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Abstract

A. Huhn proved that the dimension of Euclidean spaces can be characterized through al-
gebraic properties of the lattices of convex sets. In fact, the lattice of convex sets of EX is
n + 1-distributive but not n-distributive . In this paper his result is generalized for a class of alge-
braic lattices generated by their completely join-irreducible elements. The lattice theoretic form of
Carathéodory’s theorem characterizes n-distributivity in such lattices. Several consequences of this
result are studied. First, it is shown how infinite n-distributivity and Carathéodory’s theorem are
related. Then the main result is applied to prove that for a large class of lattices being n-distributive
means being in a variety generated by the finite n-distributive lattices. Finally, n-distributivity is
studied for various classes of lattices, with particular attention being paid to convexity lattices of
Birkhoff and Bennett for which a Helly type result is also proved.

1 Introduction

It was discovered recently that the dimension of Euclidean spaces (more generally, of vector spaces
over ordered division rings) has a lattice theoretic characterization. There were two approaches to the
problem, both getting dimension as an algebraic property of lattices of convex sets. Huhn [13] studied
the lattice of convex sets of n-dimensional Euclidean space E*. He observed that dimension can be
characterized via n-distributivity. A lattice L is called n-distributive [12] if, for any z,yq,...,yn, the
following equation holds:
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Huhn proved that the lattice of convex sets of E*, denoted by Co(E*), is n + 1-distributive but is
not n-distributive. The main tool to prove this result was Carathéodory’s theorem saying that in E*,
if a point is in the convex hull of m > n + 1 points, then it is in the convex hull of at most n + 1
of those points [27]. Moreover, it was shown that the dual of Co(E") is n + 1-distributive but is not
n-distributive. This fact was derived from Helly’s theorem saying that in E*, a finite family of convex
sets has a nonempty intersection whenever any n + 1 sets have a non-empty intersection [27].

In [4] Birkhoff and Bennett introduced convexity lattices which arise naturally when one studies a
ternary relation of betweenness 3, (zyz) meaning y lies between x and z, and the lattice of convex
sets with respect to this relation. A set X is called convex if z,z € X and (zyz)B imply y € X.



Several restrictions reminiscent of Hilbert’s connection and order axioms were imposed. The modular
core of a convexity lattice was interpreted as the lattice of affine flats which was shown to be a
geometric lattice under certain conditions. Its height (to be more precise, height minus one) was
interpreted as the dimension. Of course, if § is the usual betweenness in E*, such defined dimension
of Co(EX) is n. It was proved in [4] that lattice theoretic versions of theorems of Radon, Helly and
Carathéodory determine the dimension.

The two approaches are not unrelated at all. In fact, one can easily rewrite the proof of [13] to
show that if Carathéodory’s theorem of dimension n holds in a convexity lattice (which means its
dimension defined as the height of the modular core is n [4]) then this convexity lattice is indeed
n + 1-distributive but not n-distributive. However, being isomorphic to Co(E*) or even being a con-
vexity lattice is too much of an assumption to prove that Carathéodory’s theorem and n-distributivity
are related. Convexity lattices (of which C'o(E*) is an example) enjoy some nice algebraic properties.
In particular, they are algebraic atomistic lattices. We will show that being algebraic and atomistic
is enough to prove the intimate connection between n-distributivity and the lattice-theoretic version
of Carathéodory’s theorem. In fact, even this is too strong: all that is needed is algebraicity and the
assumption that every element of a lattice is the join of completely join-irreducible elements below it.

n-distributivity can be viewed as a notion weaker than distributivity: D,, implies D,, if n < m and
D, is the usual distributivity. It is well-known that algebraic distributive lattices satisfy the law of
infinite join-distributivity: = A \;c; i = V,cr(@ A y;) [14]. Complete lattices satisfying this law are
called frames. They may arise as lattices of open sets of topological spaces. It was shown in [15] that
the ideal completion is left adjoint to the forgetful functor from the category of frames to the category
of distributive lattices'. Furthermore, a certain subcategory of the category frames which corresponds
to so-called coherent spaces turns out to be equivalent to the category of distributive lattices. We
shall use the main characterization theorem to extend these results to n-distributivity. Every algebraic
n-distributive lattice satisfies the infinite n-distributive law:

(ID,,) eA\vy = '\ @A\
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It will be shown that the ideal completion is left adjoint to the forgetful functor from ID, to D,
considered as categories. To find an analog of the second fact mentioned above, we consider convexities
rather than topologies. There is a notion of an (abstract) convezity [30, 32, 10] and the abstract (or
axiomatic) theory of convex spaces is well-developed. In this paper we define what it means for an
abstract convexity to be n-dimensional. Having defined it, we show that n-dimensional convexities can
be given the structure of a category which is equivalent to a certain full subcategory of the category
of n + 1-distributive lattices.

So much for categories, let’s turn to varieties. Let A, be the variety of n-distributive lattices and A7
the minimal variety that contains all finite n-distributive lattices, i.e. HSP(A, N F) where F is the
class of finite lattices. It was proved in [13] that Co(EX) is in A7 and that MN A, = MN A7 where
M is the variety of modular lattices. In this paper we generalize these results in two ways using our
main characterization of n-distributivity . First, any algebraic lattice in which every element is the
join of completely join-irreducible elements is in A, iff it is in A7, hence the first result. Furthermore,

if a variety V is such that any lattice L € V can be embedded into L' € V such that L’ is algebraic,
every element of L’ is the join of completely join-irreducible elements and the embedding preserves

LOf course the algebraic members of a variety always form a (non-full) reflective subcategory, but not all frames are
algebraic.



identities, then VN A, = VN AZ. Since M is such, we obtain the second result.

Our characterization of n-distributivity via the Carathéodory condition can be applied to obtain nice
characterizations of n-distributivity in several classes of lattices. For example, in geometric lattices
n-distributivity is related to the sizes of circuits of underlying matroids. As a by-product of our study
of n-distributivity in planar lattices we show that any lattice of the order-theoretic dimension n is
n-distributive.

Having forgotten about convexity lattices for a while, we return to them in the last section. It is
shown that a convexity lattice of dimension n is what we call “an abstract convexity of dimension n”
which is defined in terms of n-distributivity when we establish the equivalence of categories. Then we
use Helly’s theorem for convexity lattices to show that their dimensions can be defined via the dual
n-distributivity as well.

In the rest of this section we give all necessary definitions (cf. [6, 14]). The rest of the paper is organized
in five sections. In Section 2 we prove the main theorem stating that an algebraic lattice in which every
element is the join of completely join-irreducible elements is n-distributive iff Carathéodory’s theorem
of dimension n — 1 holds. Using this result, we prove a characterization theorem for the infinite
n-distributivity and establish the equivalence of categories of what we call convexities of dimension
n—1 and certain n-distributive lattices. In Section 3 the results about varieties A,, and A} are proved.
In Section 4 we consider examples. Section 5 deals with convexity lattices. Concluding remarks are
given in Section 6.

Let L be a complete lattice. An element z of L is called completely join-irreducible if z = \/ X implies
xz € X. The set of all completely join-irreducible elements is denoted by CJ(L). A complete lattice L
is called CJ-generated if x = \/ CJ(z) where CJ(z) = L2zNCJ(L) (they were called V;-lattices in [29]).
An element z is called complete prime if x < \/ X implies z < 2’ for some z’ in X and n-complete
prime if z < '\/ X implies that there are n elements z1,...,z, € X such that z <z V...V z,. The
set of n-complete primes is denoted by C'P,(L).

A complete lattice is called atomistic if every element in it is the join of atoms. Atomistic lattices
are obviously CJ-generated. The lattice Co(EX~) is atomistic and Carathéodory’s theorem has
the following lattice theoretic formulation: Given atoms a,by,...,b, € Co(EX™) such that a <
by V...V by and m > n, there exist n indices 41,...,4, in {1,...,m} such that a < b;, V... b; . We
use n — l-dimesnional space here because the least k& such that the lattice of convex sets becomes
k-distributive is the dimension plus one.

Motivated by this, we give the following definition. A CJ-generated lattice L is said to satisfy the
Carathéodory condition of dimension n — 1, or (cc,,) for short, if the following holds:

Ifa,by,...,bp, € CJ(L),a < by V...Vby, and m > n, then there exist n indices i1,...,7, in
{1,...,m} such that a <b;, V...V b;,

The Carathéodory rank of a lattice is the minimal n such that (cc,) holds. If no such n exists, the
rank is co. Similarly, the Huhn rank of a lattice is the minimal n such that the lattice is n-distributive.
If no such n exists, the rank is co. Both Carathéodory and Huhn ranks of C'o(EX ) are n.



2 n-distributivity and the Carathéodory condition

In this section we prove our main result stating that for algebraic CJ-generated lattices the Carathéodory
rank equals the Huhn rank. We also study infinite n-distributivity in such lattices and discover an
equivalence between a subcategory of n + 1-distributive lattices and the category of what we call
convexities of dimension n. It is also shown how n-distributivity and closure ranks [23] are related.

Theorem 2.1 Given an algebraic CJ-generated lattice L, the following are equivalent:
1) L is n-distributive;

2) L is infinitely n-distributive;

3) (cc,,) holds in L;

1) CJ(L) C CP(L).

Proof: The most important part of the proof is the equivalence 1) < 3). Any infinitely n-distributive
lattice is always n-distributive, so to prove 1) < 2) it is enough to show that an algebraic n-distributive
lattice is infinitely n-distributive. The remaining equivalence 3) < 4) is rather straightforward.

1) = 3). Assume that L is n-distributive but (cc,) does not hold. That means, there exist a, b1, ..., bn,
in CJ(L) such that a < by V...by, but a € b, V...V b;, for every sequence of n indices i1,...,i, €
{1,...,m}. Then there exists a number p such that n < p < m and a £ b;; V...V b;, for every
sequence of p indices i1,...,4, € {1,...,m} and p is maximal such. That means, a < b;, V...V b; ,
for some choice of p 4+ 1 indices. Since n < p, L is p-distributive. Therefore,

p+1 p+1
a=aAl \/bij = \/(a/\\/bil)
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Since a is join-irreducible, a < Vl;ﬁj b;, for some j, which means a is under the join of p elements from
{b1,...,bn}, a contradiction.

3) = 1). Let L be an algebraic CJ-generated lattice satisfying (cc,, ). Prove that L is n-distributive.
The > inequality always holds for the left and right hand sides of D,,. Since L is CJ-generated, it is
therefore enough to prove that for any a € CJ(L), a <z A\/_yyi implies a < /i o(z AV, y;). Let
Y =CJ(y)U...UCJ(yn). Then a < V! ,y; = VY. Since a is compact, there is a finite subset
{#0,...,2,} of Y such that a < zy V...V z,. If p > n, by (cc,,) there exist n indices iy,..., i, such
that @ < z;; V...V z;, since a and all 2;’s are in C.J(L). Therefore, we may assume without loss of
generality that p < n. Then each z; is under some y;, and a is below the join of at most n y;’s. Hence,
a <z A\, y; for some i. 3) = 1) is proved.

Every algebraic n-distributive lattice L is infinitely n-distributive. Again, the left hand side of ID,,

is always greater than the right hand side. To prove our claim we must show that any compact

a <z AV i is also below
\/ (x A \/ yj)
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Since a is compact and a < \/;c; i, a < y;, V... Vy;, for finitely many 4y,...,4, € I. If p <n, we are
done. If p > n, applying m—distributivity of L for m =p,p —1,...,n yields

a<\@rVw) = NV @AV <V @Ay

i=1 I KC{L..ph|K|=n  I€K KCI|K|=n  j€K



This finishes the proof of infinite n-distributivity of L and the theorem. O
Corollary 2.2 For any algebraic CJ-generated lattice, its Carathéodory and Huhn ranks coincide. O

Our next goal is to characterize infinite n-distributivity in CJ-generated lattices via the Carathéodory
condition.

Corollary 2.3 A CJ-generated lattice is infinitely n-distributive iff it is algebraic and (cc,) holds.

Proof: 1f L is CJ-generated, algebraic and (cc,,) holds, then L is infinitely n-distributive by theorem 2.1.
Conversely, let L be infinitely n-distributive CJ-generated lattice. Show that L is algebraic. Let
a€ CJ(L) and a <\ X. ID,, implies

a:a/\\/X = \/ (a/\\/Xf)

Since a € CJ(L), there exists X; C X such that | X;|=nand a =a A\ Xy, i.e. a <\/ Xy. Thus, a
is compact and L is algebraic. Corollary is proved. O

Corollary 2.3 shows that algebraicity can not be dropped if we want to prove that 2) and 3) of
theorem 2.1 are equivalent. However, the question whether algebraicity is needed is justified if we are
concerned with the equivalence of n-distributivity and (cc,,). It was proved in [13] that the lattice of
closed convex sets of E* is n+1-distributive. The Carathéodory condition of dimension n (i.e. (cc,;))
is true in that lattice but algebraicity fails. Huhn’s proof was very geometric and required a lot of
calculations and it is unclear to which extent it can be generalized. But we can show that Huhn’s
result follows from theorem 2.1 and the following simple observation (cf. [26]): If L is an algebraic
lattice and L' its sublattice containing all compact elements, then a lattice identity € holds in L iff it
holds in L'. Observing that if L is CJ-generated then (cc,)) is true in L if and only if it is true in L'
and that algebraicity was not used to prove 1) = 3) of theorem 2.1, we obtain the following corollary
from which the result of Huhn mentioned above follows immediately:

Corollary 2.4 Let L be an algebraic CJ-generated lattice and L' its sublattice. If L' contains all
compact elements, then it is n-distributive iff (cc,) holds. O

In [25] Nation gave a characterization of n-distributivity which has the same flavor as theorem 2.1.
He showed that a variety V lies in A, if and only if for any L € V the following condition ¢, holds:
ifz € J(L) and z <\ X,| X |< oo, then z is below a join of at most n elements of X. Notice that
it is not required that the elements of X be join-irreducible. He also observed that for finite lattices
n-distributivity is equivalent to o,,. It is routine to rework the proof to show that the equivalence
holds not only for finite lattices but also for lattices generated by their join-irreducible elements. o,
can also be used to characterize n-distributivity in arbitrary lattices as follows:

Proposition 2.5 A lattice L is n-distributive iff its filter lattice Fil(F') satisfies oy,.

Proof: If L is n-distributive then so is Fil(F) and o, is verified as in the proof of theorem 2.1.
Conversely, assume that Fil(L) satisfies 0,, but L is not n-distributive. Then a = z A \/[_,y; >



Vito(z A V;.iy;) = b for some z,yo,...,yn. If f is a maximal filter satisfying ta C f, 10 Z f, then
f is join-irreducible in Fil(F'). The number of filters in the right hand side of f <tyo V...V 1y, can
not be reduced for otherwise we would have 16 C f. This demonstrates a failure of o, in Fil(L). O

We will use D,, and ID,, to denote the categories of n-distributive and infinitely n-distributive lattices.
Infinite n-distributivity requires completeness as the infinite join operation is used in equation ID,,.
We define morphisms in ID,, as lattice homomorphisms preserving infinite joins as well; the morphisms
in D), are just lattice homomorphisms. It was already stated that any infinitely n-distributive lattice
is n-distributive.

Corollary 2.6 The ideal completion is left adjoint to the forgetful functor from ID,, to D,.

Proof: Given L € D,, its ideal completion is n-distributive and algebraic and hence infinitely n-
distributive. Given f : L1 — Lo, define Idl(f) : Idl(Ly) — Idl(Ls) by making Idl(f)(Z) to be the
minimal ideal of Lo that contains f(Z). Given f : L — L' in D,,, define g = 4(f) by g(Z) = V1 f(2).
Conversely, given g : Idl(L) — L' in Dy, define f = ¢(g) by f(z) = g(}z). Clearly, f = ¢(g) is a
homomorphism if ¢ is a morphism in ID,, and g = 1 (f) preserves arbitrary joins if f is a morphism
in D,,. We must show g(Z1 N Z2) = g(Z1) A g(Z2). Calculate the right hand side by applying the law
of infinite n-distributivity twice:

VoA ) = V (Vi@aV fy) =
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= \/ f(\/Kl/\\/K2) < \/ f(z)
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which shows ¢(Z1) A g(Z2) < ¢g(Z1 N Zy). The reverse inequality is obvious. This shows that g is a
morphism. It is straightforward to check that ¢ and 1 are mutually inverse and establish an adjunction.
O

Given a CJ-generated lattice L, define a closure Cp, : 2¢7(F) — 2C7(L) by ¢ (V) = CJ(\VY). A
closure operator C' on a set X is said to be of rank n if C(Y) = Y whenever C(Y') C Y for any
Y’ CY such that |Y'|<n [23]. An easy proof of the following result is left to the reader.

Corollary 2.7 If L is an algebraic CJ-generated n-distributive lattice, then Cp, is of rank n. o

Algebraic distributive lattices in which the dual infinite distributive law holds are generated by their
complete prime elements [24]. This result can be generalized to algebraic n-distributive lattices in
which ID;, the dual of ID,,, holds.

Corollary 2.8 Any n-distributive algebraic lattice L satisfying ID} is generated by its n-complete
primes.

Proof: L* is CJ-generated and satisfies ID,,, hence L is coalgebraic. By theorem 2.1 z = \/(CP,(L) N
lz). 0



In the rest of the section we turn to the abstract theory of convexity. We augment the standard
definition of a convexity by an additional clause saying that intersection of two polytopes is a polytope
again (which is true of families of convex sets in vector spaces over ordered division rings) and then
define n-dimensional abstract convexities via the Carathéodory condition. Such convexities form a
category which is shown to be equivalent to a full subcategory of D, ;. We will return to abstract
convexities in section 5.

Definition Given a set X, a convezity on X is a family C of subsets of X (which are called convez)
such that

e (), X € C (empty set and X are convex);
e (C is closed under arbitrary intersections;
e The union of a directed family of sets of C is in C;

e {z} isin C for every x € X (every singleton is convex).

This is the standard definition to which we add one more condition. Given Y C X, its convex hull He
is defined as the intersection of all Y’ € C that contain Y.

e If V) and Y; are finite subsets of X, then there exist a finite set Y such that He (Y1) N He(Ys) =
H¢(Y) (intersection of two polytopes is a polytope again).

The usual convexity in E* is the most famous example. For more examples see [10, 18, 30, 32] and
Section 5.

We say that a convexity C has dimension n if it satisfies the Carathéodory condition of dimension n
(which is actually (cc,, ;)): If # € He(Y') where | Y [> n 4+ 1, then there is an n + 1-element subset Y’
of Y such that z € He(Y') and n is the minimal number with this property. O

The following belongs to folklore:

Lemma 2.9 Given a convezity C, its convez sets form a lattice L(C) which is atomistic and algebraic.
Moreover, compact elements of L(C) (which are joins of finitely many atoms) form a sublattice of L(C).
L(C) is isomorphic to the lattice of closed sets of He, closures of finitely many atoms being compact
elements. O

The class of all convexities can be given the structure of a category by defining morphisms as follows:
Given two convexities (X7,C1) and (X3,C9), a morphism f : (X1,C;) — (X9,Cy) is a mapping that
maps convex sets to convex sets, preserves arbitrary intersections and directed unions and maps
polytopes to polytopes. The category of convexities of dimension n is denoted by Conv,,.

Let AD, 11 be the full subcategory of D, that consists of atomistic lattices in which every element
is a finite join of atoms and neither of which satisfies D,,. The following result is reminiscent of the
equivalence of the categories of distributive lattices and coherent spaces and coherent maps [15].



Proposition 2.10 The categories Conv,, and AD,,1 are equivalent.

Proof: Given a convexity (X,C) in Conv,, let ®((X,C)) be the lattice K(C) of compact elements
of L(C). Since L(C) is algebraic and atomistic and (cc),,,, holds, L(C) is n + 1-distributive by theo-
rem 2.1. K(C) is n + 1-distributive as a sublattice of L(C). It is in AD,; because its elements are
finite joins of atoms of L(C).

Given a lattice L in AD,, 1, define a convexity (X,C) = ¥(L) as follows. X is the set of atoms of L
and Y C X is convex if and only if any atom of L which is below \/ Y’ is in Y whenever Y’ is a finite
subset of Y.

Both ® and ¥ can be easily defined for morphisms. Given f: (X1,C1) — (X2,C2), define g = ®(f) :
O((X1,C1)) = D((X2,C2)) in ADy4 as follows. Let z € ®((X1,C1)), i.e. = is a compact element
of L(C). Then z is a join of atoms, say, x = a1 V...V a,, where ay,...,a, correspond to elements
Z1,...,2Zn € X1. Let X} be f(z1) U...U f(z,). Then g(z) is the join of all atoms of ®((Xs,Cs))
corresponding to elements of Xj. Conversely, given a morphism g : L; — Lg in AD, 1, define
f=9(g) : ¥(L1) = V(L) by f(Y) = Hy(r,)(Uyey 9({y}) where Y is a subset of the set of atoms of
U (Ly).

It is routine to verify that ® and ¥ are functors which establish an equivalence between the two
categories. O

3 Varieties A, and A7

In this section we use theorem 2.1 to prove a result which shows that a large class of n-distributive lattices
lies in the variety A7 generated by the finite n-distributive lattices. In fact, all lattices for which the
equivalence between n-distributivity and the Carathéodory condition was proved in theorem 2.1 are
such. Consequently, we show that two results of this kind proved in [13] are easy corollaries of our
theorem.

Theorem 3.1 Let L be an n-distributive C.J-generated algebraic lattice. Then L is in A7

Proof: The proof is based on the idea of [13]. Let M be a finite subset of C.J(L). Let Ljs be the set of
all finite joins of elements of M (including the bottom element 0 of L). Then (L, <) is a finite lattice
but not necessarily a sublattice of L. We denote the join and the meet operations of Ly by VM and
AM vespectively. Clearly, zVMy =z Vvyand \/ M'AM\/ M" =\/{z € M | Im' € M',m" € M" : z <
m',z < m"}, \/ 0 being 0, for any M', M" C M. Given z € L, define zp; as \/{y |y < z,y € Ly}

rrn

substituting M for z; and changing V to VM and A to AM. Let M be the family of all finite subsets
of CJ(L). Our goal is to prove

(1) tzy,. oz =\ M@, 2l
MeM

Let t = t(z1,...,7,) be a term. By tM(zM ... M) we mean the term that is obtained from ¢ by

We prove (1) by induction on the number of operations in ¢. If ¢ is just a variable, z = \/,;c 4 zM be-
cause L is CJ-generated. Notice that 2 < 2" if M C M'; hence MM, aM) < M’ (m{”l, e ,mfl/[’).
From this (1) easily follows for ¢ = #; V ts.



Let t(x1,...,2p) = t1(z1,...,2n) At1(21,...,Ty). We must show the equality

2\ @) A B @) = @A\ B @)
MeM MeM MeM

n
prove the reverse inequality, let z be a completely join-irreducible element which is below the right

hand side. Then, for some M,..., M, € M,

since the left hand side of (2) is \/;,c 4 tM(zM . zM). First, the < inequality clearly holds. To

k
z < \/tl]‘/[i(xf/fi,...,xMi), 1=1,2

=1

Let M =M U...UM;U{z} € M. Then thi(myi,...,mMi) <tM(z}, ... zM), I = 1,2. Therefore,
z<tM@Y, ...,z for I = 1,2 and since z € M,

<t (@l ay ) A (@)
which finishes the proof of (2). Thus, (1) is proved.

Since L is n-distributive, (cc,) holds in L. Then, from the definition of Lj; it immediately follows
that (cc,,) holds in Ly, for any M € M. Thus, each Ly, is n-distributive.

Now, let t; = t3 be an n-ary lattice equation that holds in all finite n-distributive lattices. Then t; = ¢y

holds in all lattices Lys. Therefore, t1(21,...,21n) = Vrem tM(zM, .. aM) = V arem MM, .. M) =

n

ta(1,...,z,) which proves that L € A7, O

From theorem 3.1 we immediately conclude
Corollary 3.2 [13]> Co(EX™) € 27. O

Notice that only once in the proof of theorem 3.1 did we refer to n-distributivity. It was needed to
show that all lattices Lj; are n-distributive which in turn was possible because the characterization
of n-distributivity restricted to finite lattices does not make use of the A operation. Therefore, theo-
rem 3.1 admits the following generalization. Let P be a universally quantified first-order sentence in
the language that contains <, V and a unary predicate J(-). We say that P holds in L if P is true
when <,V and J have obvious interpretations. Let P. be obtained from P by replacing J(-) by CJ(-),
the meaning of CJ(-) being “completely join-irreducible”. Combining theorem 3.1 with corollary 2.4,
we obtain

Corollary 3.3 Let P be a universally quantified first-order sentence in the language that contains
<,V and J(-) but does not contain A. Assume that a variety V satisfies the following property: for
any CJ-generated algebraic lattice L, L € V iff P. holds in L. If L is a CJ-generated algebraic lattice
and L' its sublattice containing all compact elements, then the following are equivalent:

1)L eV;

2) L' € Vs, = HSP(finite members of V);

3) L' = P.. ]

To prove this fact in [13], Huhn used another idea which exploited the fact that the compact elements of Co(]En+1 )
form a sublattice. The proof given in this paper is more general.



In some cases it is possible to use only P stating assumptions about a variety. For example, let V be
locally finite. Assume that V satisfies the following property in the spirit of [25]: a variety V' lies in
V iff V' | P and all finite models of P are in V. Then it is easy to show that corollary 3.3 remains
true for such varieties.

In the rest of the section we give two more corollaries of theorem 3.1. First,

Corollary 3.4 Let V be a lattice variety with the following property: FEwvery lattice L € V can be
embedded into a CJ-generated algebraic lattice L' € V and L' can be chosen to satisfy all identities of
L. Then VN A, =VNAL. 0

From this corollary the result of [13] stating that M N A, = M N A7 follows immediately since M
satisfies the condition of corollary 3.4, see [11].

Since the ideal completion preserves identities, we obtain

Corollary 3.5 Let L be an n-distributive lattice in which every element is a join of finitely many
join-irreducible elements. Then L € A O

4 Examples

In this section we use theorem 2.1 to study n-distributivity in several classes of lattices. The most
convenient way to characterize n-distributivity for a lattice L is to calculate its Huhn rank, from now
on denoted by Hn(L). Then L is n-distributive iff n > Hn(L). We consider the following classes of
lattices: lattices of finite length, geometric lattices and partition lattices in particular, subsemilattice-
lattices, planar lattices and convexity lattices of posets. Convexity lattices are studied separately in
Section 5.

Lattices of finite length. Let L be a lattice of finite length and £(L) denote its length. Since every
element is a join of at most £(L) join-irreducible elements, Hn(L) < ¢(L). For finite lattices the result
can be made even more precise: the Huhn rank of a finite lattice is at most the width of the poset of
its join-irreducible elements.

Geometric lattices. Geometric lattices arise as lattices of closed sets of matroids [1]. A matroid M
is a pair (S, (-)), where (-) is a closure on S satisfying the exchange axiom (p ¢ A,p € AU {q} =
q € AU {p}) and the finiteness of basis condition (VAIB C A :|B|< oo and B = A). The lattice of
closed sets of M is denoted by L(M). A matroid is called simple if the empty set and all one-element
sets are closed. We restrict our attention only to simple matroids because for any M, there is a simple
matroid M’ such that L(M) and L(IM') are isomorphic [1].

A set A C S is called independent if p € A— {p} for no p € A. It is called dependent otherwise. A
minimal dependent set is called a circuit. It is possible to characterize matroids in terms of circuits
[1]. In particular, given the family R of the circuits of M, the closure operations can be reconstructed
as follows:

pEAspcAor ICER:peC C AU{p}

Given a matroid M, let ¢(M) be the size of the maximal circuits of M.

10



Theorem 4.1 Given a simple matroid M = (S, (+)), Hn(L(M)) = ¢(M) — 1.

Proof: If C' is a circuit of a matroid and a € C, then C' —{a} is independent. Since sizes of independent
sets are bounded above [1], so are the sizes of circuits, i.e. ¢ = ¢(M) is finite. Since M is simple,
atoms of L(IM) correspond to elements of S and we will use the same letter for an element of S and
the corresponding atom. Let a € Sand A C S, a € A. Let a <\/ A. Then a € A and there exists a
circuit C such that a € C C AU{a}. Therefore, a € C — {a}. Since |C'|< ¢(M), |C —{a}|< ¢(M)—1
which proves the Carathéodory condition with parameter ¢(IM) —1 for L(M). Since L(M) is algebraic
and ClJ-generated (in fact, atomistic), by theorem 2.1 it is ¢(M) — 1-distributive.

Now assume that the Carathéodory condition with parameter ¢(IM) — 2 holds. Let C be a circuit
that contains exactly ¢(M) elements. From the definition of the closure operation it follows that
a <\/(C —a) for any a € C. By (cc,_,) we find an element b € C, b # a such that a < \/(C —{a,b}),

that is, a € C — {a, b}, which contradicts independence of C' — {b}. Therefore, L(M) does not obey
(cc) .o which finishes the proof of Hn(L(M)) = ¢(M) — 1. 0

Now we can easily prove two consequences of this result. Since a projective geometry can be viewed
as a simple matroid underlying matroid induced by the linear closure in a vector space, matroid
independence being linear independence, theorem 4.1 tells us that the Huhn rank of a projective
geometry is its dimension plus one, cf. [13].

Since Part(n), the lattice of partitions of an n-element set, is the lattice of closed sets of the polygon
matroid of a complete graph with n vertices, we conclude

Corollary 4.2 Hn(Part(n)) =n — 1. O

More generally, for any finite graph the Huhn rank of the lattice of closed sets of its polygon matroid
is one less than the size of the maximal circuit.

A result similar to theorem 4.1 can be proved for antimatroids, or convex geometries [10]. Recall that
a convex geometry on a finite set S is a closure U satisfying the antiezchange property: p,q € A,p €
AU{q} = q& AU{p}. A subset A of S is called free if every its subset is the intersection of A with
a complement of a closed set. Minimal nonfree sets are called circuits of the convex geometry. It is
possible to characterize convex geometries in terms of circuits [8] and the Carathéodory type result
was proved for the anti-exchange closures in [18]. It is rather straightforward to extend the result of
[18] to lattices of closed sets of convex geometries. Thus, we have:

Corollary 4.3 Let (S, (-)) be a convex geometry and L the lattice of closed sets. Let ¢ be the mazimal
size of a circuit. Then Hn(L) =c — 1. O

Lattices of subsemilattices. Let (S,L) be a join semilattice. By Sub(S) we denote the lattice of
subsemilattices of S. Let F'(n) denote the free semilattice with n generators, that is, the semilattice
of all nonempty subsets of an n-element set ordered by inclusion.

Proposition 4.4 Given a semilattice S, the lattice of its subsemilattices Sub(S) is n-distributive iff
S does not contain a subsemilattice isomorphic to F(n + 1).
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Proof: Suppose Sub(S) is not n-distributive. Then (cc,) does not hold and there exists k& > n such
that {a} <{a1} V...V {ax} but for no i is {a} below \/,,;{a;}. Here a and a;’s are elements of S.
This implies a = a; U ... Uag but a # | |;c; a; for any proper subset I of {1,...,k}. Assume that for
two different subsets I1, I of {1,...,k} it holds: | |;c; ai = | ey, @i- Without loss of generality, let
1 €11 —Iy. Thena=a;U...Uag = |_|#i a;, a contradiction. Hence, the subsemilattice generated
by ai,...,a is isomorphic to F(k) and then F(n + 1) is a subsemilattice of S. Conversely, if S’

is a subsemilattice of S isomorphic to F(n + 1), let ay,...,a,4+1 be its atoms and a its top. Then
{a} <{ai} V... V{ant1} but {a} £V, ;{a;} for any i. Hence, (cc,) does not hold and Sub(S) is
not n-distributive. O

As the first corollary we obtain the result of [21] that Sub(S) is distributive if and only if S is a chain.
Another corollary of proposition 4.4 deals with dimension. The n-dimensional Euclidean space can
be considered as a semilattice with the ordering being componentwise, the join operation being max.
Since (E*,max) contains a subsemilattice isomorphic to F(n) but no subsemilattice isomorphic to
F(n+ 1), we obtain

Corollary 4.5 Sub((E*,max)) € 2x — Zx k. O

Finding a characterization of n-distributivity in the lattices of sublattices for an arbitrary n remains
open. For 2-distributivity see [7].

Planar lattices. Planarity is closely related to the order dimension. Given a poset (P,C), its
dimension, dim((P, C)), is the minimal number of chains whose product contains (P, C) as a subposet,
see [17]. First we demonstrate how dim and Hn are related.

Proposition 4.6 Let L be a finite lattice. Then Hn(L) < dim(L).

Proof: Suppose that there exists a finite lattice L such that Hn(L) > dim(L) = n. Then (cc,) does
not hold, i.e. there exists a number £ > n and k + 1 join-irreducible elements a,ay, ..., a; such that
a<aiV...Vag but a £ \/#i a; for all 7 = 1,... k. Clearly, neither of a;’s is the bottom element
of L and \,;c;a; # Ve a; whenever I and J are distinct subsets of {1,...,k} (cf. the proof of
proposition 4.4). Consider the subposet of L formed by the bottom element and all joins \/;.; a;
where ) # I C {1,...,k}. From the above observation it follows that this subposet if isomorphic to
1@ F(k), i.e. 2, the lattice of subsets of a k-element set. This lattice is known to have dimension
k [17], hence dim(L) > k > n, a contradiction. This contradiction shows Hn(L) < dim(L). 0

Since finite lattice is planar if and only if its dimension is < 2 [16], we conclude
Corollary 4.7 Any finite planar lattice is either distributive or 2-distributive. O

Convexity lattices of posets. Given a poset (P, C), its subset is called convex if it includes, together
with x C y, any element z such that x C z C y. The lattice of convex subsets of P is called its convexity
lattice and denoted by Co(P), see [5]. It was proved in [5] that C'o(P) is atomistic, algebraic and its
Carathéodory rank is at most 2. Therefore, Co(P) is either 1- or 2-distributive. To characterize its
Huhn rank it is enough to describe those posets P for which Co(P) is distributive. Let P contain a
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nonsimple interval [z,y] and z € [z,y], z # z,y. Then {2z} C {z} U {y} in Co(P) which shows that
(cc,) fails. Obviously, (cc,) holds if all intervals are simple. Thus, we have

Proposition 4.8 Given a poset (P, C), its convexity lattice Co(P) is distributive or 2-distributive. It
is distributive iff P is of length 0 or 1. a

5 Convexity lattices

In this section we study n-distributivity and dual n-distributivity in convexity lattices. We will show
that the Huhn rank of a convexity lattice coincides with its affine rank defined as the height of the
lattice of “affine flats” (in fact, the height of the modular core). Under natural assumptions about
the properties of the underlying betweenness relation convexity lattices of dimension n (equivalently,
of affine rank n + 1) arise as lattices of convex sets of convexities of dimension n (see section 2 for
the definition). Finally, we will relate the dual n-distributivity to dimension in convexity lattices. We
start with some terminology.

Definition [3] An atomistic lattice is called biatomic if p < z V y where p is an atom and z,y are
nonzero implies p < z' V¢ where 2/ < z and ¢y’ < y are atoms.

Given a lattice L, (aq,...,a,) denotes the sublattice of L generated by aq,...,a, € L.

Definition [4] A biatomic algebraic lattice L is called a convexity lattice if it satisfies the following
properties CL1 and CL2:

CL1 If p,q,r are distinct atoms, then (p, g, r) is isomorphic to 23 or Co(3);

CL2 Ifp,q,r,s are distinct atoms and both (p, ¢, ) and (g, r, s) are isomorphic to Co(3), then (p, ¢, r, s)

is isomorphic to Co(4).

Co(n) is the lattice of intervals of an n-element chain. The diagrams of Co(3) and Co(4) are shown
below:

Co(3) Co(4)

The conditions CL1 and CL2 can be better understood if one thinks in terms of the betweenness
relation G. If three points are non-collinear, i.e. they form a triangle, the lattice of convex sets of such
a configuration is 23. If they are collinear, i.e. one of them is between the others, the lattice of convex
sets is C'o(3). The condition CL2 says that if two triples of points, (p,q,r) and (g,r, s) are collinear,
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then all four are collinear. The conditions CL1 and CL2 imply, in particular, that the closure on the
set of atoms induced by L satisfies the antiexchange property.

Usually the definition of convexity lattices is augmented by properties reminiscent of Hilbert’s order
axioms for the betweenness?. To introduce them, some preliminary work needs to be done.

An element a of a lattice L is called modular if, for any z € L, ¢ < a implies ¢V (x Aa) = (¢ V x) A a.
The set of modular elements is denoted by M (L). The following results appeared in [4]: If L is the
lattice Co(V') of convex sets in a vector space V over an ordered division ring, M(Co(V)) is the
meet-subsemilattice of affine flats. If L is a convexity lattice, M (L) is closed under arbitrary meets

and 1 € M(L). Define
o def

2wy £ ANM(L)N1(zVy))
Then (M (L), V, A) is an algebraic atomistic lattice, its atoms being the atoms of L. If p, ¢ are distinct
atoms, pVq is called a line. A line given by p and ¢ consists of all atoms r such that (p,q,r) = Co(3).
In other words, pVq consists of all atoms 7 such that r <pVgorp<gVrorqg<pVr.

A convexity lattice is said to be a Peano convezity lattice if for distinct atoms p, ¢q,r, s,t such that
s<pVgandt<gqVr there exists an atom w < (s Vr) A (p V t), see the picture below.

A convexity lattice is said to have the divisibility property if for any two distinct atoms p and ¢ there
exists an atom r < pV g, r # p,q. It is called unbounded [20, 22] if for any p and ¢ there exists an
atom 7 such that p < rV ¢ (this is reminiscent of Hilbert’s axiom IIy). Equivalently, a convexity lattice
is unbounded if 0 and 1 are the only codistributive elements [20, 22].

Any convexity lattice with the divisibility property is Peano. If L is a Peano convexity lattice, M (L)
has the exchange property [4]. Hence, if it is of finite length, it is a geometric lattice and its length is
denoted by aff(L) and is called the affine rank of L. If L is unbounded and aff(L) > 2, then L has
the divisibility property [22].

Given a convexity lattice I with the set of atoms A, define C;, C 2 to be the family of sets of atoms
under elements of L, i.e. X € Cr, if and only if there exists z € L such that X is the set of atoms
below z. Now we are ready to prove the first result of this section.

Theorem 5.1 Let L be a convezity lattice of affine rank n satisfying the divisibility property and A
the set of its atoms. Then (A,Cr) is an n — 1-dimensional convexity.

Proof: We need a few auxiliary definitions first. By A(x) we mean the set of atoms below z. If L is a
convexity of finite affine rank n, a coatom of M (L) is called a hyperplane. Given a hyperplane h and

3 Axiomatization of elementary geometry in terms of the betweenness relation was given by Tarski [31]. One can
consult that work or [4] for the motivation for the conditions to be introduced.
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two atoms p and ¢, either pVg < hor (pVqg)Ah=0or (pVgq)Ahisan atom (if (pV q) A h contained
two atoms, it would contain the whole line pVgq).

Define a relation Ej, on A by pEpq < pVg<hor (pVq) ANh=0. Then Ej is an equivalence relation

having two or three equivalence classes, A(h) being one of them [2, 22]. We denote the equivalence

classes different from A(h) by ht and h~. h~ may not exist. h* ©hvht andh € RV i oare

called the closed halfspaces [22]. A(h*) = A(h) U A(h*), where x € {4+, —}. Given atoms p1,...,pn,
d=1p1V...Vpyis called a simplex [22] if p;V...Vp, = 1. Tts ith side is d’ = \/#i D;.

If z is an element of L, Vx is the minimal element of M (L) above z, i.e. A(y € M(L) | y > z).

It is clear that the lattice of convex sets of (A,Cr) is L. To prove that (A4,Cr) is n — 1-dimensional,
(cc,,) must be shown to hold in L. But this follows from [4, theorem 19]. Thus, it is enough to show
that the compact elements of L form a sublattice. We start with two claims.

Claim 1: Let d be a simplex and h a hyperplane. Then d A h* is compact.

Proof of claim 1: If h~ does not exist, d A h™ = d which is a compact element. Assume that h~
exists. Let d = p; V...V p, where p;V...Vp, = 1. If all p;’s are under h~, 0 = d A h™" is a compact
element. Now, let py,...,pr € A(h™) and pry1,...,pn € A(h™). For any ¢ < k and j > k define
pij = (pi Vp;) Ah. According to the definition of Ej, p;; # 0. Moreover, it follows from the properties
of the modular core elements that p;; is an atom, cf. [22]. Let

d':plv...Vka \/ Pij-
i<k,j>k

We claim d = d A h™. Clearly, d < d A h*. To prove the reverse inequality, let v < d A h™,
v € A. Then, by biatomicity, there exist atoms ¢ < p; V...V pr and r < pgy1 V...V p, such that
v<qVr. Sinceq<h"andr <h ,w= (qVr)Ahisanatom and v < wV q. If w does not
coincide with one of p;;’s, consider the line wVp;;. By [4, theorem 10] there exists an index ig and
an atom s < d such that w < pij V s. Since s < p;;Vw < h, this shows w < \/ln:l(dl A h). Now,
d'ANh=(hANVd)ANd. IfVd < h, thend <p;V...Vpp. If h #Vd, then h AVd is a hyperplane
in Vd' because M (L) is a geometric lattice, and h A d' =\/, (h A d"™). Continuing this process, we
finally obtain w < p1V...VprV V) (WA (p1V pm)) where (I,m)’s range over a set of pairs of indices.
Since h A (p; V pp) is either p; V py, (and then I, m < k) or 0 or p,, this shows w < d' and v < d’
as ¢ < d'. Hence, d = d A h'. Since d' is the join of finitely many atoms, it is compact. Claim 1 is
proved.

Using claim 1, we can prove the following

Claim 2: If z is a compact element and A is a hyperplane, then z A h™ is compact.

Proof of claim 2: Assume without loss of generality that Vo = 1 (if this is not the case, consider
h' = hA(Vz). Then, if z £ h, b’ is a hyperplane in | Vz). Since aff (L) = n, the Carathéodory condition
(cc,,) holds [4]. Therefore, there exist simplexes di,...,d; such that = d; V... V d; and, moreover,
A(z) = A(dy) U ... U A(d)). Let 2; = d; ANht. Then 2 A h™ = \/, 2; which proves compactness of
zAhT,

Now, let z,y be two compact elements. Since x Ay = (z A (Vz)) A (y A (Vz)), we may assume without
loss of generality that Vo = 1. Again, A(x) = Ui’:1 A(d;) and z = \/_, d; where d;’s are simplexes.
According to [22, theorem 15], for each simplex d; there exist n hyperplanes h;;, j = 1,...,n such that
d; = /\j h;; Then, according to claim 2, d; Ay = y; is a compact element. We claim z Ay = \/; ;.
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Clearly, y; < z Ay. Conversely, given an atom p < z A y, there exists an index ¢ such that p < d;.
Hence, p < y;. Thus, x A y is compact, which finishes the proof of the theorem. O

Corollary 5.2 Given a convexity lattice L with the divisibility property, aff(L) = Hn(L). O

In the rest of the section we will show that the affine rank can be characterized via the dual n-distributivity
as well. The key lemma establishes the relationship between the dual n-distributivity and the Helly
condition of dimension n in a class of lattices that, as we shall show, includes many convexity lattices.
The Helly condition of dimension n, reminiscent of Helly’s theorem, reads as follows:

Let L be a lattice with 0 and z,...,z; € L, k > n+ 1. Then /\/f:1 z; # 0 whenever /\?;“11 zi; # 0 for
any sequence ii,...,i,+1 of indices.

Lemma 5.3 Let L be a biatomic algebraic lattice satisfying the following property: If xg,x1,v0,y1 are
atoms and p is an atom below x; V y; for 1 = 0,1, then for any atom x < xgV x1 there exists an atom
y < yoVy1 such that p < xVy. Then L is dually n-distributive if the Helly condition of dimension
n — 1 holds.

Proof: We first prove that the condition of lemma implies the following, more general property: If
o,y TkyYo,-- -, Y are atoms and p is an atom below z; V y; for all 4 = 1,... .k, then for any atom
z <xoV...Vzx there exists an atom y < yg V...V y, such that p <z Vy. The proof is by induction
on k. For k = 1 this is the condition of lemma. For an arbitrary k, by biatomicity there exists an atom
' < z1V...Vxy such that x < z¢gVz'. By induction hypothesis, there exists an atom ¢/ <y V...V
such that p < 2’ Vy'. Then there exist an atom y < yoVy' <y V...V yg such that p <z Vy.

Let the Helly condition of dimension n — 1 hold. To prove that L is dually n-distributive, it is enough
to show that for any atom p,

n n
p < /\(w\//\yj) implies p <z V /\yl
=0 j#i i=0

Let p be below the left hand side. If any /\#i y; is 0, then p is trivially under z. Assume /\#i y; #0
for all 4. Then for any ¢ there exist atoms p; < z and ¢; < /\j# y; such that p < p; V g;. Define y;
as V; . ¢; < yi. Then ¢; <A\, y;. By the Helly condition, there exists an atom ¢ < Ao yi. Then
q<qV...Vq,_1 and there exists an atom r < pgV...Vp,_1 <z suchthat p <rvg< x\//\?zoyg <

z V Ni_y ¥i, proving dual n-distributivity. a
Theorem 5.4 Let L be an unbounded convexity lattice of affine rank n, n > 3. Then L is dually
n-distributive but not dually n — 1-distributive.

Proof: Since aff(L) > 3, L has the divisibility property [22]. Therefore, L satisfies the condition of
lemma 5.3, see [22, lemma 1]. According to [4], the Helly condition of dimension n — 1 is true in L.
Therefore, L is dually n-distributive by lemma, 5.3.

To show that L is not n — 1-distributive, notice that the Helly condition of dimension n — 2 does
not hold [4]. Therefore, there exist y1,...,y, € L such that each /\#i y; contains an atom ¢; but
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Aii yi = 0. Some g;’s may be the same. Let {q1,...,q;} be distinct elements of {gi,...,qn}, k < n.
Clearly, we can assume that & > 1 for otherwise ¢; would be in A, y;. Using the antiexchange property,
it is easy to show that there exists ¢; which is not under the join of all g;’s, j # . Without loss of
generality, let 4 = 1. Since L is unbounded, find an atom r; such that ¢¢ < r; Vg, t = 2,...,k.
Let . =19V ...Vrg. If ¢ <z, then ¢4 < r9 V7 where r} is an atom under r3 V...V rg. By
the property proved in lemma 5.3, there exists an atom ¢) < g3 V...V g such that ¢1 < 75 V ¢).
Then from CL2 it follows that ¢1,q2,72, b, lie on the same line and then it is easy to show that
G <q@Vag,<qV...Vq, acontradiction. Hence, ¢1 £ .

Let y; = V,4;qj- Then ¢; < A, v; and A\;y; < A;yi = 0. We have: zV N1y =z # ¢ but
g < zV /\#iy;- for any ¢ = 1,...,n, hence ¢y < A ;(zV /\#iy;-). Therefore, L is not n — 1-
distributive. O

The assumption aff(L) > 3 was needed only in order to prove that L has the divisibility property.
Since the divisibility property is true in Co(E*) for an arbitrary n, we obtain

Corollary 5.5 [13] The dual of Co(E*) is in Api1 — Ay O

6 Concluding remarks

In this paper we have developed the idea of [13] that dimension can be expressed as an algebraic
property of lattices of convex sets. We have proved that in a large class of lattices (algebraic lattices
in which every element is the join of completely join irreducible elements) the lattice theoretic form of
Carathéodory’s theorem is equivalent to n-distributivity . Moreover, such lattices are n-distributive if
and only if they are in the variety generated by the finite n-distributive lattices. These results were
applied to characterize n-distributivity in various classes of lattices. For example, in a geometric
lattice it is the size of the maximal circuit of the underlying matroid that determines the least n such
that the lattice is n-distributive. In convexity lattices, which are a generalization of lattices of convex
sets, the dual n-distributivity determines dimension as well.

A few questions remain open. One of them was mentioned already. While a concise characterization
of n-distributivity of subsemilattice-lattices is easy to obtain, it is not known whether a similar result
can be proved for sublattice-lattices.

The lattices of convex sets (and even convexity lattices with the divisibility property) are n-distributive
iff they are dually n-distributive. Since Carathéodory’s theorem is equivalent to n-distributivity and
Helly’s theorem implies the dual n-distributivity, this suggests that there may exist a lattice theoretic
duality between Carathéodory’s and Helly’s theorems. This is not a mere speculation. Indeed, take
a convexity lattice L of affine rank n with the divisibility property. Then it is dually n-distributive
which means its dual is n-distributive. The dual of any algebraic lattice is CJ-generated. Now, if we
notice that algebraicity was not used to prove 1) = 3) of theorem 2.1, we conclude that (cc,) holds
in the dual of L, i.e. Helly’s theorem of dimension n implies the dual of Carathéodory’s theorem of
the same dimension. This kind of duality will be further investigated.

n-distributivity was first introduced and studied for modular lattices. It was observed that it allows
us to characterize the dimension of a projective geometry in the way similar to the one exploited in
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this paper. Another sequence of dimension discriminating equations for projective geometries was
given in [9]. In is not clear, however, to what extent the results of this paper can be generalized if
equations of [9] are used.

Finally, several algebraic models of convexity have been proposed recently, e.g. [10, 28, 30, 32]. We
believe that investigation of the relationship between Carathéodory’s and Helly’s theorems and (dual)
n-distributivity in those models may lead to new intersting results.
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Institute [19]), J.B. Nation for pointing out the reference [25] and an anonymous referee for helpful
suggestions. Partial support was provided by AT&T Doctoral Fellowship and NSF Grant TRI-90-04137.

References

[1] M. Aigner, “Combinatorial Theory”, Springer Verlag, Berlin, 1979.

[2] M.K. Bennett, Separation condition on convexity lattices, in: “Universal Algebra and Lattice
Theory” (S. Comer, ed), Springer Lecture Notes in Mathematics, 1149 (1984), 22-36.

[3] M.K. Bennett, Biatomic lattices, Algebra Universalis 24 (1987), 60-73.

[4] M.K. Bennett and G. Birkhoff, Convexity lattices, Algebra Universalis 20 (1985), 1-26.
[6] M.K. Bennett and G. Birkhoff, The convexity lattice of a poset, Order 2 (1985), 223-242.
[6] P. Crawley and R. Dilworth, “Algebraic Theory of Lattices”, Prentice-Hall, 1973,

[7] G. Czédli, On the 2-distributivity of sublattice lattices, Acta Math. Acad. Sci. Hungar. 36
(1980), 49-55.

[8] B. Dietrich, A circuit set characterization of antimatroids, J. Combin. Th. (B) 43 (1987), 314-321.
[9] A. Day, Dimension equations in modular lattices, Algebra Universalis 22 (1986), 14-26.

[10] P.H. Edelman, R.E. Jamison, The theory of convex geometries, Geom. Dedicata 19 (1985),
247-270.

[11] U. Faigle, Frink’s theorem for modular lattices, Arch. Math. 36 (1981), 179-182.
[12] A. Huhn, Schwach distributive Verbinde, Acta Sci. Math. (Szeged) 33 (1972), 297-305.

[13] A. Huhn, On non-modular n-distributive lattices: Lattices of convex sets, Acta
Sci. Math. (Szeged) 52 (1987), 35-45.

[14] G. Gratzer, “General Lattice Theory”, Academic Press, New York, 1978.

[15] P.T. Johnstone, “Stone Spaces”, Cambridge University Press, 1982.

[16] D. Kelly, I. Rival, Planar lattices, Canadian J. Math. 27 (1975), 635-665.

[17] D. Kelly, W.T. Trotter, Dimension theory for ordered sets, in: “Ordered Sets” (I. Rival, ed.),
D. Reidel Publishing Company, 1981, pages 171-212.

18



[18]
[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]
[27]
[28]

[29]

[30]
[31]

[32]

B. Korte, L. Lovasz and R. Schrader, “Greedoids”, Springer-Verlag, Berlin, 1991.

L. Libkin, On the characterization of non-modular n-distributive lattices, Preprint No. 18,
Mathematical Institute, Budapest, 1989.

L. Libkin, Parallel axiom in convexity lattices, Periodica Mathematica Hungarica 24 (1992),
1-12.

L. Libkin, I. Muchnik, On a subsemilattice-lattice of a semilattice, MTA SZTAKI Kozlemények
39 (1988), 101-110.

L. Libkin, I. Muchnik, Halfspaces and hyperplanes in convexity lattices, Preprint No. 51, Math-
ematical Institute, Budapest, 1989.

R. McKenzie, G. McNulty, W. Taylor, “Algebras, Lattices, Varieties”, volume I, Wadsworth and
Brookes/Cole, Monterey, California, 1987.

M. Mislove, When are order scattered and topologically scattered the same? Ann. Discrete
Math. 23 (1984), 61-80.

J.B. Nation, An approach to lattice varieties of finite height, Algebra Universalis 27 (1990),
521-543.

P.P. Palfy, Modular subalgebra lattices, Algebra Universalis 27 (1990), 220-229.
R.T. Rockafellar, “Conver Analysis”, Princeton University Press, 1970.

A. Romanowska, J.D.H. Smith, “Modal Theory: An Algebraic Approach to Order, Geometry and
Convezity”, Heldermann Verlag, Berlin, 1985.

G. Richter, On the structure of lattices in which every element is a join of join-irreducible
elements, Periodica Mathematica Hungarica 13 (1982), 47-69.

V.P. Soltan, “Introduction to the Aziomatic Theory of Convexity”, Kishinev, gtiinca, 1984.

A. Tarski, What is elementary geometry?, in: “The Axiomatic Method, with Special Reference
to Geometry and Physics, (L. Henkin, ed.) North Holland, Amsterdam, 1959, pages 16-29.

M. Van de Vel, Binary convexities and distributive lattices, Proc. London Math. Soc. 48 (1984),
1-33.

19



