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Proof. Let m be the number of tuples of a relation R. Then nec(A) contains no more that m2 sets(see the proof of theorem 7), and gendep(A) has no more that nm2 FDs. Hence, a cover of FR can becomputed in polynomial time. 2Corollary 3 If the number of tuples of a relation is bounded by a constant, it takes polynomial timeto �nd all its minimal keys.Proof. According to [DT88], the number of antikeys is no more than m2, where m is the number oftuples of R. Hence, the number of minimal keys is no more than n �m2. By proposition 8, we cancompute a cover of FR in polynomial time, and, by [LO78], given a relation scheme, we can �nd itsminimal keys in polynomial time in size of input and output. Hence, the minimal keys of R can befound in polynomial time. 2Now we immediately obtain from theorem 6, proposition 7, and corollary 3:Proposition 9 The problems 3 and 4 can be solved in polynomial time for a relation scheme in BCNFif either the number of minimal keys or the number of tuples of a relation is bounded by a constant. 2We can demonstrate another example providing the problem 4 to be polynomial for relation schemesin BCNF. Remind that an antichain A is called saturated [BDK87,Thi86] if A [ fXg is not antichainfor every X 62 A.Proposition 10 Let < U; F > be a relation scheme in BCNF and R a relation in BCNF. If eitherthe family of minimal keys of < U; F > or the family of antikeys of R is saturated, the problem 4 canbe solved in polynomial time.Proof. Let the family fK1; : : : ; Klg of the minimal keys of < U; F > be saturated. Find in polynomialtime the family fX1; : : : ; Xrg of antikeys of R [DT88]. Then fX1; : : : ; Xrg is the family of antikeys offK1; : : : ; Klg i� for all i = 1; : : : ; l, Ki is a minimal set that is not contained in some Xj ; j = 1; : : : ; r.Clearly, the last condition can be checked in polynomial time. If the family of antikeys of R issaturated, the proof is the same. 2Several criteria providing the families of minimal keys and antikeys to be saturated are established in[Thi86].7 ConclusionIn this paper we have investigated several aspects of Armstrong relations, dependency inference,and excluded functional dependencies. In particular, we have characterized those sets of excludeddependencies which e�ectively correspond to sets of FDs (and hence to Armstrong relations). Wehave shown that the problem of �ndings all minimal keys of a given relation instance can be solved byusing practical algorithms for dependency inference. We proved that the problem whether all FDs that17



Xi; i = 1; : : : ; r). If a relation scheme < U; FR > satis�es property 2, it follows from the proof ofTheorem 6 that fXA ! A : A 2 Ug is a cover of FR. Clearly, B 2 XA i� fBg = Xi for someXi 2 nec(A), and nec(A) can be computed in polynomial time. Therefore, it takes polynomial timeto �nd a cover of FR.c) Problems 3-4. According to [DLM89], FR � F+ i� SF � SR, or i� GEN(F ) � SR. Since GEN(F )can be computed in polynomial time, the checking of the last condition takes polynomial time too.The theorem is completely proved. 2Property 1 can be easily generalized if we allow FDs X ! A with jX j < k, k > 1. However, asthe following theorem shows, it is impossible to get a polynomiality result for Problem 1 w.r.t. suchrelation schemes.Proposition 5 Problem 1 has exponential complexity even if it is known that a relation schema< U; F > satis�es the property: for each FD X ! A 2 F+ there is an FD Y ! A 2 F+ with Y � Xand jY j < k, k > 1.Proof. In [BDFS84] an example of a RS with k = 2 was constructed that satis�es the above propertyand provides a minimal Armstrong relation exponential in the number of FDs. 2Finishing this section, we discuss the complexity of the main problems for relations and relationschemes in BCNF.Let < U; F > be a relation scheme in BCNF. We can think without loss of generality that F consists ofFDs Ki ! U; i = 1; : : : ; l, where Ki; i = 1; : : : ; l, are the minimal keys (if not, we compute a minimumcover in polynomial time). Let R be an Armstrong relation for < U; F >. Then we can �nd antikeys,that is, maximal nonkeys [Thi86], in polynomial time in jRj, see [DT88]. Conversely, if we have thefamily of antikeys, we can construct an Armstrong relation for < U; F > according to the algorithmof section 2. Thus, we obtainProposition 6 Problem 1 for relation schemes in BCNF is polynomially equivalent to �nding theantikeys of a family of minimal keys. 2The last problem was discussed in [Thi86]. The problem is inherently exponential. Hovewer, it canbe solved in polynomial time, with some additional conditions being added.Proposition 7 Problem 1 for relation schemes in BCNF can be solved in polynomial time if thenumber of minimal keys is bounded by a constant.Proof. It follows from [Thi86] and proposition 6. 2Now we prove an auxiliary result.Proposition 8 Problem 2 can be solved in polynomial time if the number of tuples of a relation isbounded by a constant. 16



all l 6= i. IfXp � Xi, we are done. IfXi andXp are incomparable, consider all the pairs fXi; X0l g; l 6= i.If for some l we can change Xi to Xi \X0l , then A0 = A0 [ fXi \X0l g. If for all the pairs we can onlychange X0l to Xi \X0l , then A0 = fXig [ fXi \X0l : l 6= ig.If k = 2, it takes one step to transform A to a chain. Since each ith iteration takes no more than iadditional steps, it takes O(k2) steps to transform A to A0. Then, if we apply the above algorithm toA0 � fXig etc, we obtain a chain by no more than k � 1 iterations. Hence, A can be transformed toa chain by O(k3) steps being used. This shows the polynomiality of the recognition of property 2 forrelation schemes.b) For relations. It follows immediately from proposition 3 that if FR satis�es property 2, then all theelements of GEN(FR) have cardinality n; n � 1 or n � 2. Moreover, SR is separatory if and only ifthe matrix a =k aij k; i; j = 1; :::; n :aij = ( 1 if U � fAi; Ajg 2 SR0 otherwise,where U = fA1; : : : ; Ang is absolutely determined, that is, each submatrix of a has a saddle point[GL90]. The last property can be checked in time O(n4) [GL90].Property 3. a) For relation schemes. It is wellknown that the BCNF property of relation schemes canbe tested in polynomial time. It can be shown, for instance, as follows. It is almost evident that arelation scheme < U; F > is in BCNF i� its minimum cover consists of FDs fKi ! U; i = 1; : : : ; lg,where Ki; i = 1; : : : ; l, are the minimal keys of < U; F >. Since to �nd a minimum cover takespolynomial time [Ma83], and testing whether a set of arttributes is a minimal key also takes polynomialtime, BCNF can be recognized in polynomial time.b) For relations. See [DHLM89] for a polynomial algorithm.The proof is complete. 2Now we are ready to present the main result about the complexity of problems 1-4 if it is known thata relation scheme < U; F > ( or < U; FR > if input is R ) satis�es additional properties.Theorem 7 The problems 1-4 can be solved in polynomial time if it is known that a relation scheme< U; F > (for problems 1,3,4) or < U; FR > (for problem 2) satis�es property 1 or 2.Proof. Property 1. The polynomiality of constructing Armstrong relation was proved in [MR89], thepolynomiality of the other problems is almost evident.Property 2. a) Problem 1. According to the proof of previous theorem ( see also [GL90] ) GEN(F )can be computed in polynomial time. Applying algorithm of [MR86, p.136], we �nd an Armstrongrelation.b) Problem 2. We use the concepts of nec(A) and gendep(A) (see [MR87]). Let R = ft1; : : : ; tngbe a relation over U . Let disag(i; j) = fA 2 U : ti(A) 6= tj(A)g and nec(A) = fdisag(i; j)� A :A 2 disag(i; j)g. Suppose gendep(A) = ffA1; : : : ; Arg ! A : Ai 2 Xi; i = 1; : : : ; rg, where nec(A) =fX1; : : : ; Xrg. Then Sfgendep(A) : A 2 Ug is a cover of FR. Suppose XA = T(fA1; : : : ; Arg : Ai 215



2) CF is separatory, that is, if CF (X) 6= X and CF (Y ) 6= Y , then CF (X \ Y ) 6= X \ Y ,3) SF is separatory, that is, 2U � SF is a semilattice again. 2Proposition 4 ([DHLM89]) Given a relation scheme < U; F >, the following are equivalent:1) < U; F > satis�es property 3,2) For each X � U either CF (X) = X or CF (X) = U ,3) SF � fUg is an ideal of 2U , i.e. if Y � X 2 SF � fUg, then Y 2 SF . 2Further we will show that some considered problems can be solved in polynomial time if it is knownthat a relation scheme satis�es property 1 or 2 or 3. Hovewer, in order to use an algorithm solvinga problem in a special case one has to make sure that either scheme or relation satis�es the requiredproperty. Therefore, it would be desirable if all the properties 1-3 could be recognized in polynomialtime. The next Theorem shows that this fact holds.Theorem 6 All the properties 1-3 are polynomially recognizable for both relation schemes and rela-tions.Proof. Property 1. a) for relation schemes. It is almost obvious that unary FDs cannot be derivedfrom other FDs. Hence, a relation scheme satis�es property 1 i� a nonredundant cover of F consistsof unary FDs only.b) For relations. Given a relation R, we can �nd GEN(FR) in polynomial time in jRj, see [DT88]. Letus �rst prove that FR satis�es property 1 i� X [ Y 2 SR for every X; Y 2 GEN(FR). Really, if FRsatis�es property 1, then it follows from proposition 2 that X[Y = CR(X)[CR(Y ) = CR(X[Y ) andX [ Y 2 SR. Conversely, if X [ Y 2 SR for every X; Y 2 GEN(FR), consider arbitrary V;W 2 SR.Suppose V = X1 \ : : : \ Xk;W = Y1 \ : : : \ Yl, where X1; : : : ; Xk; Y1; : : : ; Yl 2 GEN(FR). ThenV [W = (X1 \ : : :\Xk)[ (Y1 \ : : :\ Yl) = Tki=1Tlj=1(Xi [ Yj) 2 SR, i.e. CR is topological. Since to�nd a closure CR requires polynomial time, the above property can be checked polynomially.Property 2. a) For relation schemes. First we prove that if a relation scheme < U; F > satis�esproperty 2 and X ! A; Y ! B 2 F+ then either X \ Y ! A 2 F+ or X \ Y ! B 2 F+, whereA 62 X;B 62 Y . Really, if it is not true, then A;B 62 CF (X \ Y ). Hence, both X [ CF (X \ Y ) andY [CF (X\Y ) are nonclosed, and by proposition 3 CF (X\Y ) = (X[CF (X\Y ))\ (Y [CF (X\Y ))is nonclosed, a contradiction.Suppose without loss of generality that F consists of FDs X ! A, where A is an attribute. Hence,if a relation scheme satis�es property 2, for every two FDs X ! A; Y ! B 2 F either (F � fX !Ag)[fX\Y ! Ag or (F �fY ! Bg)[fX\Y ! Bg is a cover of F . Since the membership problemfor FDs is polynomial [Ma83], we need only the following to �nish the proof: if we are given a familyA = fX1; : : : ; Xkg of subsets of U , and by one step we can change either Xi or Xj to Xi \Xj , thenA can be transformed to a chain by a polynomial number of steps.First we show how to transform A to A0 = fX 01; : : : ; X 0kg where X 0i = Xi for some i and X 0j � X 0i forall j 6= i. We use induction on k.If A contains unique maximal element Xi, we are done. If Xi; Xj are two maximal elements of A,consider A�fXig and transform it to A0 = fX0l : l 6= ig where X0p = Xp for some p and X0l � X0p for14



Here we show that if F does not contain FDs with small left-hand sides then both problems 3 and 4can be solved in polynomial time.Proposition 1 Suppose for each X ! Y 2 F one has jU j � jX j � k, where k is a constant. Thenboth problems 3 and 4 can be solved in polynomial time.Proof. Given a relation instance R and a set X � U , to �nd CR(X) requires polynomial time in jRj.Hence we can check in polynomial time if CR(X) = X for all X with jU j� jX j = k� 1. Since SR is asemilattice, for each nontrivial FD X ! Y 2 FR it holds that jU j � jX j � k. Therefore, to make surethat FR � F+, we just have to consider all sets X with jU j � jX j � k (there are less than jU jk) andto check that CR(X) � CF (X). 26 Complexity of the Main Problems : Special CasesAs it has been shown at the end of the previous section, the problem which is generally co-NP-complete can be solved in polynomial time if some additional properties hold. This fact leads us tothe idea to study several special types of relation schemes in order to �nd out if problems 1-4 arepolynomial for these relation schemes.In this section we are going to study three types of relation schemes. All these types have alreadybeen investigated more or less widely. We formulate the properties for a relation scheme < U; F >and for its associated closure LF and semilattice SF .Property 1 There is a cover of F consisting of unary FDs, i.e. of FDs of type A! B;A;B 2 U .Property 2 There is a cover of F of type fX1 ! A1; : : : ; Xr ! Arg such that X1 � : : :� Xr.Property 3 A relation scheme < U; F > is in BCNF.The properties 1 and 3 seem to be simply explained from the practical point of view, note that property3 is very desirable. Property 2 is interesting from a mathematical point of view because it correspondsto a relevant class of semilattices and closures.First, we establish the equivalent formulations of the main properties.Proposition 2 Given a relation scheme < U; F >, the following are equivalent:1) < U; F > satis�es property 1,2) CF is topological, i.e. CF (X [ Y ) = CF (X)[ CF (Y ),3) SF is a distributive lattice.The proof is straightforward. 2Proposition 3 ([DLM89]) Given a relation scheme < U; F >, the following are equivalent:1) < U; F > satis�es property 2, 13



those Dj which are contained in any other Di, we get an equivalent instance satisfying our restriction.Of course this transformation can be done in polynomial time. 2We are now ready for proving our complexity result for Problem 2.Theorem 5 It is co-NP-complete to decide whether for a given relation (instance) R and for a givenset F of FDs it holds that FR � F+.Proof. Clearly the problem is in co-NP . Indeed, in order to show that FR 6� F+ it is su�cient toguess nondeterministically an FD which is in FR (testable in polynomial time) but which is not in F+(again testable in polynomial time). Let us now show completeness in co-NP .Consider an instance of the SDC problem consisting of a set S and of families of subsets G1 : : :Gnand D1 : : :Dm. According to Corollary 2 we may assume that the sets D1 : : :Dm form an antichain.>From this instance we will construct a set F of FDs and a set X of XFDs as follows. Let us view theelements of S as attributes and consider a new attribute A 62 S. In the sequel of this proof, all FDsand XFDs are de�ned on the set of attributes S 0 = S [ fAg.Let F = fGi ! A : 1 � i � ng andlet X = fDj 6! A : 1 � j � mg [ f(S 0 �B) 6! B : B 2 Sg.Note that the set FX contains only FDs with right hand side A. More precisely, FX consists of all FDsof the form X ! A such that X � S and X 6� Dj for 1 � j � m. Furthermore, F+X , besides the trivialFDs over S 0, contains exactly the FDs of FX . (This follows from the fact that the pseudotransitivityrule cannot be applied to the FDs of FX in order to generate new nontrivial FDs.)On the other hand, the set F+ consists of all FDs X ! A such that X is a superset of some Gi with1 � i � n plus the trivial FDs over S 0.>From these observations it follows that F+X � F+ i� each subset of S which is not a subset of anyDj is a superset of some Gi. In other words, F+X � F+ i� our SDC Problem-instance has a positivesolution.Since the Dj (1 � j � m) form an antichain, the XFDs of X all have maximal left hand sides.Moreover, the set X of XFDs satis�es the Completeness Criterion B of Section 3. Hence X is completeand a relation instance R can be found in polynomial time such that FR = F+X . Now our SDC probleminstance has a positive solution i� FR � F+.We thus have shown how an instance of the SDC problem can be transformed into an instance of theFD-Relation Implication Problem (Problem 3). It is immediately veri�able that this transformationcan be performed in polynomial time in the size of the given SDC instance. It follows that Problem3 is co-NP-complete. 2Of course, the converse problem, that is, to check up if F+ � FR, can be solved in polynomialtime. However, as pointed out in the introduction, it is still unknown if the problem 4 (FD-RelationEquivalence Problem) is polynomially solvable or not.12



In order to show the co-NP-completeness of SDC, we will use the MONOTONE 3SAT problem whichis known to be NP-complete [Go78, GJ79]:Name: MONOTONE 3SAT (M3SAT)Instance: a �nite set U of propositional variables and a collection C of clauses over Usuch that each clause contains exactly three literals and each clause contains either onlynegated or only un-negated literals.Question: Is there a satisfying truth assignment for C ?Theorem 4 The SDC Problem is co-NP-complete.Proof. It is easy to see that the problem is in co-NP . In order to show that its solution is negative,guess a subset Z � S nondeterministically such that Z is neither a superset of any Gi nor a subset ofany Dj.Let us now show that the complement of M3SAT can be reduced polynomially to our problem.Consider an instance (U;C) of M3SAT. Assume without loss of generality that C consists of k clausesC1 : : :Ck such that the �rst n clauses are positive and the remaining m clauses are negative (withm = k � n).We construct an instance of the SDC problem from (U;C) as follows. Let S = U . For each 1 � j � nlet Dj = U � Cj and for each 1 � i � m let Gi = fp : :p 2 Cn+ig. Clearly the Dj and Gi can beconstructed in polynomial time from C.In the sequel of this proof, any truth value assignment for the propositional variables of U is representedas the subset of U consisting of all those propositional variables which are assigned \true".C is unsatis�able, i� for each truth value assignment � � U there exists a clause Ci; 1 � i � k suchthat Ci is falsi�ed by � . In particular:� A positive clause Cj 2 C is falsi�ed by � i� no propositional variable appearing in � also appears inCj, i.e., i� � � U � Cj = Dj .� A negative clause Ci 2 C is falsi�ed by � i� all propositional variables occurring in Ci (in negatedform) have truth value \true" under � , i.e., i� Gi�n � � .Thus C is unsatis�able i� for each � � S, it holds that (9i; 1 � i � n : Gi � �) or (9j; 1 � j � m :� � Dj). We thus have polynomially transformed the complement of the M3SAT problem to the SDCproblem. This completes our proof. 2The following Corollary shows the co-NP-completeness of a slightly stronger version of the SDCproblem.Corollary 2 The SDC problem remains co-NP-complete even if it is restricted to those instances forwhich the family of sets Dj is an antichain, i.e., no Dj is a subset of a Di, for i 6= j and 1 � i; j � m.Proof. Consider an instance of SDC whose sets Dj do not form an antichain. By eliminating all11



Step 3. Construct a family fXi � A : A 2 U; i = 1; : : : ; pg and denote its elements by Y1; : : : ; Yr.Suppose Y0 = U .Step 4. Construct a relation R0 = ft00; :::; t0rg wheret0i(A) = ( 0 if A 2 Yii otherwise, A 2 U; i = 1; :::; rStep 5. Using the algorithm for solving the dependency inference problem, �nd a cover F 0 of FR0 .Step 6. Find a minimum cover F of F 0.Clearly, all the steps except step 5 require polynomial time in jRj, that is, in n �m. For a discussionand characterization of the equality sets ER and Eij see [DT88].Theorem 3 The output F of the above algorithm consists of FDs K1 ! U; : : : ; Kl ! U , whereK1; : : : ; Kl are all the minimal keys of R.Proof. According to [DT88], X1; : : : ; Xp are so-called antikeys, i.e. maximal nonkeys. According to[MR86], R0 is a relation whose antikeys are X1; : : : ; Xp and by [BDK, theorem 3] the families of keysof R and R0 coincide. Moreover, by [DHLM89] FR0 is in BCNF, and hence its minimum cover consistsof FDs Ki ! U for Ki; i = 1; : : : ; l, the minimal keys of R0. 2It is shown in [MR87] that in many cases the algorithm solving dependency inference problem maywork e�ciently. In these case one can use the above algorithm to �nd the minimal keys of a relation.Remind, that this problem is inherently exponential as the number of keys of a given relation instancecan be exponential in the size of the instance [BDFS84,DT87]. The last mentioned fact together withtheorem 3 impliesCorollary 1 The dependency inference problem has exponential complexity. 25 Deciding FR � F+ is Co-NP-CompleteIn this Section we turn our attention to Problem 3. It is possible to show that this problem (FD-Relation Implication Problem) is co-NP-complete. In order to do this, we will �rst de�ne anotherproblem and prove its co-NP-completeness and then show the polynomial transformability of thatproblem to our problem.The problem we will �rst consider can be described as follows:Name: SUBSET DELIMITER COMPLEMENTARITY (SDC)Instance: a �nite set S, a collection G1 : : :Gn of subsets of S, and a collection D1 : : :Dmof subsets of S.Question: Is it true that 8X � S : ( (9i; 1 � i � n : Gi � X) or (9j; 1 � j � m : X �Dj) ) ? 10



to several di�erent (minimal) complete sets of XFDs. Hence incomplete sets of XFDs do not containenough information for characterizing FD-families unambiguously. We will show this on hand of asimple example.Consider again the set X containing a single excluded FD X = fB 6! Ag de�ned on a set of attributesU = ABC. We have already seen that this set is incomplete. We can extend X to a complete seteither by enlarging the lhs of its XFD, yielding X1 = fBC 6! Ag, or by adding another XFD, yieldingX2 = fB 6! A;B 6! Cg. It can be easily seen by applying Completeness Criterion B that both X1 andX2 are complete. Of course X1 and X2 correspond to di�erent sets of FDs FX1 and FX2 . Furthermore,X1 and X2 are both minimally complete in the sense that any omission of an attribute or of an XFDwould result in incompleteness.We conclude this Section by making a few comments on related work. Excluded FDs are also studiedby Thalheim in [Tha88] where their use for database design is motivated; moreover [Tha88] introducesthe notion of excluded multivalued dependency (XMVD) and states derivation rules for FDs, MVDs,XFDs, and XMVDs. The notion of functional independency which is similar to the one of an XFDhas been introduced by Janas [Ja88, Ja89]. Janas analyzes covers consisting of both, FDs and func-tional independencies. According to Janas, a set G of FDs and functional independencies is free ofcontradictions if there is no FD X ! Y such that both X ! Y and X 6! Y are implied by G. Thisconcept seems to be close to the one of completeness; there is, however, a main di�erence betweenour approach and the one of Janas: We make the closed world assumption to sets of XFDs but Janasdoes not make this assumption for sets of functional independencies. For example, in the setting ofJanas, the set fB 6! Ag is free of contradictions, while in our setting this set is incomplete and thusexpresses contradictory information.4 Generating all Keys of a Relation InstanceThe Dependency Inference Problem (Problem 2) is inherently exponential. Mannila and R�aih�a [MR87]show an example of a relation instance R containing O(n) tuples, where n = jU j, such that there isa minimum cardinality cover F of FR containing O(2n=2) FDs. Nevertheless, a useful and practicalalgorithm for inferring dependencies from relation instances is developed in [MR87]. This algorithmhas demonstrated a satisfactory e�ciency when being used for \real-life" database design problems.We will now show that the problem of �nding all keys of a relation instance can be polynomiallytransformed to the Dependency Inference Problem. This transformation is useful because it allowsto use highly practical algorithms for dependency inference (such as the one presented in [MR87]) forgenerating all keys to a given relation instance.As a by-product of our polynomial transformation we also get a new proof for the exponential com-plexity of dependency inference. This complexity result follows directly from our transformation andfrom a well known result on the complexity of key-generation. Consider the following algorithm.Algorithm Input: a relation R = ft1; : : : ; tmg over U .Output: a set F of FDs.Step 1. Find the equality set ER = fEij : 1 � i < j � mg, where Eij = fA 2 U : ti(A) = tj(A)g.Step 2. Find the maximal sets among ER � fUg. Denote them by X1; : : : ; Xp.9



Theorem 2 The XFD-CLOSURE algorithm applied to X ; U; and X e�ectively computes CFX (X).Proof. Let U be a set of attributes, let A 2 U , and let X be a set of XFDs on U . By de�nition ofFX , the following statements (1) and (2) are equivalent:(1) there is a FD Y ! A 2 FX(2) there is no XFD Z 6! A in X such that Y � Z.Now let result be an arbitrary subset of U . It follows that the following statements (1') and (2') areequivalent:(1') there is a FD Y ! A 2 FX such that Y � result(2') there is no XFD Y 6! A in X such that result � Y .Indeed, (1') is equivalent to the statement result! A 2 FX which in turn is equivalent to (2').Now consider the XFD-CLOSURE algorithm for X and note that condition (2') occurs in the bodyof the algorithm. If we replace this condition with condition (1') we get exactly the body of theCLOSURE algorithm for FX . Hence the output of the XFD-CLOSURE algorithm is CFX (X). 2>From the above theorem it follows that for each set X � U , CFX (X) can be computed in polynomialtime from X and U . Moreover, the XFD-CLOSURE algorithm can be used as a tool for testing inpolynomial time whether a given set X of XFDs is complete. Indeed, the following criterion followstrivially from the de�nition of completeness:Completeness Criterion A A set X of XFDs is complete i� for each XFD X 6! A 2 X , A 62CFX (X).Obviously, the test A 62 CFX (X) can be performed by using the XFD-CLOSURE algorithm.Let us now derive a simple su�cient (but not necessary) condition for the completeness of a set X ofXFDs:Completeness Criterion B A set X of XFDs is complete if for each XFD X 6! A 2 X and foreach B 2 U � (XA) there is an XFD Y 6! B 2 X such that X � Y .Proof. Assume that Criterion B is satis�ed. Let X 6! A be an XFD of X . Note that the XFD-CLOSURE algorithm applied to X and X stops immediately with output X . Hence CFX (X) = X .Therefore, by Completeness Criterion A, we conclude that X is complete. 2We will use this criterion in the proof of a theorem in Section 5.Let us now make a remark which emphasizes the importance of the notion of completeness. Assumethat an incomplete set of XFDs is given. We will show that such a set, in general, can be extended8



X ! A which follows from FX such that X is equal to any element of MAX(FX ; A) = RHS(X ; A).Hence X is complete.only if. Let X be a complete set of XFDs.� We show that 8A 2 U : RHS(X ; A)�MAX(FX ; A).Assume that for some A 2 U; RHS(X ; A) 6� MAX(FX ; A). Then there exists a XFD X 6!A 2 X such that X 62 MAX(FX ; A). X must be a (proper) subset of some element Y ofMAX(FX ; A), otherwise X ! A would hold, and X would not be complete. Thus there is anY � U with XY 2 MAX(FX ; A) and Y 6= ; and Y \ XA = ;. On the other hand, sincethe XFD X 6! A of X has a maximal left hand side, it must hold by de�nition of FX thatXY ! A 2 FX . This is in contradiction to XY 2 MAX(FX ; A). We thus have shown thatRHS(X ; A)�MAX(FX ; A).� We show that 8A 2 U : MAX(FX ; A) � RHS(X ; A).Assume that for someA 2 U; MAX(FX ; A) 6� RHS(X ; A). Then there existsX 2MAX(FX ; A)such that X 62 RHS(X ; A). There are two cases to consider. In the �rst case X is not a subsetof any element of RHS(X ; A). Then X ! A 2 FX . Contradiction to X 2 MAX(FX ; A). Inthe second case, X is a proper subset of some Y 2 RHS(X ; A). Since X 2 MAX(FX ; A) andY is a proper superset of X the FD Y ! A can be derived from FX ; but Y 6! A is an excludedFD in X . Thus X is not complete. Contradiction. Hence MAX(FX ; A) � RHS(X ; A).The theorem is proved. 2If a set X of XFDs is complete, then an Armstrong relation R for FX can be computed in polynomialtime: Construct GEN(FX ) by uniting all sets RHS(X ; A) and then apply the polynomial algorithmof [MR86] to construct an Armstrong relation for FX from GEN(FX ). Note also that the cardinalityof FX can be exponential in the cardinality of X .Assume that a set X of XFDs on a set of attributes U is given. Assume furthermore that one has tocompute the closure CFX (X) of a set of attributes X � U . One way is to compute �rst FX and thenuse the CLOSURE algorithm as described in Section 2. However, this is not advisable since the sizeof FX may be exponential in the one of X . Fortunately there is a much simpler way of computingCFX (X). The following algorithm XFD-closure computes CFX (X) directly from X and X :Algorithm XFD-CLOSUREInput: a set X of XFDs over Uand a set X � U of attributes.Output: CFX (X)Method:result := X ;WHILE there exists an attribute A 2 U such thatA 62 result ANDthere is no XFD Y 6! A 2 X such that result � YDO result := result [ A;RETURN(result). 7



Each X 2MAX(F;A) can be written and interpreted as excluded functional dependency (XFD) withmaximal left hand side, i.e., as an expression X 6! A such that 8B 2 U�X : XB ! A.3 Some Results on Excluded Functional DependenciesExcluded functional dependencies (in a similar way as MAX-sets) are just an alternative way ofrepresenting the information conveyed by a cover F of functional dependencies. When we speakabout sets of excluded FDs we always assume that these FDs have single attributes as right handsides, that the right hand side attribute of an XFD does not occur in the left hand side of the sameXFD, and that all left hand sides corresponding to the same right hand side are maximal w.r.t. setinclusion, i.e., the set contains no pair of distinct XFDs X 6! A; Y 6! A, such that X � Y .Excluded functional dependencies appear to be more intuitive than MAX-sets. However, when dealingwith excluded FDs, some care has to be taken. If a set X of XFDs on a set of attributes U is given,we wish that this set represents all those dependencies which do not hold in a given situation. Thecorresponding set of all FDs which do hold is then represented by the cover:FX = fX ! A : X � U ^A 2 U ^ A 62 X ^ 6 9 Y 6!A 2 X : X � Y g:Consider for example the set of excluded FDs X = fAB 6! C;AC 6! B;B 6! A;C 6! Ag de�ned ona set of attributes U = ABC. Then FX = fBC ! Ag. It is, however, important to note that thereexist sets X of excluded FDs with maximal left hand sides, for which FX is \unreasonable" because itimplies FDs which should be forbidden (i.e. excluded) according to X . The following example displayssuch a situation.Consider a set X containing a single excluded FD X = fB 6! Ag de�ned on a set of attributesU = ABC. Then FX is equivalent to the cover fC ! A;A ! B;C ! B;A ! C;B ! Cg Ofcourse the FD B ! A follows from FX ; hence this FD is both excluded and requested. It can be seenthat such situations arise when a set of excluded FDs is incomplete, in the sense that some necessaryexcluded FDs (in our case, for instance, C 6! A or B 6! C) are missing. Let us therefore de�ne thenotion of complete set of XFDs.A set X of excluded FDs is complete if FX does not imply any excluded FD, i.e., if no FD X ! A canbe derived from FX , such that X 6! A 2 X .According to the semantics we give to sets of XFDs, only complete sets of XFDs make sense. Indeed,if a set of XFDs is incomplete, then it expresses that certain FDs are both forbidden and valid.The following theorem relates complete XFD-sets to MAX-sets.Theorem 1 Let X be a set of XFDs de�ned on a set of attributes U . Let RHS(X ; A) = fX : X 6!A 2 Xg for each A 2 U . X is a complete set of XFDs i� 8A 2 U : RHS(X ; A) =MAX(FX ; A).Proof. if. Assume that 8A 2 U : RHS(X ; A) = MAX(FX ; A). Each MAX(FX ; A), by de�nition,contains only sets of attributes which do not determine A w.r.t. FX . Thus there cannot be any FD6



that a given set of FDs has only single attributes as right hand sides.A set X is called a key if X ! U 2 F+. A key is called minimal if each Y � X is not a key.A pair < U; F > is called a relation scheme, or RS for short. A RS is in Boyce-Codd normal form(BCNF) if for each X ! A 2 F+, where A 62 X , it holds: X ! U 2 F+.Given a set F of FDs, de�ne the mapping CF (X) = fA 2 U : X ! A 2 F+g (we will write CRinstead of CFR). Then CF is a closure, that is, X � CF (X); X � Y implies CF (X) � CF (Y ) andCF (CF (X)) = CF (X). If F is understood then CF (X) is also denoted by X+.The following well-known algorithm computes the closure CF (X) of a set of attributes X . Here weassume that F has only single attributes as right hand sides.Algorithm CLOSUREInput: a set F of FDs over Uand a set X � U of attributes.Output: CF (X)Method:result := X ;WHILE there exists an attribute A 2 U such thatA 62 result ANDthere is a FD Y ! A 2 F such that Y � resultDO result := result [ A;RETURN(result).A set X is closed (w. r. t. CF ) if CF (X) = X . Denote by SF the family of all closed sets (again, wewrite SR instead of SFR). Then U 2 SF and SF is a semilattice, i.e. X; Y 2 SF implies X \ Y 2 SF .A set X 2 SF is called (meet)-irreducible if X = Y \ Z, Y; Z 2 SF imply X = Y or X = Z. Thefamily of all irreducible sets is denoted by GEN(F ). Notice that the usual mathematical notation forGEN(F ) is M(SF ), but we adopt the terminology of database theory here.GEN(F ) is the unique minimal subfamily of generators in SF such that each member of SF can beexpressed as an intersection of sets in GEN(F ) (where the set U is considered to be the intersectionof an empty collection of sets).It has been shown by Mannila and R�aih�a [MR86] that for a set F of FDs on U it holds thatGEN(F ) =MAX(F ) = [A2UMAX(F;A)where MAX(F;A) = fY � U : Y is a nonempty maximal set (with respect to �) such thatY ! A 62 F+g.In [MR86] an algorithm is presented which computes an Armstrong relation R for a given FD-set Ffrom GEN(F ) in time polynomial in the size of GEN(F ). On the other hand, if R is a given relation,then the MAX-sets for FR, and hence also GEN(FR), can be computed in polynomial time (thisfollows easily from results in [BDFS84], [MR86], [MR87]).5



It seems rather di�cult to �nd the complexity class of Problem 4. To our best knowledge, this problemhas never been dealt with in the literature. We therefore want highlight the complexity analysis ofProblem 4 as an interesting open problem to which we plan to dedicate further research e�orts.We show that the complexity of Problems 1-4 becomes polynomial if it is known that F satis�es certainadditional properties. These additional properties will be formulated for a set F of FDs and for theassociated closure operator and semilattice. We also show that these properties can be recognized inpolynomial time.The paper is organized as follows. In Section 2 we state some basic de�nitions. In Section 3 wederive our new results concerning excluded functional dependencies. In Section 4 we show that thekey-generating problem for relation instances can be solved by using dependency inference. The �fthSection is dedicated to the proof of the co-NP-completeness of Problem 3. In Section 6 we studyspecial cases in which our four problems become polynomial. Some concluding remarks are made inSection 7.2 Basic De�nitionsIn this section we brie
y remind the necessary concepts of relational database theory (cf. [Ma83],[PBGV89]) and state some preliminary results.Let U be a set of attributes. With each attribute A 2 U associate its domain D(A). A relation (orrelation instance) over U is a subset of QA2U D(A). We can think of a relation as being a set of tuplest : U ! SA2U D(A) with t(A) 2 D(A) for each A 2 U . Note that some authors distinguish betweenthe terms \relation" and \relation instance" while here both terms have the same meaning.If X and Y denote sets of attributes and A denotes an attribute, we often write XY , XA, X�A, etc.instead of respectively X [ Y , X [ fAg, X � fAg, etc.A FD is an expression of form X ! Y;X; Y � U . We say that FD X ! Y holds in R if for everyt1; t2 2 R; t1(A) = t2(A) for all A 2 X implies that t1(A) = t2(A) for all A 2 Y .The set of all FDs that hold for a given relation R is denoted by FR. FR satis�es the followingproperties : X ! Y 2 FR for all Y � X(pseudore
exivity), and XZ ! V 2 FR if X ! Y 2 FR andY Z ! V 2 FR (pseudotransitivity).If we are given a set F of FDs, F+ stands for the set of all FDs that can be derived from F by theabove rules being used. Of course, for each relation R, F+R = FR. Furthermore, for each set F offunctional dependencies, there is a relation R with F+ = FR; such a relation is called ArmstrongRelation [FA82].A set F of FDs is called a cover of G if F+ = G+. A cover F is called nonredundant if for each f 2 Fwe have f 62 (F � f)+. A cover F is called minimum if jF j � jF 0j for all other covers F 0.It is well-known that each set F of FDs is equivalent to a set F 0 of FDs containing only singleattributes as right hand sides. Indeed, each FD X ! A1A2 : : :An can be replaced by the following nFDs: X ! A1, X ! A2 : : :, X ! An. Therefore, we can always assume without loss of generality4



1 IntroductionIn order to express the information conveyed by a set of functional dependencies (FDs) that hold ona relation scheme, one can alternatively specify the set of all dependencies that do not hold on thescheme. These dependencies, called excluded functional dependencies (XFDs), are closely related toArmstrong relations. Note, however, that not every arbitrary set of XFDs corresponds to a set ofFDs. In this paper we therefore introduce the notion of completeness of sets of XFDs. Informally, aset of XFDs is complete if it unambiguously characterizes a set of FDs. We also present completenesscriteria which can be tested in polynomial time.In the rest of the paper we study complexity issues related to several problems concerning functionaldependencies (FDs for short) in relational databases. The three problems which we are interested inare the following.Problem 1 (Constructing Armstrong Relation) [BDFS84], [MR86] Given a set F of FDs, constructan Armstrong relation R for F.Problem 2 (Dependency Inference Problem) [MR87], [MR90] Given a relation R, construct a coverF of FDs that hold in R.Problem 3 (FD-Relation Implication Problem) Given a relation R and a set F of FDs, decide whetherall the FDs that hold in R can be derived from F.The �rst two problems are of high practical importance, see [BDFS84, MR86, MR87, MR89]. How-ever, it is known that these problems are inherently exponential and hence it is impossible to designpolynomial algorithms for their solution [BDFS84, MR87, MR86]. The third problem seems to beimportant for design theory too. To our knowledge, its complexity is still unknown. We show thatthe problem of �nding all the minimal keys of a relation instance can be polynomially transformed tothe second problem. Then we prove that the Problem 3 is co-NP-complete.Let us introduce a new problem which is close to the Problem 3.Problem 4 (FD-Relation Equivalence Problem) Given a relation R and a set F of FDs, decide whetherthe sets of FDs that hold in R and that can be derived from F coincide. In other words: decide whetherR is an Armstrong Relation for F.This problem can be decomposed into two subproblems:� Decide whether all the FDs that hold in R can be derived from F, i.e., whether FR � F+. Notethat this subproblem is identical to Problem 3; and� Decide whether each FD of F also holds in R, i.e., whether F+ � FR. Note that this subproblemis easily solvable in polynomial time.Problem 4 thus consists of the conjunction of a co-NP-complete subproblem and a polynomiallydecidable subproblem. Unfortunately, this knowledge does not allow us to determine its complexity.3
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