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http://www-rocq.inria.fr/~segoufin

1 Introduction

Most theoretical work on static analysis for XML and
its query languages models XML documents by labeled
ordered unranked trees, where the labels are from a fi-
nite set. Attribute values are usually ignored. This was
quite successful for many applications like, to mention
only some of them, the study of the navigational frag-
ment of XPath known as Core-XPath [20], a complete
picture of the complexity of satisfiability and inclusion
of XPath queries without joins [4], XML-schema design
with no integrity constraints [28, 31], type-checking [40].
The reader is invited to have a look at the Database
Theory columns [32, 37, 40, 39] for an introduction on
this rich production.

The success of this model has basically two reasons,
which are not independent. First, it allows to apply tree
automata based techniques, providing a solid tool in
order to obtain nice complexity results. See for instance
the surveys [32, 39].

Second, extending the model by attribute values
(data values) quickly leads to languages with undecid-
able static analysis (see, for instance [2, 4, 19, 33]).

Nevertheless, there are many examples of decidable
scenarios involving attribute values. For instance inclu-
sion of fragments of XPath with joins and XML-schema
validation in the presence of integrity constraints. In
this paper we survey some of the known positive, neg-
ative results and open problems in this direction.

We start with a generic approach based on extending
the successful tree automata techniques to trees over
infinite alphabet. Even though this approach leads to
undecidability in general there exists at least one inter-
esting decidable fragment. We show how this fragment
can be used to obtain decidability results in the context
of XPath queries containment, XML-schema validation
in the presence of joins and integrity constraints.

We show next the limitation of this generic approach
and survey many other positive results obtained using
ad-hoc techniques.
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2 Data trees

There exist many papers proposing extensions of the
classical framework of languages over a finite alpha-
bet to languages over an infinite alphabet. Some
where mostly interested in the formal language point
of view [3, 22, 35, 23, 18, 38, 11, 24, 25, 36]. Some
where aiming at applications in program verification [7,
8, 10, 9, 15, 14]. Others had applications in XML and
database in mind [34, 5, 6]. Most of the papers cited
above deal with words over an infinite alphabet with the
notable exception of [25, 5] that dealt with trees. The
tree case is considerably harder than the word case.

For XML applications the tree model is of course the
most useful and this is the one we present here. We
use a presentation and a terminology introduced in [10]
and reused later in [5, 6]. It combines both a finite
alphabet and an infinite one, instead of having just an
infinite alphabet. This makes it easier to use for XML
applications.

2.1 The model

Let Σ be a finite alphabet and D be an infinite set. We
could choose any infinite set for D, as we will deal with
formalisms that can compare values only with respect
to equality.

In this paper we consider unranked, ordered, labeled
trees with data values. A data tree t over Σ has a set
of nodes, where every node v has a label v.l ∈ Σ and a
data value v.d ∈ D.

Data trees can be used to encode XML documents as
trees in a way which closely corresponds to the XPath
data model [1]. We then let the finite alphabet Σ to
be the set of all attribute and tag names occurring in
the document. The attributes of a node v are rep-
resented by attribute nodes (labeled by the attribute
name) which are children of v. I.e., the B-attribute
value of a node v is given by the value of its (unique)
child labeled with B. An example of this encoding is
presented in Figure 1.

Note that there are other ways to code XML docu-
ments in data trees as we will see in Section 3.2.



<schedule>

<course ID="5">

<lecturer faculty="12"> </lecturer>

<building nr="1"> </building>

</course>

</schedule>
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Figure 1: An XML document and its data tree encod-
ing. In the encoding, data values are in parentheses.
Data values for non-attribute nodes are not used.

2.2 Logics

A data tree can be seen as a model for a logical formula.
The universe of this structure is the set of nodes of
the tree, moreover, there are the following predicates
available:

• For each possible label a ∈ Σ, there is a unary
predicate a(x), which is true for all nodes that have
the label a.

• The binary predicate x ∼ y holds for two nodes if
they have the same data value.

• The binary predicate E→(x, y) holds for two nodes
if x and y have the same parent node and y is the
immediate successor of x in the order of children
of that node.

• The binary predicate E↓(x, y) holds if y is a child
of x.

• The binary predicates E⇒ and E⇓ are the transi-
tive closures of E→ and E↓, respectively.

We write FO(∼, <,+1) for first-order logic with all
these predicates and FO(∼,+1) the logic without E⇒
and E⇓. Given a formula φ, we write L(φ) for the set
of data trees that satisfy the formula φ. A formula
satisfied by some data tree is satisfiable.

We write FOk for formulas using at most k variables.
Note that the following examples use 2 variables only.

Example 1 • Our first example shows how key con-
straints can be expressed in FO2(∼, <,+1).

The formula ϕa says that all a’s are in different
classes:

ϕa = ∀x∀y(x �= y ∧ a(x) ∧ a(y)) −→ x �∼ y .

• In the same spirit we can define inclusion con-
straints.

The formula ψa,b says that each class with an a also
contains a b:

ψa,b = ∀x∃y(a(x) −→ (b(y) ∧ x ∼ y)
)
.

• Our last example presents a formula φ such that
the Σ-projection of L(φ), i.e. the set of trees of L(φ)
obtained by dropping the data values, is not a regular
tree language.

Let ϕ = ϕa ∧ ϕb ∧ ψa,b ∧ ψb,a. Any data tree satisfy-
ing ϕ has is such that the numbers of a and b-labeled
positions are equal.

This example can be easily extended to describe data
trees with an equal number of a’s, b’s and c’s, hence a
language with a non-Context-Free projection. This il-
lustrates the difficulty of handling data values: intrinsi-
cally we go beyond regular and context-free languages.

Unlike the classical setting, where the alphabet is fi-
nite, satisfiability for FO(∼, <,+1) is undecidable. Ac-
tually this is already the case only in the restricted frag-
ment using only three variables. Note that with three
variables one can define E→ from E⇒ and E↓ from E⇓,
therefore the following result also implies the undecid-
ability of the three-variable fragment of FO(∼, <,+1)
that uses only <.

Theorem 1 [6] Satisfiability of FO3(∼,+1), and
therefore of FO3(∼, <,+1), is undecidable over data
trees.

It turns out that restricting FO(∼,+1) to its two-
variables fragment yields decidability. We will see in
the next section that this is sufficient to obtain many
useful results in the context of XML.

Theorem 2 [5] Satisfiability of FO2(∼,+1) is decid-
able over data trees.

The complexity however is quite high. The algo-
rithm presented in [5] is in 3nexptime. This is possibly
not optimal. The current best known lower-bound is
nexptime-hard.

What about FO2(∼, <,+1)? The status of its de-
cidability is still an open question. We only know that
showing that satisfiability of FO2(∼, <,+1) is decidable
is likely to be a difficult problem as it would imply de-
ciding multi-counter automata on trees and the linear
logic MELL, which are known as open issues in their
respective fields (see [13] and the references therein).

Open problem 1 Is satisfiability of FO2(∼, <,+1)
decidable over data trees?



Let EMSO2(∼,+1) be the extension of FO2(∼,+1)
consisting of all formulas starting with a sequence of ex-
istential quantifiers over unary predicates (i.e., set vari-
ables) followed by a FO2(∼,+1) formula. That is for-
mulas of the form ∃R1 · · ·Rnϕ where ϕ ∈ FO2(∼,+1).

The following is an obvious consequence of Theo-
rem 2.

Corollary 1 Satisfiability of EMSO2(∼,+1) is decid-
able over data trees.

2.3 Automata

By trees we denote the usual notion of (unranked or-
dered) trees labeled with just a finite alphabet. A tree
can therefore be seen as a projection of a data tree by
ignoring the data value of each node. Logics over trees
are defined as logics of data trees without the predicate
∼.

When the alphabet is finite there exists several no-
tions of tree automata for unranked ordered trees. We
use the presentation of [12, 29] because it is easier to
see the connection with logics. A nondeterministic au-
tomaton over unranked ordered trees has a finite set Q
of states, subsets I and J of Q, along with relations

δh, δv ⊆ Q× Σ ×Q ,

which are called the horizontal and vertical transition
relations respectively. A run of such an automaton over
a Σ-tree t is a labeling ρ : V → Q of the tree’s nodes
with states such that for every node v with label a we
have:

• If v is a leaf then ρ(v) ∈ I.

• If v has no horizontal predecessor then ρ(v) ∈ J .

• If v has a horizontal successor w, then the triple
(ρ(v), a, ρ(w)) belongs to the horizontal transition
relation δh.

• If v has no horizontal successor and its parent is w,
then the triple (ρ(v), a, ρ(w)) belongs to the verti-
cal transition relation δv.

A run is accepting when the state and label of the root
belong to the designated accepting set F ⊆ Q × Σ. A
tree is accepted if it admits an accepting run. A set of
unlabeled trees is called regular if it is recognized by an
automaton.

The reader may be more accustomed to a different
definition of automata on unranked ordered trees (see
for instance [32]). In the other definition, there is a
finite set of rules of the form

a, L |= q a ∈ Σ, q ∈ Q ,L ⊆ Q∗ regular .

The idea is that a tree with a in the root and subtrees
t1, · · · , tn can be assigned a state q if the subtrees can
be assigned states q1, · · · , qn such that the word q1 · · · qn
belongs to L. It is not difficult to see that this type of
automaton is equivalent the one presented above.

With the definition of tree automata as presented
above, the classical coding of automata into MSO im-
mediately yields the following result.

Fact 1 For every regular tree language there is an
equivalent formula in EMSO2(+1) and vice-versa.

3 Application to XML reasoning

3.1 Integrity Constraints

XML documents usually come with a specification, of-
ten stated in XML Schema, which tells what to expect
in the document. It contains a structural part which
includes a mechanism for assigning types to nodes of
the tree and possibly a set of integrity constraints such
as keys and inclusion constraints. It is natural to ask
whether a specification is consistent and whether a set
of integrity constraints is minimal or not (implication
problem).

Basically, the two standard XML schema languages,
DTD and XML Schema, are able to define only sets
of documents that are regular tree languages (but not
all regular tree languages!). In the following, we thus
assume that the allowed set of documents is described
by a tree automaton A. The type of a node v is the
state of A on v in an accepting run. The specification
of XML Schema are such that the type of each node is
uniquely determined. This implies that the automaton
A has a unique accepting run, thus it is unambiguous.

A key constraint is an expression of the form τ [X ] −→
τ where τ is a type of a node and X a set of attributes
of that node. It says that the X-attributes of a node
of type τ uniquely determine the node. Stated in other
terms, for each combination of attribute values there is
at most one node of type τ having these values.

An inclusion constraint is an expression of the form
τ [X ] ⊆ τ ′[Y ] where τ and τ ′ are two node types and
X and Y are sequences of attributes of the same cardi-
nality. It says that for each node u of type τ there is a
node v of type τ ′ such that the X-attributes of u have
the same (corresponding) values as the Y -attributes of
v. Key and inclusion constraints are said to be unary
if |X | = |Y | = 1.

Note, that by combining key and inclusion con-
straints also foreign key constraints can be covered.

The consistency problem for unary keys and unary
inclusion constraints relative to a regular tree language
is as follows. Given an (unambiguous) tree automaton



A and a set K of unary key and inclusion constraints1,
it asks whether there is a tree t which is accepted by
A and fulfills the constraints. The implication problem
asks, given A and sets K1,K2 of constraints, whether
each tree accepted by A which fulfills K1 also fulfills
K2.

The general problem turns out to be undecidable.

Theorem 3 [17] The consistency and implication
problems for keys and inclusion constraints relative to
a regular tree language are undecidable.

However several interesting decidable scenarios have
been identified. In this section, we will see that it fol-
lows quite directly from Theorem 1 that the consis-
tency and the implication problem for unary keys and
unary inclusion constraints are decidable, even relative
to structural constraints given by a regular tree lan-
guage (a similar result was first shown in [17]). Other
scenarios and approaches will be discussed in the next
section.

One of the advantages of a logic-based approach to
decidability is the compositionality of logic. This holds
in particular for FO2(∼,+1), which is closed under all
Boolean operations and, as far as satisfiability is con-
cerned, under existential set quantification. This com-
positionality is well illustrated in the proof of the fol-
lowing theorems.

Theorem 4 [5] The consistency and implication prob-
lems for unary key and unary inclusion constraints rel-
ative to a regular tree language are decidable.

proof : (sketch) We only consider the more general, im-
plication problem. We use the coding of XML docu-
ments as data trees presented in Section 2.1. Consider
now a XML Schema with key and inclusion constraints.
That is we are given a tree automaton A and two sets
K and K ′ of, respectively, unary key and unary inclu-
sion constraints, where the states of A induce the types
in the constraints. We want to know whether all trees
accepted by A and satisfying the constraints in K, also
satisfy the constraints in K ′.

By Fact 1, from A we can derive an EMSO2(+1)
formula equivalent to A. This formula is of the form
∃R1, . . . , Rn ϕA. As in Example 1 we can derive for
each constraint U in K ∪K ′ an equivalent formula ϕU

in FO2(∼,+1): this is done by using the existentially
quantified variables of the formula of A whenever the
corresponding type is used.

When this is done, the implication problem now re-
duces to satisfiability of the formula of EMSO2(∼,+1):

∃R1, . . . , Rn ϕA ∧
∧

U∈K

ϕU ∧
∧

U∈K′
¬ϕU .

1Recall that the types used in these constraints are states of
A.

�

Note that even though the reduction above is simple,
it does not provide the precise complexity of the impli-
cation problem, we only have the upper-bound given by
the analysis of the proof of Theorem 2: 3nexptime.

3.2 XPath Containment

We study two problems: satisfiability and containment.
Let L be a query language, for instance XPath, and C
be a class of XML-schema, for instance DTD or DTD
with integrity constraints. The containment problem
of L in the presence of C, asks whether two queries
q and q′ of L are such that for any XML document
t in C, q(t) ⊆ q′(t). The satisfiability problem for L
in the presence of C asks whether for a query q ∈ L,
there exists a tree t ∈ T such that q(t) is non empty.
Containment reduces to satisfiability when L is closed
under negation, which is going to be the case in this
section.

Core-XPath, the fragment of XPath capturing its
navigational behavior by removing all numerical op-
erations was introduced by Gottlob et al. [20], is by
now well understood. In particular, it corresponds to
FO2(<,+1) on unranked ordered trees [30]. Satisfiabil-
ity and inclusion of Core-XPath are decidable even in
the presence of DTDs and the complexity of many of its
fragments has been studied in the literature. We refer
to [37, 4, 19] and the references therein for a compre-
hensive survey.

In the presence of data values a simple extension of
Core-XPath is to allow equalities of the form p/@A =
q/@B inside qualifiers, meaning that the value of the A
attribute of some node accessible by a path matching p
equals the B attribute value of some node accessible by
a path matching q. We denote this fragment by Core-
Data-XPath. It turns out that this fragment is already
too expressive to obtain decidability.

Theorem 5 [19] Satisfiability (and containment) of
Core-Data-XPath is undecidable over XML documents.

As satisfiability (and therefore containment) of Core-
Data-XPath is undecidable, it is natural to consider
fragments of XPath.

It is easy to verify that the expressive power of
FO2(∼, <,+1) is strictly contained in the expres-
sive power of Core-Data-XPath. The translation of
FO2(∼, <,+1) into XPath is done as in the translation
of FO2(<,+1) into unary-TL over words [16]. This in-
clusion is strict because FO2(∼, <,+1) cannot express
the test Self/@A = Self//b//c/@A.

As FO2(∼, <,+1) is not yet known to be decidable we
define in this section a fragment of XPath, which we call
XPath-local , which can be captured by FO2(∼,+1).



More precisely, satisfiability and containment test for
unary queries expressed in these fragments, possibly in
the presence of integrity constraints and schema, can
be reduced to satisfiability of FO2(∼,+1).

The language XPath-local, when compared with
Core-Data-XPath, has two restrictions: (1) naviga-
tion is not allowed along the “transitive” axes as
Descendant and FollowingSibling and (2) in an
equality on attribute values either one of the location
paths has to be absolute (i.e., starting from the root),
or both (relative) location paths are strongly limited.

In XPath-local only the following axes are allowed:

Axis := Child | Parent | NextSibling |
PreviousSibling | Self | ElseWhere

Every axis corresponds to a binary relation on tree
nodes. For instance, the Child axis is true for node
pairs (v, w) where w is a vertical successor of w. The
other axes are defined analogously. The new ElseWhere
axis corresponds to the relation of pairs (v, w) of nodes,
where v �= w. It is added in order to allow at least some
kind of global navigation.

The rest of the syntax of XPath-local is given by the
following grammar.

LocPath := RelLocPath | AbsLocPath
AbsLocPath := ′/′ RelLocPath
RelLocPath := Step | RelLocPath ′/′ Step

Step := Axis :: NameTest Predicate∗

NameTest := Name | ′ ∗′
Predicate := ′[′PredExpr′]′

PredExpr := LocPath |
LocPath ′/′ Attr EqOp AbsLocPath ′/′ Attr |
Self :: NameTest ′/′ Attr EqOp Step ′/′ Attr |
PredExpr and PredExpr |
PredExpr or PredExpr | not PredExpr

Attr := ′@′Name
EqOp := ′ =′ | ′! =′

An expression derived from LocPath defines a binary
relation on tree nodes (a set of paths), while an expres-
sion derived from PredExpr defines a unary relation (a
set of tree nodes). These are defined using mutual re-
cursion.

To obtain decidability, we restrict (in-)equalities of
the form Self :: NameTest ′/′ Attr EqOp Step ′/′ Attr,
which we call relative equalities, a bit further. We say
that an attribute name B is associated to a label a in an
XPath expression e if the pair (a,@B) or (∗, B) occurs
as (NameTest, Attr) pair in a relative (in-)equality of e.

A set of expressions is safe if the set of induced asso-
ciations is a function from labels to attribute names. In
particular if the wildcard ∗ is present, there is a unique
attribute name occurring in all relative sub-expressions.

Example 2 The following (safe) expression selects a
node v if all of its children with label b have the same
data value as v:

Child :: b/@B ! = Self :: ∗/@B.

The following expression is also safe:

Child :: b/@B1 = Self :: a/@B2.

Theorem 6 [5] Satisfiability and containment for
XPath-local safe expressions is decidable. This holds
even relative to a schema consisting of a regular tree
language and unary key and unary inclusion con-
straints.

proof : (sketch) The proof is, of course, by trans-
lating the expressions into FO2(∼,+1) formulas. We
encode XML documents as in Section 2.1 with a small
extension that we will introduce later. As long as ex-
pressions do not compare attribute values, there is no
need to restrict the location paths: We can just use the
standard inclusion of Core-XPath into FO2(<,+1) of
[30].

This easily extends to equality expressions with at
most one relative location path by, intuitively, first sim-
ulating the relative path, then jumping to a node with
the same data value and checking that this node satis-
fies its absolute path constraint by simulating the path
backwards to the root. Note that it seems crucial here
that the second path is absolute and thus does not start
at the current node, as the two variables are needed for
the navigation and thus the current node can not be
remembered. As an example the expression

Child :: a/Child ::b/@B1 =
/Child :: c/NextSibling :: d/@B2.

is translated into the following equivalent formula ϕ(x):

∃yE↓(x, y) ∧ a(y)∧
∃xE↓(y, x) ∧ b(x)∧
∃yE↓(x, y) ∧B1(y)∧
∃x x ∼ y ∧B2(x)∧
∃yE↓(y, x) ∧ d(y)∧
∃xE→(x, y) ∧ c(x)∧
∃yE↓(y, x) ∧ ¬∃xE↓(x, y).

It only remains to explain how we can deal with rel-
ative (in-)equalities. To this end, we exploit the fact



that the encoding of XML documents used so far only
needs data values in attribute nodes. Thus, we can use
the data values of element nodes for our purpose. Note,
that the safety restriction on relative (in-)equalities en-
sures that for each element only one attribute is used in
relative (in-)equalities. Therefore, we use data trees in
which this attribute value (if any) is stored. Note, that
an additional FO2(∼,+1) formula can check that the
data values in element nodes are consistent with those
in the attribute nodes.

As an example, if
(Child :: b/@B1 = Self :: a/@B2) is a subexpression
of our XPath expression at hand, then we consider data
trees in which the data value of a-nodes is interpreted
as the B2-attribute and the data value of b-nodes as
the B1-attribute. Thus, the expression is equivalent to
the formula a(x) ∧ ∃yE↓(x, y) ∧ b(y) ∧ x ∼ y.

It is now straightforward to combine the techniques
described so far with those of Section 3.1 to obtain the
second statement of the theorem. �

It should be noted that satisfiability of a similar
fragment of XPath with all axes besides Following
and Preceding can be reduced to satisfiability of
FO2(∼, <,+1). Unfortunately, we do not know if satis-
fiability of FO2(∼, <,+1) is decidable, see Open prob-
lem 1.

3.3 Discussion of the approach

The first obvious limitation of this approach is the lack
of expressive power. The main obstacle being the in-
clusion of the descendant axis, see Open problem 1. As
we already mentioned, this issue is likely to be difficult
to solve.

There might be a way around this. Indeed it is natu-
ral for a logician to consider two-variable fragments in
order to obtain decidability (see the survey [21]). But
as we have illustrated above, even though FO2(<,+1)
correspond to Core-XPath, FO2(∼, <,+1) is not really
suitable for Core-Data-XPath anymore. It seems that
XPath and FO2(∼, <,+1) are two different conceptual
objects. Temporal logics seems a lot more relevant for
dealing with XPath. Finding decidable temporal logics
over data trees is therefore a natural direction for future
research.

A natural extension of LTL (with only the future
temporal operator Next and Until) manipulating
data values by the mean of one register was studied
in [15, 14]. This logic was shown to be decidable but
with a non-elementary lower bound complexity. This
extension of LTL with one register is incomparable in
term of expressive power with FO2(∼, <,+1).

This direction look promising but so far there does
not exist any extension of this work to data trees, where

CTL and CTL∗ are obvious starting points.

The second natural limitation of this approach is the
high complexity. This is a classical feature for generic
approaches: for each particular problem, the generic ap-
proach gives a higher complexity bound when compared
with ad-hoc methods. Note that we do not know the
exact complexity of decidability of FO2(∼,+1). The
current proof of Theorem 2 is 3nexptime. It is likely
that this could be improved, possibly to match the cur-
rent best lower-bound: nexptime-hard. If this were
the case the generic approach would give a complexity
comparable to the current known ad-hoc ones.

4 More about XPath and

Schema validation

4.1 XPath containment in the presence
of data values

It is difficult to compare the result presented in Theo-
rem 6 with those existing in the literature. The main
reason is that this result holds even in the presence of
schema containing key and foreign-key constraints while
we are aware only of studies of XPath containment in
the presence of DTDs without any constraints. There-
fore the rest of this section assumes only DTDs without
constraint.

The results presented here can be found in [4, 19].
We only restrict our attention to fragments of XPath
containing equality tests between values of attributes
pointed by XPath expressions as explained above.

Most of the known results concern satisfiability of
XPath fragments only and not containment. Recall
that satisfiability can be reduced to containment but,
unless the language is closed under negation, the oppo-
site reduction doesn’t hold in general.

As we already mentioned in Theorem 5, when all the
navigational axes are present, satisfiability is undecid-
able even when no DTDs are present. Actually a much
sharper result can be shown. Let XPath(↓, ↓∗, ↑, ↑∗,=)
be the restriction of Core-Data-XPath that uses only
the vertical navigational axes: Child, Descendant,
Parent and Ancestor (no horizontal navigation). This
fragment is closed under negation, but satisfiability in
the presence of DTDs is already undecidable.

Theorem 7 [4] In the presence of DTDs, satisfiability
(and containment) for XPath(↓, ↓∗, ↑, ↑∗,=) is undecid-
able.

When no DTDs are present the satisfiability of
XPath(↓, ↓∗, ↑, ↑∗,=) is still an open issue.



Let XPath(↓,=) be the restriction of Core-Data-
XPath that uses only one axis predicate: Child. This
fragment is closed under negation.

Theorem 8 [4] In the presence of DTDs (with no con-
straints) containment for XPath(↓,=) is decidable in
nexptime.

Note that XPath(↓,=) is incomparable in expressive
power with the fragment introduced in Section 3.2: It
does not allow horizontal navigation nor upward navi-
gation; moreover FO2(∼, <,+1) is not powerful enough
to capture this fragment, as already mentioned in Sec-
tion 3.2.

Let us denote by posXPath(=) the restriction of
Core-Data-XPath where negation is not allowed (all
navigational axis are permitted). This fragment is not
closed under negation.

Theorem 9 In the presence of DTDs (with no con-
straints) satisfiability for posXPath(=) is np-complete.

Note that this result could also be obtained (with a
much higher complexity) by reduction to satisfiability
of EMSO2(∼,+1). Indeed as posXPath(=) does not
contain negation it is contained in the existential frag-
ment of FO(∼, <,+1) which in turn can easily be coded
in EMSO2(∼,+1).

The status of the containment problem for
posXPath(=) is still an open issue.

4.2 XML-schema validation

In this section we revisit the main results presented in
the survey [17] and compare them with Theorem 4.

As in the XPath case above, there is a mismatch be-
tween the consistency and the implication problems.
Consistency was studied in great details while less is
known about the implication problem. The generic
technique presented in Section 3 doesn’t suffer from this
problem as FO2(∼,+1) is closed under complement.

The second difference is that all the results of [17] are
stated for DTDs the typing system of which captures
only a restricted fragment of regular tree language. This
could make a difference but the authors of [17] believe
that they can extends all their results to regular tree
languages [27].

The advantage of the generic approach is that it read-
ily extends to any kind of integrity constraints as long
as it is definable in FO2(∼,+1), while the techniques
below are likely to be difficult to extend.

One advantage of the specific approach presented
in [17] is that it gives a better complexity. For in-
stance the 3nexptime complexity result obtained in
Theorem 4 is not optimal for consistency of unary keys
and unary inclusions constraints as shown below.

Theorem 10 [17] The consistency problem for unary
keys and unary inclusion constraints relative to a DTD
is np-complete.

The implication problem for unary keys and unary in-
clusion constraints relative to a DTD is conp-complete.

The techniques developed in [17] actually show a
stronger result. The np-completeness result of Theo-
rem 10 can be generalized to key constraints of arbi-
trary arity (but unary inclusion constraints) assuming
they are primary: no two key constraints for the same
type.

Another interesting result obtained in [17] concerns
the case when only integrity key constraints are present,
but allowing an arbitrary arity for those. Note that
FO2(∼,+1) cannot express binary key constraints.

Theorem 11 [17] The consistency and implication
problems for arbitrary key constraints relative to a DTD
is decidable in linear time.

Remark: It would be tempting to extend
the decidability result of Theorem 2 to the logic
FO2(∼1,∼2,∼3, ...,+1), extending FO2(∼,+1) with
arbitrary many equivalence relations. This logic
would then easily express arbitrary key constraints.
But it would also express arbitrary inclusion con-
straints and therefore by Theorem 3 the logic
FO2(∼1,∼2,∼3, ...,+1) is undecidable. It turns out
that the situation is even more dramatic than that be-
cause the logic FO2(∼1,∼2,∼3), three equivalence re-
lations, no navigation capability, is already undecid-
able [26].

5 Conclusion

Static analysis of XML processing in the presence of
data values is an important and challenging problem.
We have presented here only a subset of the existing
work in this area.

The logical approach, based on the decidability of
FO2(∼,+1), was a means to obtain a generic ap-
proach on the existing decidable scenarios. We have al-
ready mentioned the caveat and the problems raised by
this approach: High complexity and limited expressive
power. Finding the precise complexity of FO2(∼,+1) is
left for future work. The decidability of FO2(∼, <,+1)
is a challenging open problem.

Another possibility for a generic approach would be
to consider temporal logic on trees.

In this survey we considered only the simple case
where data values can only be tested for equality. It
turns out that if we would allow a little bit of arith-
metic, checking whether one data value is smaller than



another one, then the two-variable first-order logic be-
comes undecidable [6].
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[15] S. Demri, R. Lazić, and D. Nowak. On the freeze quan-
tifier in Constraint LTL. In TIMES, 2005.

[16] K. Etessami, M. Vardi, and T. Wilke. First-Order Logic
with Two Variables and Unary Temporal Logic. Inf.
Comput., 179(2):279–295, 2002.

[17] W. Fan, and L. Libkin. On XML integrity constraints
in the presence of DTDs. J. ACM, 49(3): 368–406,
2002.

[18] N. Francez and M. Kaminski. An algebraic character-
ization of deterministic regular languages over infinite
alphabets. TCS, 306(1-3):155–175, 2003.

[19] F. Geerts and W. Fan. Satisfiability of XPath Queries
with Sibling Axes. In DBPL 2005, pages 122–137.

[20] G. Gottlob, C. Koch, and R. Pichler. Efficient Algo-
rithms for Processing XPath Queries. In VLDB 2002.
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