
On Low Treewidth Approximations of

Conjunctive Queries

Pablo Barceló1, Leonid Libkin2, and Miguel Romero1

1 Department of Computer Science, University of Chile
2 School of Informatics, University of Edinburgh

Abstract. We recently initiated the study of approximations of con-
junctive queries within classes that admit tractable query evaluation
(with respect to combined complexity). Those include classes of acyclic,
bounded treewidth, or bounded hypertreewidth queries. Such approxi-
mations are always guaranteed to exist. However, while for acyclic and
bounded hypertreewidth queries we have shown a number of examples of
interesting approximations, for queries of bounded treewidth the study
had been restricted to queries over graphs, where such approximations
usually trivialize. In this note we show that for relations of arity greater
than two, the notion of low treewidth approximations is a rich one, as
many queries possess them. In fact we look at approximations of queries
of maximum possible treewidth by queries of minimum possible treewidth
(i.e., one), and show that even in this case the structure of approxima-
tions remain rather rich as long as input relations are not binary.

1 Introduction

The concept of approximating queries by those that are easier to execute is fairly
standard in databases; see, for example, [5, 6, 8, 12, 15]. Typically one analyzes
the structure of both the database and the query in order to find a good, or at
least reasonable approximation of the answer. Approximate techniques are rele-
vant for problems of high complexity, and even for problems whose complexity
is viewed as acceptable for regular-size databases, when those queries are asked
against very large databases.

We have recently initiated a study of approximations of conjunctive queries
from the static analysis point of view [2]. The reason we concentrated on con-
junctive, or select-project-join queries is twofold. First, they play a special role in
database applications. Second, we have a very good understanding of their com-
plexity. We know which classes of conjunctive queries are easy to evaluate; these
include acyclic queries, queries of bounded treewidth, and queries of bounded
hypertreewidth, see [4, 9–11, 13, 17]. Studying approximations from the point of
view of static analysis means that we find approximations independently of the
input database: for a query Q, we want to find another query Q′ that will be
much faster than Q, and whose output would be close to the output of Q on all
databases.

We have shown in [2] that approximations always exist for classes mentioned
above; furthermore, sizes of approximations are at most polynomial in the size of
the original query (and often they do not exceed the size of the original query),
and they can be found in at most single exponential time.

To see why these properties are desirable, consider, for instance, the com-
plexity of checking whether a tuple ā belongs to the output of a conjunctive
query Q on a database D. This is of the order |D|O(|Q|), where | · | measures
the size (of a database or a query) [1, 16]. In fact, the combined complexity of
conjunctive query evaluation is well known to be NP-complete even for Boolean
conjunctive queries [3]. That is, the problem of checking, for a given database
D and a Boolean conjunctive query Q, whether D |= Q (i.e., Q is true in D), is
NP-complete.

The data complexity of conjunctive query evaluation is of course very low
(in AC0), but if we are concerned with evaluating queries over large data sets,
having O(|Q|) as the exponent may be too high. With conjunctive queries from
the good classes mentioned above, the O(|Q|) exponent is replaced by a fixed
one. For instance, for acyclic conjunctive queries, evaluation can be done in time
O(|D|·|Q|), see [17]. Thus, assuming that we can find an approximation relatively
fast (for instance, in time 2O(|Q| log |Q|)) and its size is roughly bounded by the
size of Q, we may want to check if the approximation gives us the answer first.
The complexity of doing so is

2O(|Q| log |Q|) + O(|D| · |Q|)

which is likely to be much less than |D|O(|Q|) on very large databases D.

These were the motivations of [2], which showed how to construct approx-
imations in the above tractable classes (indeed, with the complexity of finding
approximations as indicated above).

These classes, however, are defined using different parameters: either graphs,
or hypergraphs of queries. Acyclicity, for instance, is a hypergraph-based notion,
as is the hypertree width. Treewidth, on the other hand, is a graph-based notion.
In general, these approaches are incompatible [7, 10, 11, 13]. For instance, for the
conjunctive query Q():–R(x, y, z), its hypergraph will contain a single hyperedge
{x, y, z} and will be acyclic; its graph, on the other hand, will be K3 (complete
graph of 3 nodes), and will be of treewidth 2. Considering relations of higher
arity, we can find queries of arbitrary high treewidth that will be acyclic.

For hypergraph-based classes, we have shown that nontrivial acyclic approx-
imations exist, and have given a number of examples, in addition to the general
existence theorems in [2].

For graph-based classes, we have only stated general existence results (which
do guarantee existence and appropriate complexity bounds), and then studied
approximations for queries that themselves operate on graphs. For such queries,
interesting approximations of low treewidth can only be found under strong
graph-theoretic restrictions, and many queries only posses trivial approximations
(this will be explained later in detail).

Our goal now is to show that this phenomenon is restricted only to graph
queries, and beyond those we do have a rather rich structure of approximations
for graph-based notions. This is what we do in this note.

2 Notations

Conjunctive queries Recall that the term conjunctive queries refers to the ∃,∧-
fragment of first-order logic. Such queries can be written in the form

Q(x̄) = ∃ȳ Ri1(ūi1) ∧ . . . ∧ Rik
(ūik

)

where each Rij
is a relation symbol, and each ūij

is a tuple of variables from x̄, ȳ

of the same arity as Rij
. These are typically written in the rule-based notation:

Q(x̄) :– Ri1(ūi1), . . . , Rik
(ūik

).

If we have a Boolean (yes/no) query, i.e., a sentence, or a query without free
variables, we indicate this by writing Q() in the rule-based notation.

Given a database D, the answer Q(D) to Q is {ā | D |= Q(ā)}. If Q is a
Boolean query (a sentence), the answer true is, as usual, modeled by the set
containing the empty tuple, and the answer false by the empty set.

We refer to the number of subgoals in the body of a conjunctive query as the
number of atoms. A query with k atoms requires k − 1 joins to be evaluated, so
this is an important parameter of the complexity of a conjunctive query.

Here we primarily deal with Boolean conjunctive query over a vocabulary
consisting of an m-ary relation R, for some m > 1. For instance, if m = 2, the
query

Qtr():–R(x, y), R(y, z), R(z, x)

checks if the graph contains a triangle.

Query containment and tableaux A conjunctive query Q is contained in a con-
junctive query Q′, written as Q ⊆ Q′, if Q(D) ⊆ Q′(D) for every database
D. If Q and Q′ are Boolean conjunctive queries, then Q ⊆ Q′ means that the
implication Q → Q′ is valid over all finite databases.

With each Boolean conjunctive query Q over m-ary relation R

Q :– R(x̄1), . . . , R(x̄m) (1)

we associate its tableau TQ, which is a relation R interpreted as the set of tuples
{x̄1, . . . , x̄m}.

Many key properties of conjunctive queries can be stated in terms of ho-
momorphisms of tableaux. For example, D |= Q iff there is a homomorphism
from TQ to D, and Q ⊆ Q′ iff there is a homomorphism from TQ′ to TQ [3].
These classical results, of course, extend to queries with free variables, and over
arbitrary vocabularies.

Graphs and homomorphisms We shall also need some definitions about graphs
and digraphs. Both are defined as pairs G = 〈V, E〉, where V is a set of nodes
(vertices) and E is a set of edges. For graphs, an edge is a set {u, v}, where
u, v ∈ V ; for digraphs, an edge is a pair (u, v), i.e., it has an orientation from u

to v. If u = v, we have a (undirected or directed) loop.
We denote by Km the complete graph on m vertices: Km =

〈{u1, . . . , um}, {{ui, uj} | i 6= j, i, j ≤ m}〉. Furthermore, we let Km stand
for the finite set of graphs on vertices u1, . . . , um which have all the edges of Km

and perhaps some loops as well.
Given two graphs (directed or undirected) G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉,

a homomorphism between them is a map h : V1 → V2 such that h(e) is
in E2 for every edge e ∈ E1. Of course by h(e) we mean {h(u), h(v)} if
e = {u, v} and (h(u), h(v)) if e = (u, v). The image of h is the (di)graph
Im(h) = 〈h(V1), {h(e) | e ∈ E1}〉. If there is a homomorphism h from G1 to

G2, we write G1 → G2 or G1
h

−→ G2.
A graph G is a core if there is no homomorphism G → G′ into a proper

subgraph G′ of G. A subgraph G′ of G is a core of G if G′ is a core and G → G′.
It is well known that all cores of a graph are isomorphic and hence we can speak
of the core of a graph, denoted by core(G). We say that two graphs G and G′ are
homomorphically equivalent if both G → G′ and G′ → G hold. Homomorphically
equivalent graphs have the same core, i.e., core(G) and core(G′) are isomorphic.
These notions straightforwardly extend to arbitrary structures (and thus can be
applied to tableaux of conjunctive queries).

If two tableaux TQ and TQ′ are homomorphically equivalent, then Q and
Q′ are equivalent queries. Furthermore, core(TQ) serves as the tableau of the
minimized version of Q: the query equivalent to Q that has the minimum number
of atoms. We refer to queries whose tableaux are cores as minimized.

3 Classes of conjunctive queries

Tractable classes of conjunctive queries can be defined in terms of both graphs
and hypergraphs [4, 7, 10, 11, 13, 17]. Here we look at graph-based classes.

With each conjunctive query Q, we associate its graph G(Q) = 〈V, E〉 as
follows:

– V is the set of variables used in Q;
– there is an edge {x, y} if x and y are used in two distinct positions in the

same atom of Q.

For instance, for the query Qtr used above, we have G(Qtr) = K3.
For graph-based classes of queries, tractability results rely on the notion of

treewidth. A tree decomposition of a graph G = 〈V, E〉 is a tree T together with
a map f : T → 2V that associates a set of vertices in V with each node of T

such that

1. each edge from E is contained in one of the sets f(u) for u ∈ T ; and

2. for every v ∈ V , the set {u ∈ T | v ∈ f(u)} is a connected subset of T .

The width of a decomposition is maxu∈T |f(u)|−1, and the treewidth of G is the
minimum width of its tree decompositions. If G is a tree (or a forest) to start
with, then its treewidth is 1. We refer to the classes of graphs of treewidth at
most k as TW(k).

If C is a class of graphs, then Q is a C-query if G(Q) ∈ C. We shall be
interested in TW(k)-queries for various k.

It was shown in [11] that the notion of treewidth essentially describes
tractability for graph-based classes of queries. Modulo some complexity-theoretic
assumptions, if the class of C-queries has polynomial combined complexity, then
C ⊆ TW(k) for some fixed k.

The degree of the polynomial depends on the treewidth, so ideally one wants
to find approximations of low treewidth (in particular, treewidth one).

4 The notion of approximation

We now present the notion of approximations from [2]. The idea is as follows: we
are given a query Q, and we want to approximate it within the class of C-queries.
For that, we define an ordering ⊏Q on queries in C: the meaning of Q1 ⊏Q Q2

is that “Q2 approximates Q better than Q1 does”, i.e., Q2 agrees with Q more
often than Q1. Then we look for maximal elements with respect to ⊏Q as good
approximations of Q.

Formally, we say that two Boolean conjunctive queries Q and Q′ agree on a
database D if D |= Q ↔ Q′. Then, for conjunctive queries Q, Q1, and Q2,

Q1 ⊑Q Q2
def
= ∀D

(

Q1 and Q agree on D ⇒ Q2 and Q agree on D
)

That is, Q2 approximates Q at least as well as Q1 does. Then Q2 approximates
Q better than Q1 does if Q1 ⊏Q Q2, i.e., Q1 ⊑Q Q2 and Q2 6⊑Q Q1.

Definition 1. (Approximations) A C-query Q′ is a C-approximation of a
conjunctive query Q if Q′ ⊆ Q and there is no C-query Q′′ ⊆ Q such that
Q′

⊏Q Q′′.

In other words, Q′ is an approximation of Q if it is guaranteed to return
correct results and no other query approximates Q better than Q′. We require
the approximating query to be contained in Q; that is, we only want to return
correct answers which is a standard approach in databases [14].

Of course the definitions straightforwardly extend to non-Boolean conjunc-
tive queries: one only has to replaces databases D with pairs (D, ā), where ā

ranges over tuples of elements of the same arity as Q.

Remark Note that there could be different ways of defining approximations; in
particular, one can follow either the qualitative approach, which defines approx-
imations as queries that cannot be improved in terms of how close they come to

the query they approximate, or the quantitative approach, which would define a
measure of difference between two queries and require the approximating query
to be close in that measure to the query it approximates. Here we follow [2] which
initiated the study of the qualitative approach, but of course the quantitative
approach needs to be studied too.

It was shown in [2] that the use of the ordering ⊑Q can be replaced by a
containment test: A C-query Q′ ⊆ Q is a C-approximation of Q if and only if
there is no C-query Q′′ such that Q′ ⊂ Q′′ ⊆ Q.

To state the existence result, we make a technical assumption that a single-
element loop, i.e., the graph Loop with a single node x and a loop (x, x) on it,
is in C. This is not a restriction for us: the treewidth of Loop is 1, and hence it
belongs to TW(k) for all k.

A key result on the existence of approximations from [2] stated the following.

Fact 2 Let C be a class of graphs closed under taking subgraphs. Then every
conjunctive query Q has a C-approximation. Furthermore:

1. the number of minimized queries which are C-approximations of Q is finite
(in fact at most exponential in the size of Q);

2. each such minimized C-approximation has at most as many atoms as Q;
3. an approximation can be found in time single-exponential in the size of Q.

Some queries have trivial approximations. Let Qtriv be the query whose
tableau is Loop, the singleton loop graph. That is, Q():–R(x, x, . . . , x). Note
that since Loop has treewidth 1, the query Qtriv is TW(k)-query for every k ≥ 1.
Moreover, Qtriv ⊆ Q for every conjunctive query Q (via the constant homomor-
phism). In a way, this is the least interesting possible approximation.

We say that an approximation is trivial if it is equivalent to Qtriv; otherwise
it is nontrivial.

The following was shown in [2].

Fact 3 A conjunctive query Q over graphs has a nontrivial TW(1)-
approximation iff G(Q) is bipartite.

Recall that a graph G is bipartite iff there is a homomorphism G → K2 (or,
equivalently, iff it is 2-colorable) [18].

Thus, many queries over graphs lack interesting efficient approximations (say,
TW(1)-approximations): for instance the query Qtr seen earlier does not have
one, since G(Qtr) = K3 is not bipartite.

What we shall see now is that this behavior of queries changes radically when
we go beyond queries over graphs.

5 Strong treewidth approximations

What could be the strongest possible approximations in terms of reducing
treewidth of (the graph of) a query? Recall that we work with Boolean con-
junctive queries over an m-ary relation R. An additional proviso for this section

is that we assume queries to be connected (i.e., G(Q) is connected). This is not
a restriction at all: each conjunctive query is a conjunction of connected ones.

For a query Q, let var(Q) be the number of variables in it. Then the treewidth
of G(Q) is at most var(Q) − 1. Hence, the strongest possible approximations in
terms of reducing treewidth are those that go from treewidth var(Q) − 1 to the
smallest possible treewidth, i.e., 1.

Definition 4. A conjunctive query Q′ is a strong treewidth approximation of a
conjunctive query Q if Q′ is a TW(1)-approximation, and the treewidth of G(Q)
is maximal, i.e., var(Q) − 1.

Remarks

– Note that not every query has a strong treewidth approximation. In fact,
a query Q may have such an approximation only if its treewidth equals
var(Q) − 1, i.e., is the maximum possible. We define this notion in order to
study the best approximations in terms of treewidth reduction.

– In addition, results on fixed-parameter tractability for graph-based classes
of conjunctive queries say that the treewidth of the graph determines the
exponent in the complexity of query evaluation. So in a sense, strong ap-
proximations show how to approximate the worst-complexity queries by the
best-complexity queries.

– The goal of our study here is not to come up with a practically relevant
class of queries that can be efficiently approximated. Such issues have been
discussed in [2], which nonetheless had a gap, as it did not consider approx-
imations within graph-based classes except on queries over graphs. Our goal
is to provide evidence that approximations within graph-based classes make
perfect sense for queries over relations of higher arities; then complexity and
other analyses of [2] apply.

Note that in the case of graphs (m = 2), the concept of strong treewidth
approximations trivializes. This is due to the fact that if treewidth of G(Q)
equals n − 1, for n = var(Q), then G(Q) is in Kn (i.e., the graph of Q is Kn,
perhaps with some loops).

Proposition 1. Assume that Q is a query of graphs that is not a TW(1)-query.
If Q′ is its strong treewidth approximation, then Q′ is trivial.

Proof sketch. Indeed, Kn for n > 2 are not bipartite and thus can only have
trivial TW(1)-approximations. 2

So from now, we assume that m, the arity of R, is at least 3.

The first observation is that strong treewidth approximations, if they exist,
do not have too many variables.

Proposition 2. Assume m > 2, and let Q′ be a strong treewidth approximation
of Q. Then G(Q′) has at most two nodes.

Proof sketch. Indeed, if var(Q) = n, then G(Q) ∈ Kn, and if a homomorphic
image of TQ contains at least 3 nodes, then it will have a triangle, and thus will
have treewidth at least 2. 2

Thus, G(Q′) in the above proposition is either K2, or a K2 with one or two
loops. While these graphs are quite simple, there are still quite a few queries
that generate them.

Potential approximations We call a query Q′ a potential strong treewidth approx-
imation if G(Q′) has at most two nodes. In particular, every strong treewidth
approximation is a potential strong treewidth approximation. Some of those
potential strong treewidth approximations are equivalent to the trivial query
Qtriv():–R(x, x, . . . , x). Of course we are interested in others. Note that there
are quite a few of them.

Proposition 3. There are at least 22m−3 − 1 nonequivalent, nontrivial, and
minimized potential strong treewidth approximations.

Proof sketch. Assume that the variables are x and y, and consider 2m − 2 tuples
of length m of those except the two trivial ones (m repetitions of the same
variable). We then look at sets of those and see that each such set defines a core
as a structure of relation R. Finally we divide the number by two due to the
symmetry between x and y. 2

So, there are many potential strong treewidth approximations that are non-
trivial. But can the potential be realized? The answer is yes.

Theorem 1. Let Q′ be a potential strong treewidth approximation. Assume that
Q′ is nontrivial. Then, for every n > m, there is a conjunctive query Q with
var(Q) = n such that Q′ is a strong treewidth approximation of Q.

Moreover, if the query Q′ has k atoms, then Q can be chosen to have at most

k +
n(n − 1)

2
− 1

atoms.

Proof sketch. Observe that in every atom in Q′ one variable occurs at least twice.
Assume first that there is an atom in which some variable occurs exactly twice,
say, an atom R(x, . . . , x, y, y). Then in Q we put atoms R(x1, . . . , x1, xi, xj)
for all 2 ≤ i ≤ j ≤ n, assuming Q has variables x1, . . . , xn. For every
other atom R(x, . . . , x, y, . . . , y) with r occurrences of y we put in Q the atom
R(x1, . . . , x1, x2, . . . , xr+1) (of course variables can occur in an arbitrary or-
der; we simply replace all the occurrences of x with x1 and r occurrences of
y with x2, . . . , xr+1, in the same order in which the y’s occur in the atom). The
construction ensures G(Q) ∈ Kn, and it is easy to verify that Q has at most

k +n− 2+ (n−1)(n−2)
2 = k + n(n−1)

2 − 1 atoms, as only one atom in Q′ generates
multiple atoms in Q. The mapping sending x1 to x and every xi with i > 1

to y is a homomorphism showing Q′ ⊆ Q. If there were TW(1)-approximation
Q′′ of Q with Q′ ⊂ Q′′ ⊂ Q, we would have G(Q′′) ∈ K2, so a homomorphism
of the tableau of Q′′ into the tableau of Q′ can only be the identity, or swap-
ping the roles of variables x and y. Using this one easily verifies that Q′ is an
approximation.

If we do not have an atom with exactly two occurrences of a variable,
then pick an atom with a minimum number p of repetitions of a variable, say
R(x, . . . , x, y, . . . , y), where y occurs p times. Then we replace it by putting in
Q atoms

R(x1, . . . , x1, x2, . . . , xp−1, xi, xj)

with p ≤ i < j ≤ n (where x1s correspond to the positions of x). In addition, we
put in Q atoms

R(x1, . . . , x1, xi, . . . , xi, xi, xi)

whenever 2 ≤ i ≤ n. The proof then is the same (only the number of atoms in
Q gets smaller). 2

High arity approximations We saw that strong treewidth approximations are
ubiquitous. For graph queries, it is known that TW(1)-approximations strictly
decrease the number of atoms [2]. It turns out that going beyond graphs, we
can have many strong treewidth approximations that preserve the number of
atoms (and thus the number of joins). The result showing this uses relations of
arbitrarily high arity.

Theorem 2. For every k ≥ 3, one can find a relation symbol R of arity m > 2,
and two conjunctive queries Q and Q′ over R such that:

– both Q and Q′ are minimized;
– Q′ is a strong treewidth approximation of Q; and
– Q and Q′ have k atoms each.

Proof sketch. We take m, the arity of R, to be equal to k. In Q, the first three
atoms are

R(x1, x2, x3, x4, . . . , xk)
R(x2, x1, xk+1, x4, . . . , xk)
R(x3, xk+1, x1, x4, . . . , xk).

The next k − 3 atoms are of the form

R(xj , xj , . . . , xj , x1, xj , . . . , xj),

where x1 appears in the jth position; here 4 ≤ j ≤ k.
In Q′, we have k atoms of the form

R(x, y, . . . , y), R(y, x, y, . . . , y), . . . , R(y, . . . , y, x),

i.e., x appears once, every time in a different position. It is straightforward to
verify all three conditions of the theorem. 2

Low arity approximations A slight drawback of the previous result is that it re-
quires relations of high arity. But we can show that already for ternary relations,
the behavior of strong treewidth approximations is drastically different from the
graph case.

Recall the query Qtr():–R(x, y), R(y, z), R(z, x) used earlier; it states that a
graph contains a triangle. Its graph is not bipartite, since G(Q) = K3, and hence
it only has trivial TW(1)-approximation.

We now look at ternary relations R. We call an instance R of a ternary
relation an almost-triangle if there is an element that belongs to every triple of
R, and when it is removed from every triple, the resulting pairs form a triangle.
For instance, (4, 1, 2), (4, 2, 3), (4, 3, 1) is an almost-triangle: when we remove 4
for each of the triples, we end up with the pairs (1, 2), (2, 3), (3, 1) which form a
triangle.

Theorem 3. Let m, the arity of R, be 3. There is a minimized conjunctive
query Q with 4 variables, of maximum treewidth 3, such that:

– the tableau TQ of Q is an almost-triangle; and
– Q has a strong treewidth approximation Q′ with the same number of atoms

as Q.

Thus, indeed, the behavior of treewidth approximations is already drastically
different for the case of ternary relations, compared to graphs.

Proof sketch. We define Q over variables x1, x2, x3, x4 as follows:

Q() :– R(x1, x2, x3), R(x2, x1, x4), R(x4, x3, x1).

Its tableau is an almost triangle (just remove x1). Then G(Q) = K4 and thus it
has treewidth 3. It is also minimized.

We then look at

Q′() :– R(x, y, y), R(y, x, y), R(y, y, x).

It is routine to verify that Q′ is a strong treewidth approximation of Q satisfying
conditions of the theorem. 2

Acknowledgments Partial support provided by Fondecyt grant 1110171, EP-
SRC grants G049165 and F028288, and FET-Open Project FoX, grant agreement
233599. Part of this work was done when the second author visited Santiago.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. P. Barceló, L. Libkin, M. Romero. Efficient approximations of conjunctive queries.
In PODS’12, to appear.

3. A. Chandra and P. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In ACM Symp. on Theory of Computing, 1977, pages 77–90.

4. C. Chekuri, A. Rajaraman. Conjunctive query containment revisited. Theor.

Comput. Sci. 239(2): 211-229 (2000).
5. W. Fan, J. Li, S. Ma, N. Tang, Y. Wu. Graph pattern matching: from intractable

to polynomial time. PVLDB 3(1): 264-275 (2010).
6. R. Fink, D. Olteanu. On the optimal approximation of queries using tractable

propositional languages. In ICDT 2011, pages 174–185.
7. J. Flum, M. Frick, and M. Grohe. Query evaluation via tree-decompositions. J.

ACM, 49 (2002), 716–752.
8. M. Garofalakis and P. Gibbons. Approximate query processing: taming the ter-

abytes. In VLDB’01.
9. G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive

queries. J. ACM, 48 (2001), 431–498.
10. G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable

queries. JCSS, 64 (2002), 579–627.
11. M. Grohe, T. Schwentick, and L. Segoufin. When is the evaluation of conjunctive

queries tractable? In ACM Symp. on Theory of Computing, 2001, pages 657–666.
12. Y. Ioannidis. Approximations in database systems. In ICDT’03, pages 16–30.
13. Ph. Kolaitis and M. Vardi. Conjunctive-query containment and constraint satis-

faction. JCSS 61(2):302-332 (2000).
14. M. Lenzerini. Data integration: a theoretical perspective. In PODS’02, pages

233–246.
15. Q. Liu. Approximate query processing. Encyclopedia of Database Systems, 2009,

pages 113–119.
16. M. Vardi. On the complexity of bounded-variable queries. In PODS’95, pages

266–276.
17. M. Yannakakis. Algorithms for acyclic database schemes. In Proc. Conf. on Very

Large Databases, 1981, pages 82–94.
18. D. West. Introduction to Graph Theory. Prentice Hall, 2001.

