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Abstract

This article proposes a core query algebra for
probabilistic databases. In essence, this core
is part of the query languages of most proba-
bilistic database systems proposed so far, but
is sometimes hidden in complex language def-
initions. We give a formal definition of this
language and illustrate it by examples. We
then proceed to surveying the current state of
knowledge regarding the expressive power and
complexity of this core.

1 Introduction

The emerging research area of probabilistic databases
has attracted much interest and excitement recently.
It is still quite early in the development of this field,
and the community has not yet converged upon a
standard set of features or use cases that probabilis-
tic databases and their query languages should sup-
port. However, a body of foundational knowledge on
query languages for probabilistic databases is forming
rapidly. The aim of this article is to give a concise
summary of this foundation.

We will focus on extracting and discussing a core
query algebra that arguably can be found completely
or mostly implemented in most probabilistic database
systems systems developed so far, including MystiQ
[8], Trio [18], MayBMS [5, 15], and MCDB [11]. The
rationale for proposing such a core is, of course, that
agreeing on relational algebra as a core language for
relational database systems is one of the foundations
of their success: It has facilitated the development of
a widely agreed-upon terminology which allowed the
database research community to make rapid progress;
but it is also essentially the interface between query
optimization and query evaluation at the very heart of
any powerful database management system. Ideally, a
similar core algebra for probabilistic databases could
help us replicate our previous success with relational
databases.

It seems proper to start the search for a such a core
with the definition of design desiderata for probabilis-
tic database query languages. Ours are the following:

1. Efficient query evaluation.

2. The right degree of expressive power. The lan-
guage should be powerful enough to support im-
portant queries. On the other hand, it should
not be too strong, because expressiveness gener-
ally comes at a price: high evaluation complexity
and infeasibility of query optimization. Can a case
be made that some language is in a natural way a
probabilistic databases analog of the relationally
complete languages (such as relational algebra) –
an expressiveness yardstick?

3. Genericity. The semantics of a query language
should be independent from details of how the
data is represented. Queries should behave in the
same way no matter how the probabilistic data is
stored. This is a basic requirement that is even
part of the traditional definition of what consti-
tutes a query (cf. e.g. [1]), but it is nontrivial to
achieve for probabilistic databases [5, 4]. Gener-
icity is key to making the language applicable to
many different database systems that internally
represent data in different ways.

4. The ability to transform data. Queries on proba-
bilistic databases are often interpreted quite nar-
rowly in the literature. It is the author’s view that
queries in general should be compositional map-
pings between databases, in this case probabilistic
databases. This is a property taken for granted in
relational databases. It allows for the definition
of clean database update languages.

5. The ability to introduce uncertainty. This may
appear to be a controversial goal, since uncer-
tainty is commonly considered undesirable, and
probabilistic databases are there to deal with it
by providing useful functionality despite uncer-
tainty. An uncertainty-introduction operation is
important for compositionality, to allow the con-
struction of an uncertain database from scratch
(as part of the update language), and to support
hypothetical (what-if) queries.

Content of this article. As a core algebra, we
present probabilistic world-set algebra (WSA), origi-



nally defined as the query algebra of the MayBMS
system [15, 5, 14, 16], in its algebraic and SQL-like
syntax. This language is a minimal extension of rela-
tional algebra that arguably satisfies all of the desider-
ata presented above.

After a short definition of the conceptual model of
probabilistic databases used throughout most of the
article (discrete at first) in Section 2, the algebra is
formally defined in Section 3. Section 4 illustrates
probilistic WSA and its SQL-like syntax by several
examples. Section 5 and 6 discuss our current state of
knowledge regarding the expressive power and com-
plexity, respectively, of the algebra. Section 7 dis-
cusses extensions of the algebra (such as aggregates)
and queries on probabilistic databases with continuous
distributions.

2 Probabilistic Databases

Informally, our model of probabilistic databases is the
following. The schema of a probabilistic database
is simply a relational database schema. Given such
a schema, a probabilistic database is a finite set of
database instances of that schema (called possible
worlds), where each world has a weight (called proba-
bility) between 0 and 1 and the weights of all worlds
sum up to 1. In a subjectivist Bayesian interpreta-
tion, one of the possible worlds is “true”, but we do
not know which one, and the probabilities represent
degrees of belief in the various possible worlds. Note
that this is only the conceptual model. The physical
representation of the set of possible worlds in proba-
bilistic database management systems is quite different
[8, 18, 3].

Given a schema with relation names R1, . . . , Rk.
We use sch(Rl) to denote the attributes of relation
schema Rl. Formally, a probabilistic database is a fi-
nite set of structures

W = {〈R1
1, . . . , R

1
k, p

[1]〉, . . . , 〈Rn
1 , . . . , R

n
k , p

[n]〉}

of relations Ri
1, . . . , R

i
k and numbers 0 < p[i] ≤ 1 such

that ∑
1≤i≤n

p[i] = 1.

We call an element 〈Ri
1, . . . , R

i
k, p

[i]〉 ∈ W a possible
world , and p[i] its probability. We use superscripts for
indexing possible worlds. To avoid confusion with ex-
ponentiation, we sometimes use bracketed superscripts
·[i]. We call a relation R complete or certain if its in-
stantiations are the same in all possible worlds of W,
i.e., if R1 = · · · = Rn.

The definitions of the following sections are appli-
cable if either a set- or a multiset-based semantics for
relations is used. Whenever the distinction causes an
subtleties, they will be made clear. Of course, when
we use SQL-like syntax for queries, we automatically
assume multiset semantics.

Tuple confidence refers to the probability of the
event ~t ∈ R, where R is one of the relation names
of the schema, with

Pr[~t ∈ R] =
∑

1≤i≤n: ~t∈Ri

p[i].

3 Core Algebra

This section defines probabilistic world-set algebra
(probabilistic WSA) [5, 14, 16]. Informally, proba-
bilistic world-set algebra consists of the operations of
relational algebra, an operation for computing tuple
confidence conf, and the repair-key operation for in-
troducing uncertainty.

• The operations of relational algebra are evaluated
individually, in “parallel”, in each possible world.

• The operation conf(R) computes, for each tuple
that occurs in relation R in at least one world, the
sum of the probabilities of the worlds in which the
tuple occurs. The result is a certain relation, or
viewed differently, a relation that is the same in
all possible worlds.

• Finally, repair-key ~A@P (R), where ~A, P are at-
tributes of R, conceptually nondeterministically
chooses a maximal repair of key ~A. This operation
turns a possible world Ri into the set of worlds
consisting of all possible maximal repairs of key
~A. A repair of key ~A in relation Ri is a subset of
Ri for which ~A is a key. It uses the numerically-
valued column P for weighting the newly created
alternative repairs.

We define a semantics of probabilistic world-set al-
gebra formally using a function [[·]]pw that maps be-
tween sets of possible worlds. For a further illustra-
tion that the reader may find more intuitive, we will
also provide a Monte Carlo/sampling semantics defi-
nition [[·]]mc. Conceptually, [[Q]]mc computes for query
Q a sample result relation. Note that the definition of
[[·]]mc is nondeterministic, an multiple invocations will
yield different results. The sampling semantics also
only approximates [[·]]pw; we will not have space to
make this precise, but will point to relevant literature.

• The operations of relational algebra (selection σ,
projection π, product ×, union ∪, difference −,
and attribute renaming ρ), which are applied in
each possible world independently.
The possible-worlds semantics of unary and bi-
nary relational algebra operations Θ on proba-
bilistic database W is

[[Θ(Rl[, Rm])]]pw(W) :=
{〈R1, . . . , Rk,Θ(Rl[, Rm]), p〉

| 〈R1, . . . , Rk, p〉 ∈ W}.



The sampling semantics [[Θ(Q1[, Q2])]]mc is simply
Θ([[Q1]]mc[, [[Q2]]mc]).

Selection conditions are Boolean combinations of
atomic conditions (i.e., negation is permitted even
in the positive fragment of the algebra). Arith-
metic expressions may occur in atomic conditions
and in the arguments of π and ρ. For example,
ρA+B→C(R) in each world adds up the A and B
values of each tuple of R and keeps them in a new
C attribute.

• An operation for computing tuple confidence,

[[conf(Rl)]]pw(W) := {〈R1, . . . , Rk, S, p〉
| 〈R1, . . . , Rk, p〉 ∈ W}

where

S =
{
〈~t,Pr[~t ∈ Rl]〉 | ~t ∈

n⋃
i=1

Ri
l

}
.

The result of conf(Rl), the relation S, is the same
in all possible worlds, i.e., it is a certain relation.

By our definition of probabilistic databases, each
possible world has nonzero probability. As a con-
sequence, conf does not return tuples with proba-
bility 0. Note also that conf implicitly eliminates
duplicates.

Example 3.1 On probabilistic database

R1 A B
a b
b c

p[1] = .3
R2 A B

a b
c d

p[2] = .7

conf(R) computes

conf(R) A B P
a b 1
b c .3
c d .7

i.e., for each possible tuple, the sum of the weights
of the possible worlds in which it occurs. 2

Let S1, . . . , Sm be samples from [[Q]]mc, that is,
the results of m separate invocations of [[Q]]mc.
Then we compute [[conf(Q)]]pw as

{
〈~t, |{i : ~t ∈ Si}|/m〉 : ~t ∈

m⋃
i=1

Si

}
.

• An uncertainty-introducing operation, repair-key ,
which can be thought of as sampling a maximum
repair of a key for a relation. Repairing a key
of a complete relation R means to compute, as

possible worlds, all subset-maximal relations ob-
tainable from R by removing tuples such that a
key constraint is satisfied. We will use this as a
method for constructing probabilistic databases,
with probabilities derived from relative weights
attached to the tuples of R.
We say that relation R′ is a maximal repair of a
functional dependency (fd, cf. [1]) for relation R
if R′ is a maximal subset of R which satisfies that
functional dependency, i.e., a subset R′ ⊆ R that
satisfies the fd such that there is no relation R′′

with R′ ⊂ R′′ ⊆ R that satisfies the fd.
Let ~A,B ∈ sch(Rl). For each possible world
〈R1, . . . , Rk, p〉 ∈ W, let column B of R contain
only numerical values greater than 0 and let Rl

satisfy the fd (sch(Rl)−B) → sch(Rl). Then,

[[repair-key ~A@B(Rl)]](W) :={
〈R1, . . . , Rk, πsch(Rl)−B(R̂l), p̂〉

| 〈R1, . . . , Rk, p〉 ∈ W,

R̂l is a maximal repair of fd ~A→ sch(Rl),

p̂ = p ·
∏

~t∈R̂l

~t.B∑
~s∈Rl:~s. ~A=~t. ~A ~s.B

}
Such a repair operation, apart from its usefulness
for the purpose implicit in its name, is a powerful
way of constructing probabilistic databases from
complete relations.
The sampling semantics makes this operation
much more intuitive: Conceptually, given a sam-
ple R from [[Q]]mc, we group the tuples of R by the
columns ~A: for each distinct ~a in π ~A(R), we inde-
pendently sample exactly one tuple ~t from group
G~a = σ ~A=~a(R) with the probability distribution
given by (normalized) column B,

Pr[choose ~t for group ~a] = ~t.B/
∑

~t′∈G~a

~t′.B.

Example 3.2 Consider the example of tossing
a biased coin twice. We start with a certain
database

R Toss Face FProb
1 H .4
1 T .6
2 H .4
2 T .6

p = 1

that represents the possible outcomes of tossing
the coin twice. We turn this into a probabilistic
database that represents this information using al-
ternative possible worlds for the four outcomes us-
ing the query S := repair-keyToss@FProb(R). The
resulting possible worlds are



S1 Toss Face
1 H
2 H

S2 Toss Face
1 H
2 T

S3 Toss Face
1 T
2 H

S4 Toss Face
1 T
2 T

with probabilities p[1] = p · .4
.4+.6 · .4

.4+.6 = .16,
p[2] = p[3] = .24, and p[4] = .36. 2

The fragment of probabilistic WSA which excludes
the difference operation is called positive probabilistic
WSA.

Computing possible and certain tuples is redundant
with conf:

poss(R) := πsch(R)(conf(R))
cert(R) := πsch(R)(σP=1(conf(R)))

4 Examples

4.1 Adding Evidence

Example 4.1 A bag of coins contains two fair coins
and one double-headed coin. We take one coin out of
the bag but do not look at its two faces to determine
its type (fair or double-headed) for certain. Instead we
toss the coin twice to collect evidence about its type.

We start with a complete database (i.e., a relational
database, or a probabilistic database with one possible
world of probability 1) consisting of three relations,
Coins, Faces, and Tosses (see Figure 1 for all tables
used in this example). We first pick a coin from the
bag and model that the coin be either fair or double-
headed. In probabilistic WSA this is expressed as

R := repair-key∅@Count(Coins).

This results in a probabilistic database of two pos-
sible worlds, 〈Coins,Faces,Tosses, Rf , pf = 2/3〉 and
〈Coins,Faces,Tosses, Rdh, pdh = 1/3〉.

The possible outcomes of tossing the coin twice can
be modeled as

S := repair-keyToss@FProb(R ./ Faces× Tosses).

This turns the two possible worlds into five, since
there are four possible outcomes of tossing the fair coin
twice, and only one for the double-headed coin.

Let T := πToss,Face(S). The posterior probability
that a coin of type x was picked, given the evidence
Ev (see Figure 1) that both tosses result in H, is

Pr[x ∈ R | T = Ev] =
Pr[x ∈ R ∧ T = Ev]

Pr[T = Ev]
.

Let A be a relational algebra expression for the
Boolean query T = Ev. Then we can compute a table

Coins Type Count
fair 2

2headed 1

Faces Type Face FProb
fair H .5
fair T .5

2headed H 1

Tosses Toss
1
2

Rf Type
fair

Rdh Type
2headed

Sf.HH Type Toss Face
fair 1 H
fair 2 H

Sf.HT Type Toss Face
fair 1 H
fair 2 T

pf.HH = 1/6 pf.HT = 1/6

Sf.TH Type Toss Face
fair 1 T
fair 2 H

Sf.TT Type Toss Face
fair 1 T
fair 2 T

pf.TH = 1/6 pf.TT = 1/6

Sdh Type Toss Face
2headed 1 H
2headed 2 H
pdh = 1/3

Ev Toss Face
1 H
2 H

Q Type P
fair (1/6)/(1/2) = 1/3

2headed (1/3)/(1/2) = 2/3

Figure 1: Tables of Example 4.1.

of pairs 〈x,Pr[x ∈ R | T = Ev]〉 as

Q := πType,P1/P2→P (

ρP→P1(conf(R×A))× ρP→P2(conf(A))).

The prior probability that the chosen coin was fair
was 2/3; after taking the evidence from two coin tosses
into account, the posterior probability Pr[the coin is
fair | both tosses result in H] is only 1/3. Given the
evidence from the coin tosses, the coin is now more
likely to be double-headed. 2

4.2 Hypothetical Queries: Skills Management

For the second example, we use an SQL-like syntax
for probabilistic WSA. The mapping is in strict anal-
ogy with that from relational algebra to SQL. Repair-
key is a new operation whose syntax should be intu-
itive. Confidence computation (or strictly speaking,
the combination of confidence computation and pro-
jection, conf(π ~A(R))) has become an aggregate, which
conveys the intuition that duplicates are eliminated:
for each group, only one tuple with a probability is
returned. b

Example 4.2 Given a relational database represent-
ing companies, employees, and their skills such as the



following.

CE CID EID
LEH Bob
LEH Joe
MER Dan
MER Bill
MER Fred

ES EID Skill
Bob subprime mortg
Joe subprime mortg
Dan junk bonds
Dan subprime mortg
Bill risk mgmt
Fred junk bonds

We now want to ask the following hypothetical
query: Suppose I buy one of the companies and ex-
actly one employee leaves. Which skills do I gain for
certain? Note that this query starts on a traditional
relational database (without uncertainty) and returns
a certain table. We will create a probabilistic database
for intermediate results.

We first choose one company to by and one em-
ployee who will leave and compute the employees that
will remain in my company.

create table RemainingEmployees as
select CE.cid, CE.eid
from CE,

(repair key (dummy)
in (select 1 as dummy, * from CE)) Choice

where CE.cid = Choice.cid
and CE.eid <> Choice.eid;

Note that since we do not have probabilities available,
we will make our choice uniformly. Since we only ask
for certain answers in this example, the probabilities
actually do not matter.

Next we compute a table of probabilities, for com-
panies and skills, (p1) that I gain the the skill and
buy the company, (p2) that I buy the company, and
(p1/p2) the conditional probability that I gain the skill
if I buy the company.

create table SkillGained as
select Q1.cid, Q1.skill, p1, p2, p1/p2 as p
from (select R.cid, ES.skill, conf() as p1

from RemainingEmployees R, ES
where R.eid = ES.eid
group by R.cid, ES.skill) Q1,

(select cid, conf() as p2
from RemainingEmployees
group by cid) Q2

where Q1.cid = Q2.cid;

For the database given above, this results in the table

SkillsGained CID Skill p1 p2 p
LEH subprime mortg 2/5 2/5 1
MER junk bonds 3/5 3/5 1
MER subprime mortg 2/5 3/5 2/3
MER risk mgmt 2/5 3/5 2/3

The query

select cid, skill from SkillGained where p=1;

yields the desired answer. 2

5 Expressiveness

The repair-key operation admits an interesting class of
queries: Like in Example 4.1, we can start with a prob-
abilistic database of prior probabilities, add further ev-
idence (in Example 4.1, the result of the coin tosses)
and then compute interesting posterior probabilities.
The adding of further evidence may require extending
the hypothesis space first. For this, the repair-key op-
eration is essential. Even though our goal is not to up-
date the database, we have to be able to introduce un-
certainty just to be able to model new evidence – say,
experimental data. Many natural and important prob-
abilistic database queries cannot be expressed without
the repair-key operation. The coin tossing example
was admittedly a toy example (though hopefully easy
to understand). Real applications such as diagnosis
or processing scientific data involve technically similar
questions.

Regarding our desiderata, it is quite straightforward
to see that probabilistic WSA is generic (3): see also
the proof for the non-probabilistic language in [5]. It
is clearly a data transformation query language (4)
that supports powerful queries for defining databases.
The repair-key operation is our construct for uncer-
tainty introduction (5). The evaluation efficiency (1)
of probabilistic WSA is studied in Section 6. The ex-
pressiveness desideratum (2) is discussed next.

An expressiveness yardstick . In [5] a non-
probabilistic version of world-set algebra is introduced.
It replaces the confidence operation with an operation
poss for computing possible tuples. Using poss, repair-
key, and the operations of relational algebra, powerful
queries are expressible. For instance, the certain an-
swers of a query on an uncertain database can be com-
puted using poss and difference. Compared to the poss
operation described above, the operation of [5] is more
powerful. The syntax is poss ~A(Q), where ~A is a set of
column names of Q. The operation partitions the set
of possible worlds into the groups of those worlds that
agree on π ~A(Q). The result in each world is the set of
tuples possible in Q within the world’s group. Thus,
this operation supports the grouping of possible worlds
just like the group-by construct in SQL supports the
grouping of tuples.

The main focus of [5] is to study the fragment
of (non-probabilistic) WSA in which repair-key is
replaced by the choice-of operation, definable as
choice-of ~A@P (R) := R ./ repair-key∅@P (π ~A,P (R)).
The choice-of operation introduces uncertainty like the
repair-key operation, but can only cause a polyno-
mial, rather than exponential, increase of the number
of possible worlds. This language has the property
that query evaluation on enumerative representations
of possible worlds is in PTIME (see Section 6 for more
on this). Moreover, it is conservative over relational
algebra in the sense that any query that starts with a
certain database (a classical relational database) and



produces a certain database is equivalent to a rela-
tional algebra query and can be efficiently rewritten
into relational algebra. This is a nontrivial result, be-
cause in this language we can produce uncertain in-
termediate results consisting of many possible worlds
using the choice-of operator. This allows us to express
and efficiently answer hypothetical (what-if) queries.

(Full non-probabilistic) WSA consists of the rela-
tional algebra operations, repair-key, and poss ~A. In
[16], it is shown that WSA precisely captures second-
order logic. Leaving aside inessential details about in-
terpreting second-order logic over uncertain databases
– it can be done in a clean way – this result shows
that a query is expressible in WSA if and only if it
is expressible in second-order logic. WSA seems to
be the first algebraic (i.e., variable and quantifier-free)
language known to have exactly the same expressive
power as second-order logic.

It can be argued that this establishes WSA as
the natural analog of relational algebra for uncertain
databases. Indeed, while it is well known that useful
queries (such as transitive closure or counting queries,
cf. [1]) cannot be expressed in it, relational algebra is
a very popular expressiveness yardstick for relational
query languages (and query languages that are as ex-
pressive as relational algebra are called relationally
complete). Relational algebra is also exactly as expres-
sive as the relational calculus [1]. Second-order logic
is just first-order logic extended by (existential) quan-
tification over relations (“Does there exist a relation R
such that φ holds?”, where φ is a formula). This is the
essence of (what-if) reasoning over uncertain data. For
example, the query of Example 4.1 employed what-if
reasoning over relations twice via the repair-key oper-
ation, first considering alternative choices of coin and
then alternative outcomes to coin tossing experiments.

6 Complexity

The core of the algebra, positive relational algebra, can
be efficiently evaluated on c-tables. In [3], a version of
c-tables called U-relations was developed on which all
expressions of this algebra fragment can be evaluated
purely in relational algebra.

Properties of the relational-algebra reduction. The
relational algebra rewriting down to positive relational
algebra on U-relations has a number of nice proper-
ties. First, since relational algebra has PTIME (even
AC0) data complexity, the query language of positive
relational algebra, repair-key, and poss on probabilis-
tic databases represented by U-relations has the same.
The rewriting is in fact a parsimonious translation:
The number of algebra operations does not increase
and each of the operations selection, projection, join,
and union remains of the same kind. Query plans are
hardly more complicated than the input queries. As
a consequence, we were able to observe that off-the-
shelf relational database query optimizers do well in
practice [3].

Thus, for all but two operations of probabilistic
world-set algebra, it seems that there is a very efficient
solution that builds on relational database technology.
These remaining operations are confidence computa-
tion and relational algebra difference.

Approximate confidence computation. To compute
the confidence in a tuple of data values occurring pos-
sibly in several tuples of a U-relation, we have to com-
pute the probability of the disjunction of the local con-
ditions of all these tuples. We have to eliminate dupli-
cate tuples because we are interested in the probability
of the data tuples rather than some abstract notion of
tuple identity that is really an artifact of our represen-
tation. That is, we have to compute the probability
of a DNF, i.e., the sum of the weights of the worlds
identified with valuations θ of the random variables
such that the DNF becomes true under θ. This prob-
lem is #P-complete [10, 8]. The result is not the sum
of the probabilities of the individual conjunctive local
conditions, because they may, intuitively, “overlap”.

Confidence computation can be efficiently approx-
imated by Monte Carlo simulation [10, 8, 14]. The
technique is based on the Karp-Luby fully polynomial-
time randomized approximation scheme (FPRAS) for
counting the number of solutions to a DNF formula
[12, 13, 7]. There is an efficiently computable unbiased
estimator that in expectation returns the probability
p of a DNF of n clauses (i.e., the local condition tu-
ples of a Boolean U-relation) such that computing the
average of a polynomial number of such Monte Carlo
steps (= calls to the Karp-Luby unbiased estimator) is
an (ε, δ)-approximation for the probability: If the av-
erage p̂ is taken over at least d3 ·n · log(2/δ)/ε2e Monte
Carlo steps, then Pr

[
|p− p̂| ≥ ε · p

]
≤ δ. The paper [7]

improves upon this by determining smaller numbers
(within a constant factor from optimal) of necessary
iterations to achieve an (ε, δ)-approximation.

Avoiding the difference operation. Difference R−S
is conceptually simple on c-tables. Without loss of
generality, assume that S does not contain tuples
〈~a, ψ1〉, . . . , 〈~a, ψn〉 that are duplicates if the local con-
ditions are disregarded. (Otherwise, we replace them
by 〈~a, ψ1 ∨ · · · ∨ ψn〉.) For each tuple 〈~a, φ〉 of R, if
〈~a, ψ〉 is in S then output 〈~a, φ∧¬ψ〉; otherwise, output
〈~a, φ〉. Testing whether a tuple is possible in the result
of a query involving difference is already NP-hard [2].
For U-relations, we in addition have to turn φ ∧ ¬ψ
into a DNF to represent the result as a U-relation.
This may lead to an exponentially large output.

In many practical applications, the difference oper-
ation can be avoided. Difference is only hard on un-
certain relations. On such relations, it can only lead to
displayable query results in queries that close the pos-
sible worlds semantics using conf, computing a single
certain relation. Probably the most important appli-
cation of the difference operation is for encoding uni-
versal constraints, for example in data cleaning. But
if the confidence operation is applied on top of a uni-



Language Fragment Complexity

On non-succinct representations:
RA + conf + possible + choice-of in PTIME (SQL) [14]

RA + possible + repair-key NP-&coNP-hard [5],
in P NP [16]

RA + possibleQ + repair-key PHIER-compl. [16]

On U-relations:
Pos.RA + repair-key + possible in AC0 [3]

RA + possible co-NP-hard [2]

Conjunctive queries + conf #P-hard [8]

Probabilistic WSA in P#P [14]

Pos.RA + repair-key + possible
+ approx.conf + egds in PTIME [14]

Figure 2: Complexity results for (probabilistic) world-
set algebra. RA denotes reblational algebra.

versal query, there is a trick that will often allow to
rewrite the query into an existential one (which can
be expressed in positive relational algebra plus conf,
without difference) [14].

Suppose we compute a conditional probability
Pr[φ | ψ] = Pr[φ ∧ ψ]/Pr[ψ]. Here φ is existential (ex-
pressible in positive relational algebra) and ψ is an
equality-generating dependency (i.e., a special univer-
sal query) [1]. The trick is to turn relational differ-
ence into the subtraction of probabilities, Pr[φ ∧ ψ] =
Pr[φ]−Pr[φ∧¬ψ] and Pr[ψ] = 1−Pr[¬ψ], where ¬ψ is
existential (with inequalities). Thus ¬ψ and φ∧¬ψ are
expressible in positive relational algebra. This works
for a considerable superset of the equality-generating
dependencies [14], which in turn subsume useful data
cleaning constraints, such as conditional functional de-
pendencies [6].

Complexity Overview . Figure 2 gives an overview
over the known complexity results for the various frag-
ments of probabilistic WSA. Two different represen-
tations are considered, non-succinct representations
that basically consist of enumerations of the possible
worlds [5] and succinct representations: U-relational
databases. In the non-succinct case, only the repair-
key operation, which may cause an exponential explo-
sion in the number of possible worlds, makes queries
hard. All other operations, including confidence com-
putation, are easy. In fact, we may add much of SQL
– for instance, aggregations – to the language and it
still can be processed efficiently, even by a reduction of
the query to an SQL query on a suitable non-succinct
relational representation.

When U-relations are used as representation sys-
tem, the succinctness causes both difference [2] and
confidence computation [8] independently to make
queries NP-hard. Full probabilistic world-set algebra
is essentially not harder than the language of [8], even
though it is substantially more expressive.

It is worth noting that repair-key by itself, despite
the blowup of possible worlds, does not make queries
hard. For the language consisting of positive relational

algebra, repair-key, and poss, we have shown by con-
struction that it has PTIME complexity: We have
given a positive relational algebra rewriting to queries
on the representations earlier in this section. Thus
queries are even in the highly parallelizable complex-
ity class AC0.

The final result in Figure 2 concerns the language
consisting of the positive relational algebra operations,
repair-key, (ε, δ)-approximation of confidence compu-
tation, and the generalized equality generating depen-
dencies of [14] for which we can rewrite difference of
uncertain relations to difference of confidence values.
The result is that queries of that language fragment
are in PTIME overall. In [14], a stronger result than
just the claim that each of the operations of such a
query is individually in PTIME is proven. It is shown
that, leaving aside a few pitfalls, global approxima-
tion guarantees can be achieved in polynomial time,
i.e., results of entire queries in this language can be
approximated arbitrarily closely in polynomial time.

This is a non-obvious result because the query lan-
guage is compositional and selections can be made
based on approximated confidence values. In a query
σP=0.5(approx.conf(R)), an approximated P value will
almost always be slightly off, even if the exact P value
is indeed 0.5, and the selection of tuples made based
on whether P is 0.5 is nearly completely arbitrary. In
[14, 9], it is shown that this is essentially an unsur-
mountable problem. All we can tell is that if P is very
different from 0.5, then the probability that the tuple
should be in the answer is very small. If atomic selec-
tion conditions on (approximated) probabilities usu-
ally admit ranges such as P < 0.5 or 0.4 < P < 0.6,
then query approximation will nevertheless be mean-
ingful: we are able to approximate query results unless
probability values are very close or equal to the con-
stants used as interval bounds. (These special points
are called singularities in [14].)

The results of [14] have been obtained for power-
ful conditions that may use arithmetics over several
approximated attributes, which is important if condi-
tional probabilities have to be checked in selection con-
ditions or if several probabilities have to be compared.
The algorithm that gives overall (ε, δ)-approximation
guarantees in polynomial time is not strikingly prac-
tical. Further progress on this has been made in [9],
but more work is needed.

7 Further Remarks

The continuous case. In general, in the continuous
case, we have to rely on Monte Carlo simulation for
evaluating queries (cf. e.g. [17, 11]). In fact, our sam-
pling semantics [[·]]mc immediately applies in the con-
tinuous case. Apart from that, we need other ways
of introducing uncertainty and defining probabilistic
databases which are more powerful than the repair-
key operation. Observe that the sampling semantics



of repair-key suggests that repair-key ~A@B(R) on a re-
lation of schema R( ~A,B, ~C) could be thought of as an
aggregate operation

select ~A, choose(~C; B) from R group by ~A;

that nondeterministically chooses one tuple from each
group with probability given by the weights B. (But
note that the result of the choose aggregate is a tuple,
rather than a single value.) This can be generalized
to uncertainty introduction aggregate functions that
return relations of dependent uncertain values (ran-
dom variables) that are unnested into the result re-
lation. These are essentially the variable generation
(VG) functions of MCDB [11]. Some functions that
do not need relation-typed input but only need a tuple
of parameters can be implemented to resemble simple
(rather than aggregate SQL functions), e.g. the func-
tion normal(·, ·)

select mu, sigma, normal(mu, sigma) from R;

which extends R by a column of independent normally
distributed values (random variables) whose parame-
ters are given by R.

Language extensions. The focus of this brief arti-
cle was on a query algebra in the spirit of relational
algebra, but with the extensions needed to manage
probabilistic databases. The probably most important
language feature not covered by probabilistic WSA are
aggregates. Aggregates have been studied by several
researchers. The most relevant fact is probably that
aggregates can be dealt with quite well by a Monte-
Carlo approach, even in the continuous setting [11].
But we are referring to the computation of expecta-
tions and moments of aggregates here, closing the pos-
sible worlds semantics. Compositionally defining ag-
gregates on representations of probabilistic databases
(as is done for relational algebra in e.g. [3]) leads to
exponential blowups in the size of any representations
that have been studied so far.

Apart from that, Trio [18] has extended its prob-
abilistic database query language by support for pro-
cessing data provenance. Updates have been studied
in [5, 15]: Given a compositional base language such as
probabilistic WSA, defining update operations is quite
clean and straightforward. APIs and programming
language access to probabilistic databases are studied
in [4].
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