
Navigational XPath: calculus and algebra

Balder ten Cate
ISLA – Informatics Institute
Universiteit van Amsterdam
balder.tencate@uva.nl

Maarten Marx
ISLA – Informatics Institute
Universiteit van Amsterdam
marx@science.uva.nl

ABSTRACT
We survey expressivity results for navigational frag-
ments of XPath 1.0 and 2.0, as well as Regular XPath≈.
We also investigate algebras for these fragments.

1. INTRODUCTION
XPath is a common fragment of the XML query-

ing and processing languages XQuery and XSLT, used
for navigation through XML documents. In this pa-
per we address two foundational issues concerning this
language: (1) its expressivity in comparison to the first-
order logic, and (2) algebras for XPath.

We focus on the navigational part of XPath: the part
that is concerned purely with document navigation, not
considering operations involving strings, numbers, or
any other types of atomic content. Several navigational
fragments of XPath 1.0 and 2.0 have been proposed
[10, 26]. All in all, we consider four navigational XPath
dialects: Core XPath 1.0, variable-free Core XPath 2.0,
Core XPath 2.0 with variables, and Regular XPath≈.

1.1 XML tree navigation using path expres-
sions

Path expressions describe ways of navigating through
XML documents, i.e., traveling from one node to an-
other in the tree. This means we can model the meaning
of a path expressions by a binary relation on the nodes
of the tree. For example, the XPath 1.0 path expression
descendant::p (abbreviated as .//p) denotes in any
XML tree T , the set of all pairs (m,n) with n a descen-
dant node of m that has tag name p. Of course, binary
relations can be defined using many other formalisms,
e.g., by means of a first-order formula in two free vari-
ables. In the case of this example, the binary relation
is equivalently expressed by the conjunctive query

φ(x, y) = descendant(x, y) ∧ p(y) .

* Database Principles Column. Column editor: Leonid
Libkin, School of Informatics, University of Edinburgh, Ed-
inburgh, EH8 9LE, UK. E-mail: libkin@inf.ed.ac.uk.

Conversely, the conjunctive query

φ(x, y) = ∃z1 . . . zn

n∧
i=1

descendant(x, zi) ∧ pi(zi)
∧ descendant(zi, y) ∧ q(y)

(1)

defines a binary relation that can be defined in
XPath 1.0 by the union of the path expressions

descendant :: pρ(1)/ · · · /descendant :: pρ(n)/
descendant :: q

for all, exponentially many, permutations ρ of 1 . . . n.
Next, consider the following first-order binary relation

(familiar from temporal logic, and raising children):

φ(x, y) = descendant(x, y) ∧ q(y) ∧
∀z(descendant(x, z) ∧ descendant(z, y)→ p(z))

(2)

A pair (m,n) stands in this relation if n is a descendant
of m with tag name q and all nodes in-between m and
n in the tree have tag name p. Can we express this in
XPath 1.0?1

Questions such as these are hard to answer for lan-
guages as rich as full XPath 1.0 (whose technical spec-
ification is about 30 pages long). In order to be able to
give a mathematically precise answer, in [19] the same
question was studied in the context of Core XPath 1.0
[10]. This is a compact, well defined fragment of XPath
1.0 with a clean logical semantics. It captures the nav-
igational core of XPath 1.0, abstracting away from op-
erations involving strings, numbers, or any other types
of atomic content. It was shown in [19] that (2) cannot
be defined in Core XPath.

1.2 Ways of extending Core XPath 1.0
Various extensions of XPath 1.0 have been proposed,

including the official W3C standard of XPath 2.0. With
more expressive power, new binary relations can be de-
fined and sometimes older ones can be defined more
succinctly. We give examples of both, starting with the
latter.

XPath 2.0 has an intersect operator: Path1
intersect Path2 denotes the intersection of the binary
1Note that .//q[not(ancestor :: ∗[not(self :: p)])] does not
define the intended relation: it is only correct for pairs (m, n)
where m is the root.

relations defined by Path1 and Path2. Using intersec-
tion, (1) can be expressed without exponential blow-up:

descendant :: p1/descendant :: q intersect
descendant :: p2/descendant :: q intersect

. . .
descendant :: pn/descendant :: q

Similarly, the previously undefinable “until” relation (2)
can be defined in various ways using additional opera-
tors that have been proposed. A first possibility is to
use the Kleene star, inspired by [1]:

(child :: p)∗/child :: q.

Here (Path)∗ denotes the reflexive transitive closure of
the binary relation denoted by Path. The Kleene star
does not belong to XPath 1.0 or 2.0, but extensions of
XPath with this operator have been proposed and im-
plemented [24, 7, 6]. A second solution is to use the path
complementation operator except that was introduced
in XPath 2.0:

descendant :: q except
descendant :: ∗[not(self :: p)]/descendant :: q

Finally, a third option is to use quantified variables,
which is possible in XPath 2.0 using the for-construct.
Using for, we can write (2) as follows:

for $s in . return
descendant :: q

[
not(ancestor :: ∗[not(self :: p)]/

ancestor :: ∗[. is $s])
]

Notice how the variable $s stores the initial node.

1.3 Two main questions of this paper
In this paper, we consider Core XPath 1.0 and three

extensions of it, roughly corresponding to XPath 2.0,
the variable free fragment of XPath 2.0, and an exten-
sion of XPath with transitive closure and path equali-
ties. For each of these, we study two main questions:
what is the expressive power and what are suitable al-
gebras.

Expressivity and Codd completeness.
When a new query language is introduced, it is al-

ways useful to compare its expressive power to existing
languages. E.F. Codd did this for SQL and relational
algebra by showing that they are equally expressive as
first-order logic [4]. With the navigational languages
for XML we can do the same: given a dialect of XPath,
we can ask how it compares to (fragments or extensions
of) first-order logic. We explore this in Section 3.

Algebras for navigational XPath.
An important step towards efficient query evaluation

is to identify a suitable algebra in which query plans
can be formulated. Which algebra are suitable for our
XPath dialects? In answering this question, we guide
ourselves by the following criteria:

1. expressions in the XPath dialect should be effi-
ciently translatable to algebraic expressions,

Table 1: Syntax of Core XPath 1.0.

Axis := self | child | parent | right | left
| descendant
| ancestor
| following
| preceding
| following sibling
| preceding sibling

NameTest := QName | ∗
Step := Axis::NameTest .

PathExpr := Step
| PathExpr/PathExpr
| PathExpr union PathExpr
| PathExpr[NodeExpr]

NodeExpr := PathExpr
| not NodeExpr
| NodeExpr and NodeExpr
| NodeExpr or NodeExpr.

2. the algebra should not be much more expressive
than the XPath dialect requires,

3. the algebra should not have much harder query
evaluation or equivalence problem than the XPath
dialect itself, and

4. there should be a nice set of algebraic equivalence
rules for the algebra.

In Section 4, we will consider several candidates, such as
Codd’s relational algebra (CRA) and Tarski’s algebra of
binary relations (TRA). For each dialect of navigational
XPath, a different algebra turns out to fit best.

2. PRELIMINARIES: FOUR DIALECTS
OF NAVIGATIONAL XPATH

In this section, we review the syntax and semantics of
Core XPath 1.0 —the navigational fragment of XPath
1.0 introduced in [10]— as well as three extensions.

Core XPath 1.0.
Core XPath 1.0 was introduced in [10] to capture the

navigational core of XPath 1.0. The definition we will
give here is from [18], which differs from the one of [10]
as (1) it include the “one-step sibling axes” left, right
(which are definable in XPath 1.0 using numerical pred-
icates), (2) filters can be applied to any expression, and
(3) we include the union operator on path expressions.

Table 1 gives the syntax of Core XPath 1.0. Here
QName stands for any XML tag name. The primary
type of expression is a path expression (PathExpr). Ta-
ble 2 gives the semantics. Expressions are evaluated
on finite sibling-ordered unranked trees whose nodes
are labeled by XML tag names. Given such a tree,

Table 2: Semantics of Core XPath 1.0.

[[Axis :: N]]PExpr = {(x, y) | xAxisy holds in the tree,
and y has tag N}

[[Axis :: ∗]]PExpr = {(x, y) | xAxisy holds in the tree}
[[R/S]]PExpr = [[R]]PExpr ◦ [[S]]PExpr

[[R union S]]PExpr = [[R]]PExpr ∪ [[S]]PExpr

[[R[T]]]PExpr = {(x, y) | (x, y) ∈ [[R]]PExpr

and y ∈ [[T]]NExpr}

[[PathExpr]]NExpr = {x | ∃y.(x, y) ∈ [[PathExpr]]PExpr}
[[not T]]NExpr = {x | x 6∈ [[T]]NExpr}
[[T1 and T2]]NExpr = [[T1]]NExpr ∩ [[T2]]NExpr

[[T1 or T2]]NExpr = [[T1]]NExpr ∪ [[T2]]NExpr

the meaning [[R]]PExpr of a PathExpr R is always a bi-
nary relation. This is just another, equivalent, way of
specifying a function from nodes to sets of nodes (the
answer-set semantics). The meaning [[T]]NExpr of a node
expression T is always a set of nodes.

We will study the complexity of two tasks: query eval-
uation and query containment. For query evaluation, we
will consider the combined complexity of the following
problem: given a path expression, an XML-tree (suit-
ably encoded) and a pair of nodes, determine whether
the pair belongs to the relation denoted by the path
expression. In the case of the query containment prob-
lem, the task is to determine, given two path expressions
R,S, whether in every tree model, [[R]]PExpr ⊆ [[S]]PExpr.
For Core XPath 1.0, the query evaluation problem for
Core XPath 1.0 is in PTime (in fact, it can be per-
formed in linear time) [10], and the query containment
problem is ExpTime-complete [20, 17].

Core XPath 2.0 without variables.
In [26], Core XPath 2.0 was introduced as a naviga-

tional core of XPath 2.0 with a clean, logical seman-
tics. One important simplifying assumption underlies
Core XPath 2.0, namely that path expressions still de-
note binary relations between nodes, as they did in Core
XPath 1.0. This is not the case in the full XPath 2.0,
where they denote functions from nodes to sequences of
nodes (not necessarily in document order and possibly
containing duplicates). We follow the definition of Core
XPath 2.0 from [26].

First, we consider the variable-free fragment of Core
XPath 2.0. This is a very simple extension of Core
XPath 1.0: it differs from Core XPath 1.0 only in that
one can take intersections and complements of path ex-
pressions:

[[R intersect S]]PExpr = [[R]]PExpr ∩ [[S]]PExpr

[[R except S]]PExpr = [[R]]PExpr \ [[S]]PExpr.

These operators do not only increase the expressive
power of the language (as we will see in the next sec-
tion), they also greatly increase its complexity. The
query evaluation problem for variable free Core XPath

2.0 is still in PTime (in fact, it can be performed in
quadratic time), but the query containment problem is
non-elementary (2-ExpTime-complete for expressions
without the complementation operator) [25].

Core XPath 2.0.
Besides the addition of the intersect and except

operators, an important difference between XPath 1.0
and 2.0 is the use of quantified variables by means of the
for construct. Formally, let a NodeRef expression be an
expression of the form $i or . (where $i is a variable
ranging over nodes in the tree). Then the syntax of full
Core XPath 2.0 is obtained by extending the syntax of
Core XPath 1.0 with the intersect and except op-
erators from above, with path expressions of the form
$i and for $i inPathExpr returnPathExpr, and with
node expressions of the form NodeRef is NodeRef. The
latter tests whether the two expressions refer to the
same node.

Since the expressions of Core XPath 2.0 can con-
tain variables, the semantic interpretation is relative
to an assignment, i.e., a function mapping variables to
nodes. For g an assignment, $i a variable, and x a node,
g[$i 7→ x] denotes the assignment g′ which is identical
to g except that g′(i) = x. Also, for any assignment g,
node x, and NodeRef expression a, let [[a]]g,x be g(a) in
case a is a variable, or x in case a is ‘.’. The semantics
of the new constructs is as follows:

[[$i]]gPExpr = {(x, y) | g(i) = y}

[[for $i inR returnS]]gPExpr =
{(x, y) | ∃z((x, z) ∈ [[R]]gPExpr and (x, y) ∈ [[S]]g[$i 7→z]

PExpr)}

[[a is b]]NExpr = {x | [[a]]g,x = [[b]]g,x}.

The query evaluation problem for Core XPath 2.0 is
PSpace-complete, and the query containment problem
is non-elementary [25].

Regular XPath≈.
Regular XPath≈ extends Core XPath 1.0 with two

operators that are not part of XPath 1.0 or 2.0, and
that, as we will see, make it more expressive. The most
important of these is the Kleene star, which allows us
to take the reflexive transitive closure of arbitrary path
expressions. The other is path equalities (not to be con-
fused with data value equalities). Formally, the seman-
tics of these operators is as follows [24]:

[[R∗]]PExpr = reflexive transitive closure of [[R]]PExpr

[[R ≈ S]]NExpr = {x | ∃y.(x, y) ∈ [[R]]PExpr ∩ [[S]]PExpr}

Regular XPath≈ can be viewed as a mix between Core
XPath 1.0 and regular path expressions [1]: it has the
filter expressions of the former and the Kleene star of
the latter. It is still mainly studied in the theoretical
community [9, 24, 7].

The query evaluation problem for Regular XPath≈ is
in PTime (in fact, in quadratic time), and the query
containment problem is ExpTime-complete [25].

3. EXPRESSIVITY OF XPATH DIALECTS
We have defined four XPath fragments. How do they

compare in terms of expressivity and succinctness? We
will answer this question by mapping each XPath di-
alect to an equally expressive variant of first-order logic.

Since the data model of an XML document is a finite
sibling ordered tree, it is natural to consider first-order
logic in the signature with eight atomic binary relations
corresponding to the basic axes (child, parent, left
and right, and their transitive closures descendant,
ancestor, following-sibling and preceding-sib-
ling) plus a unary predicate for each tag name. We
will call the first order language in this signature FOtree.
With FOtree(x) and FOtree(x, y) we denote the FOtree

formulas in one and two free variables, respectively.
Besides looking at expressive power, we will also com-

pare different languages in terms of succinctness. As
usual, if two languages, L and L′, are equally expres-
sive, we say that L is (at least) exponentially more
succinct than L′ if there is a infinite sequence of L-
expressions R1, R2, . . . where the length of Rk is poly-
nomial in k, such that for every sequence of equivalent
L′-expressions R′

1, R
′
2, . . . , the length of R′

k is exponen-
tial in k. Similarly, one can say that a language is non-
elementarily more succinct than another language.

The results from this section are summarized in Ta-
ble 3. These results hold both for path expressions and
for node expressions.

The results discussed in this section naturally build
on a existing line of research in temporal logic, which
originates in the work of H. Kamp [15] and which studies
expressive completeness for various temporal logics on
trees. A survey of this area may be found in [13].

Core XPath 1.0
As we have already seen in Section 1, not every FOtree-
definable binary relation is definable in Core XPath 1.0.
However, we can define a natural fragment of FOtree

with respect to which Core XPath 1.0 is complete.
Let ∃FO

(mon¬)
tree be the fragment of FOtree where nega-

tion can only be applied to subformulas with exactly one
free variable, and universal quantification is disallowed
altogether (thus, the connectives are conjunction, dis-
junction, and existential quantification, plus negation
of formulas with at most one free variable). It can be
seen from Table 2 that Core XPath 1.0 path expressions
can be translated into this fragment of FOtree (indeed,
the only form of negation present in Core XPath 1.0
is negation in filter expressions, which corresponds to
negation of a formula in one free variable). A converse
translation is possible as well, although it involves an
exponential blow-up (recall the example we gave in the
introduction):

Theorem 1 (Core XPath 1.0 ≡ ∃FO
(mon¬)
tree (x, y))

1. There is a linear translation from Core XPath 1.0
path expressions to ∃FO

(mon¬)
tree (x, y) formulas, and

an exponential translation backwards.

2. Indeed, ∃FO
(mon¬)
tree (x, y) formulas are exponen-

tially more succinct than Core XPath 1.0 path ex-
pressions.

Proof. The difficult direction of (1) can be proved
by induction on the nesting depth of negation, using the
fact that positive existential fist-order formulas can be
translated to Core XPath 1.0 path expressions at the
cost of an exponential blowup [2, 11]. For the exponen-
tial difference in succinctness, see [25, Thm. 26].

An alternative characterization of Core XPath 1.0, in
terms of conjunctive queries and the two-variable frag-
ment of FOtree, is given in [19].

Core XPath 2.0
In the case of Core XPath 2.0, there is a precise match
with FOtree, in terms of expressive power. In fact, this
Codd-completeness has been one of the design consid-
erations for XPath 2.0 [16]. Moreover, it turns out to
hold already for the variable free fragment. Still, the
presence of variables matters for the succinctness of the
language.

For simplicity, we consider only path expressions that
have no free variables. For a discussion of expressive
completeness in the presence of free variables, see [8].

Theorem 2 (Core XPath 2.0 ≡ FOtree(x, y))

1. There are linear translations between Core XPath
2.0 path expressions and FOtree(x, y) formulas.

2. There is a linear translation from variable free
Core XPath 2.0 path expressions to FOtree(x, y)
formulas and a non-elementary translation back-
wards.

3. FOtree(x, y) formulas are at least exponentially
more succinct than variable free Core XPath 2.0
path expressions.

Proof. The linear translations are straightforward.
A non-elementary translation from FOtree to variable
free Core XPath 2.0 is given in [18]. The exponential
difference in succinctness between FOtree and variable
free Core XPath 2.0 holds already on linear orders (i.e.,
documents in which each node has at most one child)
[12].

In fact, it was shown in [18] that a more mod-
est extension of Core XPath 1.0 called Conditional
XPath is already expressively complete for FOtree.
It extends Core XPath 1.0 with “conditional axes”
of the form (Axis while NodeExpr), with Axis ∈
{child, parent, left, right}. Without going into fur-
ther details, we only mention that (Axis while T) :: N
can be written in Core XPath 2.0 as

Axis+ :: N except (Axis+ :: ∗[not(T)]/Axis+ :: ∗)

where Axis+ is the transitive version of Axis.

Table 3: Expressivity and succinctness of XPath dialects.

XPath dialect Core XPath 1.0 (Variable-free
Core XPath 2.0 ≡ Core XPath 2.0 (Regular XPath≈

Equivalent
FO-dialect ∃FOmon¬

tree FOtree FOtree FO∗
tree

(exponential
succinctness gap)

(at least exponential
succinctness gap)

(no succinctness gap:
linear translations)

(non-elementary
succinctness gap)

Regular XPath≈

Since the conditional axes of [18] are definable
in Regular XPath≈ using the Kleene star —
(Axis while T)::N is equivalent to (Axis::∗
[not(T)])∗/Axis::N — we already know by [18]
that Regular XPath≈ extends FOtree in expressive
power. In order to give a precise characterization of the
expressive power of Regular XPath≈, we must consider
an extension of FOtree.

The simplest option is to simply extend FOtree with a
Kleene star (i.e., a transitive closure operator for binary
relations). Thus, let FO∗

tree(x, y) be the extension of
FOtree (x, y) with a transitive closure operator that ap-
plies to formulas with exactly two free variables. Then
the following is proved in [24] and [25, Thm. 27]:

Theorem 3 (Regular XPath≈ ≡ FO∗
tree)

1. There is a linear translation from Regular XPath≈
path expressions to FO∗

tree(x, y) formulas, and a
non-elementary translation backwards.

2. In fact, FO∗
tree(x, y) formulas are non-elementarily

more succinct than Regular XPath≈ path expres-
sions.

Incidentally, FO∗
tree is not the same as FOtree + TC1:

the standard unary transitive closure operator TC1 can
be applied to formulas containing more than two free
variables, as long as two of the variables are designated;
the others are treated as parameters (cf. for instance
[5]). We do not know at present whether FO∗

tree and
FOtree + TC1 have the same expressive power on trees.

4. ALGEBRAS FOR XPATH DIALECTS
The previous section showed that Core XPath 2.0 cor-

responds in expressive power to exactly first-order logic.
The next question is which algebras are appropriate for
representing query plans for Core XPath 2.0 expres-
sions. The same question holds for the other dialects
we discussed. Codd’s relational algebra seems a natu-
ral choice because it is again equally expressive as first-
order logic. Indeed, we will see that it is a good choice
when considering Core XPath 2.0. For other XPath di-
alects however (including the variable free fragment of
Core XPath 2.0), there are better options.

In Section 1.3 we gave criteria for determining
whether an algebra is suitable for an XPath dialect.
In this section, we discuss four different algebras, and

determine which ones match best with each XPath di-
alect. The results are summarized in Table 5.

To simplify the presentation, we will first consider
Core XPath 1.0 and 2.0, and only afterward Regular
XPath≈, as the latter requires (a mild form of) recur-
sion in the algebra.

4.1 Four candidate algebras

Codd’s relational algebra (CRA) and its fragment
CRA(mon¬)
We briefly recall Codd’s relational algebra. A charac-
teristic feature of this algebra is that it is many sorted :
each expression has an associated arity corresponding
to the number of columns of the table it computes. The
atomic expressions are simply the names of the relations
in the database, and the operations are selection (σ),
projection (π), cross-product (×), union (∪) and com-
plementation (−).

The fact that there is no bound on the arity of the
expressions has some negative consequences on the com-
plexity of query evaluation: it is PSpace-complete,
whereas it becomes polynomial if there is a bound on
the allowed arity of (sub)expressions [3, 28].

Inspired by the results in the previous section, it
makes sense to distinguish another restricted fragment
of CRA, namely CRA(mon¬). This fragment is ob-
tained by restricting the use of complementation to
unary tables. Note that all SPCU -expressions still be-
long to this fragment.

Tarski’s relation algebra (TRA)
Tarski’s relation algebra [22, 23] is an algebra of bi-
nary relations: each expression denotes a table with
precisely two columns. The operations on binary rela-
tions considered by Tarski are the Boolean operations
(union, intersection and complementation), as well as
composition ◦ and converse (·)−1. There are also two
constants (or, 0-ary operations) > and ε, which stand
for the total relation and the identity relation (over the
given domain). A typical example of an equivalence in
this algebra is α ◦ (β ∪ γ) ≡ α ◦ β ∪ α ◦ γ.

It was shown in [23] that TRA has the same expres-
sive power as the three-variable fragment of first-order
logic in two free variables, over vocabularies consisting
of binary relations only.

Although in TRA all expressions denote binary re-
lations, unary relations can be easily dealt with as

well, for instance by treating them as subrelations of
the identity relation (e.g., {a, b, c} can be treated as
{(a, a), (b, b), (c, c)}).

Dynamic relation algebra (DRA)
In [27, 14], a reduct of Tarski’s relation algebra is stud-
ied containing only the operations ∪, ◦ and ∼. The
latter of these is called the counterdomain operation.
It takes a binary relation R and produces a subrelation
of the identity relation: ∼R denotes {(x, y) | x = y
and ¬∃z.(x, z) ∈ R}. In TRA, it can be expressed as
ε− (R ◦>). This operator is quite handy: e.g., ∼child
expresses “I am a leaf node”, and ∼∼child expresses
“I am not a leaf node”. We call this algebra dynamic
relation algebra (DRA).

The signature of DRA might seem poor, but it is rich
enough to capture all of Core XPath 1.0. If we encode
properties of nodes as subrelations of the identity rela-
tion (as we already suggested above), then we have the
following translation:

TRPExpr(Axis :: ∗) = Axis
TRPExpr(Axis :: N) = Axis ◦N
TRPExpr(R/S) = TRPExpr(R) ◦ TRPExpr(S)
TRPExpr(R union S) = TRPExpr(R) ∪ TRPExpr(S)
TRPExpr(R[T]) = TRPExpr(R) ◦ TRNExpr(T)

TRNExpr(PathExpr) = ∼∼ TRPExpr(PathExpr)
TRNExpr(not T) = ∼ TRNExpr(T)
TRNExpr(T1 and T2) = TRNExpr(T1) ◦ TRNExpr(T2)
TRNExpr(T1 or T2) = TRNExpr(T1) ∪ TRNExpr(T2)

In [27], an elegant model theoretic characterization of
DRA is given in terms of safety for bisimulations.

DRA is a fragment of both TRA and CRA(mon¬).
More precisely, the relationships between the four alge-
bras on arbitrary models are as follows:

TRA
((

DRA CRA
((

CRA(mon¬)

When we restrict attention to XML documents (i.e.,
where the atomic relations are the 8 binary relations
corresponding to the different axes, as well a “unary”
relation for each of the different tag names), the situa-
tion is a bit different: on this restricted class of models
TRA and CRA have the same expressive power, as do
DRA and CRA(mon¬).

4.2 Complexity of these algebras on trees
We will now discuss the complexity of query evalua-

tion and query containment for the four algebras inter-
preted on XML-trees (i.e., where the atomic relations
are the 8 binary relations corresponding to the different
axes, as well a “unary” relation for each of the different
tag names). As before, in the case of query evaluation
we consider the combined complexity of testing whether
a given pair belongs to the relation defined by a given
path expression on a given XML document. Table 4
provides a summary of the results.

Table 4: Complexity of evaluation and contain-
ment for the algebras on trees.

Evaluation Containment

CRA PSpace-compl. Non-elementary
CRA(mon¬) NP-hard, in PNP 2-ExpTime-compl.
TRA PTime (quadratic) Non-elementary
DRA PTime (linear) ExpTime-compl.

Containment.
By Rabin’s theorem, query containment is decidable

for all four algebras. For TRA and CRA, containment
is non-elementary, as follows from Stockmeyer’s non-
elementary lower bound for the non-emptiness prob-
lem of star-free expressions [21, 25]. The results
for CRA(mon¬) and DRA follow from known results
about XPath. In particular, the 2-ExpTime-hardness
of CRA(mon¬) query containment follows from the
same lower bound for Core XPath 1.0 extended with
path intersection, as the latter can be linearly trans-
lated into CRA(mon¬). The upper bound follows from
the existence of a singly exponential translation from
CRA(mon¬)-expressions of arity 2 to Core XPath 1.0,
and the fact that Core XPath 1.0 has an ExpTime-
complete query containment problem (the restriction
to expressions of arity 2 is not essential: containment
of CRA(mon¬)-expressions of arity greater than 2 can
be linearly reduced to containment of ones of arity 2,
in fact to Boolean CRA(mon¬)-expressions) [25]. The
result for DRA follows from linear translations to Core
XPath 1.0.

Evaluation.
The combined complexity of query evaluation for

CRA is PSpace-complete, also when restricted to
XML-trees [3]. As TRA corresponds to a fixed vari-
able fragment of first-order logic the complexity drops
to PTime. Using the bottom-up algorithm sketched
in [28] it can be shown to be in O(n2). In [10], it is
shown that query evaluation for Core XPath 1.0 can
be performed in linear time. Because Core XPath 1.0
and DRA linearly translate to each other, the result
transfers to DRA. Recall that we are not talking about
the complexity of computing the relation denoted by a
path expression (which could be quadratic in the size
of the tree), but of the complexity of checking whether
a given pair of nodes belongs to the denotation of a
given expression in a given tree. Query evaluation for
CRA(mon¬) is NP-hard: this holds even for positive
conjunctive queries with only downward axis relations
[11]. For the PNP-upperbound, we use an algorithm
that runs in polynomial time and that uses an oracle
for testing whether a tuple belongs to the answer set of
an SPCU-expression. The algorithm proceeds roughly
as follows: given an expression α, it starts by listing
all subexpressions whose main connective is a (unary)
complementation operator, in order of growing length.

Table 5: Which algebra for which XPath dialect?

CRA CRA(mon¬) TRA DRA

Core XPath 1.0 Y (linear translation) Y (linear translation) Y (linear translation) Y (linear translation)
N (too expressive) Y (same expressivity) N (too expressive) Y (same expressivity)
N (complexity too high) N (complexity too high) N (complexity too high) Y (same complexity)

Core XPath 2.0 Y (linear translation) N (no translation possible) Y (linear translation) N (no translation possible)
w/o variables Y (same expressivity) N (too little expressivity) Y (same expressivity) N (too little expressivity)

N (complexity too high) N (complexity too high) Y (same complexity) Y (lower complexity)

Core XPath 2.0 Y (linear translation) N (no translation possible) N (no elem. translation) N (no translation possible)
with variables Y (same expressivity) N (too little expressivity) Y (same expressivity) N (too little expressivity)

Y (same complexity) Y (lower complexity) Y (same complexity) Y (lower complexity)

CRA(∗) CRA(mon¬, ∗) TRA(∗) DRA(∗, loop)

Regular XPath≈ Y (linear translation) Y (linear translation) Y (linear translation) Y (linear translation)
Y (same expressivity) Y (same expressivity) Y (same expressivity) Y (same expressivity)
N (complexity too high) N (complexity too high) N (complexity too high) Y (same complexity)

One by one, it computes for each such subexpression α
the (polynomially large) answer set, by asking the or-
acle for each element whether it belongs to the answer
set. The occurrences of α within larger expressions are
then replaced by the computed answer set. Finally, we
are left with a single SPCU-expression, to which the
oracle is once more applied.

4.3 Axiomatizations
One of our criteria for being a good algebra was

the availability of an axiomatization of the valid equa-
tions on XML-trees (finite sibling ordered node-labeled
trees). Only a few results are known here. In [2], an ax-
iomatization is given for the ∼-free reduct of Dynamic
Relation Algebras DRA with only the two downward
axis plus atomic label tests. An axiomatization of the
full DRA on XML-trees is not known (a complete ax-
iomatization on arbitrary models is given in [14]). In
[26], an axiomatization of first-order logic on XML-
trees is given, from which an axiomatization for TRA on
XML-trees is derived. We believe that in a similar way
an axiomatization of CRA on XML-trees can be found.
The TRA axiomatization consists of general axioms for
the TRA similarity type like R ◦ (S ◦ T) = (R ◦ S) ◦ T
plus special axioms which are only valid on trees. Two
examples are Tr5 and Tr11:

Tr5. ↓+ ◦ ↑+ ≡ ↓+ [↓] ∪ ε[↓] ∪ (ε[↓] ◦ ↑+)

Tr11. ε ∪ ↑+ ∪ ↓+ ∪
(↑∗ ◦ →+ ◦ ↓∗) ∪ (↑∗ ◦ ←+ ◦ ↓∗) ≡ >

Here we abbreviate the steps in the trees by arrows,
e.g., ↓ is the child axis, ↑ is parent, etc. E.g., in
XPath notation, the left-hand side of Tr5 would be
descendant/ancestor. Also, we use R[S] as a short-
hand for R◦ ∼∼ S. Tr5 is a natural complexity re-
ducing equivalence when read from left to right. Tr11
states the well known fact that the self, ancestor, de-
scendant, following and preceding axis relations parti-

tion each XML-tree from every given node.

4.4 Which algebra for which XPath?
We now have three XPath dialects (Regular XPath≈

will be dealt with in the next subsection) and four can-
didate algebras. We determine which algebra fits best
to which fragment by answering the following questions,
corresponding to the first three requirements from Sec-
tion 1.3:

1. Is there a linear translation from the expressions
in XPath dialect to expressions in the algebra?

2. Are the XPath dialect and the algebra equally ex-
pressive?

3. Do the XPath dialect and the algebra have the
same query containment and evaluation complex-
ities?

(as for the fourth requirement, concerning the existence
of nice sets of algebraic equivalence rules for the algebra,
we have too little information at present to say much
about it).

The answers, based on the results discussed in the
previous sections, are given in Table 5. The combina-
tions with only affirmative answers are marked by a
gray background.

4.5 Regular XPath≈

For Regular XPath≈, the algebras need to be ex-
tended with a transitive closure operator. In the case
of TRA and DRA, the semantics of such an operator
is clear: the denotation of R∗ is the reflexive, transi-
tive closure of the binary relation denoted by R. In the
case of CRA and CRA(mon¬) a similar proviso needs
to be made as for FO∗

tree (cf. Section 3): the transi-
tive closure operator may only be applied to expressions
that denote tables with precisely two columns. We use

CRA(∗), CRA(mon¬, ∗), TRA(∗) and DRA(∗) to de-
note the extensions of the respective algebras with the
transitive closure operator, conform this restriction.

The path equalities of Regular XPath≈ can be ex-
pressed in CRA(∗) and CRA(mon¬, ∗) using intersec-
tion and projection, and in TRA(∗) using intersection
and ∼: R ≈ S can be expressed as ∼∼ (R ∩ S). On
the other hand, in DRA(∗) it is not clear whether path
equalities can be expressed. Let DRA(∗,loop) denote
the extension of DRA with both the Kleene star and
the (·)loop operator, that has the following semantics
[9]: Rloop = R ∩ ε. Using loop, and given the fact
that Regular XPath≈ is closed under taking inverses of
path expressions, we can express path equalities: R ≈ S
translates to (R ◦ S−1)loop.

It follows from Theorem 3 that Regular XPath≈,
DRA(∗,loop), TRA(∗), CRA(∗) and CRA(mon¬, ∗)
all have the same expressive power. Of these four,
DRA(*,loop) is the most suitable algebra for Regular
XPath≈, since its query containment problem is Exp-
Time-complete (as follows from the fact that there are
linear translations from and to Regular XPath≈ [25]).
See also Table 5.

5. CONCLUSION AND OPEN PROBLEMS
We have discussed four dialects of Navigational

XPath, and we have shown that they correspond, in
terms of expressive power, to natural fragments or ex-
tensions of first-order logic. Furthermore, we have iden-
tified suitable algebras for each of the dialects.

We have not discussed monadic second-order logic
(MSO) as a target for expressive power. Several di-
alects of navigational XPath have been proposed in the
literature that have the same expressive power as MSO
(see for instance [9, 24]), but in our view none has the
simplicity and appeal of the dialects we studied here.

We end with four open problems. The first two are
related to the DRA and its extension DRA(∗,loop). The
second two relate to the strictness of the hierarchy of
path languages given in [5].

Problem 1 Give axiomatizations for DRA and
DRA(∗,loop) on XML-trees.

Problem 2 Does loop really any add expressive power
to DRA(∗,loop)? Or equivalently, do path equalities
really contribute to the expressive power of Regular
XPath≈?

Problem 3 Is Regular XPath≈ (or equivalently
FO∗

tree) less expressive than MSO?

Problem 4 Is FO∗
tree less expressive than FOtree +

TC1? If so, identify an XPath dialect that has exactly
the same expressive power as the latter.

Acknowledgments. We are grateful to Loredana
Afanasiev and Tadeusz Litak for helpful comments.
Balder ten Cate is supported by NWO research grant
639.021.508.

6. REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the web.

Morgan Kaufman, 2000.
[2] M. Benedikt, W. Fan, and G. Kuper. Structural properties

of XPath fragments. In Proc. ICDT 2003, 2003.
[3] A. Chandra and D. Harel. Structure and complexity of

relational queries. J. Comput. Syst. Sci., 25(1):99–128,
1982.

[4] E. Codd. Relational completeness of data base
sublanguages. In R. Rustin, editor, Database Systems,
pages 33–64. Prentice-Hall, 1972.

[5] J. Engelfriet and H. Hoogeboom. Nested pebbles and
transitive closure. In Proc. STACS, pages 477–488, 2006.

[6] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
SMOQE: a system for providing secure access to XML. In
Proc. VLDB’2006, pages 1227–1230, 2006.

[7] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Rewriting regular XPath queries on XML views. In
Proc. ICDE’2007, 2007.

[8] E. Filiot, J. Niehren, J.-M. Talbot, and S. Tison.
Polynomial time fragments of xpath with variables. In
Proc. PODS’07, 2007.

[9] E. Goris and M. Marx. Looping caterpillars. In Proc. LICS
2005. IEEE Computer Society, 2005.

[10] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms
for processing XPath queries. In VLDB’02, 2002.

[11] G. Gottlob, C. Koch, and K. Schulz. Conjunctive queries
over trees. In Proc. PODS’04, pages 189–200, 2004.

[12] M. Grohe and N. Schweikardt. The succinctness of
first-order logic on linear orders. 1(1), 2005.

[13] I. Hodkinson and M. Reynolds. Separation - past, present,
and future. In S. Artemov et al., editor, We will show
them! (Essays in honour of Dov Gabbay on his 60th
birthday), pages 117–142. College Publications, 2005.

[14] M. Hollenberg. An equational axiomatization of dynamic
negation and relational composition. Journal of Logic,
Language and Information, 6(4):381–401, 1997.

[15] J.A.W. Kamp. Tense Logic and the Theory of Linear
Order. PhD thesis, University of California, Los Angeles,
1968.

[16] M. Kay. XPath 2.0 Programmer’s Reference. Wrox, 2004.

[17] M. Marx. XPath with conditional axis relations. In
Proc. EDBT’04, volume 2992 of LNCS, pages 477–494,
2004.

[18] M. Marx. Conditional XPath. ACM Transactions on
Database Systems (TODS), 30(4):929–959, 2005.

[19] M. Marx and M. de Rijke. Semantic Characterizations of
Navigational XPath. SIGMOD Record, 34(2):41–46, 2005.

[20] F. Neven and T. Schwentick. XPath containment in the
presence of disjunction, DTDs, and variables. In
Proc. ICDT 2003, 2003.

[21] L. Stockmeyer. The Complexity of Decision Problems in
Automata Theory. PhD thesis, Dept. Electrical
Engineering, MIT, Cambridge, Mass., 1974.

[22] A. Tarski. On the calculus of relations. Journal of
Symbolic Logic, 6:73–89, 1941.

[23] A. Tarski and S. Givant. A Formalization of Set Theory
without Variables, volume 41. AMS Colloquium
publications, Providence, Rhode Island, 1987.

[24] B. ten Cate. The expressivity of XPath with transitive
closure. In Proc. PODS, pages 328–337, 2006.

[25] B. ten Cate and C. Lutz. The complexity of query
containment in expressive fragments of XPath 2.0. In
Proc. PODS’07, 2007.

[26] B. ten Cate and M. Marx. Axiomatizing the logical core of
XPath 2.0. In Proc. ICDT’07, 2007.

[27] J. van Benthem. Program constructions that are safe for
bisimulation. Studia Logica, 60(2):331–330, 1998.

[28] M. Vardi. On the complexity of bounded–variable queries.
In Proc. PODS’95, pages 266–276, 1995.

