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1 Introduction

The massive data sets that have to be processed in many
application areas are often far too large to fit completely
into a computer’s internal memory. When evaluating
queries on such large data sets, the resulting communi-
cation between fast internal memory and slower external
memory turns out to be a major performance bottleneck.

Modern software and database technologies use clever
heuristics to minimize the costs produced by external
memory accesses. There has been a wealth of research
on query processing and optimization along these lines
(cf. e.g. [31, 16, 40, 27]), and it seems that the current
technologies scale up to current user expectations.

Our theoretical understanding of the problems in-
volved, however, is not quite as developed. Most re-
sults concerning the computational complexity of query
languages are formulated in terms of classical complex-
ity classes such as PTIME or PSPACE. Two exam-
ples of such results are that the combined complexity of
evaluating relational algebra queries is PSPACE-complete
[38, 37] and that the combined complexity of evaluating
acyclic conjunctive queries belongs to PTIME [42] and
is in fact LogCFL-complete [15]. The classes considered
in computational complexity theory are usually based on
Turing machines or random access machines, i.e., on ma-
chine models that do not take into account the existence
of multiple storage media of varying sizes and access char-
acteristics. Since the performance bottleneck for commu-
nicating between such storage media is completely ignored
in classical complexity classes, “classical” results on the
complexity of query evaluation only give a very rough
measure of the complexity of query evaluation on a real
computer.

In recent years, a number of machine models have been
developed that take into account the existence of mul-
tiple storage media of varying sizes and access charac-
teristics. These models are particularly useful for study-
ing the complexity of query evaluation on massive data
sets. The present paper gives an overview of such ma-
chine models. The two “extreme” models are the (very
powerful) external memory model, presented in Section 2,
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and the (severely restricted) mud model (a model for mas-
sive, unordered, distributed computations), presented in
Section 7. Further models considered in this survey are
the read/write streams (a model for sequential external
memory processing, Section 3), the finite cursor machines
(a model for relational database query processing, Sec-
tion 4), the mpms-automata (a model for processing in-
dexed XML files, Section 5), and the data stream model
(a model for processing data on-the-fly, Section 6).

As running examples throughout this article, we will
take a closer look at the problem of sorting a given set of
data items and at the problem of deciding whether two
sets of data items are disjoint. Note that these two prob-
lems are of fundamental importance for query process-
ing: Efficient query evaluation often relies on intermedi-
ate sorting steps; and already the easiest kind of join (i.e.,
the join of two unary relations) corresponds to computing
the intersection of two sets.

2 The External Memory Model

In the classical random access machine (RAM) model, the
input consists of N data items, each of which can be rep-
resented by a bitstring of length O(log N). An unbounded
number of data items can be stored in memory. Access
to any item in memory as well as arithmetics and bitwise
operations on data items can be performed in constant
time.

The basic external memory model (cf., e.g., [27]) can be
viewed as a refinement of the RAM model where mem-
ory is divided into internal memory, capable of storing
up to M data items, and external memory of unbounded
size. Data present in internal memory can be accessed
quickly (as in the RAM model). Data present in exter-
nal memory can only be accessed by an operation called
Input/Output communication (I/O, for short) that moves
a contiguous block of B data items between internal and
external memory. Initially, the N input items are stored
in external memory. One typically assumes that M < N
and 1 6 B 6 M/2. An illustration of the model is given
in Figure 1.

The primary measure of performance in the external
memory model is the number of I/O operations per-
formed. Further relevant measures are (as in the RAM
model) the total number of computation steps and the
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internal memory

CPU

external memory

N = problem size
(# data items)

M = internal memory size
(# data items)

B = block transfer size
(# data items)

M < N , 1 6 B 6 M/2.

Figure 1: The basic external memory model.

total amount of memory that is used.
This model is the most widely used model for design-

ing and analyzing efficient external memory algorithms
(cf., [27, 40]). On the one hand, it allows to design algo-
rithms that explicitly control the communication between
internal and external memory, so that algorithms that are
“good” with respect to the model also perform well in
practice. On the other hand, it is simple enough to allow
for a high-level description of an algorithm and a rigorous
mathematical analysis of its performance.

Obviously, scanning, i.e., reading the entire input in the
order it is stored in external memory, takes

scan(N) = Θ(N/B) I/O operations.

A careful implementation of the merge sort algorithm
shows that sorting can be performed using

sort(N) = Θ
(

N
B · logM/B

N
B

)

I/O operations.

Aggarwal and Vitter [2] proved a matching lower bound
on the worst case complexity of sorting, provided that the
machine model is restricted in such a way that the input
data items are indivisible (i.e., they cannot be split up into
their representations as bitstrings) and that at any point
in time, the external memory consists of a permutation
of the input items.

The Parallel Disk Model, introduced by Vitter and
Shriver [41], is a generalization of the basic external mem-
ory model. In this model, the external memory is parti-
tioned into D independent disks, such that during each
I/O operation, each of the D disks can simultaneously
transfer a block of B contiguous data items into internal
memory (one typically assumes that 1 6 D·B 6 M/2).
Furthermore, instead of a single CPU there are P identical
processors that work in parallel and that are connected by
a network. Each of these processors has access to internal
memory of size M/P . Furthermore, if D > P , then each
processor owns D/P of the D disks, and if D < P , then
each disk is shared by P/D processors.

It is obvious that scanning can be done by performing
Θ(N/DB) I/O operations. Concering sorting, an elabo-
rate construction by Nodine and Vitter shows the follow-
ing:

Theorem 2.1 ([29]) Sorting can be performed in the

Parallel Disk Model using O
(

N
DB · logM/B

N
B

)

I/O op-

erations.

The algorithm treats data items as indivisible units,
and at any point in time during the execution of the algo-
rithm, the content of external memory consists of a per-
muation of the input. For this restricted version of the
Parallel Disk Model, a matching lower bound for sorting
was obtained by Aggarwal and Vitter in [2].

Suggestions for further reading: An overview
of external memory algorithms for various computation
problems is given in [39]; more details can be found in
the survey [40] and the books [1, 27].

An important future task: Concerning the exter-
nal memory model and its extensions, a number of lower
bound results are known, among them the lower bound
for sorting mentioned above. A common feature of these
lower bounds is that they rely on the assumption that the
input data items are indivisible and that at any point in
time the external memory consists, in some sense, of a
permutation of the input items. It is a challenging future
task to develop methods for proving lower bounds for the
external memory model or the Parallel Disk Model with-
out relying on such an indivisibility assumption.

3 Read/Write Streams

The external memory model considered in the previous
section distinguishes between accesses to internal mem-
ory and accesses to external memory. Current technology
for external storage systems (disks and tapes), however,
presents us with a situation where sequential scans are
strictly preferable over random accesses to external mem-
ory: A random access to a hard disk requires to move the
read/write head to a certain position of the disk, and
this is a comparably slow mechanical operation. During
the time required for a single such random access, a con-
siderable amount of data stored in sequence, starting at
the current position of the disk’s read/write head could
have been processed. Modern software and database tech-
nologies use clever heuristics to minimize the number of
accesses and to prefer streaming over random accesses to
external memory.

The present section concentrates on a machine model
for external memory processing which was introduced in
[21, 22] and which has available

• internal memory that can be accessed very fast, but
that is limited in size, and, additionally,

• external memory that can store huge amounts of data,
which can easily be accessed (for reading as well as
for writing) in a sequential way, but for which random
accesses are expensive.
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t = # r/w streams

N = input length
(# bits)

r(N) = # head reversals

s(N) = # bits in
internal memory

Figure 2: The model of read/write streams.

Formally, this model is based on a standard multi-tape
Turing machine. Some of the tapes of the machine, among
them the input tape, represent external memory (each
of these tapes can be viewed as representing an external
memory device such as, e.g., a hard disk). They are un-
restricted in size, but access to these tapes is restricted
by allowing only a certain number r(N) − 1 of reversals
of the head directions (where N denotes the size of the
input, measured in terms of the number of bits necessary
for representing the entire input). This may be seen as
a way of (a) restricting the number of sequential scans
and (b) restricting random accesses to these tapes (be-
cause each random access can be simulated by moving
the head to the desired position on a tape, and this in-
volves at most two head reversals). The remaining tapes
of the Turing machine represent internal memory. Access
to these internal memory tapes is unrestricted, but their
size is bounded by a parameter s(N). Such Turing ma-
chines are called (r, s, t)-bounded, if t is the total number
of external memory tapes of the machine.

It sometimes is convenient to adopt Beame, Jayram,
and Rudra’s [7] informal view of this as being a computa-
tion model where, in addition to some internal memory,
a constant number of read/write streams (r/w, for short)
are available; each such r/w stream corresponds to an
external memory tape of the Turing machine. An illus-
tration of the model is given in Figure 2. The resources
of interest are

(1) the number r(N) of scans of (or, head reversals on)
the r/w streams (where N denotes the number of bits
necessary for representing the entire input),

(2) the size s(N) of internal memory, and

(3) the total number t of r/w streams that are available.

In the remainder of this article, we call this the compu-
tational model of r/w streams, and we sometimes infor-
mally say that there is an (r, s, t)-bounded algorithm on
r/w streams for a specific problem, iff this problem can
be solved by an (r, s, t)-bounded Turing machine.

When considering problems that produce an output
other than just the answer “yes” or “no”, we assume that
there is an additional write-only output stream available.

Remark 3.1 Note that this model allows forward scans
as well as backward scans of the external memory tapes.
Even more, it allows the r/w heads to reverse direction in
the middle of a tape. While it is realistic to assume that in
current “real-world” hard disks, sequential forward scans
can be performed very efficiently, this is not the case for
backward scans. Thus, when aiming at designing efficient
algorithms for r/w streams, one should make sure that
the algorithms essentially use only forward scans of the
r/w streams. On the other hand, when aiming at lower
bounds, i.e., showing that some problem can not be solved
by any (r, s, t)-bounded algorithm on r/w streams, allow-
ing for forward scans as well as backward scans makes
lower bound results only stronger.

Having in mind the motivation that (r, s, t)-bounded
algorithms on r/w streams serve as a computation model
for external memory processing, we are mainly interested
in cases where the size s(N) of the internal memory is con-
siderably smaller than the input size N , and the number
r(N) of sequential scans of (or, correspondingly, the num-
ber of random accesses to) external memory is, preferably,
as small as possible.

Note that a priori there is no restriction on the running
time or the size of the external memory of an (r, s, t)-
bounded Turing machine. However, an easy induction
on r(N) shows that implicitly these two parameters are
bounded in terms of the number of head reversals, the
internal memory space, and the input size: Every run of
an (r, s, t)-bounded Turing machine on an input of length
N consists of at most N · 2O(r(N)·(t+s(N))) computation
steps (cf., [20]).

There are substantial differences between the compu-
tational power of the model where only one r/w stream
is available and the model where t > 2 r/w streams are
available. Both scenarios will be considered in the next
two subsections.

3.1 One r/w stream

Let us first consider the problem short-sorting, which
is the restriction of the sorting problem to inputs that
consist of a list of an arbitrary number m of bitstrings
x1, . . . , xm, each of which has length at most 2 log m. Note
that the total length of the input is N = Θ(m log m).

It can be easily seen that, for any function s with
s(N) > 4 log N , the problem short-sorting can be solved
by an (r, s, 1)-bounded algorithm on one r/w stream with
r(N) = O(N/s(N)) sequential scans and internal mem-
ory of size s(N). A matching lower bound was proved in
[21], leading to the following result.

Theorem 3.2 ([21]) Let r, s be functions such that
s(N) > 4 log N . The problem short-sorting can (respec-
tively, cannot) be solved by an (r, s, 1)-bounded algorithm
on one r/w stream if r(N) ·s(N) is of size Ω(N) (respec-
tively, of size o(N)).
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The basic idea for proving a lower bound on resources
necessary for solving a problem in the computation model
with one r/w stream is to divide the r/w stream into two
parts. Obviously, during an (r, s, 1)-bounded computa-
tion on an input of size N , the border between the two
parts of the r/w stream can be crossed at most r(N)
times. Each time we cross this border, we can only
“transport” the amount of information that is currently
stored in internal memory, and this consists of at most
O(s(N)) bits. Consequently, during an entire (r, s, 1)-
bounded computation, only O(r(N) · s(N)) bits of infor-
mation can be communicated between the two parts of
the r/w stream. Therefore, lower bounds known from
communication complexity (cf., [26]) almost immediately
imply corresponding lower bounds for (r, s, 1)-bounded al-
gorithms on one r/w stream.

Using this, one for example obtains that the set
disjointness problem cannot be solved by an (r, s, 1)-
bounded algorithm on one r/w stream if r(N) · s(N)
is of size o(N). Here, the set disjointness prob-
lem receives as input two lists of bitstrings x1, . . . , xm

and y1, . . . , ym, and the task is to decide whether
{x1, . . . , xm} ∩ {y1, . . . , ym} = ∅.

By using this lower bound, one immediately obtains
that evaluating relational algebra queries is hard for algo-
rithms on one r/w stream: Note that if A and B are unary
relations, then A ⊲⊳ B = A ∩ B. Therefore, already the
basic task of checking whether the join of two relations A
and B is empty cannot be performed if r(N) · s(N) is of
size o(N) (where N denotes the number of bits used for
storing the two input relations A and B).

In a similar way one also obtains lower bounds for eval-
uating queries against XML data. For example, two unary
relations A and B can easily be encoded by an XML docu-
ment, such that the query which asks if the join of A and
B is empty can be formalized in the language XQuery.
This immediately leads to the result stating that there
exists an XQuery query Q such that, for all functions r, s
with r(N) · s(N) = o(N), there is no (r, s, 1)-bounded
algorithm on one r/w stream, which receives an XML
document D of length N as input and checks whether the
result of Q on D is empty.

Considering the node-selecting XML query language
Core XPath (cf., [14]), let Q(D) denote the set of nodes
that Q selects in an XML document D. In [21], the
following tight bounds on the complexity of processing
Core XPath queries have been obtained:

(1) For every Core XPath query Q there is an algo-
rithm which decides for an input XML document D,
whether Q(D) 6= ∅. This algorithm performs a single
pass over its input and uses internal memory of size
O(h(D)), where h(D) denotes the height of the tree
representation of D.

(2) There is a Core XPath query Q such that for all func-
tions r, s with r(H) · s(H) = o(H), there exists no al-

gorithm on one r/w stream which, when given as in-
put an XML document D, decides whether Q(D) 6= ∅
and uses at most r(h(D)) head reversals and internal
memory space of size at most s(h(D)).

The upper bound (1) is proved by standard automata the-
oretic techniques. For the lower bound (2), one can again
use the lower bound for the set disjointness problem.

Let us end this subsection with an example exposing
that randomized (r, s, 1)-bounded algorithms are compu-
tationally much stronger than deterministic ones. We
introduce randomization to the computation model in
such a way that in each computation step a coin may be
tossed to decide what to do in this step. The probability
Pr(A accepts w) that input w gets accepted by algorithm
A is then defined in a straightforward way (see [33, 20]
for precise definitions).

Let us consider the problem short-multiset-equality,
which receives as input two lists of bitstrings x1, . . . , xm

and y1, . . . , ym, where each xi and each yj has length at
most 2 log m (for arbitrary m). The task is to decide
whether the multisets {x1, . . . , xm} and {y1, . . . , ym} are
equal, i.e. whether they contain the same elements with
the same multiplicities. Note that the input length is
N = Θ(m log m).

An easy communication complexity argument shows
that there is no deterministic (r, s, 1)-bounded algorithm
on one r/w stream that solves this problem with r(N) ·
s(N) = o(N). In particular, this implies that every deter-
ministic algorithm that solves the problem short-multiset-
equality by performing a single pass over the input re-
quires internal memory of size Ω(N) (see [33] for details).
However, by using standard fingerprinting techniques, the
problem can be solved by a randomized algorithm with
internal memory of size O(log N) as follows:

Theorem 3.3 ([20]) There is a randomized algorithm
which, when given the parameter m, performs a single
pass over the input and solves the short-multiset-equality
problem with internal memory of size O(log N) such that

• each “yes”-instance is accepted with probability 1, and

• each “no”-instance is rejected with probability > 2/3.

Proof sketch: The basic idea is to identify the input
strings xi, yj with natural numbers and to associate two
polynomials f(z) :=

∑m
i=1 zxi and g(z) :=

∑m
j=1 zyj with

the input x1, . . . xm, y1 . . . ym. Obviously, the two polyno-
mials are equal if, and only if, the input is a “yes”-instance
of the short-multiset-equality problem.

The basic idea of the algorithm is to choose a random
number r, to evaluate f(r) and g(r), and to accept if,
and only if, f(r) = g(r). This algorithm will accept with
probability 1 if the input is a “yes”-instance. However, if
the input is a “no”-instance, the two polynomials f and
g only have few common points, and thus the algorithm
will reject with high probability.
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A closer look shows that this procedure can be im-
plemented by performing a single pass over the input.
The algorithm computes f(r) and g(r) on-the-fly and uses
arithmetic modulo a prime number of moderate size such
that O(log N) bits of internal memory suffice. 2

3.2 Several r/w streams

Let us now turn to the computation model where an ar-
bitrary number t of r/w streams are available.

A straightforward implementation of the merge sort
algorithm shows that the problem short-sorting can be
solved by using three r/w streams, O(log N) head re-
versals, and internal memory of size O(log N). I.e.,
short-sorting can be solved by an (O(log N), O(log N), 3)-
algorithm on r/w streams. By using suitable coding
tricks, one can perform sorting even with internal mem-
ory of size O(1) and with a total number of two r/w
streams [10]. Thus, using two r/w streams instead of
a single one substantially increases the power of the
computation model (cf., Theorem 3.2, stating that any
(r, s, 1)-bounded algorithm for short-sorting requires that
r(N) · s(N) = Ω(N)). The following theorem shows that
this is essentially optimal: If instead of O(log N) only
o(log N) head reversals are available, even internal mem-
ory of size O(N1−ε) and an arbitrary number t of r/w
streams do not suffice to solve short-sorting.

Theorem 3.4 ([20]) Let t be a positive integer and let ε
be an arbitrary number with 0 < ε < 1.
The problem short-sorting cannot be solved by any
(o(log N), O(N1−ε), t)-bounded algorithm on r/w streams.

To prove this theorem, straightforward communication
complexity based arguments (as used in the previous sub-
section) utterly fail. The reason is that we can easily
communicate arbitrarily many bits from one part of the
input to any other part by just copying the first part to
a second r/w stream and then reading it in parallel with
the second part of the input. This requires no internal
memory and just two head reversals on the r/w streams.

But still, although the use of several r/w streams allows
to copy large consecutive segments of the input from one
place to another, there seems no easy way of significantly
permuting the input without using too many head rever-
sals. This intuition was confirmed in [22, 20]. Note that,
unlike the lower bounds mentioned in Section 2, Theo-
rem 3.4 does not rely on any kind of “indivisibility” as-
sumption. Furthermore, the lower bound of Theorem 3.4
even holds for randomized algorithms which output ei-
ther the correctly sorted sequence or the answer “I don’t
know”, and where the answer “I don’t know” is returned
with probability 6 1/2 (cf., [20]).

Note that the short-multiset-equality problem as well as
the set disjointness problem can easily be reduced to the
sorting problem. Thus, both problems can be solved by

a deterministic (O(log N), O(1), 2)-bounded algorithm on
r/w streams. Furthermore, from Theorem 3.3 we obtain
a randomized (O(1), O(log N), 1)-bounded algorithm for
short-multiset-equality which never produces false nega-
tive answers, and which produces false positive answers
with probability 6 1/3. The next theorem shows that no
corresponding algorithm with complementary acceptance
and rejectance probabilities exists (not even when allow-
ing up to o(log N) head reversals, internal memory of size
O(N1−ε), and an arbitrary number of r/w streams).

Theorem 3.5 ([20]) Let t be a positive interger and let
ε be an arbitrary number with 0 < ε < 1.
There is no (o(log N), O(N1−ε), t)-bounded randomized
algorithm for the short-multiset-equality problem on r/w
streams such that

• each “no”-instance is rejected with probability 1, and

• each “yes”-instance is accepted with probability > 2/3.

For the set disjointness problem, in the presence of con-
siderably less than log N head reversals, not even a ran-
domized algorithm with 2-sided bounded error exists:

Theorem 3.6 ([7]) Let t be a positive interger and let ε
be an arbitrary number with 0 < ε < 1.
There is no (o(log N/ log log N), O(N1−ε), t)-bounded
randomized algorithm for the set disjointness problem on
r/w streams such that

• each “no”-instance is rejected with probability > 2/3,

• each “yes”-instance is accepted with probability > 2/3.

The above results easily lead to the following state-
ments on the data complexity of relational algebra queries
and queries posed against XML data [20, 7] (for any choice
of t > 1 and ε with 0 < ε < 1).

(1) For every relational algebra query Q, the problem of
evaluating Q on a stream consisting of the tuples of
the input database relations, can be solved by an
(O(log N), O(1), 2)-bounded deterministic algorithm
on r/w streams.

(2) There exists a relational algebra query Q1 such that
the problem of evaluating Q1 on a stream of the tuples
of the input database relations cannot be solved by
any (o(log N), O(N1−ε), t)-bounded algorithm on r/w
streams.

(3) The task of checking whether the join of two rela-
tions A and B is empty cannot be performed by
any (o(log N/ log log N), O(N1−ε), t)-bounded ran-
domized algorithm on r/w streams with a two-sided
bounded error of at most 1/3.

(4) There is an XQuery query Q2 such that the problem
of evaluating Q2 on an input XML document of length
N cannot be solved by any (o(log N), O(N1−ε), t)-
bounded algorithm on r/w streams.
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(5) There is an XPath query Q3 such that the prob-
lem of checking, for an input XML document D of
length N , whether Q3(D) 6= ∅, cannot be solved by
any (o(log N), O(N1−ε), t)-bounded randomized algo-
rithm on r/w streams with 1-sided bounded error that
accepts “yes”-instances with probability 1 and that
rejects “no”-instances with probability > 2/3.

(6) There is an XQuery query Q4 such that the prob-
lem of checking whether the result of Q4 on an input
XML document of length N is empty cannot be solved
by any (o(log N/log log N), O(N1−ε), t)-bounded ran-
domized algorithm on r/w streams with a two-sided
bounded error of at most 1/3.

Suggestions for further reading: An overview of
the model of r/w streams is given in [33]; technical details
can be found in the articles [21, 20, 25, 7, 6].

A related computation model based on r/w streams and
intermediate sorting steps is the StrSort model of [3] that
was further considered in [32]. In [12], the W-Stream
model, a restriction of the StrSort model in which in-
termediate sorting steps are prohibited, was introduced.
This model can also be viewed as a restriction of the com-
putation model of r/w streams with a single r/w stream,
where only forward scans are allowed.

An important future task: It would be interesting
to further study the computational power of the model
with multiple r/w streams and intermediate sorting steps.
First steps in this direction were taken in [3, 32]. Similarly
as with the external memory model from Section 2, the
lower bound proofs currently known for this model rely on
the assumption that data items are indivisible and that
only comparisons between data items are allowed. It is
a challenging future task to develop methods for proving
lower bounds in the StrSort model that do not rely on
such an indivisibility assumption.

4 Finite Cursor Machines

Finite cursor machines (FCMs, for short) were introduced
in [19] as an abstract model of database query processing.
Informally, they can be described as follows:

The input for an FCM is a relational database. Each
relation is represented by a table, i.e., an ordered list of
rows, where each row corresponds to a tuple in the rela-
tion. The size n of the input is defined as the sum of the
number of rows of each input table.

Data elements are viewed as “indivisible” objects that
can be manipulated by a number of built-in operations.
We assume that all data items belong to a fixed, infinite
universe D, which is equipped with a number of built-in
predicates (including, e.g., the equality predicate and a
linear order). This feature is very convenient for modeling
standard operations on data types like integers, floating
point numbers, or strings, which may all be part of the set

in
te

rn
al

m
em

or
y

mode

Memory:

1
R

c

2c
R

R:

c
S
1

S:

out 1 2out 3out

d1 d2 d3

Output registers:

d1 d3d2

Input tables:

Output table:

Figure 3: The model of finite cursor machines.

D. The universe D together with the built-in predicates
form the so-called background structure.

FCMs can operate in a finite number of modes (corre-
sponding to states of a finite automaton). Additionally,
they can use internal memory in which they can store
bitstrings. We speak of O(1)-FCMs (respectively, o(n)-
FCMs) when restricting attention to FCMs where inter-
nal memory is of constant size (respectively, of size o(n)).
FCMs access each input relation through a finite number
of cursors, each of which can read one row of a table at
any time. The model incorporates certain streaming as-
pects by imposing a restriction on the movement of the
cursors: They can move on the tables sequentially, in one
direction only. Thus, once the last cursor has passed a
row of a table, this row can never be accessed again dur-
ing the computation. Note, however, that several cur-
sors can be moved asynchronously over the same table
at the same time, and thus, entries in different, possibly
far apart, regions of the table can be read and processed
simultaneously.

For producing an output table, a finite number of out-
put registers are available, each of them capable of storing
an element in D. Whenever the so-called outputmode is
set to a special value out, the machine automatically pro-
duces the next output tuple: The tuple consisting of the
values in the output registers (in some predefined order)
is appended to the output table.

An illustration of the model is given in Figure 3. The
formal notion of FCMs is defined in the framework of
abstract state machines; details can be found in [19].

Figure 4 gives an example of an FCM program that
computes the query Q defined on a ternary relation R
over N that returns the sum of the first and second at-
tribute of each row whose third attribute contains a value
bigger than 100. In the example, there is a single output
register out1 and a single cursor c that accesses the rows
of R, starting in the first row. The program starts with
outputmode set to the value init and is applied again
and again until the cursor has been moved beyond the
last row of R. The command c := nextR(c) advances the
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1: if outputmode = out then
2: par
3: outputmode := init

4: c := nextR(c)
5: endpar
6: else
7: if attribute3

R(c) > 100 then
8: par
9: out1 := attribute1

R(c) + attribute2

R(c)
10: outputmode := out

11: endpar
12: else
13: c := nextR(c)
14: endif
15: endif

Figure 4: Example of an FCM program.

cursor to the next row of R. The par/endpar construct
encloses lines of code that are executed in parallel. The
code in lines 7–11 enforces that if the third column of the
currently visited row contains a value > 100, then the
output register out1 is filled with the sum of the values
in the row’s first two columns, and the outputmode out
is activated, enforcing that the content of register out1 is
appended as a new tuple of the output table. In the next
execution of the program, the code in lines 1–5 deacti-
vates the outputmode (by setting it to the value init) and
advances the cursor to the next tuple in R.

FCMs model quite faithfully what happens in relational
database query processing. For example, the selection
σθ(R) of all rows of R that satisfy a certain selection con-
dition θ can be implemented by an FCM in a straightfor-
ward way. If tables are sorted, then also the projection
operator and the union, intersection, and difference of
two relations can be accomplished by an FCM. Also the
semijoin1 R ⋉θ S can be computed by an FCM operat-
ing on sorted tables, provided that the join condition θ
consists of a conjunction of equalities and at most two
inequalities [19]. This leads to the following observation
concerning the semijoin algebra, i.e., the restriction of re-
lational algebra where, instead of joins, only semijoins are
allowed.

Theorem 4.1 ([19]) Every semijoin algebra query can
be computed by a query plan composed of a finite number
of O(1)-FCMs and sorting operations.

Notice that FCMs are capable of computing some re-
lational algebra queries that are not expressible in the
semijoin algebra. An example is the Boolean query ask-
ing whether R = π1(R) × π2(R), i.e., asking whether the
binary relation R is the cartesian product of the projec-
tion of R to its first and second component, respectively.
Also, examples of queries that are computable by FCMs

1R ⋉θ S returns all tuples r of R for which there exists a tuple s

of S such that (r, s) satisfies condition θ.

but not expressible in relational algebra are known (cf.,
[19]).

Furthermore, sliding window joins for a fixed window
size w (enforcing that the join operator is successively
applied to portions of the data, each portion consisting of
a number w of consecutive rows of an input table) can be
easily computed by an FCM. Note, however, that general
joins cannot be computed since the output size of a join
may be quadratic in the size of the input, while O(1)-
FCMs can output only a linear number of tuples.

In connection with Theorem 4.1, the question arises
whether intermediate sorting steps are really necessary.
The next theorem answers this question affirmatively. Let
R, S, and T be relations, such that S has arity > 2, and
consider the composition

R ⋉x1=y1
(S ⋉x2=y1

T )

of two semijoins. S ⋉x2=y1
T returns all tuples s in

S for which there exists a tuple t in T whose first
component coincides with the second component of s.
R ⋉x1=y1

(S ⋉x2=y1
T ) returns all tuples r in R for which

there exists a tuple s in (S ⋉x2=y1
T ) whose first compo-

nent coincides with the first component of r.

Theorem 4.2 ([19])
The query “Is R ⋉x1=y1

(S ⋉x2=y1
T ) nonempty?”, where

R and T are unary relations and S is a binary relation,
is not computable by any o(n)-FCM, even if the input
consists of all sorted versions of the relations R, S, T .

Here, the notion of “sorted versions” of a relation is de-
fined as follows. Recall that the universe D of data items
is equipped with a linear order <. We consider sorting in
ascending or descending order. Then, a relation of arity p
can be sorted lexicographically in p!·2p different ways: For
any permutation π of {1, . . . , p} and any ordering scheme
σ : {1, . . . , p} → {asc, desc}, let sortπ,σ be the operation
that takes a p-ary relation R and lexicographically sorts
it as follows: It sorts the π(1)-th column first (ascend-
ingly or descendingly, depending on the value of σ(1)),
the π(2)-th column second (ascendingly or descendingly,
depending on the value of σ(2)), . . . , and sorts the π(p)-
th column last (ascendingly or descendingly, depending
on the value of σ(p)). Theorem 4.2 assumes for any rela-
tion, that for any applicable permuation π and ordering
scheme σ, the table sorted according to sortπ,σ is present
as an input table.

Note that Theorem 4.2 is sharp in terms of arity of the
input relations and in terms of size of internal memory:
If S is unary (and R and T of arbitrary arities), then the
corresponding query is computable by an O(1)-FCM on
sorted inputs. Furthermore, if internal memory of size
O(n) (rather than o(n)) is available, then the entire input
database can be loaded into internal memory, and the
query can be processed there.
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Suggestions for further reading: The formal def-
inition of FCMs as well as detailed proofs of the results
mentioned in this section can be found in [19].

An important future task: The main open ques-
tion from [19] is as follows: Is there a Boolean relational
algebra query that cannot be computed by a finite compo-
sition of FCMs and sorting operations? The conjectured
answer is “yes”, since every query that can be computed
by a finite composition of sorting operations and O(1)-
FCMs (over an efficiently decidable background structure)
can be evaluated by a deterministic algorithm the per-
forms O(n log n) steps (where n denotes the size of the
input database) — and reasonable conjectures in parame-
terized complexity (cf., [18]) imply that there are Boolean
relational algebra queries that cannot be evaluated in time
O(n log n) (with respect to data complexity).

5 Mpms-Automata

In XML databases, an index over an XML document typ-
ically consists of a number of streams, one for each label
that occurs in the document. We write Ta to denote the
stream associated with label a. Each stream Ta consists
of positional encodings of all elements, in document order,
that occur in the document and that carry the label a.

A widely used encoding scheme is the BEL encoding
(cf., e.g., [8, 36]), in which each element is encoded as a
triple (Begin,End,Level), where Begin and End denote
the positions of the starting tag and ending tag of the
element in the document, and Level denotes the level at
which the corresponding node occurs in the associated
XML document tree. An example of an XML document,
the BEL encoding of its elements, and the corresponding
index streams is given in Figure 5.

Most currently known algorithms for processing so-
called twig join queries (i.e., XPath queries of a particular
kind) can be viewed as implementations of the following
computation model (cf., e.g., [8, 36]). Let us consider
a fixed query Q — for example, the query //e/g ask-
ing for all g-labeled nodes whose parent carries label e.
The input to the evaluation algorithm is an indexed XML
document, i.e., a collection of streams Ta of positional en-
codings, for each label a occurring in the document. For
each occurrence of each label a in the query, the algorithm
may use a cursor (or, head), with which the stream Ta

can be processed once from left to right. An algorithm
can move heads asynchronously, and it can read from a
head position many times, until it decides to advance it to
the next position. The output is written to a write-only
output stream.

In [36], Shalem and Bar-Yossef gave a precise charac-
terization of the memory requirement for evaluating twig
queries with this computation model. Among other re-
sults, they showed the following.

XML doc.:

1: <f>

2: <e>

3: <f>

4: <f>

5: <g>

6: </g>

7: </f>

8: <g>

9: </g>

10: </f>

11: <g>

12: </g>

13: </e>

14: <h>

15: </h>

16: </f>

XML tree with BEL encoding:

g

h

g

f

f

g

( 8, 9, 4 )

( 11, 12, 3 )

( 1, 16, 1 )

( 14, 15, 2 )  

( 4, 7, 4 )

( 3, 10, 3 )

( 2, 13, 2 )

( 5, 6, 5 )

e

f

Corresponding index streams:

Te : (2, 13, 2) Tf : (1, 16, 1), (3, 10, 3), (4, 7, 4)

Th : (14, 15, 2) Tg : (5, 6, 5), (8, 9, 4), (11, 12, 3)

Figure 5: XML document, tree with BEL encoding, and
corresponding index streams.

Theorem 5.1 ([36]) Let e and g be two distinct labels,
and let A be an algorithm in the above computation model
that answers the question “Is there an e-labeled node that
has a g-labeled child” on any indexed XML input docu-
ment. Then, for every n > 1 there is an XML document
D of depth n on which A uses at least n − O(log n) bits
of memory.

For reasoning about the power of the above computa-
tion model, the notion of mpms-automata2, introduced in
[34], is useful. An illustration of the model is given in
Figure 6. The formal definition of the model is as follows.

Let D be a (potentially infinite) set of data items, let
t,m, kf , kb be integers with t,m > 1 and kf , kb > 0. An

mpms-automaton A with parameters (t, D,m, kf , kb)

receives as input t streams S1, . . . , St of elements in D

(formally, we can view each stream Si as a finite string
over alphabet D, i.e., as an element in D

∗).
The automaton’s memory consists of m different states

(note that this corresponds to a memory buffer consisting
of log m bits). The automaton’s state space is denoted by
Q. We assume that Q contains a designated start state
and that there is a designated subset F of Q of accept-
ing states. On each of the input streams, the automaton
has kf heads that process the stream from left to right
(so-called forward heads) and kb heads that process the
stream from right to left (so-called backward heads). The
heads are allowed to move asynchronously. We use k to
denote the total number of heads, i.e., k = tkf + tkb.
In the initial configuration of A on input S1, . . . , St the
automaton is in the start state, all forward heads are

2
mpms is short for multi-pass processing of multiple streams
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log m  bits
buffer:

memory

input S  :2

input S  :1

Figure 6: An mpms-automaton with t = 2 input streams,
kf = 5 forward heads, and kb = 4 backward heads.

placed on the leftmost element, and all backward heads
are placed on the rightmost element in the corresponding
stream.

During each computation step, depending on (a) the
current state (i.e., the current content of the automaton’s
memory) and (b) the elements of S1, . . . , St at the current
head positions, a transition function determines (1) the
next state (i.e., the new content of the automaton’s mem-
ory), (2) which of the k heads is advanced to the next
position (where forward heads are advanced one step to
the right, and backward heads are advanced one step to
the left), and which (sequence of) elements of D is written
to the output stream.

The automaton’s computation on input S1, . . . , St ends
as soon as each head has passed the entire stream. The
input is accepted if the automaton’s state then belongs to
the set F of accepting states, and it is rejected otherwise.

Consider, e.g., the variant Disjn of the set disjoint-
ness problem with input domain Dn := {ai, bi, ci : i ∈
{1, . . . , n}}, where the input consists of two streams S1 =
s1s2 · · · sn and S2 = t1t2 · · · tn. The goal is to decide
whether the sets {s1, . . . , sn} and {t1, . . . , tn} are dis-
joint. It is not difficult to see that the problem Disjn
can be solved by an mpms-automaton with parameters
(2, Dn, n+2,

√
n, 0) (cf., [34]). An according lower bound

is given by the following theorem.

Theorem 5.2 ([34]) For all n, m, kf , kb such that, for
k = 2kf + 2kb and v = (k2

f + k2
b + 1) · (2kfkb + 1),

k2 · v · log(n+1) + k · v · log m + v · (1 + log v) 6 n,
the problem Disjn cannot be solved by any mpms-
automaton with parameters (2, Dn,m, kf , kb).

In [36], the variant RDisjn of the problem Disjn was
considered, where inputs are restricted to streams S1 =
s1 · · · sn and S2 = t1 · · · tn where, for each i ∈ {1, . . . , n},
si ∈ {ai, bi} and tn−i+1 ∈ {ai, ci}. Theorem 5.1 can then
be proved by (1) using the lower bound for RDisjn stated
in the next theorem and (2) reducing the RDisjn problem
to the problem of answering the query stated in Theo-
rem 5.1.

Theorem 5.3 (implicit in [36]) The problem RDisjn
cannot be solved by any mpms-automaton with parame-
ters (2, Dn,m, 1, 0) for m < 2n

2n .

Suggestions for further reading: Details on the
computation model for processing indexed XML docu-
ments can be found in [8, 36] and the references given
therein. The formal definition of the model of mpms-
automata is given in [34].

An important future task: Consider also random-
ized versions of mpms-automata, design efficient random-
ized approximation algorithms for particular problems,
and develop techniques for proving lower bounds in the
randomized model.

6 Stream Processing

The data stream scenario considers data that is not stored
but, instead, has to be processed on-the-fly by using only
a limited amount of memory. Thus, the basic data stream
model can be viewed as the restriction of the computa-
tional model of read/write streams where a single forward
scan can be performed on a single r/w stream (cf., Sec-
tion 3.1). When designing data stream algorithms, one
aims at algorithms whose memory size is far smaller than
the size of the input.

Typical application areas for which data stream (or,
one-pass) processing is relevant are, e.g., IP network traf-
fic analysis, mining text message streams, or processing
meteorological data generated by sensor networks. Data
stream algorithms are also used to support query opti-
mization in relational database systems. In fact, virtually
all query optimization methods in relational database sys-
tems rely on information about the number of distinct val-
ues of an attribute or the self-join size of a relation — and
these pieces of information have to be maintained while
the database is updated. Algorithms for accomplishing
this task have been introduced in the seminal paper [4].

Lower bounds on the size of memory needed for solving
a problem by a one-pass algorithm are usually obtained
by applying methods from communication complexity (cf.,
Section 3.1). In fact, for many concrete problems it is
known that the memory needed for solving the problem by
a deterministic one-pass algorithm is at least linear in the
size N of the input. For some of these problems, however,
randomized one-pass algorithms can still compute good
approximate answers while using memory of size sublinear
in N . Typically, such algorithms are based on sampling,
i.e., only a “representative” portion of the data is taken
into account, and random projections, i.e., only a rough
“sketch” of the data is stored in memory. An example of
such an algorithm is given in the proof of Theorem 3.3.

It should be noted that many of the sophisticated data
stream algorithms achieve a surprisingly good perfor-
mance (cf., [28]). For example, it is not at all obvious
how to maintain information on the number of distinct
elements that occurred in a stream, without storing a list
of all those elements (since, intuitively, for each element
that arrives, one has to check whether this is a new ele-
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ment or just the repetition of an element that had already
occurred in the stream). Here, randomized algorithms
are known which give good approximate solutions to this
problem while using just a logarithmic number of bits [4].

Suggestions for further reading. In recent years,
the database community has addressed the issue of de-
signing general-purpose data stream management systems
and query languages that are suitable for new application
areas where massive amounts of transient data have to
be processed. To get an overview of this research area,
[5] is a good starting point. Foundations for a theory of
stream queries have been laid in [23]. A comprehensive
overview of efficient algorithms for data stream process-
ing can be found in [28]. In the context of XML query
processing and validation, stream-based approaches have
been examined in detail (cf., e.g., [35, 17, 9, 30]).

7 MapReduce & the Mud Model

Implementations of the MapReduce programming model,
e.g., by Google [11] or the Apache Hadoop project [24],
are comonnly used frameworks for distributed process-
ing of large datasets. Users give a high-level specification
of an algorithm in terms of a map and a reduce function.
The underlying system then automatically parallelizes the
computation across large-scale clusters of machines, han-
dles failures, and schedules inter-machine communication
to make efficient use of the network and the disks.

In this programming model, the input consists of a set
of (key, value) pairs. The map function takes an input pair
and produces a set of intermediate (key, value) pairs. The
system then automatically groups together all intermedi-
ate values with the same intermediate key k and passes
them to the reduce function. The reduce function merges
(or, aggregates) these values together to form a smaller
set of values for that key (typically, just a single value is
produced for each key k).

In [13], Feldman et al. introduced an abstract algo-
rithmic model for massive, unordered, distributed (mud,
for short) computation, as implemented by systems for
MapReduce. For the special case that just a single key is
available, a mud algorithm is a triple A = (Φ,⊕, η) with
the following parameters:

• Φ : D → Q, where D is the domain of potential input
data items, and Q is the set of intermediate values (or,
messages),

• ⊕ : Q×Q → Q maps two messages to a single message,

• η : Q → D is the so-called post-processing operator that
produces the final output.

When the algorithm is executed on an input X =
x1, . . . , xn with xi ∈ D, the function Φ produces the se-
quence of messages Y = y1, . . . , yn = Φ(x1), . . . ,Φ(xn).
The operator ⊕ is used to aggregate these messages into

a single message. Note that the output can depend on
the order in which ⊕ is applied. Formally, for any bi-
nary tree T with n leaves, and for any permutation π of
{1, . . . , n}, let mT ,π(X) denote the message q ∈ Q that
results from applying ⊕ along the topology of T with
the sequence yπ(1), . . . , yπ(n) used as input at the leaves
of T . The overall output of the mud algorithm then is
the data item A(X) := η(mT ,π(X)). It should be em-
phasized that T and π are not part of the algorithm, but
rather, the algorithm designer needs to make sure that
η(mT ,π(X)) is independent of the particular choice of T
and π. This is required to ensure that mud algorithms
serve as an abstract model of distributed computations
that are independent of the underlying implementation.
A sufficient condition that guarantees independence of T
and π is associativity and commutativity of ⊕.

We say that a function f : D
n → D is computed by

a mud algorithm A if f(X) = A(X) for all X ∈ D
n.

Obviously, mud algorithms can only compute symmet-
ric functions, i.e., functions f where f(x1, . . . , xn) =
f(xπ(1), . . . , xπ(n)) for any permutation π.

The communication complexity of a mud algorithm is
defined as log |Q|, i.e., the number of bits needed to rep-
resent a message. The space (resp., time) complexity of
a mud algorithm is defined as the maximum space (resp.,
time) complexity of its component functions Φ, ⊕, η. Any
mud algorithm can be simulated by a data stream algo-
rithm in a straightforward way. A main technical result
of [13] shows that, in some sense, also the reverse is true:

Theorem 7.1 ([13]) Any deterministic streaming algo-
rithm that computes a symmetric function f : D

n → D

can be simulated by a mud algorithm with the same com-
munication complexity, and the square of its space com-
plexity.

Suggestions for further reading: The mud model
and some extensions were introduced in [13]. An overview
of MapReduce can be found in [11, 24].

An important future task: The time complexity of
the simulation provided by Theorem 7.1 is superpolyno-
mial, and thus the simulation does not immediately pro-
vide distributed algorithms of high performance. It would
be interesting to develop more time-efficient simulations.
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