
Modeling and Querying Probabilistic XML Data

Benny Kimelfeld

IBM Almaden Research Center
kimelfeld@us.ibm.com

Yehoshua Sagiv∗

The Hebrew University of Jerusalem
sagiv@cs.huji.ac.il

1 Introduction

We survey recent results on modeling and querying
probabilistic XML data. The literature contains a
plethora of probabilistic XML models [2, 13, 14, 18,
21, 24, 27], and most of them can be represented by
means of p-documents [18] that have, in addition to
ordinary nodes, distributional nodes that specify the
probabilistic process of generating a random docu-
ment. The above models are families of p-documents
that differ in the types of distributional nodes in use.

The focus of this survey is on the tradeoff between
the ability to express real-world probabilistic data
(in particular, by taking correlations between atomic
events into account) and the efficiency of query eval-
uation. We concentrate on two important issues.
The first is the ability to efficiently translate a p-
document of one family into that of another. The
second is the complexity of query evaluation over p-
documents (under the usual semantics of querying
probabilistic data, e.g., [4, 9, 10]). It turns out that
efficient evaluation of a large class of queries (i.e., twig
patterns with projection and aggregate functions) is
realizable in models where distributional nodes are
probabilistically independent. In other models, the
evaluation of a query with projection is very often
intractable. In comparison, very simple conjunctive
queries are intractable over probabilistic models of
relational databases, even when the tuples are prob-
abilistically independent [9, 10].

To handle the limitation exhibited by the above
tradeoff, various approaches have been proposed.
The first is to allow query answers to be approxi-
mate [18], which makes the evaluation of twig pat-
terns with projection tractable in the most expres-
sive family among those considered. This tractabil-
ity, however, does not carry over to non-monotonic
queries, such as twig patterns with negation or aggre-
gation. The approach presented in [7] combines the
assumption about the independence of distributional
nodes with the assertion of (a fixed set of) constraints,
and the result is a model that is capable of represent-
∗The work of this author was supported by The Israel Science

Foundation (Grant 893/05).

ing complex correlations between atomic events, but
not at the expense of efficiency.

2 Probabilistic XML

We model XML documents as unranked and un-
ordered trees. Each node v has a label and a unique
identifier that are denoted by λ(v) and id(v), respec-
tively. When representing an XML document as a
tree, a node corresponds to either an element, an at-
tribute or a value (i.e., PCDATA or the value of an
attribute). Accordingly, the label of a node corre-
sponds to either an element name (i.e., tag), an at-
tribute name or a value. Trees of the above form are
called documents.

A probabilistic XML space (abbr. px-space) D̃ is a
pair (Ω, p), where Ω is a nonempty and finite set of
documents, and p : Ω → Q+ maps every document
d ∈ Ω to a positive rational number p(d), such that∑

d∈Ω p(d) = 1. The set Ω is the sample space of D̃ ,
and p is the probability distribution. The documents
of Ω are also called possible worlds (or samples). We
identify D̃ with its sample space Ω; for example, we
write d ∈ D̃ instead of d ∈ Ω.

Typically, a px-space describes uncertainty in
many parts of the data. Hence, its sample space may
be too large for allowing an explicit representation.
Next, we describe a compact representation of a px-
space D̃ by means of a p-document, which is (a de-
scription of) a probabilistic process that generates a
random document d ∈ D̃ with probability p(d).

2.1 The P-Document Model

A p-document is a tree P̃ that consists of two types
of nodes. Ordinary nodes are those described at the
beginning of Section 2, namely, each one has a label
and a unique identifier. Ordinary nodes may appear
in the documents of the sample space. Distributional
nodes, on the other hand, are only used for defining
the probabilistic process that generates random doc-
uments (but they do not actually occur in those doc-
uments). In Section 3, several types of distributional
nodes are defined. For now, it is sufficient to real-
ize that each distributional node v has a probability

distribution over subsets of its children. In the prob-
abilistic process that generates a random document,
v randomly chooses a subset of its children according
to the distribution specified for v. In a p-document,
the root and leaves are ordinary nodes.

As an example, Figure 1 shows a p-document P̃.
Each ordinary node v is represented by the string
id(x).λ(v) (e.g., “3.member”). Distributional nodes
are depicted as rounded-corner rectangles. The type
of a distributional node is indicated by the string
(e.g., ind or mux) appearing inside the rectangle.
These types are discussed in Section 3.

Given a p-document P̃, a random document is
generated in two steps. First, each distributional
node randomly chooses a subset of its children. Note
that the choices of different nodes are not necessarily
probabilistically independent. All the unchosen chil-
dren and their descendants (even descendants that
have been chosen by their own parents) are deleted.
The second step removes all the distributional nodes.
If an ordinary node u remains, but its parent is re-
moved, then the new parent of u is the lowest ordi-
nary node v of P̃, such that v is a proper ancestor
of u. Note that when distributional nodes have dis-
tributional children, it may happen that the same
document is obtained from two different applications
of the first step. For additional details, see [18, 19].

3 Concrete Models

3.1 Types of Distributional Nodes

To obtain a concrete p-document, every distribu-
tional node should have a specific probability distri-
bution of choosing a subset of its children. We define
five types of distributional nodes, each one is charac-
terized by a different way of describing that probabil-
ity distribution. A node v of type ind specifies for each
child w, the probability of choosing w. This probabil-
ity is independent of the other choices of children. As
a special case, a node v of type det always (determin-
istically) chooses all of its children. If the type of v is
mux, then choices of different children are mutually
exclusive. That is, v chooses at most one of its chil-
dren, and it specifies the probability of choosing each
child (so the sum of these probabilities is at most 1).
A node v of type exp specifies the probability distri-
bution explicitly. That is, v lists subsets of children
and their probabilities of being chosen. We assume
that the probabilities specified in a p-document are
all non-zero, because it is useless to consider choices
of children that have a zero probability of occurring.

In the above four types, the underlying assumption
is that the choices of different distributional nodes are
probabilistically independent. The next type makes
it possible to introduce correlations between choices

of nodes. When distributional nodes of type cie ap-
pear in a p-document P̃, it means that P̃ has inde-
pendent random Boolean variables e1, . . . , em, called
event variables. For each variable ei, the p-document
P̃ specifies the probability p(ei) that ei is true. Each
node v of type cie specifies for every child w, a con-
junction1 αv(w) = a1 ∧ · · · ∧ alw , where each aj is ei-
ther ei or ¬ei for some 1 ≤ i ≤ m (note that different
cie nodes can share common event variables). When
generating a random document, values for e1, . . . , em

are randomly picked out, and a child is chosen if its
corresponding conjunction is satisfied.

Next, we discuss how to compute the probability
of a possible world d that belongs to the px-space de-
fined by a p-document P̃. Consider an execution of
the probabilistic process that generates the subtree
s of P̃ in the first step and then produces d in the
second step. For each distributional node v of s, such
that the type of v is not cie, let pv be the probabil-
ity that v chooses exactly the children that it has in
s. It is easy to compute pv from the probability dis-
tribution specified for v. For the cie nodes, we have
to compute the probability pe of all the truth assign-
ments τ to the event variables, such that for every
cie node v of s the following holds. For all children w
of v, if w appears in s, then τ satisfies αv(w); other-
wise, it does not. Let p(s) be the product of pe and
all the pv. Note that p(s) is the probability that each
distributional node of s chooses exactly the children
that it has in s. Equivalently, it is the probability of
getting s at the end of the first step. The probability
of the possible world d is the sum of the probabilities
p(s) over all the subtrees s that yield d at the end
of the second step. Note that computing each of pe,
p(s) and the probability of d is generally intractable.
But, if there are no cie nodes in P̃, then the three
probabilities can be computed efficiently.

3.2 Families of P-Documents

We denote by PrXML{type1,type2,...} the family of
all the p-documents, such that the types of their
distributional nodes are among those listed in the
superscript. For example, the p-documents of
PrXML{ind,mux} use only ind and mux nodes.

The simple case of using a distributional node
is when both its parent and children are ordinary.
Then, the role of the distributional node is to choose
ordinary children for its ordinary parent. Sometimes,
however, we can obtain more complex probability
distributions (over the space of documents) by con-
structing hierarchies of distributional nodes.

Formally, a p-document P̃ is distributional-

1We assume that the conjunction is satisfiable, that is, it
does not include an event variable and its negation.

2

name

member

*

*

phd−st.

*

25.Amy

24.name

0.7
0.619.a. prof.

14.name

15.Mary

0.9

22.name

23.David

30.res. group

0.7

0.5
ind

20.chair
0.3

0.9
5.f. prof.

16.member

13.$100,00012.$50,000

11.value

10.NIH

ind

7.chair

33.member

ind

ind
0.8

0.8
ind

31.name

32.Databases

mux

28.name

29.Lisa

27.Nicole

1.university

2.department

3.member

4.position

8.grant

ind

17.position 21.phd-st.

ind

34.position

26.name

0.7
mux

36.name

37.Paul0.6 0.4 9.name

6.a. prof.
18.f. prof.

0.5 0.5

mux

0.7

35.a. prof.

n2

n3

n4

t

n5

n6

n8n7

s

chair

P̃

f. prof.

n1

Figure 1: A p-document P̃ and twigs t and s

hierarchy free (abbr. DHF) if every distributional
node of P̃ has only ordinary children. As an exam-
ple, the p-document P̃ of Figure 1 is DHF. If F is a
set of p-documents, then F|6h denotes the restriction
of F to its DHF p-documents.

3.3 Expressiveness of Models

We have five types of distributional nodes and the
option of either allowing or forbidding hierarchies. It
gives more than fifty combinations—do all of them
create families of p-documents that are inherently dif-
ferent from one another? In this section, we compare
different families in terms of their expressiveness, us-
ing the notion of translations. A family F1 can be
translated into a family F2 if there is an algorithm
that accepts as input a p-document P̃1 of F1 and
constructs as output a P̃2 of F2, such that P̃1 and
P̃2 describe the same px-space. The translation is
efficient if the algorithm runs in polynomial time.

As a simple example, we compare the families

P̃1

umux

u2

0.50.5

u1

v

(a)

u

ind

P̃2 v

ind

u2

0.50.5

0.5

u1

w

(b)

Figure 2: P-documents: (a) P̃1 and (b) P̃2

PrXML{ind} and PrXML{mux}. There is no translation
of PrXML{mux} into PrXML{ind}, because ind nodes
cannot express mutually exclusive choices. In par-
ticular, consider the p-document P̃1 of Figure 2(a).
Note that rectangles and circles are distributional
and ordinary nodes, respectively; furthermore, for
each child of a distributional node, the probability
of choosing it is written next to its incoming edge.
P̃1 is in PrXML{mux} and it creates exactly two pos-
sible worlds that have the sets of nodes {v, u1} and
{v, u2}. No p-document of PrXML{ind} can yield these
two possible worlds without also generating a fourth
one that has the set of nodes {v, u1, u2}.

Figure 4 shows how to translate each ind node in
a p-document of PrXML

{ind}
|6h to several mux nodes

(note that the probability of each wi remains the
same). Hence, PrXML

{ind}
|6h is efficiently translatable

into PrXML{mux}.
However, PrXML{ind} cannot be translated into

PrXML{mux}. To see why, consider the p-document
P̃2 ∈ PrXML{ind} of Figure 2(b). We define E(x) as
the event “node x appears in some possible world of
P̃2.” The events E(u1) and E(u2) have the same

· · ·

u

· · ·w1 w2 w3 wk

mux mux mux mux

wk

ind

u

v

w1 w2 w3

Figure 4: Translating PrXML
{ind}
|6h to PrXML{mux}

3

PrXML
{ind,mux}
|6h

PrXML{ind,mux}PrXML{ind,mux,cie} PrXML
{exp}
|6h

PrXML{cie} PrXML
{exp,cie}
|6hPrXML

{cie}
|6h PrXML{exp} PrXML{ind,mux,exp}

PrXML{exp,cie}PrXML{ind,mux,exp,cie}

PrXML{ind}PrXML{mux,det} PrXML
{mux,det}
|6hPrXML

{mux}
|6h

PrXML
{ind}
|6h PrXML{mux}

Figure 3: Efficient translations between families of p-documents

prior probability, namely, 0.25. But the conditional
probability of E(u1), given the occurrence of E(u2),
is 0.5 (because if u2 appears in a possible world, it im-
plies that node u has been chosen by its parent w).
Suppose that some p-document P̃ ′ ∈ PrXML{mux}

generates the same px-space as P̃2. A simple case
analysis shows that in the px-space defined by P̃ ′,
the events E(u1) and E(u2) are either mutually ex-
clusive or independent. Hence, no p-document of
PrXML{mux} can generate the same px-space as P̃2.

Thus, the families PrXML{ind} and PrXML{mux} are
incomparable in terms of expressive power. Note that
both families are subsets of PrXML{ind,mux}. Interest-
ingly, the family PrXML{ind,mux} is efficiently trans-
latable into PrXML{mux,det}, as illustrated in Figure 5.
The converse is trivial, because a det node is a special
case of an ind node.

A thorough study of translations between families
of p-documents is done in [1]. The results are sum-
marized in Figure 3. An arrow means that there is
an efficient translation in the specified direction. The
figure is complete in the sense that if there is no di-
rected path from a family F1 to another family F2,
then an efficient translation does not exist.

3.4 Object and Value Semantics

Thus far, we have used the object-based semantics,
namely, two documents cannot be the same if one has

w3w1 · · ·

w2 w3 · · · wk

mux mux mux

v

mux· · ·

ind v′ det

w1

wkw2

Figure 5: Translating PrXML{ind,mux} to
PrXML{mux,det}

a node id that does not appear in the other. Some-
times, node id’s are not important per se and, hence,
the value-based semantics might be more suitable.
Under this semantics, two documents are deemed the
same if they are isomorphic. Formally, d1 and d2 are
isomorphic if there is a one-to-one correspondence h
between the nodes of d1 and those of d2, such that h
preserves the tree structure and the labels, but not
necessarily the id’s.

When working with the value-based semantics, the
intrinsic measure of uncertainty associated with a
document d is the probability that a random possible
world is isomorphic to d. In comparison, under the
object-based semantics, we are interested in the prob-
ability that a random possible world is d itself. This
distinction gives rise to the notion of a v-translation
that transforms a p-document P̃1 to P̃2, such that
the two generate isomorphic px-spaces. In the previ-
ous section, we actually discussed o-translations that
are founded on the object-based semantics. Note that
an o-translation is also a v-translation, but the con-
verse is not necessarily true. Therefore, the existence
of a directed path in Figure 3 means that there is an
efficient v-translation. It is not known whether Fig-
ure 3 is complete for efficient v-translations. Notwith-
standing, [1] shows that in many cases, the lack of
a directed path indicates that there is no efficient
v-translation. The main open problem is the fol-
lowing: Is PrXML{exp} efficiently v-translatable to
PrXML{mux,det}, or at least to PrXML{cie}?

3.5 Previously Studied Models

The family PrXML{ind,mux} is the ProTDB model
of [21]. This model has also been studied in [7, 19].
The probabilistic XML model2 of [27] is a subset of

2In the probabilistic documents of [27], the root is distribu-
tional. We can assume that a dummy ordinary node is added
for compliance with the definition of p-documents.

4

PrXML{mux,det}, where mux nodes (called “probabil-
ity nodes”) have only det nodes as children (called
“possibility nodes”) and det nodes have only ordinary
children (called “XML nodes”).

The model of probabilistic XML that was inves-
tigated in [2, 24] is PrXML{cie}. The “simple proba-
bilistic trees” of [2] are actually the family PrXML

{ind}
|6h

(hierarchies make a difference in this case).
The work of [14] introduced a model of probabilistic

XML graphs, where each node explicitly specifies the
probability distribution over its possible sets of chil-
dren. Restricting their XML graphs to trees yields a
sub-family of PrXML

{exp}
|6h (a lack of hierarchies is sig-

nificant when only exp nodes are allowed). The same
is true for [13] if we restrict their intervals to points.

4 Querying Probabilistic XML

In this section, we survey results on query evaluation
over probabilistic XML. The focus is on queries that
are based on twig patterns [3, 5]. Formally, a twig is
a tree t with child and descendant edges, which are
depicted by single and double lines, respectively, in
the rectangular boxes of Figure 1. A match of a twig
t in a document d is a mapping µ from the nodes of
t to those of d, such that µ maps root to root, nodes
to nodes, child edges to edges, and descendant edges
to paths (with at least one edge). In addition, each
node n of the twig has a unary condition cn(·), and
µ(n) must satisfy this condition, namely, cn(µ(n))
should evaluate to true. The simplest conditions are
λ(µ(n)) = l (i.e., the label of µ(n) is l) and true; the
latter is also known as the wildcard and denoted by
the symbol ∗. In the twig t of Figure 1, these simple
conditions appear as a label or a ∗ inside each node.

The conventional semantics of evaluating a twig t
(or any other type of query) is to find the matches of t
and their probabilities (e.g., [9, 10]). That is, we need
to compute a function p over all the mappings µ, such
that p(µ) is the probability that µ is a match of t in a
random possible world. The set of answers comprises
all matches µ, such that p(µ) > 0. Given a twig t,
a p-document P̃ and a mapping µ, the probability
p(µ) can be computed efficiently, even if there are cie
nodes, based on the following observation. Let s be
the minimal subtree of P̃ that includes the nodes in
the image of µ. Observe that p(µ) is the same as the
probability that each distributional node of s chooses
at least the children that it has in s. (In comparison,
the probability p(s) defined at the end of Section 3.1
is that of choosing exactly the children that appear
in s.) For example, consider the twig t and the p-
document P̃ of Figure 1. Let µ be the match defined
by µ(n1) = 1, µ(n2) = 21, µ(n3) = 26 and µ(n4) =

27. The probability of µ is 0.9 · 0.7 = 0.63.
However, computing a query that involves projec-

tion is not so easy. For example, there are extremely
simple conjunctive queries that are intractable over
probabilistic relational databases, even if choices of
distinct tuples are assumed to be independent [9, 10].
The ultimate usage of projection is to apply the
Boolean interpretation. In the case of a twig t and an
ordinary document d, it means to determine whether
d satisfies t, denoted by d |= t; that is, to decide
whether there is a match of t in d.

For a given p-document P̃, we use P (i.e., without
the tilde sign) to denote the random variable that rep-
resents a possible world of P̃. Evaluating a Boolean
twig t over P̃ amounts to computing Pr (P |= t),
which is the probability that a random possible world
of P̃ satisfies t. By definition, Pr (P |= t) is the sum
of probabilities of all possible worlds d, such that d
satisfies t.

Consider, for example, the p-document P̃ and the
twig t of Figure 1. A possible world of P̃ satisfies
t if it contains either node 23, node 25 or node 27.
For each of these three nodes alone, we can compute
the probability that it appears in a random possi-
ble world, as explained above. But the sum of these
three probabilities is not what we are looking for, be-
cause these are not disjoint events (i.e., some possible
worlds include all three nodes while others include
only one or two of them).

In general, evaluating Boolean twigs over p-
documents is a hard problem. In [18], it is shown
that every nontrivial Boolean twig has an intractable
data complexity over p-documents of PrXML{cie}. By
definition, a Boolean twig is trivial if it has only one
node (i.e., it is a condition on the root of the docu-
ment) or it contains a node with an unsatisfiable con-
dition (i.e., equivalent to false). Recall that FP#P is
the class of functions that are efficiently computable
using an oracle to some function in3 #P.

Theorem 4.1 [18] The evaluation of every nontriv-
ial Boolean twig over PrXML{cie} is FP#P-complete.

In contrast to Theorem 4.1, [19] shows that over
PrXML{ind,mux} (i.e., the ProTDB model of [21]), ev-
ery Boolean twig can be efficiently evaluated under
data complexity. In [18], this result is generalized
to the family PrXML{exp}. Thus, from Figure 3 and
Theorem 4.1, it follows that the family PrXML{exp}

is the maximal one, among those considered in the

3The class #P [26] is that of the functions that count the
number of accepting paths of the input of an NP machine. By
using an oracle to a #P-hard (or FP#P-hard) function, one
can efficiently solve the entire polynomial hierarchy [25].

5

previous section, that allows efficient evaluation of
Boolean twigs.

In [7], it is shown that tractable data complexity
carries over to c-formulae, which are rather complex
queries with aggregate functions. In particular, c-
formulae are obtained by mutually nesting twigs and
comparisons involving aggregate functions. A sim-
ple example of an atomic c-formula is (count(s) θ R),
where s is a selector, R is a rational number and θ is
one of the operators <, >, ≤, ≥, = and 6=. The selec-
tor s is a twig that computes a set of node ids, when
given a document as input. The aggregate function
count is applied to the set computed by s and the
result is compared with R.

The aggregate functions min and max are also al-
lowed in c-formulae, provided that labels are inter-
preted as numeric values. Another aggregate func-
tion is ratio. The simple atomic c-formulae that use
ratio have the form (ratio(s, t) θ R), where s, θ and R
are as above, and t is a Boolean twig. The function
ratio(s, t) is interpreted in a given document d as the
ratio |U |/|S|, where S is the set of nodes that are
selected by s, and U is the subset of S comprising all
the nodes u, such that the subtree of d that is rooted
at u satisfies t.

Theorem 4.2 [7] Let qA be a c-formula that uses
the aggregate functions count, ratio, min and max.
The evaluation of qA over PrXML{exp} is in polyno-
mial time.4

It is also shown in [7] that Theorem 4.2 does not
generalize to the aggregate functions sum and avg.
For instance, it is intractable to compute the proba-
bility that the total sum (or the total average) of all
the numeric labels in a random possible world is zero;
in fact, it cannot even be efficiently approximated un-
less5 NP=RP.

In comparison to Theorem 4.2, the evaluation al-
gorithms of [18, 19] apply only to twigs (which are a
subclass of c-formulae), but they are more efficient.
In particular, the algorithms of [18, 19] are fixed-
parameter tractable6 [11, 22], whereas that of [7] is
not.

Finally, in [7, 18, 19], it is shown how to apply
their results to non-Boolean queries, namely, projec-

4Similarly to [23], the numerical operands of the query qA

are not assumed to be fixed; rather, they are given as part of
the input.

5Note that NP=RP implies that the whole polynomial hi-
erarchy is recognizable by an efficient randomized algorithm
with a bounded two-sided error (BPP) [28].

6In the function that gives the running time, the size of the
query effects only the constant, but not the degree of the poly-
nomial.

tion can be applied (to the type of queries they con-
sider), but not necessarily in a total manner.

4.1 Approximate Query Evaluation

Let t be a twig. In the context of evaluating t over a
p-document, a fully polynomial randomized approxi-
mation scheme (FPRAS) for t is a randomized algo-
rithm A that, given a p-document P̃ and an ε > 0,
returns a number A(P̃, ε), such that7

Pr
(
(1− ε)p ≤ A(P̃, ε) ≤ (1 + ε)p

)
≥ 3

4
,

where p = Pr (P |= t). Moreover, the running time
of A is polynomial in P̃ and in 1/ε.

In [18], it is shown that by using the Monte-Carlo
approximation technique of [17] (similarly to the way
it is done in [10]), twigs can be efficiently approx-
imated over the maximal family considered in Fig-
ure 3.

Theorem 4.3 [18] Every twig has an FPRAS over
PrXML{exp,cie}.

By combining a simple twig and any aggregate
function (among those considered above), it is pos-
sible to get a query that cannot be efficiently ap-
proximated over PrXML{cie} (for all ε > 0), unless
NP=RP. This is proved rather easily by using the fol-
lowing observation. It is NP-hard to test, for a given
p-document P̃ ∈ PrXML{cie}, whether the probabil-
ity that P̃ does not satisfy the twig a/b is nonzero.

4.2 Enumerating Matches of Twigs

By Theorem 4.2, twig queries can be efficiently eval-
uated under data complexity. Under query-and-data
complexity (i.e., when both the p-document and the
query are given as input), this result no longer holds.
Moreover, it is already the case if we are restricted
to the family PrXML{mux} and twig queries without
descendant edges and projection [18]. This is ex-
plained by the NP-completeness of the problem of
determining whether there is a nonzero probability
that a match of a given twig in a given p-document
of PrXML{mux} exists.

Note that for projection-free twig queries, the goal
is essentially to enumerate all the matches with a
nonzero probability, and determine the probability
of each. Under query-and-data complexity, the num-
ber of matches can be exponential in the size of the
input. Consequently, “polynomial time in the size
of the input” is not a suitable yardstick. Instead,

7Note that the choice of the reliability factor 3/4 is arbitrary,
since for a given δ > 0, one can enhance the reliability to (1−δ)
by taking the median of O(log δ) trials [15].

6

other yardsticks of efficiency are used in the liter-
ature. The common one is polynomial total time,
namely, the running time is polynomial in the com-
bined size of the input and the output. A stronger
notion is that of enumeration in incremental polyno-
mial time [16], namely, the ith answer is generated
in time that is polynomial in the size of the input
and that of the previous i − 1 answers. The above
NP-completeness result of [18] implies that one can-
not efficiently enumerate all the matches µ of a given
twig t in a p-document P̃, such that µ has a nonzero
probability. Rather surprisingly, [19] shows that this
task (and even a generalized one) can be done effi-
ciently if maximal matches (rather than the ordinary
complete matches) are allowed.

Formally, a partial match of a twig t in a document
d is a match of a root-subtree t′ of t (i.e., t′ is a sub-
tree of t that contains the root of t) in d. In [19],
the following problem was considered. Given a twig
pattern t, a p-document P̃ and a threshold p ∈ [0, 1],
enumerate all the maximal matches w.r.t. p, namely,
all the partial matches µ such that (1) the probabil-
ity of µ is at least p, and (2) no partial match µ′ with
a probability at least p subsumes µ.

As an example, consider the p-document P̃ and
the twig s of Figure 1. Let p = 0.4 and µ1, µ2 and
µ3 be the partial matches defined as follows.

• µ1(n5) = 1, µ1(n6) = 3.
• µ2(n5) = 1, µ2(n6) = 3, µ2(n7) = 5.
• µ3(n5) = 1, µ3(n6) = 3, µ3(n7) = 5, µ3(n8) = 7.

Note that µ1 is subsumed by µ2 and both µ1 and
µ2 are subsumed by µ3. The partial matches µ1, µ2

and µ3 have the probabilities 0.8, 0.8 · 0.6 = 0.48 and
0.8 · 0.6 · 0.7 = 0.336, respectively. Hence, µ1 is not
maximal w.r.t. p since it is subsumed by µ2 that has
a probability above p, and µ2 is maximal since it is
only subsumed by µ3 that has a probability smaller
than p. The result of [19] mentioned above is the
following.

Theorem 4.4 [19] Over PrXML{ind,mux}, all maxi-
mal matches of a given twig pattern in a given p-
document w.r.t. a given threshold can be enumerated
in incremental polynomial time.

Whether Theorem 4.4 can be generalized to the
families PrXML{exp} or PrXML{cie} is yet unknown.
The operation of maximally joining probabilistic rela-
tions [20] is essentially the probabilistic version of the
full disjunction [12]. This operation is very similar to
that of enumerating the maximal matches of a twig in
a p-document, but its general case is intractable [20]
(whereas full disjunctions are computable with poly-
nomial delay [6]).

5 Asserting Constraints

The type cie of distributional nodes is unique in its
ability to represent correlations between choices of
children at different distributional nodes. However,
as discussed in the previous section, this type ex-
tremely limits the ability to evaluate queries that
involve projection. In contrast, the other types
(namely, exp, ind, mux and det) allow efficient eval-
uation of highly expressive queries. But they also
entail an inherent assumption of probabilistic inde-
pendence. This assumption often severely limits the
ability to model real-life data.

As an example, consider again the document P̃
of Figure 1. This p-document can be thought of
as a fragment of a probabilistic database that rep-
resents the result of screen scraping a university Web
site. In particular, each probability embodies the de-
gree of certainty, in making some specific choice, as
determined during the screen-scraping process. In
addition to these probabilities, available information
about the university can imply intricate correlations
between different choices. For example, suppose that
the following facts are known to hold.

1. Every department with three or more members
has a chair (and there is at most one chair).

2. A chair must be a full professor.

3. At least 95% of the associate professors have at
most two Ph.D. students.

This information implies that many possible worlds
of P̃ are actually inconceivable. Moreover, rather in-
tricate correlations exist between the entities of P̃.
For instance, given that Lisa is a faculty member,
there are three individuals that can be chosen as her
students. These choices, however, are not probabilis-
tically independent, because if Lisa is an associate
professor, then it is most likely that she has no more
than two students. Moreover, the second fact implies
that these choices also depend on whether Lisa is the
chair. Lastly, the first two facts imply that the aca-
demic rank of Lisa probabilistically depends on the
likelihood that Mary is the chair, and also on whether
Paul is a member of the department (because if there
are three members, then there is higher chance that
Lisa is the chair and, hence, a full professor).

One way of incorporating the available information
is to use cie nodes and correlate them by means of
shared event variables. However, it is not clear how
(and whether) this can be done efficiently (i.e., the
resulting p-document should not be too large). More-
over, even if that could be done efficiently, using

7

cie nodes has its own limitations (as discussed ear-
lier). A similar problem exists in other known mod-
els, such as those based on Bayesian networks (where
approximating the probability of simple events is in-
tractable [8]). A direct and convenient approach is
proposed in [7], namely, representing the probability
space of possible worlds by means of a PXDB.

A PXDB is a px-space that is represented by a
pair (P̃, C), where P̃ is a p-document of PrXML{exp}

(which, by Figure 3, effectively allows all the types of
distributional nodes, except for cie) and C is a set
of constraints, such as the above three facts. The px-
space D̃ that is given by (P̃, C) is well defined if there
is a nonzero probability that a random document of
P̃ satisfies C . In that case, D̃ is the subspace of
P̃ that comprises all the possible worlds that satisfy
each of the constraints (and, as usual, D is the ran-
dom variable associated with D̃). In particular, for a
document d that satisfies C (denoted by d |= C), the
probability Pr (D = d) is given by

Pr (D = d) = Pr (P = d | P |= C) =
Pr (P = d)
Pr (P |= C)

.

The above three facts about the university of Fig-
ure 1 can be easily expressed as c-formulae that use
the aggregate functions count and ratio (recall that
c-formulae were discussed in Section 4). The impor-
tance of this observation lies in Theorem 4.2. In par-
ticular, it is shown in [7] how Theorem 4.2 can be
used for obtaining the following result.

Theorem 5.1 [7] Let C be a fixed set of c-formulae
that use the aggregate functions count, ratio, min and
max. The following three tasks can be performed effi-
ciently, given a PXDB D̃ = (P̃, C).

• Testing well-definedness of D̃ .

• Evaluating a twig (or a c-formulae with the above
aggregate functions) over D̃ .

• Sampling D̃ .

Sampling a PXDB D̃ is the task of emulating D̃ by
randomly generating a document of D̃ , such that the
probability of generating each document d is equal to
Pr (D = d).

Observe that Theorem 5.1 makes the limiting (yet
necessary) assumption that the set C of constraints
is fixed (although the numerical values that appear
in C are given as part of the input). Therefore, one
can effectively utilize this result when the correlations
between the represented entities can be expressed by
a small set of facts (e.g., as in the above example of
a university).

6 Concluding Remarks

The families PrXML{exp} and PrXML{cie} (of [2, 24])
exhibit a clear tradeoff between the efficiency of query
evaluation and the ability to model correlations be-
tween probabilistic choices. PrXML{exp} is the most
expressive family among those that do not have cie
nodes (see Figure 3). In this family, highly expres-
sive queries can be evaluated efficiently. But this is
achieved at the expense of assuming that choices of
children by different distributional nodes are inde-
pendent. In comparison, PrXML{cie} can express cor-
relations between distributional nodes by means of
shared event variables; however, evaluation of queries
with projection (even very simple ones) is intractable.

Approximate query evaluation partly surmounts
the limitation entailed by the above tradeoff. Specifi-
cally, for twig queries with projection, efficient (multi-
plicative) approximate evaluation is realizable in the
most expressive family, namely, PrXML{exp,cie}. But
this solution is possible only because twig queries
are monotonic. In particular, query evaluation be-
comes inapproximable if negation can be applied to
branches (e.g., “find all departments that do not
have a chair”). The PXDB model takes a com-
pletely different approach. It describes correlations
in a p-document of PrXML{exp} in terms of a fixed set
of constraints (phrased as c-formulae), rather than
by many specific dependencies among distributional
nodes (as can be done in PrXML{cie}). This is a
natural approach, because correlations are quite fre-
quently a facet of integrity constraints. Interestingly,
the PXDB approach demonstrates the following phe-
nomenon. When a dependency-free probabilistic data
model is coupled with a powerful query language, it
becomes a realistic framework that is capable of ex-
pressing complex correlations among entities, with-
out sacrificing efficiency.

The above tractability results for PrXML{exp} hold
only under data complexity. Under query-and-data
complexity, query evaluation becomes hard even for
projection-free twigs over PrXML{mux}. Nevertheless,
in [19] it is shown that the maximal matches of a twig
pattern in a p-document of PrXML{ind,mux} w.r.t. a
given threshold can be enumerated in incremental
polynomial time.

In [2, 24], various aspects of managing probabilis-
tic XML are studied. Their work is couched in the
value-based semantics and the focus is on the family
PrXML{cie}; in addition, [2] also considers PrXML

{ind}
|6h .

They model and investigate updates in probabilistic
XML. For example, an insertion into a given docu-
ment is defined by a triple (t, n, d), where t is a twig
pattern, n is a node of t and d is a tree that needs

8

to be added to each node v, such that some match of
t in the given document maps n to v. In the setting
of probabilistic data, an update modify the possible
worlds, and the goal is to represent them by a new
p-document. The work of [2, 24] shows how it can
be done. Other problems studied in [24] are those of
determining whether two p-documents are equivalent,
and eliminating random possible worlds characterized
by probabilities that are too low. Finally, they con-
sider the problem of applying cardinality constraints
to a given p-document and representing the result by
means of a new p-document. Their cardinality con-
straints are a limited, order-unaware form of DTD
constraints.

The PIXml model of [13] describes probabilistic
choices similarly to PrXML

{exp}
|6h . However, PIXml sig-

nificantly deviates from p-documents in two aspects.
First, the representation of the probability space as
well as the possible worlds are directed acyclic graphs,
rather than trees. Second, the probabilities of choos-
ing subsets of children are defined by intervals, rather
than exact values.

References

[1] S. Abiteboul, B. Kimelfeld, Y. Sagiv, and P. Senel-
lart. On the expressiveness of probabilistic XML
models. Submitted for a journal publication, 2008.

[2] S. Abiteboul and P. Senellart. Querying and up-
dating probabilistic information in XML. In EDBT,
pages 1059–1068, 2006.

[3] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and
D. Srivastava. Minimization of tree pattern queries.
In SIGMOD, pages 497–508, 2001.

[4] O. Benjelloun, A. D. Sarma, A. Y. Halevy,
M. Theobald, and J. Widom. Databases with uncer-
tainty and lineage. VLDB J., 17(2):243–264, 2008.

[5] N. Bruno, N. Koudas, and D. Srivastava. Holistic
twig joins: optimal XML pattern matching. In Pro-
ceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, pages 310–321.
ACM, 2002.

[6] S. Cohen, I. Fadida, Y. Kanza, B. Kimelfeld, and
Y. Sagiv. Full disjunctions: Polynomial-delay itera-
tors in action. In VLDB, pages 739–750. ACM, 2006.

[7] S. Cohen, B. Kimelfeld, and Y. Sagiv. Incorporating
constraints in probabilistic XML. In PODS, pages
109–118, 2008.

[8] P. Dagum and M. Luby. Approximating probabilis-
tic inference in bayesian belief networks is NP-hard.
Artif. Intell., 60(1):141–153, 1993.

[9] N. N. Dalvi and D. Suciu. The dichotomy of conjunc-
tive queries on probabilistic structures. In PODS,
pages 293–302, 2007.

[10] N. N. Dalvi and D. Suciu. Efficient query evaluation
on probabilistic databases. VLDB J., 16(4):523–544,
2007.

[11] R. G. Downey and M. R. Fellows. Parameter-
ized Complexity. Monographs in Computer Science.
Springer, 1999.

[12] C. A. Galindo-Legaria. Outerjoins as disjunctions.
In SIGMOD, pages 348–358. ACM Press, 1994.

[13] E. Hung, L. Getoor, and V. S. Subrahmanian. Proba-
bilistic interval XML. In ICDT, pages 361–377, 2003.

[14] E. Hung, L. Getoor, and V. S. Subrahmanian.
PXML: A probabilistic semistructured data model
and algebra. In ICDE, pages 467–478, 2003.

[15] M. Jerrum, L. G. Valiant, and V. V. Vazirani. Ran-
dom generation of combinatorial structures from a
uniform distribution. Theor. Comput. Sci., 43:169–
188, 1986.

[16] D. S. Johnson, C. H. Papadimitriou, and M. Yan-
nakakis. On generating all maximal independent
sets. Inf. Process. Lett., 27(3):119–123, 1988.

[17] R. M. Karp, M. Luby, and N. Madras. Monte-carlo
approximation algorithms for enumeration problems.
Journal of Algorithms, 10(3):429–448, 1989.

[18] B. Kimelfeld, Y. Kosharovsky, and Y. Sagiv. Query
efficiency in probabilistic XML models. In SIGMOD
Conference, pages 701–714, 2008.

[19] B. Kimelfeld and Y. Sagiv. Matching twigs in prob-
abilistic XML. In VLDB, pages 27–38, 2007.

[20] B. Kimelfeld and Y. Sagiv. Maximally joining prob-
abilistic data. In PODS, pages 303–312. ACM, 2007.

[21] A. Nierman and H. V. Jagadish. ProTDB: Prob-
abilistic data in XML. In VLDB, pages 646–657,
2002.

[22] C. H. Papadimitriou and M. Yannakakis. On the
complexity of database queries. Journal of Computer
and System Sciences, 58(3):407–427, 1999.

[23] C. Ré and D.Suciu. Efficient evaluation of HAV-
ING queries on a probabilistic database. In DBPL,
volume 4797 of Lecture Notes in Computer Science,
pages 186–200. Springer, 2007.

[24] P. Senellart and S. Abiteboul. On the complexity of
managing probabilistic XML data. In PODS, pages
283–292, 2007.

[25] S. Toda and M. Ogiwara. Counting classes are at
least as hard as the polynomial-time hierarchy. SIAM
J. Comput., 21(2):316–328, 1992.

[26] L. G. Valiant. The complexity of computing the per-
manent. Theoretical Computer Science, 8:189–201,
1979.

[27] M. van Keulen, A. de Keijzer, and W. Alink. A
probabilistic XML approach to data integration. In
ICDE, pages 459–470. IEEE Computer Society, 2005.

[28] S. Zachos. Probabilistic quantifiers and games. Jour-
nal of Computer and System Sciences, 36(3):433–
451, 1988.

9

