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Abstract

The standard way of answering queries over incomplete databases is to compute certain answers, defined
as the intersection of query answers on all complete databases that the incomplete database represents. But
is this universally accepted definition correct? We argue that this “one-size-fits-all” definition can often lead
to counterintuitive or just plain wrong results, and propose an alternative framework for defining certain
answers.

The idea of the framework is to move away from the standard, in the database literature, assumption that
query results be given in the form of a database object, and to allow instead two alternative representations
of answers: as objects defining all other answers, or as knowledge we can deduce with certainty about all
such answers. We show that the latter is often easier to achieve than the former, that in general certain
answers need not be defined as intersection, and may well contain missing values in them. We also show
that with a proper choice of semantics, we can often reduce computing certain answers – as either objects or
knowledge – to standard query evaluation. We describe the framework in the most general way, applicable
to a variety of data models, and test it on three concrete relational semantics of incompleteness: open,
closed, and weak closed world.

Keywords: incomplete information, database queries, certain answers, data models, certain knowledge,
open and closed world, efficient computation

1. Introduction

Handling incomplete information is one of the oldest topics in data management research. It has been
tackled both from the database perspective, resulting in classical notions of the semantics and complexity
of query evaluation [1, 2], and from the AI perspective, providing an alternative view of the problem, see,
e.g., [3, 4]. With the shifting focus in database applications, owing to the ever increasing amounts of data
as well as data heterogeneity, the problem of incomplete information is becoming much more pronounced.
It appears in many important application areas, particularly those where techniques from both the data
management community and the knowledge representation community have been heavily used. These
include data integration [5], data exchange [6], ontology-based data access [7, 8], inconsistent databases
[9], probabilistic data [10], and data quality [11]. Here we treat the notion of “incompleteness” rather
broadly: it means that data at our disposal does not provide a complete description, but rather suggests a
number – perhaps infinite – of possible worlds. Most of the development here will need just this intuition,
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but in concrete examples we shall use a common scenario of relational databases with missing (null) values
[2, 3].

The central problem in all applications of incomplete databases is query answering. In the presence of
incompleteness, one normally looks for certain answers: those that do not depend on the interpretation of
unknown data. The concept was first mentioned in [12] and formally defined 35 years ago in [13] as follows.
Assume that the semantics [[D]] of an incomplete database D is given as a set of complete databases, or
possible worlds, D′. These are databases which the incomplete D can represent. Then the certain answer
to Q on D is defined as

cert∩(Q,D) =
⋂
{Q(D′) | D′ ∈ [[D]]}.

Since database queries produce collections (sets, multisets, etc.), it makes sense to talk about their inter-
section. This definition has been universally applied to all the semantics of incompleteness, and in all the
scenarios such as those listed above. The intuition is that this gives us the set of tuples independent of the
interpretation of the data that was not completely specified.

IfD is a relational, or an XML, or a graph database, [[D]] is usually obtained by replacing nulls (missing
values) with real values, and perhaps adding extra information, such as tuples that were not in the database.
In other applications, the definition of [[D]] varies, but the notion of certain answers does not. We now give
a few examples.

Data integration. Here D is a source database (in fact it may contain multiple sources) and we need to
answer queries over an integrated global schema database. The integration process is guided by a
schema mapping M relating the schema of the source with that of the global schema over which
queries must be answered. The process is virtual: the integrated database is not built, as M rarely
makes it unique. Instead, D and M together provide an incomplete description of the integrated
database, i.e.,

[[D]]M = {D′ of the global schema | D and D′ satisfy M} .

If a query Q is posed against the global schema database, and we have access to the source D, query
answers are typically defined as certain answers, i.e.,

⋂
{Q(D′) | D′ ∈ [[D]]M}, see [14, 5].

Data exchange. This scenario is similar to the previous one: we have a schema mapping M between two
schemas (usually called source and target schemas in this context), and still want to compute certain
answers defined just as above. The difference is that this time the target schema database is mate-
rialized, and certain answers must be found based on a specific instance containing data exchanged
between the source and the target, see [6, 15].

Consistent query answering. Assume we have a databaseD and a set Σ of integrity constraints over it, such
as keys, foreign keys, etc, that D is supposed to satisfy. An inconsistent database fails to satisfy Σ, so
one looks for its repairs D′; those are smallest changes that restore consistency (these can be defined
in a variety of ways [9]). Then [[D]]Σ consists of all such repairs, and for a given query Q one looks
for consistent query answers defined as

⋂
{Q(D′) | D′ ∈ [[D]]Σ}. These are query answers that are

true in all the repairs that restore consistency.

Ontology based query answering. An ontology Θ provides additional information about an incomplete
database. Together, a database D and an ontology Θ define a set [[D]]Θ of possible worlds that
are completions of the database D that make it satisfy all the ontology constraints. Ontology-based
query answering – a very active research theme as of late – boils down to taking a queryQ and finding
certain answers to it over [[D]]Θ, see [7, 8, 16].
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Thus, in all these applications, spanning a large spectrum of data management and knowledge represen-
tation tasks, certain answers are the standard way of defining answers to queries. While the exact semantics
of possible worlds changes, the definition of certain answers stays intact.

The question that we address here is the following: Is this standard “one-size-fits-all” definition really
the right one to use for all the semantics, and all the applications? The answer, as we shall argue, is negative:
the standard intersection semantics leads to many problems, and crucially to producing meaningless query
answers.

To argue that this is the case, and to explain basic ideas behind the approach we present, note that in
the database field, one tends to operate with objects (i.e., relations, XML documents, graph databases, etc.).
In particular, queries take objects and return objects. Thus, the idea behind certain answers is to find an
object A representing the set of objects Q([[D]]) = {Q(D′) | D′ ∈ [[D]]}. Such an object A must contain
information common to all the objects in Q([[D]]): that is, it must be no more informative than any of the
objects in Q([[D]]). The definition of cert∩ uses the intersection operator as a means of extracting such
common information.

Now take a simple example: we have a relation R = {(1, 2), (3,⊥)} in a database D, where ⊥ repre-
sents a null, or a missing value. The query Q returns R itself. Then cert∩(Q,D) = {(1, 2)} under every
reasonable semantics of incompleteness. But is it less informative than all of Q(D′) for D′ ∈ [[D]]? The
answer depends on the semantics. Under the common open-world semantics, the answer is yes: in fact
(1, 2) is precisely the greatest lower bound of Q([[D]]) under the ordering whose meaning is “being less
informative”. But under the equally common closed-world semantics, the answer is no. Even worse, (1, 2)
is not less informative than any of the answers Q(D′) for D′ ∈ [[D]] which are of the form {(1, 2), (3, n)}
for different values n. Indeed, under the closed world semantics, the answer {(1, 2)} contains additional
information that no tuple except (1, 2) is present. Thus, returning just (1, 2) in this case makes no sense at
all.

The problem with returning the single tuple (1, 2) as the certain answer becomes even more pronounced
if we follow the approach, pioneered by [3], that views databases as logical theories and query answering
as logical implication. The fact R(1, 2) is certainly implied by the database. But is it the only fact that is
implied? Of course not: under the open-world semantics, we can deduce ∃xR(1, 2)∧R(3, x) with certainty,
adding the fact that there is a tuple whose first component is 3. And under the closed world semantics, we
know for certain even more, for instance ∃x∀y (y = 1 ∨ y = 2 ∨ y = 3 ∨ y = x), since we cannot expand
the domain of the database.

Even from this simple example, we learn a few lessons:

• certain answers can be presented as both objects and logical formulae;

• they depend on both logical languages and semantics used; and

• taking intersection and removing missing values from the answers is not always the right way to
compute them.

Note that viewing answers as formulae brings us closer to knowledge bases. The difference though
is that while in databases we start with objects and produce objects, and in querying knowledge bases we
start with logical theories and produce logical theories, here we may also combine the two, starting with an
object, and returning a formula, or a theory, as the result.

The goal of this paper is to develop an alternative framework for handling certain answers to queries. For
that, we combine the approaches to viewing databases as objects [2] and as logical theories [3], rather than
treat them separately. In addition, we bring in ideas from another approach, based on ordering incomplete
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databases in terms of their informativeness [17, 18]. Combining these three approaches, taking, essentially,
only what is really needed from each one of them, allows us to define certain answers in a new way that
avoids some of the problems exhibited by the standard accepted definition.

Specifically, the key elements of our framework are as follows.

• Certain answers can be viewed as either objects or theories, depending on the semantics, and the
logical formalism used. The former is in line with the standard database approach, while the latter
defines certain knowledge about query answers over incomplete databases.

• Both ways are based on extracting certain information from a set of objects. Each way defines cer-
tainty as a greatest lower bound: either of a set of objects, or the theory of that set of objects, with the
ordering meaning “being more informative”.

We concentrate here on the general problem of answering queries over incomplete databases, rather
than specific applications, such as those listed earlier. In fact, in several of those applications the query
answering problem is reduced to running a query on a specific incomplete database. Our main technical
contributions are as follows.

1. Query answering is then based on the notion of representation systems: these are a natural relaxation
of a rather restrictive concept of what database people call strong representation systems, and yet
more disciplined than what is called weak representation systems (which define certain information
exclusively by means of intersection). Representation systems let one define important sets of objects
by logical formulae, in the spirit of [3].

2. Our key result is that under the right choice of the semantics for both query inputs and query answers,
certain answers – as both objects and knowledge – can be found by straightforward database query
evaluation. Thus, with the correct choice of semantics and representation system, we can use existing
query evaluation techniques for obtaining correct answers in the presence of incomplete information.
Even when such an evaluation is expensive, the approach suggests how to look for approximating
query answers.

The right choice of the semantics relies on the notion of informativeness and simply says that one
cannot get less informative answers on more informative inputs (indeed, if we have an input I to a
query Q, and then we gain extra information about I and obtain a more informative instance I ′, at the
very least we could just go back to I and evaluate Q on it; hence, gaining information about the input
can only make query output more informative). This very basic principle however has been ignored
by most of the research on incompleteness in databases; we shall explain later why this happened.

3. We also show that it is easier to find certain answers as knowledge as opposed to certain answers as
objects: sometimes the former exists and the latter does not. Also, even when both exist, we need
certain answers as knowledge to prove that certain answers as objects are correct. Thus, representing
certain knowledge about query answers is not a mere convenience, it may well be a necessity – even
if not seen by the end user, it is necessary to provide correctness guarantees.

Most of the results in the paper are shown in an abstract setting, for two reasons. First, it makes them
applicable to other data models, beyond relational databases (e.g., XML and graph data). Second, it helps
us see the essential conditions that need to be imposed on queries and the semantics of incompleteness,
without being too “clouded” by details of a particular data model. At the same time we use three common
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relational semantics – open world, closed world, and weak closed world – to translate general results into
concrete examples, to test the approach.
Organization. After presenting basic facts about relational incompleteness in Section 2, we introduce the
abstract setting and notions of certainty as objects and knowledge in Section 4. Section 5 defines repre-
sentation systems and connects knowledge certainty with greatest lower bounds. Section 6 defines certain
answers for queries, and Section 7 shows how to compute them. Summary and future work are in Section
8.

2. Background: relational incompleteness

Incomplete databases. These have two types of values: constants (e.g., 1, 2, . . .) and nulls, representing
unknown values. We thus assume countably infinite sets of constants, denoted by Const, and of nulls,
denoted by Null. Nulls themselves are denoted by ⊥, sometimes with sub- or superscripts.

A relational vocabulary (often called schema in database literature) is a set of relation names with
associated arities. An incomplete relational instance D assigns to each k-ary relation symbol R from the
vocabulary a k-ary relation RD over Const ∪ Null, i.e., a finite subset of (Const ∪ Null)k. If the instance
D is clear from the context, we may write R instead of RD. Sets of constants and nulls that occur in D
are denoted by Const(D) and Null(D). The active domain of D is adom(D) = Const(D) ∪ Null(D). A
complete database D has no nulls, i.e., adom(D) ⊆ Const.

Semantics and valuations. A valuation of nulls on an incomplete databaseD is a map v : Null(D) → Const
assigning a constant value to each null. It naturally extends to databases, so we can write v(D) as well. The
standard semantics of incompleteness in relational databases are defined in terms of valuations, see [19, 2].
These are the closed world assumption, or CWA semantics:

[[D]]CWA = {v(D) | v is a valuation},

and the open-world assumption, or OWA semantics:

[[D]]OWA = {v(D) ∪D′ | v is a valuation and D′ is complete} ,

where D′ is over the same vocabulary as D, and union is taken relation-by-relation. We shall also consider
the weak CWA, or WCWA semantics, inspired by [20], given by

[[D]]WCWA = {v(D) ∪D′ | v is a valuation and adom(D′) ⊆ adom(v(D))} .

That is, under CWA, we simply instantiate nulls by constants; under OWA, we can also add arbitrary new
tuples (the database D′), and under WCWA, we can only add new tuples formed by elements already present
(which is expressed by the condition adom(D′) ⊆ adom(v(D))). For instance, if D0 = {(⊥,⊥′)}, then
[[D]]CWA only has instances {(c, c′)} for c, c′ ∈ Const, while [[D]]WCWA can have in addition instances that
add to (c, c′) tuples (c, c), (c′, c′), and (c′, c), and [[D]]OWA has all instances containing at least one tuple.

If one has a query Q to be evaluated on an incomplete database D, one needs to represent the set

Q([[D]]) = {Q(D′) | D′ ∈ [[D]]}

of possible answers to Q on complete databases that are represented by D. One possibility is to look for an
answer A so that [[A]] = Q([[D]]), i.e., A denotes exactly the answers to Q over [[D]]. When such an answer
A exists for every query Q from a given class of queries, one talks about strong representation systems for
that class, under the semantics [[ ]], see [19, 2]. Unfortunately, strong representation systems may not exist
even for simple queries over standard semantics of incompleteness, e.g., even quantifier-free queries for the
closed-world semantics [2].
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Classical definition of certain answers. In an attempt to overcome the problem of non-existence of strong
representation systems, [2] proposed a notion of weak representation systems, whose idea, in essence, is that
only the certain information in Q([[D]]) and A should be the same. In the process of defining it formally,
they introduced the notion of certain answers, that has since dominated the literature of query answering
over incomplete databases.

Given an incomplete database D, a semantics of incompleteness [[ ]], and a query Q, the standard notion
of certain answers under [[ ]] is

cert∩(Q,D) =
⋂
Q([[D]]) =

⋂
{Q(D′) | D′ ∈ [[D]]}.

Note that cert∩(Q,D) cannot contain any tuples with nulls.
In some cases, these answers are obtained by almost straightforward query evaluation, namely by eval-

uating Q(D) and then throwing away the tuples with nulls. We shall denote this by QC(D). For instance,
if the query Q just returns a relation R, and RD = {(1, 2), (1,⊥)}, then both QC(D) and cert∩(Q,D) are
{(1, 2)}. In general of course the two need not coincide, as finding certain answers may be computationally
very expensive: for instance, undecidable under OWA, or CONP-hard under CWA for first-order queries [1].

Logics. Most database query languages are based on first-order predicate logic, or FO. Its formulae, over a
relational vocabulary, are built from relational atomsR(x̄), whereR is a vocabulary symbol, and equational
atoms x = y, by closing them under the Boolean connectives ∧,∨,¬ and quantifiers ∃ and ∀. Free variables
of a formula ϕ are defined in the standard way. If x̄ is the tuple of free variables of ϕ, we may indicate
this explicitly by writing ϕ(x̄). For FO formulae in this paper we use the standard semantics, even when
structures mix elements from Const and Null. Recall that these sets are disjoint, and hence every equality
between a constant and a null will evaluate to false. Equalities between nulls evaluate to true if nulls are the
same. Using this standard FO semantics (i.e., not looking at the semantic distinction between constants and
nulls) is common in databases and is often referred to as naı̈ve evaluation. That is, a query is evaluated by
the standard query evaluation engine, despite the fact that some entries are unknown.

We shall deal with several fragments of FO, of importance both in logic and in databases.

• Conjunctive queries are the ∃,∧-fragment of FO, i.e., it has no disjunction, negation, and universal
quantification. Such formulae are of the form ϕ(x̄) = ∃ȳ R1(ū1)∧ . . .∧Rk(ūk), where the Ris are
relation symbols from the vocabulary, and each tuple ūi, whose length equals the arity ofRi, contains
variables from x̄, ȳ. One can also add explicit equalities between variables in conjunctive queries
(they do not add expressiveness of course).

• The class of existential positive formulae, denoted by ∃Pos, is the ∧,∨,∃-fragment of FO (i.e., it
disallows negation and universal quantification). In terms of their expressiveness, ∃Pos formulae
correspond precisely to unions of conjunctive queries, i.e., disjunctions of conjunctive queries, al-
though ∃Pos formulae can be more succinct.

• The class of positive formulae, denoted by Pos, is the ∧,∨,∃,∀-fragment of FO (i.e., it disallows
negation).

• Formulae true and false belong to all these classes.

It is known that cert∩(Q,D) = QC(D) for ∃Pos queries under OWA [2], and for Pos queries under
WCWA [21]. There is a fragment for which the equality holds under CWA as well, and it will be given later
in Section 5.
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3. Problematic certain answers

The standard treatment of incompleteness in commercial DBMSs (in particular SQL’s treatment of
nulls) has been heavily criticized in the past [22, 23, 24], but the theoretical approaches have so far been
spared. The goal of this section, which serves as additional motivation for our re-thinking of the standard ap-
proaches to certain answers, is to re-examine some of the most basic theoretical notions related to handling
incompleteness in databases, and to demonstrate their severe shortcomings.

Semantics of query answers. Let us look at the seemingly uncontroversial definition saying that if we are
lucky enough to get A satisfying [[A]] = Q([[D]]), then A should be viewed as the answer to Q on D. At the
first glance it looks like a reasonable condition, but nonetheless there is one questionable assumption built
into it. Note that this definition requires that both the input database D, and the answer A, be interpreted
under the same semantics [[ ]]. However, a priori, there is no reason for it. Why, for instance, should the
answer to a query be interpreted under CWA if this is the semantics of the input? And what if we have data
of different formats, e.g., XML-to-relational or relational-to-XML queries?

The importance of intersection, and certainty of certain answers. The idea of using certain answers given as
intersections of all query answers initially came from weak representation systems of [2]. If [[A]] = Q([[D]])
is too strong a condition, one tries to replace it by [[A]] ∼ Q([[D]]), where ∼ is some equivalence relation.
In the definition of [2], the relation is defined as follows. Given two sets of database instances, I1 and I2,
and a query language L, we let I1 ∼L I2 if

⋂
{q(D′) | D′ ∈ I1} =

⋂
{q(D′) | D′ ∈ I2} for each query q

in L.
This equivalence relation looks quite ad hoc. It was defined that way to ensure compositionality of

queries, and what really survived from it in applications is the idea of intersection for certain answers. But
that is problematic for two reasons. First, there are models other than relational. What can one do, for
instance, for XML queries returning documents? (A side remark: much of the work on incompleteness
in XML has been restricted to XML-to-relational queries, for this very reason [25, 26, 27].) But even
more importantly, we may lose information by taking intersection and removing tuples from the answer.
Indeed, taking tuples away amounts to removing data, not information. In fact, the process can actually
add information: for instance, under CWA, by removing a tuple we gain information that it is not in the
answer, as discussed in the introduction. Hence, certain answers defined by the intersection operator cannot
be called certain in all scenarios.

Representation of query answers. We are used to queries returning database objects – tables, XML docu-
ments, graphs. But are these sufficiently expressive to describe answers on incomplete databases? Specif-
ically, are these sufficiently expressive to represent sets Q([[D]])? Such sets may well be infinite, and de-
scribing them may require a more complex representation mechanism than simple database objects. Some
attempts have been made, for instance with conditional tables [2] which “look” like relations and give a
strong representation system. There is a price to pay: they correspond to a rather bizarre fragment of FO,
and have intractable complexity even for simple queries [1]. But is it really necessary to have representations
of answers that look like database relations, while they are not?

The approach we now present will try to address these lines of criticism, and will provide a new and
more disciplined version of certain answers.
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4. Objects, knowledge, and information ordering

The key idea, as explained in the introduction, is to decouple objects and their descriptions in terms
of some logical formalisms, i.e., to decouple objects and knowledge about them. We want to do this at
the highest level of abstraction, so that the framework would not be limited to just relational databases,
but instead would be applicable across multiple data models. For this, we use a very minimalistic setting
inspired by abstract model theory [28] or information systems [29], with some specific features tailored to
handle incompleteness, as also used in [30, 21]. A word on notation: in our abstract setting, we shall refer
to objects by letters x, y, etc., while dealing with relational databases (which serve as the main example
here) we shall use D,D′, etc.

The key elements of this minimalistic settings are:

• the notion of a database pre-domain, capturing the basic intuition that database objects can be com-
plete or incomplete, and the semantics of an incomplete object is a set of possible complete worlds
for it;

• the notion of an information ordering capturing the intuition that some objects are more informative
than others; and

• the notion of a pre-representation system that introduces formulae that can be satisfied by objects.

We now formalize these as follows.

Definition 1 (Pre-domain). A database pre-domain is a triple D◦ = 〈D, C, [[ ]]〉, where D is a set, C ⊆ D,
and [[ ]] is a function from D to 2C , such that c ∈ [[c]] for every c ∈ C and [[c]] ⊆ [[x]] whenever c ∈ [[x]].

The intuition is as follows:

• D is a set of database objects (e.g., relational databases over the same schema);

• C is the set of complete objects (e.g., databases without nulls);

• [[ ]] is the semantic function: [[x]] ⊆ C is the semantics of an incomplete database x, i.e., the set of all
complete databases that x can represent.

The last two conditions hold in the standard semantics of incompleteness: they say that a complete
object should denote at least itself, and that we have less uncertainty about an object c in the semantics of x
than about x itself.

Definition 2 (Information ordering). Given a semantics [[ ]] of incompleteness, an information ordering
associated with it is given by

x � y ⇔ [[y]] ⊆ [[x]].

The intuition is that y is at least as informative as x. Indeed, the more possible objects we have in the
semantics of an incomplete object, the less we know about it. In the extreme case, when we know nothing
about an object, its semantics is everything, i.e., it can denote any other object. Note that � is a preorder,
i.e., it is reflexive and transitive, but both x � y and y � x may be true for equivalent objects x and y, i.e.,
if [[x]] = [[y]].

Note that the last condition in the definition of pre-domain simply says that if c ∈ [[x]], then x � c, i.e.,
an incomplete object is less informative than the objects it represents.
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Definition 3 (Pre-representation system). A pre-representation system is a triple RS◦ = 〈D◦,F, |=〉, where
D◦ = 〈D, C, [[ ]]〉 is a predomain, F is a set, and |= is a relation between D and F (written as x |= ϕ for
x ∈ D and ϕ ∈ F) such that x � y and x |= ϕ imply y |= ϕ.

The intuition is that F is a set of formulae that express knowledge we possess about objects in D, and |= is
the satisfaction relation between objects in D and formulae in F. The last condition says that if we know
something about an object, we also know it about a more informative object.

We shall write Th(x) for the theory of x, that is, {ϕ | x |= ϕ} and Mod(ϕ) for models of ϕ, that is,
{x | x |= ϕ}. These are extended to sets in the usual way:

Th(X) =
⋂

x∈X

Th(x) and Mod(Φ) =
⋂
ϕ∈Φ

Mod(ϕ).

It is well known that Mod and Th define a Galois connection between D and F. That is, both Mod
and Th are anti-monotone, X ⊆ Mod(Th(X)) and Φ ⊆ Th(Mod(Φ)) for all X and Φ. In particular, this
implies that Mod(Th(·)) is a closure operator.

4.1. Certain information

Computing certain answers boils down to finding certain information contained in a set of objects; in
the case of query answering, in Q([[D]]) = {Q(D′) | D′ ∈ [[D]]}. Thus, we need to know how to define
certain information contained in a set of objects X ⊆ D. The usual database approach is to represent this
information as another object, but of course we argue that it can be viewed as both object and knowledge.
We now present two ways of extracting certain information from X ⊆ D.

Certain information as object If we want to represent what we know about X with certainty by an object
y, this object must be less informative than any object x ∈ X (as it reflects knowledge contained in
all other objects in X as well). If we have two such objects y and y′, and y′ � y, then of course we
prefer y as giving us more information.

Thus, the object that we seek must be less informative than all objects in X , and at the same time the
most informative among such objects. This is precisely the greatest lower bound of X , with respect
to � (or

∧
X , using the standard order-theoretic notation). If it exists, we denote it by �OX . The

subscript O is for ‘object’.

Certain information as knowledge We want to describeX by a single formula summarizing what we know
about it with certainty. If X = Mod(ϕ), then ϕ is such a formula, but generally, X need not be of the
form Mod(ϕ).

So we go for the next best thing: we want a formula that is equivalent to the theory of X . Of course
two sets of formulae are equivalent when they have the same models, so a formula equivalent to the
theory of X is a formula ϕ such that Mod(ϕ) = Mod(Th(X)). We denote such a formula by �KX .
The subscript K is for ‘knowledge’.

Note that �KX is a formula in Th(X): indeed, since Mod(Th(·)) is a closure operator, X ⊆
Mod(Th(X)) = Mod(�KX).

Thus, certain information contained in X is described

• at the object level as �OX =
∧
X; and
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• at the knowledge level as a formula �KX so that Mod(�KX) = Mod(Th(X)).

We now make a couple of observations about these concepts. First, neither �OX nor �KX need exist
in general (in fact it is easy to come up with the examples of preorders without greatest lower bounds).

Second, even if they exist, they are not unique. This is not an issue, however, as they are equivalent.
Since � is a preorder, the greatest lower bound is, technically speaking, a set of objects, but every two such
objects y, y′ are equivalent: y � y′ and y′ � y, and thus [[y]] = [[y′]]. If we have multiple formulae ϕ for
which Mod(ϕ) = Mod(Th(X)), then every two such formulae ϕ,ϕ′ are equivalent: Mod(ϕ) = Mod(ϕ′).
So we shall write y = �OX or ϕ = �KX , meaning y or ϕ is one of the equivalent objects or formulae.

Also note that a much simplified version of the framework was used in [30] and in [31] for XML
documents. Crucially, the framework lacked the notion of representation systems, as there were no formulae
defined on database domains. A rudimentary case of �KX was used there, by identifying what we view
as the set F of formulae here with D itself. If x |= y means y � x, then analog of Theorem 1 below for
that simple case is a consequence of results in [30]. An attempt to give conditions for query evaluation to
compute certain answers was made there as well, but without representation systems it required some rather
ad hoc conditions on complete objects and was not satisfactory.

Example 1. Consider the example from the introduction, of a database D containing (1, 2) and (3,⊥) in
a relation R. If X = [[D]]OWA, then �OX is just D itself, as expected. If F = ∃Pos, then �KX =
∃z R(1, 2) ∧R(3, z). If F is the set of ground facts and their conjunctions, then �KX = R(1, 2).

If X = [[D]]CWA, then
∧
X is still D, but we need a more complex class to describe �KX; in fact the

two formulae above violate the definition of �KX in this case. We shall continue with this example later in
Example 2 and use the machinery developed in the paper to formally prove the results stated here. We shall
also present a formula �KX under CWA that comes from a more expressive subclass of FO.

5. Representation systems

So far we imposed no conditions on pre-domains and pre-representation systems. We now define rep-
resentation systems, which are pre-representation systems with two conditions imposed. These conditions,
that hold in the standard semantics of incompleteness, say essentially that the sets of objects and formulae
are not too “thin”: there are enough complete objects, and there are formulae defining some fairly basic sets
of objects.

There are enough objects. In real life, we have (potentially) infinite domains of database elements. If we
have a database with the tuple (1, 2), we should expect to have a database with the tuple (2, 3), or (3, 4),
and so on. The condition that we introduce now captures this intuition in our abstract model.

To see how this can be done, consider an arbitrary relational database D, and a renaming f of elements
of its active domain, i.e., a one-to-one mapping f : adom(D) → U for some set U . If f(D) is the database
obtained by replacing each element a ∈ adom(D) with f(a), then databases D and f(D) are isomorphic:
a tuple t̄ is in a relation R of D iff f(t̄) is in the same relation R in D′. Note that such a map does not
distinguish nulls and constants. Two isomorphic databases will agree on logical formulae not mentioning
constants. Even if we have a logical formula mentioning constants from a finite set C, databases D and
f(D) will agree on it as long as f(a) = a for every a ∈ C.

The intuition behind the ‘enough objects’ condition is that for every such renaming f of elements of
the active domain, f(D) is a legitimate database, and D and f(D) agree on formulae that only mention
constants preserved by f .

10



To formulate this at the abstract level of database pre-domains, consider the relation D ≈C D′ saying
that there is a one-to-one mapping f preserving C such that D′ = f(D). It is easily seen to be an equiv-
alence relation; moreover, if the range of f only includes constants, then f(D) is a complete database that
is in [[D]] for the standard semantics like OWA, CWA, WCWA. Finally, if D ≈C∪C′ D′, then D ≈C D′ and
D ≈C′ D′. These conditions are easy to state at the level of database pre-domains.

Definition 4 (Database domain). A database domain D as a tuple 〈D, C, [[ ]], Iso〉 where 〈D, C, [[ ]]〉 is a pre-
domain, and Iso is a family {≈j}j∈J of equivalence relations on D so that:

• the set [[x]]≈j
= {c ∈ [[x]] | x ≈j c} is nonempty for each x ∈ D and j ∈ J;

• for every j, j′ ∈ J , there is k ∈ J so that x ≈k y implies both x ≈j y and x ≈j′ y.

Coming back to the relational intuition, the relations ≈j are exactly the relations ≈C , where C ranges
over finite sets of constants. The first condition says that we can replace nulls by constants outside C (since
Const− C is infinite); the second one was explained earlier.

There are enough formulae. First, we assume that formulae are closed under conjunction, i.e. for ϕ,ψ ∈ F
we have ϕ ∧ ψ ∈ F with Mod(ϕ ∧ ψ) = Mod(ϕ) ∩ Mod(ψ). This is just a technical condition so that
we could represent a finite set {ϕ1, . . . , ϕn} of formulae by a single formula, namely their conjunction
ϕ1 ∧ . . . ∧ ϕn.

The second assumption is that the formulae have something to do with the intended meaning of incom-
plete information. For this we require that some basic sets of objects be definable by formulae. In our
minimalistic model the most basic sets are of the form [[x]]. Thus, we shall require their definability; since
[[x]] ⊆ C, we shall require the existence, for each object x, of a formula δx such that Mod(δx) ∩ C = [[x]].
We shall see that this is the same as asking that Mod(δx) =↑x, where ↑x = {y | x � y} is the set of objects
at least as informative as x. Note that we simply require their existence, although we shall see that for basic
relational semantics of incompleteness they will be easy to construct explicitly.

All these are summarized in the following definition.

Definition 5 (Representation systems). A representation system is a triple RS = 〈D,F, |=〉, where:

• D is a database domain and 〈D,F, |=〉 is a pre-representation system whose formulae are closed
under conjunction;

• for each x ∈ D, there is a formula δx ∈ F with Mod(δx) ∩ C = [[x]];

• for each ϕ ∈ F, there is j ∈ J so that x |= ϕ⇔ y |= ϕ whenever x ≈j y.

The last condition is essentially the analog of the condition that a formula can only refer to finitely many
constants, and thus cannot distinguish objects equivalent with respect to ≈j for some j.

5.1. Examples of domains and representation systems

We now provide examples of representation systems corresponding to relational OWA, WCWA, and CWA

semantics. We use the notationD(σ) for the set of all relational databases of vocabulary σ over Const∪Null,
and C(σ) for the set of all such databases that do not use nulls in Null. The database domains will be of the
form D∗(σ) = 〈D(σ), C(σ), [[ ]]∗, Iso〉, where ∗ is one of OWA, WCWA, or CWA.

The equivalence relations Iso were already explained. They are indexed by finite subsets of Const, and
for such a finite set C, we have D ≈C D′ iff there is an isomorphism f between D and D′ such that both f
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and f−1 are identity on C. More precisely, f is a one-to-one mapping from adom(D) to adom(D′) so that
f(a) = f−1(a) = a if a ∈ C, and t̄ ∈ RD iff f(t̄) ∈ RD′

.
We write �∗ for the information ordering given by [[ ]]∗, i.e., D �∗ D′ iff [[D′]]∗ ⊆ [[D]]∗. These

orderings �OWA,�CWA, and �WCWA are known to be expressible in terms of homomorphisms. Given two
relational databases D and D′, a homomorphism h : D → D′ is a map from adom(D) to adom(D′)
such that h(c) = c for each constant c, and such that for every relation symbol R and tuple t̄ ∈ RD, the
tuple h(t̄) is in RD′

. The image of the homomorphism is denoted by h(D). A homomorphism is onto if
adom(h(D)) = adom(D′), and strong onto if D′ = h(D).

It was shown in [30, 21] that D �∗ D
′ iff there exists a

• homomorphism h : D → D′, for ∗ =OWA;

• onto homomorphism h : D → D′, for ∗ =WCWA;

• strong onto homomorphism h : D → D′, for ∗ =CWA.

In what follows, we describe sets of formulae F and formulae δD for each D. Let PosDiag(D) be the
positive diagram of D in the vocabulary including constants for each a ∈ Const, where with each null ⊥i

in D we associate a variable xi. For instance, if D contains relation R with tuples (1, 2), (2,⊥1), (⊥1,⊥2),
then PosDiag(D) = R(1, 2) ∧R(2, x1) ∧R(x1, x2).

OWA. The OWA representation system is RSOWA(σ) = 〈DOWA(σ),∃Pos, |=〉. For eachD with Null(D) =
{⊥1, . . . ,⊥n}, we have δD = ∃x1, . . . , xn PosDiag(D).

WCWA. The WCWA representation system is RSWCWA(σ) = 〈DWCWA(σ),Pos, |=〉. For each D with
Const(D) = {a1, . . . , am} and Null(D) = {⊥1, . . . ,⊥n}, the formula δD is

∃x1 . . . xn

(
PosDiag(D) ∧ ∀y (

m∨
i=1

y = ai ∨
n∨

i=1

y = xi)
)

CWA. We need to define an extension of the class of positive formulae, introduced by [32] and used recently
in [21]. The class, denoted by Pos∀G, extends Pos with a special type of guarded formulae. It is defined
as the closure of logical constants true and false and positive atoms of the form R(x̄) and x = y under
∧,∨,∀,∃ and the following rule:

• if ϕ(x̄, ȳ) is a Pos∀G formula in which all variables in x̄ are distinct, and α(x̄) is an atomic formula,
then

∀x̄ (α(x̄) → ϕ(x̄, ȳ))

is a Pos∀G formula.

That is, such formulae are either ∀x1, x2 (x1 = x2 → ϕ(x1, x2, ȳ)) for equational atoms, or ∀x̄ (R(x̄) →
ϕ(x̄, ȳ)), where R is of arity |x̄|.

With this, the CWA representation system is defined as RSOWA(σ) = 〈DCWA(σ),Pos∀G, |=〉. For each
D with Null(D) = {⊥1, . . . ,⊥n}, the formula δD is

∃x1, . . . , xn

(
PosDiag(D) ∧

∧
R∈σ

∀ȳ
(
R(ȳ) →

∨
t̄∈RD

ȳ = t̄
))
,

where ȳ = (y1, . . . , ym) is a tuple of variables whose length m is the arity of R, and for a tuple t̄ =
(a1, . . . , am) in RD we write ȳ = t̄ for (y1 = a1) ∧ . . . ∧ (ym = am).
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Proposition 1. Each of RSOWA(σ), RSWCWA(σ), and RSCWA(σ) is a representation system.

Proof. Conditions on Iso are easily checked: sets [[D]]C are nonempty, since one can replace nulls with
distinct constants from Const − C, and ≈C∪C′ ⊆ ≈C ∩ ≈C′ . Monotonicity follows from the description
of orderings �∗ by the existence of homomorphisms, and the fact that ∃Pos, Pos and Pos∀G formulae are
preserved under homomorphisms (respectively onto and strong onto homomorphism), see [33, 34] for ∃Pos
and Pos and [32, 21] for Pos∀G. And the properties of δD are again straightforward from the definition of
the semantics, as they simply state it in the language of FO. �

5.2. Properties of representation systems
We now collect some basic properties of representation systems, essentially the toolkit that will be useful

later. We look at certain information contained in sets [[x]] and prove that, as expected, it is represented at
the object level by x itself, and at the knowledge level by δx, defining the semantics of x.

Proposition 2. In a pre-domain, �O[[x]] = x for every x.

Proof. Assume that x 6=
∧

[[x]]. Then there is y 6� x such that y � c for each c ∈ [[x]]. Since y 6� x we have
[[x]] 6⊆ [[y]], i.e., there is c ∈ [[x]] such that c 6∈ [[y]]. But since y � c, we have [[c]] ⊆ [[y]], and since c ∈ C, this
implies c ∈ [[y]] as c ∈ [[c]], which gives us the desired contradiction. �

Let ≈=
⋃

j∈J ≈j , and let [[x]]≈ = {c ∈ [[x]] | c ≈ x}. In the case of relational databases, D ≈ D′ if
D,D′ are isomorphic objects; for instance, D = {(⊥,⊥)} and D′ = {(1, 1)} are isomorphic. Note that FO
formulae not using constants are preserved by ≈. In general though, objects related by ≈j may not agree
on all the formulae of F (e.g., D and D′ do not agree on the sentence ∃x (x = 1)) and hence there are
potentially formulae in Th([[x]]≈j

) which are not satisfied by x. However, the following holds.

Proposition 3. In a representation system, Th([[x]]) = Th([[x]]≈) = Th(x) for every x.

Proof. It suffices to prove Th([[x]]≈) = Th(x) since Th(x) ⊆ Th([[x]]) ⊆ Th([[x]]≈). Let c ∈ [[x]]≈; then
x � c and thus Th(x) ⊆ Th(c), and hence Th(x) ⊆ Th([[x]]≈). Conversely, take ϕ ∈ Th([[x]]≈). We
know that there is j ∈ J so that whenever y ≈j y

′, then y, y′ agree on ϕ. Note that ϕ ∈ Th([[x]]≈j
), since

[[x]]≈j
⊆ [[x]]≈. We know that [[x]]≈j

6= ∅, so pick c ∈ [[x]]≈j
. Since ϕ ∈ Th([[x]]≈j

), we have c |= ϕ, and
since c ≈j x, we have x |= ϕ. Hence ϕ ∈ Th(x), as required. �

Now we can show:

Proposition 4. In a representation system, for every object x:

1. Mod(δx) =↑x;

2. δx = �K[[x]].

Proof. To show the first item, choose j ∈ J so that two objects related by ≈j agree on δx. Since [[x]]≈j
is

not empty, pick an object c from this set. Then c |= δx since c ∈ [[x]]. Since c and x agree on δx, we have
x |= δx. By the monotonicity of formulae we conclude ↑x ⊆ Mod(δx). Suppose we have an object y such
that x 6� y and y |= δx. Then [[y]] 6⊆ [[x]] and thus we have a complete object c ∈ [[y]] − [[x]]. Since y � c,
we have c |= δx, contradicting Mod(δx) ∩ C = [[x]]. This shows Mod(δx) ⊆↑x and thus Mod(δx) =↑x.

To prove the second item, we start by showing that Mod(Th(x)) = ↑x. Let y � x. By monotonicity
we have y ∈ Mod(Th(x)). Conversely let y 6� x; then δx ∈ Th(x) − Th(y) and hence y 6∈ Mod(Th(x)).
Thus indeed Mod(Th(x)) =↑x. Since ↑x = Mod(δx) and Mod(Th(x)) = Mod(Th([[x]])) by Proposition
3, we have Mod(δx) = Mod(Th([[x]])), i.e., δx = �K[[x]]. �
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Corollary 1. In a representation system:

• Mod(δx) = Mod(Th(x)), and

• �O[[x]] |= �K[[x]]

for every x.

We remark that the condition Mod(δx) =↑x could alternatively be used to define formulae δx, since
Mod(ϕ) =↑x implies Mod(ϕ) ∩ C = [[x]]. Indeed, consider any complete object c that satisfies ϕ. Then
x � c and we have c ∈ [[c]] ⊆ [[x]] by the properties of representation systems.

Corollary 1 says that for sets X of the form [[x]] we have �OX |= �KX . We shall see later that the
same is true for the important sets of the form Q([[x]]) that we need for defining certain answers. But in
general, this condition need not hold. The reason is that taking the greatest lower bound of X may lose
more information than taking the greatest lower bound of Th(X), which indicates that working with certain
knowledge may be preferable, as it conveys more information.

Proposition 5. There is a representation system and a set of objects X such that �OX 6|= �KX .

Proof. Consider a domain D with the ordering x1 � x2 � . . . � xn � . . . � x∗. We assume that all
≈js are the same, and for each xi, there is ci � xi with xi ≈ ci. The formulas are ϕi for i ≥ 0. Let
Th(xi) = {ϕ0} ∪ {ϕj | j ≥ i} (with Th(ci) = Th(xi)) and Th(x∗) = ∅. Let X = {xi | i 6= 0}. Then∧
X = x∗ and Th(X) = {ϕ0}; hence �OX = x∗ and �KX = ϕ0 and thus �OX 6|= �KX . �

We finally give a condition equivalent to the existence of formulae δx. A set Φ of formulae is finitely
axiomatizable if there is a finite set Φ0 such that Mod(Φ) = Mod(Φ0).

Proposition 6. In a pre-representation system RS◦ whose formulae are closed under conjunction, the fol-
lowing are equivalent:

1. each Th(x) is finitely axiomatizable, and Th(x) ⊆ Th(y) implies x � y for all x, y;

2. for each x, there is a formula δx so that Mod(δx) = ↑x.

Proof. Assume the conditions in 1. hold and let Φ0 = {ϕ1, . . . , ϕm} axiomatize Th(x). Take δx to be
ϕ1 ∧ . . . ∧ ϕm. Then Mod(δx) = Mod(Th(x)). Suppose y � x. If ϕ ∈ Th(x) then y |= ϕ and thus
y ∈ Mod(Th(x)). Conversely, let y 6� x. Then we have ψ ∈ Th(x) − Th(y) and thus y 6∈ Mod(Th(x)).
Hence ↑x = Mod(Th(x)) = Mod(δx).

If we have δx for each x, then Mod(Th(x)) =↑ x. Indeed, assume x � y; then y |= Th(x) by
monotonicity. If x 6� y, then y 6|= δx while x |= δx, so y 6|= Th(x). By the definition of δx this implies
Mod(Th(x)) = Mod(δx), with δx axiomatizing Th(x). Also if Th(x) ⊆ Th(y), then δx ∈ Th(y), hence
y |= δx and thus x � y. �

5.3. Certain knowledge as a greatest lower bound
We now show that �KX can be viewed as a greatest lower bound as well. Note that we have a well-

known preorder on sets of formulae, namely entailment: Φ ` Ψ iff Mod(Φ) ⊆ Mod(Ψ). Thus, for any set
of formulae Φ, we can look at its greatest lower bound in this preorder, i.e., a formula ϕ so that ϕ ` Φ, and
whenever ψ ` Φ, we have ψ ` ϕ. If such a formula exists, it is denoted by

∧
Φ. Note that as with objects,

` is a preorder, so technically
∧

Φ is a set of formulae, all of which, however, are equivalent, so we shall
write ϕ =

∧
Φ when ϕ is one of such formulae.
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Theorem 1. In a representation system, �KX =
∧

Th(X) for every set X of objects.

Proof. Assume that α =
∧

Th(X) exists. We have Mod(α) ⊆ Mod(ϕ) for each ϕ ∈ Th(X) and thus
Mod(α) ⊆ Mod(Th(X)). Suppose, for the sake of contradiction, that Mod(α) ( Mod(Th(X)), and take
y ∈ Mod(Th(X)) −Mod(α). Since y |= ϕ for each ϕ ∈ Th(X), we have that the same is true for every
z � y, and hence Mod(δy) ⊆ Mod(ϕ) for each ϕ ∈ Th(X). Thus δy ` Th(X), and by the definition of α
as the greatest lower bound, we have δy ` α, and thus Mod(δy) ⊆ Mod(α).

Now assume Mod(α) ⊆ Mod(δy). Then Mod(α) = Mod(δy) and y ∈ Mod(α), a contradiction.
Hence, Mod(α) 6⊆ Mod(δy). But then Mod(δy) 6⊆ Mod(α) since y 6|= α, and at the same time Mod(δy) ⊆
Mod(Th(X)) since y ∈ Mod(Th(X)). Thus sets Mod(δy) and Mod(α) are incomparable subsets of
Mod(Th(X)): in particular, α ` Th(X), δy ` Th(X), and yet neither α ` δy nor δy ` α holds, con-
tradicting the assumption that α =

∧
Th(X). This shows that Mod(Th(X)) − Mod(α) = ∅ and thus

Mod(α) = Mod(Th(X)).
Conversely, suppose we haveα so that Mod(α) = Mod(Th(X)) =

⋂
ϕ∈Th(X) Mod(ϕ). Then Mod(α) ⊆

Mod(ϕ) for each ϕ ∈ Th(X) and thus α ` ϕ for each such ϕ. If there is any other formula ψ such that
ψ ` ϕ for each ϕ ∈ Th(X), then Mod(ψ) ⊆

⋂
ϕ∈Th(X) Mod(ϕ) = Mod(α) and thus ψ ` α, proving that

α =
∧

Th(X). �

6. Defining certain answers to queries

Now we move to answering queries. We take an abstract view of queries, introduced in [35] and standard
in database literature [19], when a query is viewed a mapping Q that takes an object and returns another
object. In real life queries are written in a specific query language, but their semantics is of course such.
For instance, relational queries take relational databases and return relational databases (most commonly,
single relations), while they can be written in many languages such as FO, SQL, datalog, etc.

Thus, for two database domains D = 〈D, C, [[ ]], Iso〉 and D′ = 〈D′, C′, [[ ]]′, Iso′〉, a query Q : D → D′ is
a mapping associating with an object x ∈ D its answer, Q(x) ∈ D′.

The key requirement to queries is that they preserve informativeness, which can be stated as follows:

if we know more about the input, then we know more about the output.

By “knowing more”, we mean the information orderings � and �′, given by the semantics of inputs and
outputs (technically, they mean ‘knowing at least as much’). Indeed, if we have x � y and we want to find
Q(y), then as a start, we could have used a less informative object x to compute Q(x). Thus, Q(y) should
give us at least the information contained in Q(x). If it does not, it simply means that the semantics [[ ]]′ of
query answers was chosen incorrectly. Thus, blindly using some fixed semantics for query results – as in
fact is often done – does not necessarily make sense.

Formally, this notion is defined as follows.

Definition 6 (Preserving informativeness). A query Q : D → D′ preserves informativeness if it is mono-
tone with respect to the information orderings given by the semantics of query inputs and query answers,
i.e.,

x � y implies Q(x) �′ Q(y).

Certain answers toQ on an object x represent certain information in the setQ([[x]]) = {Q(c) | c ∈ [[x]]}.
We have seen that there are two ways to define it: as object, and as knowledge. For the latter, we need to
have a representation system RS = 〈D′,F, |=〉 over the target domain D′. If we have it, we can either extract

15



the most general object representingQ([[x]]), or the most general knowledge representing Th(Q([[x]])). That
is, we have two notions of certain answers:

• as objects certO(Q, x) = �OQ([[x]]);

• as knowledge certK(Q, x) = �KQ([[x]]).

Comparing with relational theory. Let us now review the standard approach to query answering in relational
databases. Ideally, one tries to find a query answer A so that [[A]]′ = Q([[D]]). This is often impossible,
in fact even for very simple queries [2]. So the next attempt is to find a formula ϕQ,D in some logical
formalism so that

Mod(ϕQ,D) = Q([[D]]) (1)

When this happens, one refers to such a logical formalism as a strong representation system (see [19, 2]),
which explains why we used the name ‘representation system’.

The problem is that the structure of Q([[D]]) may be too “irregular” to be described by a nice formalism.
For instance, it is known that under CWA, for relational calculus queries formulae ϕQ,D can be of the
following form: ∃ū (α(ū) ∧

∧
R∈σ ∀x̄ (R(x̄) ↔

∨
i(x̄ = v̄i ∧ βi(x̄, ū)))), where α and βi are boolean

combinations of equalities, v̄is combine variables from ū and constants, and ū ranges over the underlying
domain of constants rather than the active domain, see [2]. Syntactically, this is quite heavy, does not
correspond to any natural fragment of FO, and it works only under the CWA.

If the set Q([[D]]) does not happen to be of the form Mod(ϕ) for some nice formula ϕ, the approach
adopted in the database literature is to consider the object

⋂
Q([[D]]) as the answer. This is completely ad

hoc, however: in general it does not have much in common with certain information contained in Q([[D]]).
It seems much better to ask then, in place of (1), for an answer ϕQ,D that is equivalent to the theory of

Q([[D]]), rather than defining Q([[D]]) precisely. That is, we replace (1) with

Mod(ϕQ,D) = Mod(Th(Q([[D]]))) (2)

which is, of course, our definition of certain answers expressed as knowledge.
Note that (1) implies (2): this is an immediate consequence of the fact that Mod(·) and Th(·) define

a Galois connection. Thus, the notion of certain answers as knowledge in a representation system is a
weakening of the notion of the strong representation system, but much less ad hoc that replacing Q([[D]])
with

⋂
Q([[D]]).

Example: when the representation system makes a difference. We can easily construct examples of rela-
tional queries Q and representation systems so that (1) fails while (2) is easily achieved. Suppose we have
a schema with two relations R,S (for simplicity, just sets), and the query R − S (in FO, R(x) ∧ ¬S(x)),
and assume closed-world semantics. Consider D in which R = {1, 2} and S = {⊥}. Then Q([[D]]CWA) =
{{1}, {2}, {1, 2}}. Suppose the representation system is 〈D(σ),∃Pos, |=〉. Since ∃Pos formulae are mono-
tone, there is no ϕ ∈ ∃Pos with Mod(α) = Q([[D]]CWA). But there an ∃Pos formula ϕ one such that
Mod(ϕ) = Mod(Th(Q([[D]]CWA))). In fact, the obvious answer ϕ = A(1) ∨ A(2) does the job (we use
predicate A(·) for ‘answer’). To see this, it suffices to note that ∃Pos formulae, which are disjunctions of
conjunctive queries, are in Th(Q([[D]]CWA)) if they are disjunctions of conjunctive queries that are true in
{1}, {2}, and {1, 2}. Those are conjunctive queries implied by the positive diagrams of such instances, i.e.,
A(1),A(2), andA(1)∧A(2). From this one easily derives that Mod(Th(Q([[D]]CWA))) consists of instances
containing either 1 or 2.
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7. Computing certain answers

We now look at computing certain answers for queries. We show that with the proper semantics of
query answering, where more informative inputs lead to more informative answers, finding certain answers
is reduced to query evaluation. That is, certain answer as object, or certO(Q, x), is just Q(x), while certain
answer as knowledge, certK(Q, x), is δQ(x).

Crucially, the former condition is a corollary of the latter: without a representation system for query
answers, it may not be true. We explain how these general results apply to relational OWA, WCWA, and CWA

semantics. We also revisit the intersection-based definition of certain answers and show that it only makes
sense under very restricted scenarios. Finally, we show that the knowledge approach to certain answers
gives us extra flexibility compared to the object approach.

Recall that queries are required to preserve informativeness: x � y implies Q(x) �′ Q(y). We need an
additional condition of genericity, which is standard in the database context (see, e.g., [19]). Essentially, this
condition says that queries applied to isomorphic objects return isomorphic objects. For instance, for queries
expressible in first-order logic that do not refer to constants, if two databasesD andD′ are isomorphic, then
so are the answers Q(D) and Q(D′). If queries use constants, this is true when isomorphisms of databases
leave those constants intact. In our abstract setting such isomorphisms are captured via relations in Iso.
Hence, the analog of the genericity condition in this setting is as follows.

Definition 7 (Genericity). A query Q : D → D′ is generic if for every j, there is k so that x ≈k y implies
Q(x) ≈′

j Q(y).

We now state the main result about computing certain answers, and after proving it discuss what it
means for finding query answers, and what are the conditions imposed on queries and databases.

Theorem 2. Let Q : D → D′ be a query that preserves informativeness and is generic. Assume that there
is a representation system RS = 〈D′,F, |=〉 over the domain of query answers. Then, for every object x,

• certO(Q, x) = Q(x), and

• certK(Q, x) = δQ(x).

Proof. We start by showing certK(Q, x) = δQ(x). By the definition of certK(Q, x) as �KQ([[x]]), it suffices
to show that

Mod(δQ(x)) = Mod(Th(Q([[x]]))) (3)

for every x. Since we know that Mod(δz) = Mod(Th(z)), for every z, by Corollary 1, we just need to show

Th(Q([[x]])) = Th(Q(x)) (4)

to conclude (3). Suppose ϕ ∈ Th(Q(x)). Since c � x for every c ∈ [[x]], then Q(x) �′ Q(c) and Q(c)
satisfies ϕ as well by the properties of representation systems, proving that ϕ ∈ Th(Q([[x]])).

Conversely, if ϕ ∈ Th(Q([[x]])), consider j such that z ≈′
j z

′ implies that z, z′ agree on ϕ for every z, z′

(which exists by the definition of representation systems). By genericity, we have k so that y ≈k y
′ implies

Q(y) ≈′
j Q(y′) for every y, y′. We know that [[x]]≈k

is nonempty; this pick an element c in this set. We have
c ∈ [[x]] and c ≈k x. Hence (a) Q(c) ∈ Q([[x]]) and (b) Q(c) ≈′

j Q(x). Then (a) implies that Q(c) |= ϕ,
and (b) then implies that Q(x) |= ϕ, thus showing that ϕ ∈ Th(Q(x)) and proving (4) and (3).

Now we prove the result about certain answers at the object level. Since Q is monotone, we have
Q(x) �′ z for each z ∈ Q([[x]]) (we denote this by Q(x) �′ Q([[x]]). Suppose we have y �′ Q([[x]]).
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Then Th(y) ⊆ Th(Q([[x]])) and by (4), Th(y) ⊆ Th(Q(x)). Since δy ∈ Th(y), we have δy ∈ Th(Q(x)),
and thus Q(x) |= δy and y �′ Q(x). Therefore, Q(x) is the greatest lower bound of Q([[x]]), that is,
Q(x) = certO(Q, x). �

7.1. Discussion

Theorem 2 says that the new definition of certain answers based on greatest lower bounds provides
correctness guarantees. The conditions required for this are genericity and monotonicity of the query,
as well as having a representation system for query answers. We now discuss the importance of these
requirements, and how much they actually impose on the setting.

The existence of a representation system. This condition is essential: one can easily find examples where,
in the absence of a representation system, correctness guarantees do not hold. For instance, as the input
domain we consider D = {x, c1, c2} such that c1, c2 are complete objects, incomparable with each other,
and x ≺ c1, c2 (of course x ≺ y means that x � y holds but y � x does not). In D′, we have three
complete objects c′, c′1, c

′
2 and an incomplete object x′, with the ordering x′ �′ c′ and c′ �′ c′1, c

′
2. Now

define the query Q by Q(x) = x′, Q(c1) = c′1 and Q(c2) = c′2. Then Q(x) ≺′ certO(Q, x) = c′. The
existence of representation systems prevents this behavior. Indeed, if we had formulae δ, we would have
had δc′ ∈ Th(Q([[x]])) − Th(Q(x)), which is made impossible by (4) in the presence of a representation
system.

Thus, it is essential to go via certain answers as knowledge to get the object representation. On the
positive side, for common semantics (e.g., OWA and CWA), representation systems can easily be constructed.

Genericity. In many formalisms, this is essentially a “free” condition: genericity applies to most of the log-
ical formalisms used for querying databases. There are exceptions, however, but the machinery developed
here lets us handle those exceptions.

One of the exceptions is given by languages capable of referring to infinitely many constants. Such
languages occur, for instance, in data exchange [6], where it is sometimes necessary to distinguish constants
from nulls [36, 37], especially with rather expressive mappings. But then we can use another condition in
place of genericity.

The condition is a substitution property with respect to two representation systems RS = 〈D,F, |=〉 and
RS′ = 〈D′,F′, |=′〉. We say that a query Q has the substitution property with respect to RS and RS′ if for
each ϕ ∈ F′, there exists ϕQ ∈ F so that x |= ϕQ iff Q(x) |=′ ϕ. Intuitively, we can think of both ϕ and Q
given as logical formulae, and allow Q to be substituted for predicate symbols used in ϕ.

Proposition 7. Let Q : D → D′ be a query that preserves informativeness, and assume we have represen-
tation systems RS and RS′ so that Q has the substitution property with respect to them. Then, for every
object x,

• certO(Q, x) = Q(x), and

• certK(Q, x) = δQ(x).

Proof. We just need to prove (4) and then the proof of Theorem 2 will apply. The inclusion Th(Q(x)) ⊆
Th(Q([[x]])) is proved as before. For the converse, let ϕ be in Th(Q([[x]])); take ϕQ that exists by the
substitution property. Since Q(c) |=′ ϕ for each c ∈ [[x]], we have c |= ϕQ, and thus ϕQ ∈ Th([[x]]). But we
know by Proposition 3 that Th([[x]]) = Th(x) and hence ϕQ ∈ Th(x). But now the substitution property
and x |= ϕQ imply Q(x) |=′ ϕ, showing ϕ ∈ Th(Q(x)) and proving the converse inclusion. �
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Yet another situation where genericity is lost is when nulls and constants behave differently in queries.
This is the standard behavior of SQL, for instance: any comparison involving a null results in a truth
value unknown [24]. That is, checking ⊥1 = ⊥2 results in unknown, but of course under the mapping
⊥1 7→ 1, ⊥2 7→ 2 the comparison becomes false, which easily leads to non-genericity. In fact there are
several variants of SQL-like evaluation procedures with nulls [38], and they all lack genericity.

However, in this case we get a simple corollary that provides us with some correctness guarantees.

Corollary 2. If genericity is dropped as an assumption of Theorem 2, i.e., we have a queryQ that preserves
informativeness but is not necessarily generic, then Q(x) �′ certO(Q, x), and δQ(x) ∈ Th(Q([[x]])).

In other words, in this case the basic query evaluationQ(x) provides us with an approximation of certain
answers, since it gives us some, but perhaps not all, information that certain answers contain. Assuming that
Q itself is efficient, this becomes an efficient approximation. In fact this idea was recently used to provide
efficient evaluation of SQL queries with nulls that provides certainty guarantees [38].

Preserving informativeness. Monotonicity, or preserving informativeness, is the crucial condition. How-
ever natural it is, it was ignored by most of the work on incompleteness which also ignored the task of
choosing the right semantics of query answers. In fact most often one just blindly uses some fixed seman-
tics for query outputs, which is often not justified. So to get correctness “for free”, one has to work after
all, and the important work is to understand the right semantics of query answers which ensures the basic
principle of preserving informativeness.

One possible approach to achieving monotonicity of queries is to insist on some fixed semantics of query
answers, and then look at restrictions of queries under which monotonicity is achieved. This is essentially
what approaches based on naı̈ve evaluation [2, 21, 30] do. Indeed, Theorem 2 says that certain answers are
computed by the evaluation of the query itself, and the goal of naı̈ve evaluation is the same.

A different approach is to fix a language L, and try to find a semantics of query answering so that all the
queries in L are monotone. This has been explored to a lesser extent, although this is the direction that needs
to be developed if we want to learn how to answer complex queries with certainty (since naı̈ve evaluation
inevitably imposes restrictions on queries).

We now offer one simple observation in this direction, showing that a defining certain answers as great-
est lower bounds makes them behave reasonably. Namely, assume that a query Q is only defined on com-
plete objects, and we want to extend it to all objects. The natural way to do this is to use certain answers as
objects, i.e., the query certO(Q) that sends each object x to certO(Q, x). The following is immediate from
the definitions.

Proposition 8. For an arbitrary query Q defined on complete objects, the query certO(Q) preserves infor-
mativeness.

Proof. Let x � y. Then [[y]] ⊆ [[x]] and Q([[y]]) ⊆ Q([[x]]). Thus if greatest lower bounds of these sets
are defined, we have

∧
Q([[x]]) �′ Q([[y]]), i.e., certO(Q, x) �′ certO(Q, y). �

This proposition only confirms that certain answers, as defined here, behave logically. It does not give
a recipe to compute them, but suggests new approaches which we shall discuss in the concluding section.

7.2. Certain answers for relational queries

We now look at examples of concrete domains and representation systems for relational databases.
The domains of input databases are always D∗(σ), containing databases of vocabulary σ, with ∗ being

19



the semantics. If a query Q returns sets of m-ary tuples, the domain D′ will have as objects databases of
vocabulary σm that contains a single m-ary relation A(·). But what will the semantics be?

To see what semantics was used, look at the classical certain answers, as defined in [2, 19], for Boolean
queries. For an input database D, we have cert∩(Q,D) = true iff Q(D′) = true for every D′ ∈ [[D]], and
cert∩(Q,D) = false iff just one Q(D′) evaluates to false. Viewing this way of computing certain answers
as the greatest lower bound corresponds to the ordering false� true. Or, if false is represented by the empty
set and true by the set {()} containing the empty tuple, this corresponds to the subset ordering. Going to
non-Boolean queries, we note that cert∩(Q,D) is the greatest lower bound in the same ordering⊆ on query
answers that happen not to contain nulls.

In particular, this means that in the standard relational query answering over incomplete databases one
assumes the open world semantics for query answers since tuples can be added. And note that the ordering
�OWA becomes ⊆ when restricted to databases without nulls.

We thus look at relational queries as mappings Q : D∗(σ) → DOWA(σm). The following proposition
states that monotonicity (i.e., preservation of informativeness) for these classes is achieved for classes of
FO formulae seen earlier.

Proposition 9. Consider an m-ary relational query Q : D∗(σ) → DOWA(σm). Then Q is preserves infor-
mativeness

• for ∗ =OWA, when Q is an ∃Pos query;

• for ∗ =WCWA, when Q is an Pos query;

• for ∗ =CWA, when Q is an Pos∀G query.

Proof. We need to show the following. Suppose h : D → D′ is a homomorphism, and ā is an m-tuple of
elements of adom(D) such that ā ∈ Q(D). Then h(ā) ∈ Q(D′) if:

• Q is definable in ∃Pos, or

• Q is definable in Pos and h is onto, or

• Q is definable in Pos∀G, and h is strong onto.

This is exactly the restatement of the required monotonicity. This in turn follows from known results saying
that formulae in these classes are preserved under homomorphisms [33, 34, 32, 21]. Note that in our case
homomorphisms are restricted as they preserve elements on Const but since we are interested in the syntax-
to-preservation direction only, this restriction does not affect the proofs in [33, 34, 32, 21]. In fact the proofs
just go by straightforward induction on the structure of the formula. �

This proposition, combined with Theorem 2, gives us the following.

Corollary 3. Let Q be an m-ary relational query. If its answers are interpreted under the OWA semantics,
then certO(Q,D) = Q(D) provided that

• input databases are interpreted under OWA and Q is definable in ∃Pos, or

• input databases are interpreted under WCWA and Q is definable in Pos, or

• input databases are interpreted under CWA and Q is definable in Pos∀G.
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For the “classical” way of defining certain answers, which involves throwing away tuples with nulls
and computing intersection, the notion of naı̈ve evaluation involves computing Q(D) and throwing away
tuples with nulls [2, 21]. Note that using the new notion of certain answers, namely certO(Q,D), for the
same classes of queries we no longer need to throw away tuples containing nulls: simply computing Q(D)
does the job. Returning to the example from the introduction, if we have a database D with a relation
RD = {(1, 2), (3,⊥)} and a query Q that returns that relation, the classical naı̈ve evaluation produces a
single tuple (1, 2), while certO(Q,D) returns RD itself, as expected.

The operator πC that simply keeps all tuples that only use constants, is monotone (i.e., preserves infor-
mativeness) with respect �OWA. Thus, if we use the OWA semantics for answers, it is harmless, but still it
may unnecessarily eliminate tuples from answers, as we have seen (not to mention that it costs us computa-
tionally). Furthermore, for other orderings, such as �CWA and �WCWA, it is not even monotone, as the above
example of RD = {(1, 2), (3,⊥)} shows. Thus, the use of the intersection operator is not necessary under
OWA and is rather problematic under WCWA and CWA.

Example 2. We now show how Theorem 2, together with descriptions of representation systems for OWA

and CWA, immediately yields results presented in Example 1.
Recall that we have a database D with a single relation R with tuples (1, 2) and (3,⊥). Consider the

identity queryQ (i.e., a query that simply returnsR). We can view it as a query from DOWA(σ2) to DOWA(σ2);
recall that σ2 is the vocabulary of a single binary relation. For the representation system on DOWA we use
∃Pos formulae, as before. Clearly Q is generic and preserves informativeness (i.e., is monotone), and thus
�K[[D]]OWA = certK(Q,D) = δD by Theorem 2. The latter is the positive diagram of D as we saw, and
hence �K[[D]]OWA = ∃zR(1, 2) ∧R(3, z), as was stated in Example 1.

Next we consider the query πC eliminating tuples with nulls as a query from DOWA(σ2) to DC
OWA(σ2),

where the range of the latter is restricted only to databases without nulls. Again this query is monotone and
generic, and it is easy to see that with the class of ground atoms and their conjunctions, DC

OWA(σ) forms a
representation system. Hence Theorem 2 tells us that certK(πC, D) = �K[[D]]OWA = δπC(D) (with respect
to the representation system based on conjunctions of ground atoms). Since the semantics remains to be
OWA, we get δπC(D) = R(1, 2), again as stated in Example 1.

Finally, we can consider the identity query Q as a query from DCWA(σ2) to DCWA(σ2). We know what
representation system to use for CWA: it is the one based on Pos∀G formulae. Query Q is clearly monotone
and generic, and hence again by Theorem 2 we have certK(Q,D) = �K[[D]]CWA = δD, where the latter,
in the Pos∀G representation system is given by ∃z

(
R(1, 2) ∧ R(3, z) ∧ ∀x, y R(x, y) →

(
(x = 1 ∧ y =

2) ∨ (x = 3 ∧ y = z)
))

.

7.3. Closed world query answering
We have seen that under CWA, we have the largest class of queries for which certain answers can be

found by straightforward query evaluation, applying Theorem 2. We now have a deeper look at Pos∀G

queries and provide more intuition about their power, both in terms of their logical expressiveness, and their
procedural implementation in terms of relational algebra.

We first extend the class Pos∀G syntactically. Define a class ∃Pos0 as follows:

• if x and y are distinct variables, then x = y is in ∃Pos0;

• if x̄ is an n-tuple of distinct variables and R is a relation symbol of arity n, then R(x̄) is in ∃Pos0;

• if ϕ1(x̄) and ϕ2(x̄) are formulae in ∃Pos0, then ψ(x̄) = ϕ1(x̄) ∨ ϕ2(x̄) is in ∃Pos0;

• ifϕ1(x̄1) andϕ2(x̄2) are formulae in ∃Pos0, and x̄1, x̄2 have no variables in common, thenψ(x̄1, x̄2) =
ϕ1(x̄1) ∧ ϕ2(x̄2) is in ∃Pos0;
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• if ϕ(x̄, z̄) is a formula in ∃Pos0, then ψ(x̄) = ∃z̄ ϕ(x̄, z̄) is a formula in ∃Pos0.

In other words, we restrict the class ∃Pos so that conjunction can only be taken when the conjuncts
have no free variable in common, and disjunction when the free variables of disjuncts coincide.

Using this, we define an extension Pos∀G
ext of the class Pos∀G by changing the last formation rule from

∀x̄ (α(x̄) → ϕ(x̄, ȳ)) for atomic α by allowing the formulae α(x̄) to be from ∃Pos0.

Proposition 10. The classes Pos∀G and Pos∀G
ext are equally expressive (i.e., for every formula of Pos∀G

ext

there is an equivalent formula of Pos∀G and vice versa).

Proof. To show this, one simply transforms the guarded formulae until the antecedents α become atomic
formulae. This is done by using equivalences of

∀x̄1, x̄2 (α1(x̄1) ∧ α2(x̄2) → ϕ(x̄, x̄2, ȳ)) and ∀x̄1

(
α1(x̄1) → ∀x̄2 (α2(x̄2) → ϕ(x̄1, x̄2, ȳ))

)
when x̄1, x̄2 share no variables, as well as of

∀x̄ (α1(x̄) ∨ α2(x̄) → ϕ(x̄, ȳ)) and ∀x̄ (α1(x̄) → ϕ(x̄, ȳ)) ∧ ∀x̄ (α2(x̄) → ϕ(x̄, ȳ))

and
∀x̄ (∃z̄ α(x̄, z̄) → ϕ(x̄, ȳ)) and ∀x̄, z̄ (α(x̄, z̄) → ϕ(x̄, ȳ)),

which are all readily verified. By applying these to a Pos∀G
ext formula, we eventually put it into the Pos∀G

format, as follows from the definition of ∃Pos0. �

We can turn the above observation into a statement about the expressiveness of Pos∀G queries at the
relational algebra level, showing how much we can move away from the traditional unions of conjunctive
queries under the CWA. Recall that relational algebra [19] consists of five operations: projection π, selection
σ, cartesian product ×, union ∪, and difference −. The first four, known as positive relational algebra,
capture exactly the power of ∃Pos, or unions of conjunctive queries (hence also called select-project-join-
union queries [19]). With the difference operator −, we get the full power of FO.

However, relational algebra often relies on some derived operations for implementing commonly occur-
ring queries. When it comes to queries with for-all conditions, the most common such operation is division
[19, 39]. If we have a relation R with attributes A1, . . . , Am, B1, . . . , Bk and a relation S with attributes
B1, . . . , Bk, then R÷S contains tuples of A-attributes of R that appear in R in every possible combination
with a tuple from S, i.e., R ÷ S = {t̄ ∈ πĀ(R) | ∀s̄ ∈ S : (t̄, s̄) ∈ R} (here πĀ is the projection operator
that only keeps attributes A1, . . . , Am). It correspond to a very common class of queries, such as ‘find
students who take all classes’. The operation of division is of course expressible with σ, π,×,∪,−.

To show what the class Pos∀G gives us in terms of relational algebra, we first define a class RA(∆, π,×,∪)
of queries as follows. Let ∆ be the query returning {(a, a) | a ∈ adom(D)}; it is easily definable in pos-
itive relational algebra. Then RA(∆, π,×,∪) is the class of relational algebra queries obtained from base
relations and ∆ by closing them under π, ×, and ∪. Now we define RACWA as follows:

• Each relation name is an RACWA query;

• RACWA is closed under σ, π,×, and ∪ (i.e., all operations of the positive relational algebra);

• if Q is an RACWA query, and Q′ is an RA(∆, π,×,∪) query, then Q÷Q′ is in RACWA.

Now noticing that the guarded formulae used in the definition of Pos∀G
ext correspond to the division

operator, one can follow the definition of Pos∀G
ext and obtain the following corollary of Proposition 10.
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Corollary 4. Pos∀G and RACWA are equally expressive.

Consequently if input databases are interpreted under CWA and query outputs under OWA, as is very
common, then certO(Q,D) = Q(D) for all RACWA queries. This gives so far the largest known class of
relational algebra queries for which we can produce certain answers by simply evaluating queries on the
input database, and it is expressed using well known operations of relational algebra, both basic and derived
ones.

8. Conclusions

We have argued that the standard definition of certain answers in the database literature has a number of
deficiencies, and proposed a new approach to handling queries over incomplete databases. Its key features
are as follows.

• Certain answers can be defined at two different levels: as (database) objects, or as knowledge we
possess about query answers with certainty.

• The proposed framework, that applies to multiple data models, defines both types of certain answers
as greatest lower bounds in orderings that capture the level of informativeness. It also leads to a
proper definition of representation systems for query answers.

• If the semantics of query answering is chosen properly, then the process of finding certain answers is
reduced to query evaluation, at both object and knowledge level. Furthermore, the knowledge level is
crucial for obtaining results at the object level.

• This tells us that with the right choice of semantics, no new tools are needed for computing query
answers and one can rely on the standard database query evaluation engine. It also tells us that
using the traditional way of finding certain answers only makes sense under OWA, and with restricted
representation systems.

• In general, certain answers as knowledge give us more information than certain answers as objects.

8.1. Future work

The next step is to use the general framework of this paper to provide efficient techniques for producing
query answers with certainty guarantees. There are three directions one can pursue.

Efficient evaluation procedures for large classes of queries. So far, such techniques have mainly concen-
trated on finding classes of queries where naı̈ve evaluation works [2, 21]. Our framework lets us shift
focus and concentrate on finding proper query semantics to ensure the basic principle of preserving infor-
mativeness. One way to approach this is to use the fact that the certain answer query certO(Q) preserves
informativeness (Proposition 8). One can then look for evaluation procedures that are guaranteed to produce
results which are below certO(Q,D) in the informativeness ordering on the answers. If there is an efficient
procedure with such properties, then it gives us an efficient way of producing query answers with certainty
guarantees.

Similar ideas have been tried before, for relational algebra queries [40] and for SQL queries under
the three-valued logic approach that SQL uses [38]. Approaches of [40, 38] were tailored for specific
languages, and likewise had certainty guarantees tailored to specific requirements of those languages. Our
general frameworks should let us find general schemes of generating efficient evaluation procedures for
different languages and different correctness requirements.
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Note also that the procedure of [38] for SQL queries uses three-valued logic for reasoning. Evalua-
tion algorithms of a similar nature have been explored in the knowledge base literature [41], sometimes
even using database evaluation techniques [42]. While not directly applicable to relational databases, the
connection is worth studying, especially for representing certain answers as knowledge.

Easy to understand representation mechanisms for query answers. Our results suggest that it may be easier
– and perhaps more natural sometimes – to produce certain answers in the form of knowledge rather than
objects. This of course has been explored in the database literature. One of the early ideas was to use
minimal disjunctive answers, cf. [43], incorporating disjunctions into query answers. An analog of those
in the order-based setting is finding not the greatest lower bound of a set X but rather a finite set X0 such
that every element of X is above some element of X0. A more expressive mechanism is that of conditional
tables. Already in [2] it was shown that under CWA they form a strong representation system. Conditional
tables, however, as explained earlier, are essentially FO formulae, from a rather bizarre fragment, that are
simply made to look a bit like tables. Thus, mechanisms like disjunctive answers are preferable as they are
much easier to understand, but we are still very far from having a good understanding of the expressiveness
of various representation mechanisms.

We now give a couple of examples showing that simple representation mechanisms can be quite useful,
and an alternative to hard-to-understand conditional tables. Take a queryQ = R−S, and a databaseD with
RD = {1, 2} and SD = {3,⊥}. Under CWA, we have Q([[D]]CWA) =

{
{1, 2}, {1}, {2}

}
. If we take the

greatest lower bound of these, then for �CWA it simply does not exist, and for �OWA ordering, it is ∅, which
is, incidentally, what a commercial DBMS would return if one runs this query in SQL, written as select
r.a from r where r.a not in (select * from s). This is of course yet another illustra-
tion that returning certain answers as objects is not always possible, and one needs to return certain answers
as knowledge instead. What sort of knowledge will depend, of course, on the representation system. If we
use the set of ∃Pos formulae, then we get essentially minimal disjunctive answers, as Q([[D]]CWA) can be
described by A(1) ∨ A(2). If we consider the same query under OWA, then Q([[D]]OWA) = {A | 3 6∈ A}.
Again, this is not representable by a single object: taking the greatest lower bound of Q([[D]]OWA) results
again in ∅, missing some valuable information. If we use representation systems that allow negations of
atomic formulae, then ¬A(3) will represent the certain answer properly. This suggests that one needs a
deeper study of certain answers as knowledge, concentrating on representations of answers that make sense
to users.

Applications. We explained that certain answers are the preferred way of dealing with incompleteness in
many applications, including data integration, data exchange, ontology based query answering, and con-
sistent query answering. So far we have used the approach proposed here to understand query answering
over incomplete relational databases (see Section 7.2 and [38]). Our next goal is to use the same ideas to
understand when we can make answering queries in the application scenarios easier. In some cases, query
answering in those scenarios is reduced to building a database (typically incomplete) and answering queries
over it (e.g., in data exchange). Then we can directly take advantage of techniques developed here. One
question is to identify cases when this can be done.

In other cases, most likely we would need to use Proposition 8 as the starting point, and look for approx-
imations. Note also that approximations are easier to find under CWA rather than OWA, as is already evident
in the case of relational queries [38]. Thus, using our approach to find good quality and computationally ef-
ficient answers may be more challenging in settings relying on OWA (like ontology based query answering),
although incorporating closed-world reasoning [44] can perhaps make finding approximate answers easier.
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Other data models. Yet another direction is to apply the framework to non-relational models, particularly
semi-structured and XML, for which incompleteness has been studied extensively [45, 26, 46, 31], and
beyond, to graph data and RDF, where only preliminary results have been established so far [47, 48].
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[15] P. Barceló, Logical foundations of relational data exchange, SIGMOD Record 38 (1) (2009) 49–58.
[16] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, M. Zakharyaschev, The combined approach to ontology-based data access, in:

IJCAI, 2011, pp. 2656–2661.
[17] P. Buneman, A. Jung, A. Ohori, Using powerdomains to generalize relational databases, Theoretical Computer Science 91 (1)

(1991) 23–55.
[18] L. Libkin, A semantics-based approach to design of query languages for partial information, in: Semantics in Databases, Vol.

1358 of Lecture Notes in Computer Science, Springer-Verlag, 1995, pp. 170–208.
[19] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, 1995.
[20] R. Reiter, Equality and domain closure in first-order databases, Journal of the ACM 27 (2) (1980) 235–249.
[21] A. Gheerbrant, L. Libkin, C. Sirangelo, Naı̈ve evaluation of queries over incomplete databases, ACM Trans. Database Syst.

39 (4) (2014) 31:1–31:42.
[22] C. J. Date, Database in Depth - Relational Theory for Practitioners, O’Reilly, 2005.
[23] C. J. Date, A critique of Claude Rubinson’s paper ‘Nulls, three-valued logic, and ambiguity in SQL: critiquing Date’s cri-

tique’, SIGMOD Record 37 (3) (2008) 20–22.
[24] C. J. Date, H. Darwen, A Guide to the SQL Standard, Addison-Wesley, 1996.
[25] M. Arenas, L. Libkin, XML data exchange: Consistency and query answering, Journal of the ACM 55 (2) (2008) 7:1–7:65.
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