The Lattice of Subsemilattices of a Semilattice

Leonid Libkin*

Department of Computer and Information Science University of Pennsylvania, Philadelphia PA 19104, USA E-mail: libkin@saul.cis.upenn.edu

Ilya Muchnik

24 Chestnut St., Waltham MA 02145, USA E-mail: ilya@darwin.bu.edu

This note makes two observations about lattices of subsemilattices. First, we establish relationship between direct decompositions of such lattices and ordinal sum decompositions of semilattices. Then we give a characterization of the subsemilattice-lattices.

Let us recall some terminology. L will always stand for a semilattice, whose operation will be denoted by \circ . The ordering on L is given by letting $l_1 \leq l_2$ iff $l_1 \circ l_2 = l_2$, i.e. L is always a joinsemilattice. Subsemilattices of L, ordered by inclusion, form a subsemilattice-lattice denoted by Sub L. In Sub L the meet operation is intersection, and the join operation is defined as follows: $L_1 \vee L_2 = L_1 \cup L_2 \cup \{l_1 \circ l_2 \mid l_1 \in L_1, l_2 \in L_2\}$. An element a of an arbitrary lattice \mathcal{L} is called *neutral* if m(a, x, y) = M(a, x, y) for all $x, y \in \mathcal{L}$, where $m(a, x, y) = (a \wedge x) \vee (a \wedge y) \vee (x \wedge y)$ and $M(a, x, y) = (a \vee x) \wedge (a \vee y) \wedge (x \vee y)$. Notice that $m(a, x, y) \leq M(a, x, y)$ holds in any lattice.

Lemma 1 Let L be a semilattice and L_0 its subsemilattice. Then L_0 is a neutral element of SubL iff $L - L_0$ is a subsemilattice of L and every element of L_0 is comparable with every element of $L - L_0$.

Proof. Let L_0 be a subsemilattice of L such that $L - L_0$ is a subsemilattice of L as well and every element of L_0 is comparable with every element of $L - L_0$. We must prove that, for any $L_1, L_2 \in SubL$, $M(L_0, L_1, L_2) \subseteq m(L_0, L_1, L_2)$. Let $x \in M(L_0, L_1, L_2)$. Since $L_0 \lor L_i = L_0 \cup L_i$, i = 1, 2, there are 12 cases, but only one of them is nontrivial: $x \in L_0$ and $x = l_1 \circ l_2$, where $l_1 \in L_1, l_2 \in L_2$. If l_1 and l_2 are comparable, then either $x \in L_1$ or $x \in L_2$; hence $x \in m(L_0, L_1, L_2)$. If l_1 and l_2 are not comparable, then $l_1, l_2 \in L_0$ and $x \in (L_0 \land L_1) \lor (L_0 \land L_2) \subseteq$

^{*}While working on the final version, this author was supported by NSF Grants IRI-86-10617 and CCR-90-57570 and ONR Grant NOOO14-88-K0634.

 $m(L_0, L_1, L_2)$. Conversely, if $L_0 \in SubL$ and $L - L_0$ is not a subsemilattice of L, then there exist $l_1, l_2 \notin L_0$ such that $l_1 \circ l_2 \in L_0$. But then $m(L_0, \{l_1\}, \{l_2\}) \neq M(L_0, \{l_1\}, \{l_2\})$. If $L - L_0$ is a subsemilattice of L and there exist incomparable $l_1 \in L_0, l_2 \notin L_0$ and $l = l_1 \circ l_2$, then $m(L_0, L - L_0, \{l_2\}) \neq M(L_0, L - L_0, \{l_2\})$ if $l \notin L_0$ and $m(L_0, \{l_1\}, \{l_2\}) \neq M(L_0, \{l_1\}, \{l_2\})$ if $l \in L_0$. Hence, L_0 is not neutral.

Lemma 2 Sub $L \simeq \mathcal{L}_1 \times \mathcal{L}_2$ iff there exists a neutral element L_0 of Sub L such that $\mathcal{L}_1 \simeq Sub L_0$ and $\mathcal{L}_2 \simeq Sub L - L_0$.

Proof. By theorem 1 of [2, p. 152], the direct decompositions of Sub L into two factors are of form $Sub L \simeq (L_0] \times [L_0)$, where L_0 is neutral. By lemma 1, $\varphi : Sub L - L_0 \rightarrow [L_0)$ defined by $\varphi(L') = L' \cup L_0$ is a lattice isomorphism if L_0 is neutral. The lemma follows now from the fact that $Sub L_0 \simeq (L_0]$.

Corollary 1 An arbitrary semilattice L can not be represented as an ordinal sum of its proper subsemilattices iff Sub L is directly indecomposable.

Corollary 2 If L is finite, then Sub L is directly indecomposable iff it is subdirectly irreducible.

Proof. One direction is obvious. To prove that a directly indecomposable SubL is subdirectly irreducible, assume that $|L| \geq 2$, since SubL for a one-element L is a two-element chain and, therefore, subdirectly irreducible. Let **1** be the greatest element of L. We will show that $\Theta(\emptyset, \{\mathbf{1}\})$ is a unique atom of the congruence lattice of SubL. Since one-element subsemilattices are exactly the atoms of SubL, it is enough to show that $\Theta(\emptyset, \{\mathbf{1}\}) \leq \Theta(\emptyset, \{l\})$ for each $l \in L, l \neq \mathbf{1}$ or, equivalently, that $\{\mathbf{1}\}/\emptyset \approx_{\omega} \{l\}/\emptyset$. Notice that if $l_1 \circ l_2 = l$ in L, then $\{l\}/\emptyset \sim_{\omega} \{l_1, l_2, l\}/\{l_2\} \sim_{\omega} \{l_1\}/\emptyset$ in SubL.

Since Sub L is directly indecomposable, by corollary 1 for any element $l \in L, l \neq \mathbf{1}$, there exists $l' \in L$ incomparable with l, i.e. $l \circ l' > l$. Since L is finite, for any $l \neq \mathbf{1}$ there is a finite sequence l_0, l_1, \ldots, l_{2n} , where $l_0 = l, l_{2n} = \mathbf{1}, l_{2i}$ and l_{2i+1} are incomparable and $l_{2i+2} = l_{2i} \circ l_{2i+1}$, $i = 0, \ldots, n-1$. The existence of such a sequence and the observation made above immediately imply $\{\mathbf{1}\}/\emptyset \approx_{\omega} \{l\}/\emptyset$.

Notice that any neutral element of Sub L is complemented. Neutral complemented elements of any lattice \mathcal{L} form a Boolean sublattice of \mathcal{L} denoted by $Cen(\mathcal{L})$ [2]. It follows from lemma 1 that intersection of an arbitrary family of neutral elements of Sub L is neutral. Hence, Cen(Sub L)is a complete lattice. Moreover, intersection of all neutral elements containing $l \in L$ is an atom of Cen(Sub L). Therefore, Cen(Sub L) is an atomic Boolean lattice whose atoms are exactly ordinally indecomposable subsemilattices of L. From this we conclude

Theorem 1 Let L be an arbitrary semilattice. Then Sub L can be represented as a direct product of directly indecomposable lattices, $Sub L \simeq \prod_{i \in I} Sub L_i$, where $L = \bigoplus_{i \in I} L_i$ is a representation of L as an ordinal sum of ordinally indecomposable subsemilattices. \Box

In the finite case the structure of Cen(Sub L) allows us to list all the direct decompositions of Sub L. If $L = \bigoplus_{i \in I} L_i$, where each L_i is ordinally indecomposable and $Sub L \simeq \mathcal{L}_1 \times \ldots \mathcal{L}_m$, then there exist disjoint sets $I_1, \ldots, I_m \subseteq I$ such that $I_1 \cup \ldots \cup I_m = I$, $L'_j = \bigoplus_{i \in I_j} L_i$ and $\mathcal{L}_j \simeq Sub L'_j$ for $j = 1, \ldots, m$.

We conclude the paper by characterizing the subsemilattice-lattices. An atomistic lattice \mathcal{L} is called *biatomic* [1] if for any two non-zero $x, y \in \mathcal{L}$ and an atom $z \leq x \vee y$ there exist atoms $x' \leq x, y' \leq y$ such that $z \leq x' \vee y'$. We say that a biatomic lattice \mathcal{L} satisfies property (S_n) if for any ideal V generated by n atoms $a_1, \ldots, a_n \in \mathcal{L}$ there exists a finite semilattice L_V such that $V \simeq Sub L_V$, and the natural embedding of ideals $V \to W$ induces the embedding of semilattices $L_V \to L_W$.

Theorem 2 A lattice \mathcal{L} is isomorphic to SubL for some semilattice L iff it is algebraic, biatomic and satisfies (S_3) .

Proof. The 'only if' part is obvious. To prove the 'if' part, denote the set of atoms of \mathcal{L} by $A(\mathcal{L})$ and the set of atoms under $x \in \mathcal{L}$ by A(x). Notice that (S_3) implies that (*) for every $X \subseteq A(\mathcal{L})$ with $|X| \leq 3$ there exists a semilattice operation \circ_X on $A(\bigvee X)$ such that $(\bigvee X] \simeq Sub \langle A(\bigvee X), \circ_X \rangle$ and $\circ_Y = \circ_X |_{A(\bigvee Y)}$ for every $Y \subseteq A(\bigvee X)$ with $|Y| \leq 3$.

Define a binary operation \circ on $A(\mathcal{L})$ by $a_1 \circ a_2 = a_1 \circ_{\{a_1,a_2\}} a_2$. Clearly, \circ is idempotent and commutative. That \circ is associative follows from (*). Thus, \circ is a semilattice operation on $A(\mathcal{L})$. Define $\varphi : \mathcal{L} \to Sub \langle A(\mathcal{L}), \circ \rangle$ by $\varphi(y) = \{x \in A(\mathcal{L}) \mid x \leq y\}$. That φ is well-defined follows from (*). The remaining properties of \mathcal{L} guarantee that φ is an isomorphism. Thus, $\mathcal{L} \simeq Sub \langle A(\mathcal{L}), \circ \rangle$.

Remark. Neutral elements of a lattice Sub L were characterized in lemma 1. One can easily check that a weaker condition characterizes distributive and standard elements. In fact, L_0 is a distributive element of Sub L iff it is standard iff for all $l_1 \in L_0, l_2 \notin L_0$ either $l_1 \leq l_2$ or $l_1 \circ l_2 \in L_0$.

Acknowledgements: We would like to thank E.T. Schmidt and W. Dziobiak for their helpful comments.

References

- [1] M.K. Bennett, Biatomic lattices, Algebra Universalis 24 (1987), 60-73.
- [2] G. Grätzer, "General Lattice Theory", Springer Verlag, Berlin, 1978.