {Q(T ′) | T ′ ∈ [[T ]]}. Thus, we need to
know how to extract certain information from a collec-
tion of XML documents.

For this, it is convenient to use the analogy with näıve
tables and CQs, and view trees as both objects and for-
mulae: we say T |= T ′ iff there is a homomorphism from

T ′ to T (i.e., T satisfies what is described by an incom-
plete tree T ′; this is the analog of D |= QD′ we used
above to describe when D is more informative than D′).
In XML, this corresponds to describing incompleteness
via tree patterns, as done in, e.g., [4, 7, 8].

Our goal now is to extract the certain information from
a set T of incomplete trees. The proposal of [15] was
to view incomplete trees as both models and formulas,
and reconstruct a classical model/formulas Galois con-
nection (cf. [37]). More precisely, for T we define:

• its theory Th(T ) = {T ′ | ∀T ∈ T : T |= T ′};

• its models Mod(T ) = {T ′ | ∀T ∈ T : T ′ |= T }.

Under this view, Th(T ) describes the certain knowledge
conveyed by T . If we want to capture it by an object,
we look for a tree T whose models are the models of the
certain knowledge, i.e., Mod(T ) = Mod(Th(T )). Such
trees T were called max-description in [15].

Note that all max-descriptions T, T ′ are equivalent, i.e.,
T |= T ′ and T ′ |= T . The definition of certain an-
swers certain(Q, T ) in [15] was simply to take a max-
description of Q([[T ]]). It was shown that this agrees
perfectly with the relational definition when XML doc-
uments model relations. It was also shown that every
set of complete XML documents has a max-description,
and every finite set of complete or incomplete XML doc-
uments has a max-description. In the finite case, these
are computable in time polynomial in the total size of
T , and exponential in the number of trees in T .

It was left open however whether arbitrary sets (in fact,
even computable sets) of XML documents have max-
descriptions. We shall answer this soon. To do so,
we first build a general theory (which will completely
demystify max-descriptions, among other things), and
then apply it to relations, trees, and beyond.

3. ORDERED SETS AND INCOMPLETE-
NESS

The notions of certain answers for relational and XML
queries, on the surface, appear to be very different. But
in reality, they are not; in fact, they are the same. To
see this, we now describe a very general framework for
handling incompleteness and certain answers. In this
framework, all that we are going to assume is the pres-
ence of an information ordering on a set of database
objects. Even with this, we can reason about certain
answers, max-descriptions, query answering, and näıve
evaluation.

First, some very basic definitions. A preorder � is a
binary relation that is transitive and reflexive. Associ-
ated with the preorder we have an equivalence relation
x ∼ y defined by (x � y) ∧ (y � x), and the quotient
of � by ∼ is a partial order. We let ↑x = {y | x � y}



and ↓x = {y | y � x}. Also ↑X =
⋃

x∈X ↑x and like-
wise for ↓X . A lower bound of a set X is an element y
such that y � x for all x ∈ X . A greatest lower bound
(glb) of X is a lower bound y such that y′ � y whenever
y′ is another lower bound of X . It is denoted by

∧

X .
Note that in a preorder,

∧

X is an equivalence class wrt
∼, but whenever we do not distinguish between equiva-
lent elements we shall write, slightly abusing notation,
y =

∧

X . Glb’s need not exist in general.

By a database domain we mean a set D with a preorder
� on it. The interpretation is as follows: D is a set of
database objects (say, incomplete relational databases
or incomplete trees over the same schema), and � is the
information ordering. That is, we assume that incom-
plete database objects come with some notion of their
semantics [[·]] (what exactly it is, is immaterial to us in
this section; this will become important when we look
at concrete models), and the interpretation of the pre-
order is, as before x � y iff [[y]] ⊆ [[x]]. The associated
equivalence relation x ∼ y is simply [[x]] = [[y]].

Next, we need to define certain information in a set X ⊆
D of objects. If this certain information is represented
by an object c, then:

1. c is less informative than every object in X , since
it defines information common to all objects in X ;
that is, c is a lower bound of X ;

2. if there are two such objects c, c′ and c′ � c, then
we prefer c as it has more information.

Thus, we want the most informative object that defines
information common to all objects in X , i.e., a maximal
element among all lower bounds of X . That is, the
certain information in the set X is

∧

X , the glb of X .

If we look at relational databases without nulls (which
arise as elements of Q([[D]])), then the semantic ordering
for them is ⊆. Thus, for any collection X of complete
databases, we have

∧

X =
⋂

D∈X
D (i.e., in the case of

relations certain answers are obtained as intersections).

Certain information defined by max-descriptions does
not at first seem to be related to greatest lower bounds;
nonetheless, we show that this is precisely what it is.

Max-descriptions deconstructed As we did with
näıve databases and XML trees, we can view objects
as partial descriptions. Then x |= y is just y � x:
an object x satisfies every description that is less in-
formative than itself. Therefore, Mod(x) = ↑x and
Th(x) = ↓x; these are extended to sets, as usual, by
Mod(X) =

⋂

x∈X Mod(x) and similarly for Th.

The definition of certain information in a set X used in
[15] (in the XML context) was a max-description of X :
an object x such that Mod(x) = Mod(Th(X)).

Theorem 1. Given a subset X of a database domain D,
an element x is a max-description of X iff x =

∧

X.
In particular, a max-description of a set exists iff its
greatest lower bound exists.

So max-descriptions are precisely glb’s. The XML case
was not different after all: for both relations and XML,
the certain information in a set of objects is its glb.

Certain answers for queries We can now use the
notion of certain information in a set of objects to define
certain answers to queries. An abstract view of a query
is as follows. For each schema σ, we have a domain Dσ

of database objects of that schema, as well as a preorder
�σ on it (if clear from the context which relation �σ we
refer to, we write just �). A query is then a mapping
Q : Dσ → Dτ between two domains. If we have a set
X ⊆ Dσ of objects, then Q(X) = {Q(x) | x ∈ X}, and
certain answers to Q over X are defined as

certain(Q, X) =
∧

Q(X).

There is a simple recipe for finding certain answers
when a query Q is monotone, i.e., when x �σ y im-
plies Q(x) �τ Q(y).

A basis of X ⊆ D is a set B ⊆ X such that ↑B = ↑X.
The following simple observation was already made in
some concrete cases (like incompleteness in XML [15]):

Lemma 1. If Q is monotone and B is a basis of X,
then certain(Q, X) =

∧

Q(B).

Hence, if we can find a finite basis B = {b1, . . . , bn} of
X , then we can compute certain answers certain(Q, X)
as Q(b1)∧. . .∧Q(bn). Thus, in such a case it is essential
to be able to compute the glb of two (and hence finitely
many) elements. The meaning of monotonicity depends
on the exact interpretation of the information ordering;
this will be addressed in detail in Section 4.

While cases of finite but non-singleton bases do arise
in applications [15], most often one computes certain
answers over sets X of the form [[x]]. In the very general
ordered setting, one way of defining the semantics is by
[[x]] =↑x, i.e., an object represents all objects which are
more informative than itself. Then Lemma 1 implies:

Corollary 1 . certain(Q, ↑x) = Q(x) for a monotone Q.

It says that certain answers can be computed by simply
evaluating Q on x. However, in many models the se-
mantics is more refined than just

∧

Q(↑x), and is based
on complete objects that do not have null values. We
now study how to incorporate those into our setting.

Complete objects

We extend our setting with the notion of complete ob-
jects, i.e., objects without nulls, and explain the prop-
erties that lead to näıve evaluation of queries. Database
domains with complete objects are structures of the form
〈D,�, C〉 where � is a preorder and C ⊆ D is a set of
objects we view as those having no nulls. To state some
basic requirements for these sets, we look at their be-
havior in the standard models, i.e., in näıve tables.



1. For each object x, the set ↑cplx =↑x ∩ C of more
informative complete objects is not empty (guar-
anteeing well-defined semantics).

2. For each object x, there is a unique maximal com-
plete object πcpl(x) under x (think of a relation
obtained by removing all the rows with nulls from
a näıve table). The function πcpl is monotone, and
the identity on C. In the standard terminology,
this means that πcpl : D → C is a retraction.

3. There are complete objects in ↑cply − ↑cplx, un-
less x is less informative than y. In essence, it says
that there are sufficiently many complete objects.

These conditions are satisfied in the standard domains,
such as näıve databases or XML documents with nulls.
In those domains we define the semantics of x as ↑cplx,
the set of complete objects above a given object. It
follows immediately from the definition that this notion
of the semantics agrees with the ordering.

Lemma 2. If 〈D,�, C〉 is a database domain with com-
plete objects, then x � y ⇔ ↑cply ⊆ ↑cplx.

We denote the glb in the restriction 〈C,�〉 (when it ex-
ists) by

∧

cpl. This gives us the notion of certain answers

based on complete objects, for a query Q : D → D′ that
send complete objects to complete objects. It is the glb
of the answers to Q over complete objects dominating
the input:

certaincpl(Q, x) =
∧

cpl
Q

(

↑cplx
)

.

We say that certain answers are computed by näıve eval-
uation if certaincpl(Q, x) = πcpl(Q(x)): in other words,
they are obtained by running Q and then finding the
complete approximation of the result.

For relations, these are of course the familiar concepts,
as certaincpl(Q, x) is exactly

⋂

{Q(R) | R ∈ [[D]]}, and
πcpl(Q(D)) is Qnäıve(D).

To provide a criterion for checking whether certain an-
swers can be computed by näıve evaluation, we say that
a function f : D → D′ between two database domains
with complete objects C and C′ has the complete satu-
ration property if it maps complete objects to complete
objects and the following conditions hold:

• if f(x) ∈ C′ then f(c) = f(x) for some c ∈↑cplx;

• if f(x) 6∈ C′ and f(x) 6� c′ ∈ C′, then f(c) and c′

are incompatible for some c ∈↑cplx.

By incompatibility of two elements we mean that nei-
ther of them is less than the other. Intuitively, the
conditions say that ↑cplx has enough complete objects
to witness different relationships that involve f(x).

Theorem 2. For every query that is monotone and has
the complete saturation property, certain answers are
computed by näıve evaluation.

Over relational databases, complete saturation is very
easy to check for unions of CQs, providing an alternative
proof that the näıve evaluation works for them (see Sec-
tion 4). Note, however, that Theorem 2 is not limited
to any language, as it identifies a structural property
behind näıve evaluation.

4. HOMOMORPHISM-BASED ORDERING

We now apply the general theory to relational databases
with nulls and to incomplete XML trees. In both cases,
the ordering was based on the semantics: D1 � D2 iff
[[D2]] ⊆ [[D1]] and likewise for trees. There is a simple
way to characterize this ordering:

Proposition 3. • If D, D′ are näıve databases over
the same schema, then D � D′ iff there is a ho-
momorphism from D to D′.

• If T, T ′ are XML documents over the same alpha-
bet, then T � T ′ iff there is a homomorphism from
T to T ′.

Hence, we deal with a well-established notion, and the
ordering corresponds to a concept studied in fields such
as graph theory [23] and constraint satisfaction [26].
This raises two questions: how does it relate to order-
ings previously studied in connection with incomplete-
ness, and what can we get from known results, in par-
ticular in graph theory? We now address those.

Information ordering and other orderings As
mentioned in the introduction, orderings have been used
to provide semantics of incompleteness in the past [9,
10, 30, 31, 34]. A typical ordering (say, for relational
model) would be defined as follows. For two tuples over
constants and nulls we let (a1, . . . , am) ⊑ (b1, . . . , bm)
if, for each each i, either ai is a null, or both ai and bi

are the same constant (i.e., each null is less informative
than each constant). This would be lifted to sets by
X ⊑♭ Y ⇔ ∀x ∈ X∃y ∈ Y : x ⊑ y.

In general, ⊑♭ cannot coincide with �, as testing the
existence of a homomorphism is NP-complete, and ⊑♭

is easily testable in quadratic time. But they do coincide
for Codd databases (where nulls cannot be reused).

Proposition 4. If D and D′ are Codd databases, then
D � D′ iff D ⊑♭ D′.

Thus, the orderings used back in the 1990s were well
suited for the Codd interpretation of nulls, but not the
most commonly used näıve interpretation, which arises
in applications such as integration and exchange of data.

The lattice of cores Orderings induced by homomor-
phisms are well known in graph theory. We look at
graphs G = 〈V, E〉, where V is a set of nodes and E is a
set of (directed) edges. We write G � G′ if there is a ho-
momorphism h : G → G′, i.e., a map h : V → V ′ such
that (x, y) ∈ E implies (h(x), h(y)) ∈ E′. We use the



same notation � as before, but it will always be clear
from the context which homomorphisms we talk about.
Clearly � is a preorder, and the associated equivalence
relation G ∼ G′ is given by core(G) = core(G′). Recall
that the core of a graph G is the smallest subgraph G0

of G such that there is a homomorphism from G to G0;
the core is unique up to isomorphism [23].

When restricted to cores, � defines a lattice with the
glb ∧ and the least upper bound ∨ given by [23]

• G ∧ G′ = core(G × G′), and

• G ∨ G′ = core(G
⊔

G′) (
⊔

is the disjoint union).

In general, G×G′ is an element of the equivalence class
defining G∧G′, and G

⊔

G′ is an element of the equiv-
alence class defining G ∨ G′.

There are many facts known about this lattice; many
of them stem from the classical result of Erdős [17] that
there are graphs of arbitrarily large chromatic number
and odd girth (the minimum length of an odd cycle).
Since the former is monotone with respect to � and the
latter is antimonotone, this lets one construct arbitrary
antichains and dense chains inside �. In fact, a very
deep result [24] says that every countable partial order
can be embedded into � over directed graphs.

However, “database homomorphisms” and “graph ho-
momorphisms” are not the same. In näıve databases,
homomorphisms are only defined on nulls, but their
range is unrestricted. In XML, they are pairs of map-
pings, one on tree nodes, and the other on nulls. Thus,
we cannot use standard graph-theoretic results, but of
course we can adapt them.

Lower bounds for näıve databases We have seen
that lower bounds are essential for computing certain
answers. We now show how to compute the glb of
two näıve tables (the construction extends to databases,
simply by doing it relation-by-relation). The construc-
tion, as suggested by graph-theoretic results, is essen-
tially a product that accounts for the different roles of
nulls and constants.

Let R, R′ be two näıve tables over the same set of at-
tributes. Take any 1-1 mapping that assigns every pair
(x, y) ∈ C ∪ N a null ⊥xy that does not belong to
N (R) ∪ N (R′). As instances R, R′ will always be clear
from the context, we simply write ⊥xy instead of the
more formal but cumbersome ⊥x,y,R,R′. Then, for two
tuples t = (a1, . . . , am) and t′ = (b1, . . . , bm), we define

t⊗ t′ = (c1, . . . , cm) : ci =

{

ai if ai = bi ∈ C

⊥aibi
otherwise

(1)

Proposition 5. The set {t⊗t′ | t ∈ R, t′ ∈ R′} is R∧R′,
i.e., a glb of R and R′ in the preorder �.

Thus, for every finite collection X of näıve tables,
∧

X
exists. In fact, measuring ‖X‖ as the total number of
tuples in all relations R ∈ X , one can easily use the

inequality between the arithmetic and geometric means
to derive that for X with n tables, |

∧

X| ≤
(

‖X‖/n)n,
for

∧

constructed in Proposition 5. Results of [15] can
also be adapted to show that even |core(

∧

(X ))| is nec-
essarily exponential in the number of relations in X .

What about infinite collections? Recall that in the case
of XML, the existence of glb’s (called at that time max-
descriptions) for arbitrary collections was an open prob-
lem. We now show that in general, for arbitrary collec-
tions (even recursive ones), glb’s need not exist.

Theorem 3. There is an infinite family X of näıve ta-
bles such that

∧

X does not exist (in fact, there are un-
countably many such families). Furthermore, there ex-
ist (countably many) recursive families X of relational
databases such that

∧

X does not exist.

Proof sketch. For the first statement, we use the fact
that 〈Q, <〉 can be embedded into the lattice of cores.
If we look at näıve tables that only contain nulls, we
have an embedding of 〈Q, <〉 into the ordering �. If
each set had a glb, the Dedekind-MacNeille completion
of 〈Q, <〉 would be embeddable into the (countable) set
of näıve tables, which is impossible by the cardinality
argument.

For the second statement, we show that the family of
directed cycles whose length is a power of two does not
have a glb. 2

Lower bounds for XML First, observe that the no-
tion T |= T ′ used in [15] to define certain answers is
precisely T � T ′ (the existence of homomorphisms) and
thus, by Theorem 1, max-descriptions for XML as de-
fined in [15] are the glb’s in the ordering �. Now by
coding näıve tables as XML documents (for each tu-
ple there is a child of the root, whose attribute values
are the values in the tuple), and using Theorem 3, we
answer the open question from [15].

Corollary 2 . There are recursive collections X of XML
documents (of depth 2) for which

∧

X does not exist.

We shall have more to say about glb’s for XML doc-
uments in the next section. For now, we offer one
comment on the interaction between glb’s and sibling-
ordering in XML documents. Note that all the work
on computing certain answers in XML was done for un-
ordered documents. It turns out that if we add sibling-
ordering, then glb’s do not exist even for finite col-
lections, which justifies restricting to unordered doc-
uments for handling certain answers to queries.

Proposition 6. There are ordered XML trees T, T ′ such
that T ∧ T ′ does not exist.

Proof sketch. Both T and T ′ have a root and two chil-
dren, labeled a and b, but ordered differently. It is easy
to show that T ∧ T ′ does not exist. 2

Näıve evaluation under � Theorem 2 stated two
sufficient conditions for queries to admit näıve evalu-
ation: monotonicity and complete saturation property.



We now see what they mean for relational databases wrt
to the semantic ordering D � D′ ⇔ [[D′]] ⊆ [[D]]. Note
that monotonicity wrt this ordering is not the usual
database notion of monotonicity which uses the partial
order ⊆: instead, it corresponds to preservation under
homomorphisms. The complete saturation property,
it turns out, is very easy to check for unions of CQs.

Proposition 7. Every union of conjunctive queries is
monotone and has the complete saturation property with
respect to �.

Proof. Monotonicity wrt � (i.e., preservation under ho-
momorphisms) is well known for unions of CQs. To
show complete saturation, let Q be a union of UCQs.
If Q(D) does not have nulls, then, for h that maps all
nulls in D into distinct constants different from those in
D, by genericity we get Q(h(D)) = h(Q(D)) = Q(D).
For the second property, take a complete R 6� Q(D),
assume that Q(D) has nulls, and let h be a 1-1 map
that sends nulls to constants not present in D and R.
Take the complete database h(D) � D. By genericity,
Q(h(D)) = h(Q(D)) 6⊆ R. If R ⊆ Q(h(D)) then again
by genericity R = h−1(R) ⊆ h−1(Q(h(D))) = Q(D), a
contradiction which proves complete saturation. 2

Together with Theorem 2 this gives an alternative proof
of the classical result that certain answers for unions
conjunctive queries can be obtained by näıve evalua-
tion. Note that Theorem 2 is a general result that is
not restricted to FO queries, as it states a structural
condition behind näıve evaluation.

A remark about CWA We worked with the Open
World Assumption (OWA) here: the ordering � is de-
fined as the existence of an into homomorphism. The
Closed World Assumption corresponds to the existence
of an onto homomorphism h : D → D′; in this case we
write D �cwa D′. We now offer one comment on the
relationship between this ordering, and orderings cor-
responding to CWA that were considered in the past.
Typically (see [9, 30]), to model CWA, one used the
Plotkin ordering [21] for sets, defined as X ⊑♮ Y iff
∀x ∈ X∃y ∈ Y : x ⊑ y and ∀y ∈ Y ∃x ∈ X : x ⊑ y,
to lift the ordering on tuples to the ordering on sets.
We saw that ⊑♭ coincides with � over Codd databases.
Will �cwa coincide with ⊑♮ under the same restriction?

It turns out that they do not coincide, but they are very
close. Recall that a relation S ⊆ A × B satisfies Hall’s
condition iff |S(U)| ≥ |U | for every U ⊆ A (this is the
requirement for the existence of a perfect matching).

Proposition 8. Over Codd databases, D �cwa D′ iff
D ⊑♮ D′ and ⊑−1 satisfies Hall’s condition.

5. INCOMPLETENESS IN GENERAL
DATA MODELS

To further understand incompleteness in relational,
XML, and potentially other models, we need to provide

algorithms for computing glb’s for certain answers, and
to understand the basic computational properties as-
sociated with incompleteness (i.e., membership, query
answering, consistency). The most general setting pro-
vided in Section 3 is too general for reasoning about
such concrete tasks, and especially their complexity,
and in Section 4 we handled relational and XML cases
separately, as they had usually been handled in the lit-
erature. But we show now that this artificial separation
is not necessary and we can derive many results simul-
taneously for a variety of data models.

Of course looking for general data models subsuming
many others is nothing new in database theory, and
several have been proposed (e.g., [13, 22, 27]). What we
do here is similar in spirit (and in fact closest to [13]),
and the model is well-suited to talk about relations in
XML in one common framework.

The basic idea is simple: databases and documents have
a structural part (e.g., trees for XML) and data part
(tuples of attributes attached to tree nodes). The num-
ber of attributes attached to a node is determined by
the label of that node. This model also subsumes rela-
tions, as the simplest case: the structural part is just a
set, as we are about to see.

5.1 Generalized databases and information ordering

We now formalize this as follows. A generalized schema
S = 〈Σ, σ, ar〉 consists of a finite alphabet Σ, a relational
vocabulary σ, and a function ar : Σ → N. To define
databases, we assume sets C of constants and N of nulls,
as before, as well as a set V of nodes to describe the
structural part. A generalized database over S is then
D = 〈M, λ, ρ〉 where

• M is a finite σ-structure over V ;

• λ is a labeling of elements of M in Σ, and

• ρ assigns to each node ν in M a k-tuple over C∪N
where k is the arity of the label of ν, i.e., ar(λ(ν)).

Both relational and XML databases are special cases of
generalized databases. To code a relational database,
let σ = ∅ (i.e., M is just a set), and let Σ con-
tain relation names, with the same arity as the rela-
tions themselves. For example, a relational instance
{R(1,⊥1), S(⊥1,⊥2, 2)} is represented by a set {ν1, ν2}
with λ(ν1) = R and λ(ν2) = S; the arities of R
and S are 2 and 3, and ρ(ν1) = (1,⊥1) and ρ(ν2) =
(⊥1,⊥2, 2). For XML, σ is a vocabulary for unranked
trees (there could be several; in the example in Sec. 2
we used only the edge relation, but one can use other
axes such as next-sibling), and generalized databases
themselves are trees with attribute tuples attached to
nodes (again, as shown in the example in Sec. 2).

We shall write Mλ for the colored structure 〈M, λ〉;
technically, it is a structure in the vocabulary σ ex-
panded with unary relations Pa for each a ∈ Σ, whose



interpretation is the set of nodes labeled a. We also
write 〈Mλ, ρ〉 for a generalized database.

To define the semantics in terms of complete generalized
databases (i.e., those not using nulls), we use, as before,
homomorphisms between generalized databases. We let
V(D), C(D), and N (D) stand for the sets of vertices,
constants, and nulls in D. A homomorphism h : D →
D

′ between D = 〈Mλ, ρ〉 and D
′ = 〈M′

λ′ , ρ′〉 is a pair
h = (h1, h2) of mappings h1 : V(D) → V(D′) and h2 :
N (D) → C(D′) ∪ N (D′) such that:

1. h1 is a usual homomorphism Mλ → M′
λ′ ;

2. if ν ∈ V(D) and ν′ = h1(ν) then ρ′(ν′) = h2(ρ(ν)).

As always, we extend h2 to be the identity on constants.
Observe also that in condition 2, ν and ν′ have the same
label (since h1 is a homomorphism) and hence tuples
ρ(ν) and ρ(ν′) have the same length. This notion of ho-
momorphism becomes one of the standard notions when
we consider relational databases or XML documents.

We now define [[D]], the semantics of D, as the set of all
complete generalized databases D

′ such that there is a
homomorphism h : D → D

′. As usual, the information
ordering is

D � D
′ ⇔ [[D′]] ⊆ [[D]].

We have a standard characterization of it:

Proposition 9. D � D
′ iff there is a homomorphism h :

D → D
′.

We now look at constructions of upper and lower
bounds wrt the information ordering. The greatest
lower bound can be used for computing certain answers,
while upper bounds naturally correspond to construct-
ing target instances in data exchange.

5.2 Greatest lower bounds for certain answers

We have already argued that we need greatest lower
bounds, or glb’s, to compute certain answers to queries.
As glb’s of arbitrary sets need not exist in general, we
want to compute finite bases of databases and calculate
glb’s over the results of queries on such finite bases.
Lemma 1 tells us that this will give us certain answers
for queries which are monotone wrt the information or-
dering.

However, simply calculating glb’s as products is not al-
ways going to work. For example, the product of two
trees is not a tree, so this will not work in the case of
XML. In such a case we need glb’s in the subclass of
generalized databases for which the structural part is a
tree. Generally, if we have a class K of structures Mλ,
we need a glb ∧K of K-generalized databases, i.e., those
generalized databases in which the structural part is
restricted to be in K (think, for example, of XML doc-
uments: the underlying structures Mλ in this case are
not arbitrary but labeled trees).

We now show how to construct such a glb using the
minimal possible set of assumptions. In fact, in a way
it is easier to do the construction in this general setting,
without knowing what the concrete structures in K are,
as the construction is fully guided by the setup: it is
the only one that “typechecks”. It consists of two steps:
first, compute the lower bound for the structural part,
and then add data as we did for relations.

Our minimal assumption is that we have a glb
Mλ ⊓K M′

λ′ of structures in class K (that is, a glb that
itself is a member of K). Without knowing anything
at all about its structure, we can only conclude that
Mλ ⊓K M′

λ′ � Mλ × M′
λ′ , since the latter is a glb

without the restriction to K. That is, there is a homo-
morphism h : Mλ ⊓K M′

λ′ → Mλ × M′
λ′ . Composing

h with first and second projections from Mλ × M′
λ′ to

Mλ and M′
λ′ gives us homomorphisms

ι : Mλ ⊓K M′
λ′ → Mλ and ι′ : Mλ ⊓K M′

λ′ → M′
λ′ .

This provides the construction of D ∧K D
′ of a glb of

two K-generalized databases. We let

〈Mλ, ρ〉 ∧K 〈M′
λ′ , ρ′〉

def
= 〈Mλ ⊓K M′

λ′ , ρ ⊗ ρ′〉 (2)

where ρ ⊗ ρ′(ν) = ρ(ι(ν)) ⊗ ρ′(ι′(ν)).

Here ⊗ is the merge operation on tuples (1) we used
to define relational glb in Section 4 (technically speak-
ing, it depends on D, D′ as the nulls it generates must
be outside N (D)∪N (D′), but the instances are always
clear from the context). Since ι and ι′ are homomor-
phisms, the colors of ι(ν) and ι′(ν) are the same, and
hence ρ(ι(ν)) ⊗ ρ′(ι′(ν)) is well-defined.

Theorem 4. For every class K of labeled σ-structures
that admits glbs, D ∧K D

′ given by (2) is a glb in the
class of K-generalized databases ordered by �.

When σ = ∅, i.e., when we deal with relational
databases, this yields precisely the construction for re-
lations in Proposition 5.

When K is the class of unranked trees (in the vocabulary
of the child relations and labels), ∧K is precisely the
construction shown for computing certain answers in
[15]. The construction of the glb for trees themselves
is standard, and is done inductively, level by level, by
pairing nodes with the same labels.

5.3 Least upper bounds for data exchange

We now cast the well-studied problem of finding solu-
tions in data exchange [6, 18] in our framework, proving
a partial explanation why in some cases finding solu-
tions is easy, and in some it is not. We shall present
both relational and XML data exchange uniformly, us-
ing our notion of generalized databases.

In data exchange, we have a source schema S, a target
schema S′, and a schema mapping M which consists of



the rules of the form I → I
′, where I and I

′ are in-
stances over S and S′, respectively. Given a complete
instance D over S, an instance D

′ over S′ is called a
solution for D if for every rule I → I

′ in M, and every
homomorphism (h1, h2) : I → D, there exists a homo-
morphism (g1, g2) : I

′ → D
′ such that g2 coincides with

h2 on nulls common to I and I
′. A solution D

′ is called
universal (or K-universal) if there is exists a homomor-
phism from D

′ to every other solution (or every other
solution whose structural part belongs to the class K).

It is very easy to check that in the cases of relations
and XML, this abstract view coincides precisely with
the standard definitions of [6, 18] (in the case of XML,
we deal of course with K-universal solutions when K is
the class of trees). To give a concrete example, consider
a relational rule (these are known as st-tgds)

S(x, y, u) → T (x, z), T (z, y).

For a source relational database DS with a ternary re-
lation S over C, a target database DT with a binary
relation T over C and N is a solution if DS and DT

satisfy the sentence ∀x, y, u (S(x, y, u) → ∃z (T (x, z) ∧
T (z, y))). We can view the left and right-hand sides
of the rule as databases IS = {S(x, y, u)} and IT =
{T (x, z), T (z, y)} over nulls. Then the rule is satisfied
iff for each homomorphism h : IS → DS (i.e., a fact
S(a, b, c) in DS , where h(x) = a, h(y) = b, h(u) = c)
we have tuples T (a, v), T (v, b) for some value v: in
other words, a homomorphism g : IT → DT such that
g(z) = v, and g coincides with h on x and y. Thus,
we indeed deal with the standard concepts from data
exchange.

We now show that universal solutions are least upper
bounds (lub’s) in the preorder �; these will be denoted
by

∨

or
∨

K
when restricted to K-generalized databases.

We let Hom(·, ·) denote the set of homomorphisms be-
tween two instances. For a source instance D and a
mapping M, define

M(D) = {h2(I
′) | I → I

′ ∈ M, (h1, h2) ∈ Hom(I, D)}.

Intuitively, (h1, h2) ∈ Hom(I, D) provides an instantia-
tion of a rule in the mapping, and then M(D) is the set
of single-rule applications of rules in M to the source
D. Computing those is often the first – and easy – step
of building a solution in data exchange. Now we can
relate M(D) to universal solutions.

Theorem 5. For a mapping M and a source D, the K-
universal solutions are precisely the elements of the ∼-
equivalence class

∨

K
M(D).

This result partly explains why in some cases comput-
ing solutions in data exchange is easy, and in some it is
not. Consider, for example, relational databases with-
out putting any restrictions on them. Then lub’s exist
– as we saw before, they are essentially disjoint unions
(technically, disjoint unions after renaming of nulls).
Indeed, then

⊔

M(D) is what is called canonical uni-
versal solution in data exchange (without constraints

on the target). Furthermore, the canonical represen-
tative of the equivalence class

∨

M(D) in this case is
the core solution in data exchange, that is, precisely
core(

⊔

M(D)).

However, if we move to XML, and let K be the class of
all unranked trees, we immediately encounter the fol-
lowing problem:

Proposition 10. Least upper bounds do not always exist
in the restriction of � to labeled unranked trees.

Hence, in the case of XML (especially with additional
schema information) and relations with extra target
constraints, one needs to find not an lub (as it may
not exist) but rather some upper bound. This loss of
canonicity in the choice of a solution leads to the nec-
essarily ad-hoc – and varying – choices for solutions,
which we see in data exchange literature outside of re-
stricted cases of nicely behaved mappings.

6. COMPUTATIONAL PROBLEMS

We now address the complexity of the key computa-
tional problems associated with incompleteness. We do
it in our general model from Section 5, and show that
this form of reasoning allows us to get some results for
both relational and XML cases in a uniform way.

The standard problems to consider are [2, 3, 4, 7, 25]:

• Consistency: does an incomplete database have a
completion satisfying some conditions? This prob-
lem is commonly considered in the XML context,
where schemas are usually more complex. This
problem tends to be NP-complete, and in PTIME
with suitable restrictions [7].

• Membership: does an incomplete database repre-
sent a complete one? It is NP-complete for näıve
databases and XML documents, and in PTIME
in both cases under the Codd interpretation (al-
though the proofs of these facts in [3, 7] use very
different techniques).

• Query answering. Typically one asks whether a
given tuple of values is a certain answer. Com-
plexity tends to range, depending on the language,
from undecidable (for sufficiently expressive lan-
guages to encode the validity problem) to coNP-
complete to PTIME [3, 7].

We now look at these problems in our general setting.

Consistency

Let ϕ be a condition, given by a logical formula, over
the structures Mλ. The consistency problem is:



Problem: Cons(ϕ)
Input: a generalized database 〈Mλ, ρ〉
Question: is there 〈M′

λ′ , ρ′〉 ∈ [[〈Mλ, ρ〉]]
such that M′

λ′ |= ϕ?

In general we should avoid undecidable classes of for-
mulae defining structural conditions; indeed, since ev-
ery generalized database belongs to [[∅]], the consistency
problem checks, in particular, satisfiability of sentences.
Even though we only deal with data complexity (ϕ is
fixed), we still prefer to avoid problems whose combined
complexity is undecidable.

As a sample result on the complexity of the con-
sistency problem, we consider the well-known de-
cidable case of ∃∗∀∗-formulas (i.e., the Bernays-
Schönfinkel class, consisting of formulae of the form
∃x1, . . . , xk∀y1, . . . , ymα(x̄, ȳ), where α is quantifier-
free), and classify the complexity of Cons(ϕ) based on
the exact shape of the quantifier prefix.

Proposition 11. • If ϕ is an ∃∗∀∗ sentence, then
Cons(ϕ) is in NP.

• There is a ∃∗∀ sentence ϕ0 such that Cons(ϕ0) is
NP-complete.

• If ϕ is an ∃∗ sentence, then Cons(ϕ) is in
PTIME.

Notice that we consider data complexity, i.e., the sen-
tence ϕ is fixed, so there is no contradiction with the
known higher complexity for the satisfiability problem
for the Bernays-Schönfinkel class.

Membership

The membership question is whether D
′ ∈ [[D]] for a

complete database D
′ and an incomplete database D.

More generally, we can ask whether D � D
′ (which is

the membership problem when D
′ has no nulls).

Since checking whether D � D
′ amounts to checking

the existence of a homomorphism from D to D
′, we

deal with the general constraint-satisfaction problem
[26]. Such a problem is in NP, and often NP-complete,
even for a fixed D

′. One case that is solvable in PTIME
in both relational and XML contexts is the case of the
Codd interpretation of nulls. The proofs of these results
are very different however: for relational Codd tables,
[3] reduced the problem to finding matchings in bipar-
tite graphs, and for XML, [7] used an analog of CTL-
model-checking algorithms on finite Kripke structures.

Now we provide a uniform explanation. We say that
in a generalized database 〈Mλ, ρ〉, the function ρ has
Codd interpretation if each null occurs as its value at
most once.

Theorem 6. For each fixed k > 0, checking whether
〈Mλ, ρ〉 � 〈M′

λ′ , ρ′〉 can be done in polynomial time
if ρ has Codd interpretation, and the treewidth of Mλ

is at most k.

Both relational and XML polynomial-time algorithms
for the Codd interpretation of nulls are special cases of
Theorem 6 when k = 1. This result is not a corollary
of the standard results on the tractability of constraint
satisfaction problems with bounded treewidth (cf. [19,
26]) due to the presence of data values and special con-
ditions on homomorphisms.

Query answering

To answer questions about the complexity of query an-
swering, we need, of course, a query language for gen-
eralized databases. Here we look at a natural analog of
FO. For relational databases, we know that query an-
swering is in PTIME for unions of conjunctive queries
(i.e., existential positive FO sentences) but undecidable
for all of FO [3]. For XML, even for analogs of conjunc-
tive queries on trees [20, 8] the complexity of finding
certain answers can be coNP-complete, but this is typ-
ically caused by missing structural information or the
presence of a schema [7].

Since generalized databases are two-sorted structures, it
appears to be natural to consider a two-sorted version
of FO. We can however rather easily avoid the cum-
bersome multi-sorted presentation by considering, for a
generalized schema S = 〈Σ, σ, ar〉, the logic FO(S,∼),
which is first-order over σ, the labeling predicates, and
predicates =ij (x, y) meaning that the ith attribute of
x equals the jth attribute of y.

Note that this covers both relational and XML Boolean
conjunctive queries (for XML, σ defines the set of axes).
So the natural problem we have is the following, where
ϕ is a sentence of FO(S,∼):

Problem: QA(ϕ)
Input: a generalized database D

Question: is certain(ϕ, D) = true?

We now show that all three cases witnessed for relations
and XML – tractability, intractability, and undecidabil-
ity – are possible.

Theorem 7. • If ϕ is an existential positive sentence
of FO(S,∼), then QA(ϕ) is in DLogSpace.

• If ϕ is an existential sentence of FO(S,∼), then
QA(ϕ) is in coNP. Moreover, there exists a gen-
eralized schema S and an existential sentence ϕ0

of FO(S,∼) so that QA(ϕ0) is coNP-complete.

• There exists a generalized schema S and a sentence
ϕ1 of FO(S,∼) so that QA(ϕ1) is undecidable.

7. FUTURE WORK

We briefly outline some directions for future work.
Many results in this paper are of generic nature, and
it would be nice to understand how they work when



they are applied for particular classes of structures. For
example, Theorem 7 is stated over the class of all gen-
eralized databases, and one would like to see how sim-
ilar results change when we impose restrictions on the
structural part (e.g., require it to be a tree).

We have not looked at constraints, but they are known
to cause problems in the presence of incompleteness;
in particular, they affect complexity and decidability
results [12]. We also would like to see if the structural
study of constraints imposed on target instances in data
exchange will help determine classes for which least up-
per bounds, and thus universal solutions, exist; to start
with, one can attempt to extract such structural condi-
tions from cases when the chase procedure is known to
work (e.g. [18, 16]), or from restricted classes of tgds
studied in ontological reasoning [11].

The general model we used in Section 5, while inspired
by several other graph-based models, is rather close to
the model of [13]. The focus of [13] was rather different
from ours, but a more detailed study of the connections
with that paper may be warranted.

Finally, all the results here (except Proposition 8) are
based on the open world assumption. An ordering can
naturally be extracted from the closed world semantics
as well, and we plan to study it in the future. Going
from OWA to CWA is often known to increase the com-
plexity of the main computational tasks though [36].
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