
n-distributivity, dimension and Carath�eodory's theoremLeonid LibkinDepartment of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphia PA 19104, USAAbstractA. Huhn proved that the dimension of Euclidean spaces can be characterized through al-gebraic properties of the lattices of convex sets. In fact, the lattice of convex sets of En isn+ 1-distributive but not n-distributive . In this paper his result is generalized for a class of alge-braic lattices generated by their completely join-irreducible elements. The lattice theoretic form ofCarath�eodory's theorem characterizes n-distributivity in such lattices. Several consequences of thisresult are studied. First, it is shown how in�nite n-distributivity and Carath�eodory's theorem arerelated. Then the main result is applied to prove that for a large class of lattices being n-distributivemeans being in a variety generated by the �nite n-distributive lattices. Finally, n-distributivity isstudied for various classes of lattices, with particular attention being paid to convexity lattices ofBirkho� and Bennett for which a Helly type result is also proved.1 IntroductionIt was discovered recently that the dimension of Euclidean spaces (more generally, of vector spacesover ordered division rings) has a lattice theoretic characterization. There were two approaches to theproblem, both getting dimension as an algebraic property of lattices of convex sets. Huhn [13] studiedthe lattice of convex sets of n-dimensional Euclidean space En . He observed that dimension can becharacterized via n-distributivity. A lattice L is called n-distributive [12] if, for any x; y0; : : : ; yn, thefollowing equation holds:(Dn) x ^ n_i=0 yi = n_i=0(x ^_j 6=i yj)Huhn proved that the lattice of convex sets of En , denoted by Co(En), is n+ 1-distributive but isnot n-distributive. The main tool to prove this result was Carath�eodory's theorem saying that in En ,if a point is in the convex hull of m > n + 1 points, then it is in the convex hull of at most n + 1of those points [27]. Moreover, it was shown that the dual of Co(En) is n+ 1-distributive but is notn-distributive. This fact was derived from Helly's theorem saying that in En , a �nite family of convexsets has a nonempty intersection whenever any n+ 1 sets have a non-empty intersection [27].In [4] Birkho� and Bennett introduced convexity lattices which arise naturally when one studies aternary relation of betweenness �, (xyz)� meaning y lies between x and z, and the lattice of convexsets with respect to this relation. A set X is called convex if x; z 2 X and (xyz)� imply y 2 X.1



Several restrictions reminiscent of Hilbert's connection and order axioms were imposed. The modularcore of a convexity lattice was interpreted as the lattice of a�ne 
ats which was shown to be ageometric lattice under certain conditions. Its height (to be more precise, height minus one) wasinterpreted as the dimension. Of course, if � is the usual betweenness in En , such de�ned dimensionof Co(En) is n. It was proved in [4] that lattice theoretic versions of theorems of Radon, Helly andCarath�eodory determine the dimension.The two approaches are not unrelated at all. In fact, one can easily rewrite the proof of [13] toshow that if Carath�eodory's theorem of dimension n holds in a convexity lattice (which means itsdimension de�ned as the height of the modular core is n [4]) then this convexity lattice is indeedn+ 1-distributive but not n-distributive. However, being isomorphic to Co(En) or even being a con-vexity lattice is too much of an assumption to prove that Carath�eodory's theorem and n-distributivityare related. Convexity lattices (of which Co(En) is an example) enjoy some nice algebraic properties.In particular, they are algebraic atomistic lattices. We will show that being algebraic and atomisticis enough to prove the intimate connection between n-distributivity and the lattice-theoretic versionof Carath�eodory's theorem. In fact, even this is too strong: all that is needed is algebraicity and theassumption that every element of a lattice is the join of completely join-irreducible elements below it.n-distributivity can be viewed as a notion weaker than distributivity: Dn implies Dm if n < m andD1 is the usual distributivity. It is well-known that algebraic distributive lattices satisfy the law ofin�nite join-distributivity: x ^ Wi2I yi = Wi2I(x ^ yi) [14]. Complete lattices satisfying this law arecalled frames. They may arise as lattices of open sets of topological spaces. It was shown in [15] thatthe ideal completion is left adjoint to the forgetful functor from the category of frames to the categoryof distributive lattices1. Furthermore, a certain subcategory of the category frames which correspondsto so-called coherent spaces turns out to be equivalent to the category of distributive lattices. Weshall use the main characterization theorem to extend these results to n-distributivity. Every algebraicn-distributive lattice satis�es the in�nite n-distributive law:(IDn) x ^_i2I yi = _K�I;jKj=n(x ^ _j2K yj)It will be shown that the ideal completion is left adjoint to the forgetful functor from IDn to Dnconsidered as categories. To �nd an analog of the second fact mentioned above, we consider convexitiesrather than topologies. There is a notion of an (abstract) convexity [30, 32, 10] and the abstract (oraxiomatic) theory of convex spaces is well-developed. In this paper we de�ne what it means for anabstract convexity to be n-dimensional. Having de�ned it, we show that n-dimensional convexities canbe given the structure of a category which is equivalent to a certain full subcategory of the categoryof n+ 1-distributive lattices.So much for categories, let's turn to varieties. Let �n be the variety of n-distributive lattices and �Fnthe minimal variety that contains all �nite n-distributive lattices, i.e. HSP(�n \ F) where F is theclass of �nite lattices. It was proved in [13] that Co(En) is in �Fn and that M \�n = M \�Fn whereM is the variety of modular lattices. In this paper we generalize these results in two ways using ourmain characterization of n-distributivity . First, any algebraic lattice in which every element is thejoin of completely join-irreducible elements is in �n i� it is in �Fn , hence the �rst result. Furthermore,if a variety V is such that any lattice L 2 V can be embedded into L0 2 V such that L0 is algebraic,every element of L0 is the join of completely join-irreducible elements and the embedding preserves1Of course the algebraic members of a variety always form a (non-full) re
ective subcategory, but not all frames arealgebraic. 2



identities, then V \�n = V \�Fn . Since M is such, we obtain the second result.Our characterization of n-distributivity via the Carath�eodory condition can be applied to obtain nicecharacterizations of n-distributivity in several classes of lattices. For example, in geometric latticesn-distributivity is related to the sizes of circuits of underlying matroids. As a by-product of our studyof n-distributivity in planar lattices we show that any lattice of the order-theoretic dimension n isn-distributive.Having forgotten about convexity lattices for a while, we return to them in the last section. It isshown that a convexity lattice of dimension n is what we call \an abstract convexity of dimension n"which is de�ned in terms of n-distributivity when we establish the equivalence of categories. Then weuse Helly's theorem for convexity lattices to show that their dimensions can be de�ned via the dualn-distributivity as well.In the rest of this section we give all necessary de�nitions (cf. [6, 14]). The rest of the paper is organizedin �ve sections. In Section 2 we prove the main theorem stating that an algebraic lattice in which everyelement is the join of completely join-irreducible elements is n-distributive i� Carath�eodory's theoremof dimension n � 1 holds. Using this result, we prove a characterization theorem for the in�niten-distributivity and establish the equivalence of categories of what we call convexities of dimensionn�1 and certain n-distributive lattices. In Section 3 the results about varieties �n and �Fn are proved.In Section 4 we consider examples. Section 5 deals with convexity lattices. Concluding remarks aregiven in Section 6.Let L be a complete lattice. An element x of L is called completely join-irreducible if x = WX impliesx 2 X. The set of all completely join-irreducible elements is denoted by CJ(L). A complete lattice Lis called CJ-generated if x = WCJ(x) where CJ(x) = #x\CJ(L) (they were called V1-lattices in [29]).An element x is called complete prime if x � WX implies x � x0 for some x0 in X and n-completeprime if x � WX implies that there are n elements x1; : : : ; xn 2 X such that x � x1 _ : : : _ xn. Theset of n-complete primes is denoted by CPn(L).A complete lattice is called atomistic if every element in it is the join of atoms. Atomistic latticesare obviously CJ-generated. The lattice Co(En�1) is atomistic and Carath�eodory's theorem hasthe following lattice theoretic formulation: Given atoms a; b1; : : : ; bm 2 Co(En�1) such that a �b1 _ : : : _ bm and m > n, there exist n indices i1; : : : ; in in f1; : : : ;mg such that a � bi1 _ : : : bin . Weuse n � 1-dimesnional space here because the least k such that the lattice of convex sets becomesk-distributive is the dimension plus one.Motivated by this, we give the following de�nition. A CJ-generated lattice L is said to satisfy theCarath�eodory condition of dimension n� 1, or (ccn) for short, if the following holds:If a; b1; : : : ; bm 2 CJ(L), a � b1 _ : : : _ bm and m > n, then there exist n indices i1; : : : ; in inf1; : : : ;mg such that a � bi1 _ : : : _ binThe Carath�eodory rank of a lattice is the minimal n such that (ccn) holds. If no such n exists, therank is1. Similarly, the Huhn rank of a lattice is the minimal n such that the lattice is n-distributive.If no such n exists, the rank is 1. Both Carath�eodory and Huhn ranks of Co(En�1) are n.
3



2 n-distributivity and the Carath�eodory conditionIn this section we prove our main result stating that for algebraic CJ-generated lattices the Carath�eodoryrank equals the Huhn rank. We also study in�nite n-distributivity in such lattices and discover anequivalence between a subcategory of n+ 1-distributive lattices and the category of what we callconvexities of dimension n. It is also shown how n-distributivity and closure ranks [23] are related.Theorem 2.1 Given an algebraic CJ-generated lattice L, the following are equivalent:1) L is n-distributive;2) L is in�nitely n-distributive;3) (ccn) holds in L;4) CJ(L) � CPn(L).Proof: The most important part of the proof is the equivalence 1), 3). Any in�nitely n-distributivelattice is always n-distributive, so to prove 1), 2) it is enough to show that an algebraic n-distributivelattice is in�nitely n-distributive. The remaining equivalence 3), 4) is rather straightforward.1)) 3). Assume that L is n-distributive but (ccn) does not hold. That means, there exist a; b1; : : : ; bmin CJ(L) such that a � b1 _ : : : bm but a 6� bi1 _ : : : _ bin for every sequence of n indices i1; : : : ; in 2f1; : : : ;mg. Then there exists a number p such that n � p < m and a 6� bi1 _ : : : _ bip for everysequence of p indices i1; : : : ; ip 2 f1; : : : ;mg and p is maximal such. That means, a � bi1 _ : : : _ bip+1for some choice of p+ 1 indices. Since n � p, L is p-distributive. Therefore,a = a ^ p+1_j=1 bij = p+1_j=1(a ^_l 6=j bil)Since a is join-irreducible, a � Wl 6=j bil for some j, which means a is under the join of p elements fromfb1; : : : ; bmg, a contradiction.3) ) 1). Let L be an algebraic CJ-generated lattice satisfying (ccn). Prove that L is n-distributive.The � inequality always holds for the left and right hand sides of Dn. Since L is CJ-generated, it istherefore enough to prove that for any a 2 CJ(L), a � x^Wni=0 yi implies a � Wni=0(x^Wj 6=i yj). LetY = CJ(y0) [ : : : [ CJ(yn). Then a � Wni=0 yi = WY . Since a is compact, there is a �nite subsetfz0; : : : ; zpg of Y such that a � z0 _ : : : _ zp. If p � n, by (ccn) there exist n indices i1; : : : ; in suchthat a � zi1 _ : : : _ zin since a and all zi's are in CJ(L). Therefore, we may assume without loss ofgenerality that p < n. Then each zl is under some yil and a is below the join of at most n yj's. Hence,a � x ^Wj 6=i yj for some i. 3)) 1) is proved.Every algebraic n-distributive lattice L is in�nitely n-distributive. Again, the left hand side of IDnis always greater than the right hand side. To prove our claim we must show that any compacta � x ^Wi2I yi is also below _K�I;jKj=n(x ^ _j2K yj)Since a is compact and a � Wi2I yi, a � yi1 _ : : :_ yip for �nitely many i1; : : : ; ip 2 I. If p � n, we aredone. If p > n, applying m�distributivity of L for m = p; p� 1; : : : ; n yieldsa � p_j=1(x ^_l 6=j yil) = _K�f1;:::;pg;jKj=n(x ^ _l2K yil) � _K�I;jKj=n(x ^ _j2K yj):4



This �nishes the proof of in�nite n-distributivity of L and the theorem. 2Corollary 2.2 For any algebraic CJ-generated lattice, its Carath�eodory and Huhn ranks coincide. 2Our next goal is to characterize in�nite n-distributivity in CJ-generated lattices via the Carath�eodorycondition.Corollary 2.3 A CJ-generated lattice is in�nitely n-distributive i� it is algebraic and (ccn) holds.Proof: If L is CJ-generated, algebraic and (ccn) holds, then L is in�nitely n-distributive by theorem 2.1.Conversely, let L be in�nitely n-distributive CJ-generated lattice. Show that L is algebraic. Leta 2 CJ(L) and a � WX. IDn impliesa = a ^_X = _Xf�X;jXfj=n(a ^_Xf )Since a 2 CJ(L), there exists Xf � X such that jXf j= n and a = a ^WXf , i.e. a � WXf . Thus, ais compact and L is algebraic. Corollary is proved. 2Corollary 2.3 shows that algebraicity can not be dropped if we want to prove that 2) and 3) oftheorem 2.1 are equivalent. However, the question whether algebraicity is needed is justi�ed if we areconcerned with the equivalence of n-distributivity and (ccn). It was proved in [13] that the lattice ofclosed convex sets of En is n+1-distributive. The Carath�eodory condition of dimension n (i.e. (ccn+1))is true in that lattice but algebraicity fails. Huhn's proof was very geometric and required a lot ofcalculations and it is unclear to which extent it can be generalized. But we can show that Huhn'sresult follows from theorem 2.1 and the following simple observation (cf. [26]): If L is an algebraiclattice and L0 its sublattice containing all compact elements, then a lattice identity � holds in L i� itholds in L0. Observing that if L is CJ-generated then (ccn) is true in L if and only if it is true in L0and that algebraicity was not used to prove 1)) 3) of theorem 2.1, we obtain the following corollaryfrom which the result of Huhn mentioned above follows immediately:Corollary 2.4 Let L be an algebraic CJ-generated lattice and L0 its sublattice. If L0 contains allcompact elements, then it is n-distributive i� (ccn) holds. 2In [25] Nation gave a characterization of n-distributivity which has the same 
avor as theorem 2.1.He showed that a variety V lies in �n if and only if for any L 2 V the following condition �n holds:if x 2 J(L) and x � WX; jX j< 1, then x is below a join of at most n elements of X. Notice thatit is not required that the elements of X be join-irreducible. He also observed that for �nite latticesn-distributivity is equivalent to �n. It is routine to rework the proof to show that the equivalenceholds not only for �nite lattices but also for lattices generated by their join-irreducible elements. �ncan also be used to characterize n-distributivity in arbitrary lattices as follows:Proposition 2.5 A lattice L is n-distributive i� its �lter lattice Fil(F ) satis�es �n.Proof: If L is n-distributive then so is Fil(F ) and �n is veri�ed as in the proof of theorem 2.1.Conversely, assume that Fil(L) satis�es �n but L is not n-distributive. Then a = x ^ Wni=0 yi >5



Wni=0(x ^Wj 6=i yj) = b for some x; y0; : : : ; yn. If f is a maximal �lter satisfying "a � f; " b 6� f , thenf is join-irreducible in Fil(F ). The number of �lters in the right hand side of f �"y0 _ : : :_ "yn cannot be reduced for otherwise we would have "b � f . This demonstrates a failure of �n in Fil(L). 2We will useDn and IDn to denote the categories of n-distributive and in�nitely n-distributive lattices.In�nite n-distributivity requires completeness as the in�nite join operation is used in equation IDn.We de�ne morphisms in IDn as lattice homomorphisms preserving in�nite joins as well; the morphismsin Dn are just lattice homomorphisms. It was already stated that any in�nitely n-distributive latticeis n-distributive.Corollary 2.6 The ideal completion is left adjoint to the forgetful functor from IDn to Dn.Proof: Given L 2 Dn, its ideal completion is n-distributive and algebraic and hence in�nitely n-distributive. Given f : L1 ! L2, de�ne Idl(f) : Idl(L1) ! Idl(L2) by making Idl(f)(I) to be theminimal ideal of L2 that contains f(I). Given f : L! L0 inDn, de�ne g =  (f) by g(I) = Wx2I f(x).Conversely, given g : Idl(L) ! L0 in Dn, de�ne f = �(g) by f(x) = g(#x). Clearly, f = �(g) is ahomomorphism if g is a morphism in IDn and g =  (f) preserves arbitrary joins if f is a morphismin Dn. We must show g(I1 \ I2) = g(I1) ^ g(I2). Calculate the right hand side by applying the lawof in�nite n-distributivity twice:_x2I1 f(x) ^ _y2I2 f(y) = _K2�I2;jK2j=n(_x2I1 f(x) ^ _y2K2 f(y)) == _K2�I2;jK2j=n _K1�I1;jK1j=n( _x2K1 f(x) ^ _y2K2 f(y)) == _K1�I1;K2�I2;jK2j=jK1j=n f(_K1 ^_K2) � _x2I1\I2 f(x)which shows g(I1) ^ g(I2) � g(I1 \ I2). The reverse inequality is obvious. This shows that g is amorphism. It is straightforward to check that � and  are mutually inverse and establish an adjunction.2Given a CJ-generated lattice L, de�ne a closure CL : 2CJ(L) ! 2CJ(L) by CL(Y ) = CJ(WY ). Aclosure operator C on a set X is said to be of rank n if C(Y ) = Y whenever C(Y 0) � Y for anyY 0 � Y such that jY 0 j� n [23]. An easy proof of the following result is left to the reader.Corollary 2.7 If L is an algebraic CJ-generated n-distributive lattice, then CL is of rank n. 2Algebraic distributive lattices in which the dual in�nite distributive law holds are generated by theircomplete prime elements [24]. This result can be generalized to algebraic n-distributive lattices inwhich ID�n, the dual of IDn, holds.Corollary 2.8 Any n-distributive algebraic lattice L satisfying ID�n is generated by its n-completeprimes.Proof: L� is CJ-generated and satis�es IDn, hence L is coalgebraic. By theorem 2.1 x = W(CPn(L)\#x). 26



In the rest of the section we turn to the abstract theory of convexity. We augment the standardde�nition of a convexity by an additional clause saying that intersection of two polytopes is a polytopeagain (which is true of families of convex sets in vector spaces over ordered division rings) and thende�ne n-dimensional abstract convexities via the Carath�eodory condition. Such convexities form acategory which is shown to be equivalent to a full subcategory of Dn+1. We will return to abstractconvexities in section 5.De�nition Given a set X, a convexity on X is a family C of subsets of X (which are called convex)such that� ;;X 2 C (empty set and X are convex);� C is closed under arbitrary intersections;� The union of a directed family of sets of C is in C;� fxg is in C for every x 2 X (every singleton is convex).This is the standard de�nition to which we add one more condition. Given Y � X, its convex hull HCis de�ned as the intersection of all Y 0 2 C that contain Y .� If Y1 and Y2 are �nite subsets of X, then there exist a �nite set Y such that HC(Y1)\HC(Y2) =HC(Y ) (intersection of two polytopes is a polytope again).The usual convexity in En is the most famous example. For more examples see [10, 18, 30, 32] andSection 5.We say that a convexity C has dimension n if it satis�es the Carath�eodory condition of dimension n(which is actually (ccn+1)): If x 2 HC(Y ) where jY j> n+1, then there is an n+1-element subset Y 0of Y such that x 2 HC(Y 0) and n is the minimal number with this property. 2The following belongs to folklore:Lemma 2.9 Given a convexity C, its convex sets form a lattice L(C) which is atomistic and algebraic.Moreover, compact elements of L(C) (which are joins of �nitely many atoms) form a sublattice of L(C).L(C) is isomorphic to the lattice of closed sets of HC, closures of �nitely many atoms being compactelements. 2The class of all convexities can be given the structure of a category by de�ning morphisms as follows:Given two convexities (X1; C1) and (X2; C2), a morphism f : (X1; C1) ! (X2; C2) is a mapping thatmaps convex sets to convex sets, preserves arbitrary intersections and directed unions and mapspolytopes to polytopes. The category of convexities of dimension n is denoted by Convn.Let ADn+1 be the full subcategory of Dn+1 that consists of atomistic lattices in which every elementis a �nite join of atoms and neither of which satis�es Dn. The following result is reminiscent of theequivalence of the categories of distributive lattices and coherent spaces and coherent maps [15].7



Proposition 2.10 The categories Convn and ADn+1 are equivalent.Proof: Given a convexity (X; C) in Convn, let �((X; C)) be the lattice K(C) of compact elementsof L(C). Since L(C) is algebraic and atomistic and (cc)n+1 holds, L(C) is n+ 1-distributive by theo-rem 2.1. K(C) is n+ 1-distributive as a sublattice of L(C). It is in ADn+1 because its elements are�nite joins of atoms of L(C).Given a lattice L in ADn+1, de�ne a convexity (X; C) = 	(L) as follows. X is the set of atoms of Land Y � X is convex if and only if any atom of L which is below WY 0 is in Y whenever Y 0 is a �nitesubset of Y .Both � and 	 can be easily de�ned for morphisms. Given f : (X1; C1) ! (X2; C2), de�ne g = �(f) :�((X1; C1)) ! �((X2; C2)) in ADn+1 as follows. Let x 2 �((X1; C1)), i.e. x is a compact elementof L(C). Then x is a join of atoms, say, x = a1 _ : : : _ an, where a1; : : : ; an correspond to elementsx1; : : : ; xn 2 X1. Let X 02 be f(x1) [ : : : [ f(xn). Then g(x) is the join of all atoms of �((X2; C2))corresponding to elements of X 02. Conversely, given a morphism g : L1 ! L2 in ADn+1, de�nef = 	(g) : 	(L1)! 	(L2) by f(Y ) = H	(L2)(Sy2Y g(fyg) where Y is a subset of the set of atoms of	(L1).It is routine to verify that � and 	 are functors which establish an equivalence between the twocategories. 23 Varieties �n and �FnIn this section we use theorem 2.1 to prove a result which shows that a large class of n-distributive latticeslies in the variety �Fn generated by the �nite n-distributive lattices. In fact, all lattices for which theequivalence between n-distributivity and the Carath�eodory condition was proved in theorem 2.1 aresuch. Consequently, we show that two results of this kind proved in [13] are easy corollaries of ourtheorem.Theorem 3.1 Let L be an n-distributive CJ-generated algebraic lattice. Then L is in �Fn .Proof: The proof is based on the idea of [13]. Let M be a �nite subset of CJ(L). Let LM be the set ofall �nite joins of elements ofM (including the bottom element 0 of L). Then hLM ;�i is a �nite latticebut not necessarily a sublattice of L. We denote the join and the meet operations of LM by _M and^M respectively. Clearly, x_M y = x_ y and WM 0 ^M WM 00 = Wfx 2M j 9m0 2M 0;m00 2M 00 : x �m0; x � m00g, W ; being 0, for any M 0;M 00 �M . Given x 2 L, de�ne xM as Wfy j y � x; y 2 LMg.Let t = t(x1; : : : ; xn) be a term. By tM (xM1 ; : : : ; xMn ) we mean the term that is obtained from t bysubstituting xMi for xi and changing _ to _M and ^ to ^M . Let M be the family of all �nite subsetsof CJ(L). Our goal is to prove(1) t(x1; : : : ; xn) = _M2M tM (xM1 ; : : : ; xMn )We prove (1) by induction on the number of operations in t. If t is just a variable, x = WM2M xM be-cause L is CJ-generated. Notice that xM � xM 0 ifM �M 0; hence tM(xM1 ; : : : ; xMn ) � tM 0(xM 01 ; : : : ; xM 0n ).From this (1) easily follows for t = t1 _ t2. 8



Let t(x1; : : : ; xn) = t1(x1; : : : ; xn) ^ t1(x1; : : : ; xn). We must show the equality(2) _M2M(tM1 (xM1 ; : : : ; xMn ) ^M tM2 (xM1 ; : : : ; xMn )) = _M2M tM1 (xM1 ; : : : ; xMn ) ^ _M2M tM2 (xM1 ; : : : ; xMn )since the left hand side of (2) is WM2M tM (xM1 ; : : : ; xMn ). First, the � inequality clearly holds. Toprove the reverse inequality, let z be a completely join-irreducible element which is below the righthand side. Then, for some M1; : : : ;Mk 2M,z � k_i=1 tMil (xMi1 ; : : : ; xMin ); l = 1; 2Let M =M1 [ : : : [Mk [ fzg 2 M. Then tMil (xMi1 ; : : : ; xMin ) � tMl (xM1 ; : : : ; xMn ), l = 1; 2. Therefore,z � tMl (xM1 ; : : : ; xMn ) for l = 1; 2 and since z 2M ,z � tM1 (xM1 ; : : : ; xMn ) ^M tM2 (xM1 ; : : : ; xMn )which �nishes the proof of (2). Thus, (1) is proved.Since L is n-distributive, (ccn) holds in L. Then, from the de�nition of LM it immediately followsthat (ccn) holds in LM for any M 2M. Thus, each LM is n-distributive.Now, let t1 = t2 be an n-ary lattice equation that holds in all �nite n-distributive lattices. Then t1 = t2holds in all lattices LM . Therefore, t1(x1; : : : ; xn) = WM2M tM1 (xM1 ; : : : ; xMn ) = WM2M tM2 (xM1 ; : : : ; xMn ) =t2(x1; : : : ; xn) which proves that L 2 �Fn . 2From theorem 3.1 we immediately concludeCorollary 3.2 [13]2 Co(En+1) 2 �Fn. 2Notice that only once in the proof of theorem 3.1 did we refer to n-distributivity. It was needed toshow that all lattices LM are n-distributive which in turn was possible because the characterizationof n-distributivity restricted to �nite lattices does not make use of the ^ operation. Therefore, theo-rem 3.1 admits the following generalization. Let P be a universally quanti�ed �rst-order sentence inthe language that contains �, _ and a unary predicate J(�). We say that P holds in L if P is truewhen �;_ and J have obvious interpretations. Let Pc be obtained from P by replacing J(�) by CJ(�),the meaning of CJ(�) being \completely join-irreducible". Combining theorem 3.1 with corollary 2.4,we obtainCorollary 3.3 Let P be a universally quanti�ed �rst-order sentence in the language that contains�;_ and J(�) but does not contain ^. Assume that a variety V satis�es the following property: forany CJ-generated algebraic lattice L, L 2 V i� Pc holds in L. If L is a CJ-generated algebraic latticeand L0 its sublattice containing all compact elements, then the following are equivalent:1) L0 2 V;2) L0 2 V�n = HSP(�nite members of V);3) L0 j= Pc. 22To prove this fact in [13], Huhn used another idea which exploited the fact that the compact elements of Co(En+1 )form a sublattice. The proof given in this paper is more general.9



In some cases it is possible to use only P stating assumptions about a variety. For example, let V belocally �nite. Assume that V satis�es the following property in the spirit of [25]: a variety V 0 lies inV i� V 0 j= P and all �nite models of P are in V. Then it is easy to show that corollary 3.3 remainstrue for such varieties.In the rest of the section we give two more corollaries of theorem 3.1. First,Corollary 3.4 Let V be a lattice variety with the following property: Every lattice L 2 V can beembedded into a CJ-generated algebraic lattice L0 2 V and L0 can be chosen to satisfy all identities ofL. Then V \�n = V \�Fn . 2From this corollary the result of [13] stating that M \ �n = M \ �Fn follows immediately since Msatis�es the condition of corollary 3.4, see [11].Since the ideal completion preserves identities, we obtainCorollary 3.5 Let L be an n-distributive lattice in which every element is a join of �nitely manyjoin-irreducible elements. Then L 2 �Fn . 24 ExamplesIn this section we use theorem 2.1 to study n-distributivity in several classes of lattices. The mostconvenient way to characterize n-distributivity for a lattice L is to calculate its Huhn rank, from nowon denoted by Hn(L). Then L is n-distributive i� n � Hn(L). We consider the following classes oflattices: lattices of �nite length, geometric lattices and partition lattices in particular, subsemilattice-lattices, planar lattices and convexity lattices of posets. Convexity lattices are studied separately inSection 5.Lattices of �nite length. Let L be a lattice of �nite length and `(L) denote its length. Since everyelement is a join of at most `(L) join-irreducible elements, Hn(L) � `(L). For �nite lattices the resultcan be made even more precise: the Huhn rank of a �nite lattice is at most the width of the poset ofits join-irreducible elements.Geometric lattices. Geometric lattices arise as lattices of closed sets of matroids [1]. A matroid IMIis a pair hS; (�)i, where (�) is a closure on S satisfying the exchange axiom (p 62 A; p 2 A [ fqg =)q 2 A [ fpg) and the �niteness of basis condition (8A9B � A : jB j� 1 and B = A). The lattice ofclosed sets of IMI is denoted by L(IMI). A matroid is called simple if the empty set and all one-elementsets are closed. We restrict our attention only to simple matroids because for any IMI, there is a simplematroid IMI0 such that L(IMI) and L(IMI0) are isomorphic [1].A set A � S is called independent if p 2 A� fpg for no p 2 A. It is called dependent otherwise. Aminimal dependent set is called a circuit. It is possible to characterize matroids in terms of circuits[1]. In particular, given the family < of the circuits of IMI, the closure operations can be reconstructedas follows: p 2 A, p 2 A or 9C 2 < : p 2 C � A [ fpgGiven a matroid IMI, let c(IMI) be the size of the maximal circuits of IMI.10



Theorem 4.1 Given a simple matroid IMI = hS; (�)i, Hn(L(IMI)) = c(IMI)� 1:Proof: If C is a circuit of a matroid and a 2 C, then C�fag is independent. Since sizes of independentsets are bounded above [1], so are the sizes of circuits, i.e. c = c(IMI) is �nite. Since IMI is simple,atoms of L(IMI) correspond to elements of S and we will use the same letter for an element of S andthe corresponding atom. Let a 2 S and A � S, a 62 A. Let a � WA. Then a 2 A and there exists acircuit C such that a 2 C � A[fag. Therefore, a 2 C � fag. Since jC j� c(IMI), jC�fagj� c(IMI)�1which proves the Carath�eodory condition with parameter c(IMI)�1 for L(IMI). Since L(IMI) is algebraicand CJ-generated (in fact, atomistic), by theorem 2.1 it is c(IMI)� 1-distributive.Now assume that the Carath�eodory condition with parameter c(IMI) � 2 holds. Let C be a circuitthat contains exactly c(IMI) elements. From the de�nition of the closure operation it follows thata � W(C � a) for any a 2 C. By (ccc�2) we �nd an element b 2 C, b 6= a such that a � W(C�fa; bg),that is, a 2 C � fa; bg, which contradicts independence of C � fbg. Therefore, L(IMI) does not obey(cc)c�2 which �nishes the proof of Hn(L(IMI)) = c(IMI)� 1. 2Now we can easily prove two consequences of this result. Since a projective geometry can be viewedas a simple matroid underlying matroid induced by the linear closure in a vector space, matroidindependence being linear independence, theorem 4.1 tells us that the Huhn rank of a projectivegeometry is its dimension plus one, cf. [13].Since Part(n), the lattice of partitions of an n-element set, is the lattice of closed sets of the polygonmatroid of a complete graph with n vertices, we concludeCorollary 4.2 Hn(Part(n)) = n� 1. 2More generally, for any �nite graph the Huhn rank of the lattice of closed sets of its polygon matroidis one less than the size of the maximal circuit.A result similar to theorem 4.1 can be proved for antimatroids, or convex geometries [10]. Recall thata convex geometry on a �nite set S is a closure (�) satisfying the antiexchange property: p; q 62 A; p 2A [ fqg =) q 62 A [ fpg. A subset A of S is called free if every its subset is the intersection of A witha complement of a closed set. Minimal nonfree sets are called circuits of the convex geometry. It ispossible to characterize convex geometries in terms of circuits [8] and the Carath�eodory type resultwas proved for the anti-exchange closures in [18]. It is rather straightforward to extend the result of[18] to lattices of closed sets of convex geometries. Thus, we have:Corollary 4.3 Let hS; (�)i be a convex geometry and L the lattice of closed sets. Let c be the maximalsize of a circuit. Then Hn(L) = c� 1. 2Lattices of subsemilattices. Let hS;ti be a join semilattice. By Sub(S) we denote the lattice ofsubsemilattices of S. Let F (n) denote the free semilattice with n generators, that is, the semilatticeof all nonempty subsets of an n-element set ordered by inclusion.Proposition 4.4 Given a semilattice S, the lattice of its subsemilattices Sub(S) is n-distributive i�S does not contain a subsemilattice isomorphic to F (n+ 1).11



Proof: Suppose Sub(S) is not n-distributive. Then (ccn) does not hold and there exists k > n suchthat fag � fa1g _ : : : _ fakg but for no i is fag below Wj 6=ifajg. Here a and ai's are elements of S.This implies a = a1 t : : : t ak but a 6= Fi2I ai for any proper subset I of f1; : : : ; kg. Assume that fortwo di�erent subsets I1; I2 of f1; : : : ; kg it holds: Fi2I1 ai = Fi2I2 ai. Without loss of generality, leti 2 I1 � I2. Then a = a1 t : : : t ak = Fj 6=i aj , a contradiction. Hence, the subsemilattice generatedby a1; : : : ; ak is isomorphic to F (k) and then F (n + 1) is a subsemilattice of S. Conversely, if S0is a subsemilattice of S isomorphic to F (n + 1), let a1; : : : ; an+1 be its atoms and a its top. Thenfag � fa1g _ : : : _ fan+1g but fag 6� Wj 6=ifajg for any i. Hence, (ccn) does not hold and Sub(S) isnot n-distributive. 2As the �rst corollary we obtain the result of [21] that Sub(S) is distributive if and only if S is a chain.Another corollary of proposition 4.4 deals with dimension. The n-dimensional Euclidean space canbe considered as a semilattice with the ordering being componentwise, the join operation being max.Since hEn ;maxi contains a subsemilattice isomorphic to F (n) but no subsemilattice isomorphic toF (n+ 1), we obtainCorollary 4.5 Sub(hEn ;maxi) 2 �n ��n�1. 2Finding a characterization of n-distributivity in the lattices of sublattices for an arbitrary n remainsopen. For 2-distributivity see [7].Planar lattices. Planarity is closely related to the order dimension. Given a poset hP;vi, itsdimension, dim(hP;vi), is the minimal number of chains whose product contains hP;vi as a subposet,see [17]. First we demonstrate how dim and Hn are related.Proposition 4.6 Let L be a �nite lattice. Then Hn(L) � dim(L).Proof: Suppose that there exists a �nite lattice L such that Hn(L) > dim(L) = n. Then (ccn) doesnot hold, i.e. there exists a number k > n and k + 1 join-irreducible elements a; a1; : : : ; ak such thata � a1 _ : : : _ ak but a 6� Wj 6=i aj for all i = 1; : : : ; k. Clearly, neither of ai's is the bottom elementof L and Wi2I ai 6= Wj2J aj whenever I and J are distinct subsets of f1; : : : ; kg (cf. the proof ofproposition 4.4). Consider the subposet of L formed by the bottom element and all joins Wi2I aiwhere ; 6= I � f1; : : : ; kg. From the above observation it follows that this subposet if isomorphic to1 � F (k), i.e. 2k, the lattice of subsets of a k-element set. This lattice is known to have dimensionk [17], hence dim(L) � k > n, a contradiction. This contradiction shows Hn(L) � dim(L). 2Since �nite lattice is planar if and only if its dimension is � 2 [16], we concludeCorollary 4.7 Any �nite planar lattice is either distributive or 2-distributive. 2Convexity lattices of posets. Given a poset hP;vi, its subset is called convex if it includes, togetherwith x v y, any element z such that x v z v y. The lattice of convex subsets of P is called its convexitylattice and denoted by Co(P ), see [5]. It was proved in [5] that Co(P ) is atomistic, algebraic and itsCarath�eodory rank is at most 2. Therefore, Co(P ) is either 1- or 2-distributive. To characterize itsHuhn rank it is enough to describe those posets P for which Co(P ) is distributive. Let P contain a12



nonsimple interval [x; y] and z 2 [x; y], z 6= x; y. Then fzg v fxg t fyg in Co(P ) which shows that(cc1) fails. Obviously, (cc1) holds if all intervals are simple. Thus, we haveProposition 4.8 Given a poset hP;vi, its convexity lattice Co(P ) is distributive or 2-distributive. Itis distributive i� P is of length 0 or 1. 25 Convexity latticesIn this section we study n-distributivity and dual n-distributivity in convexity lattices. We will showthat the Huhn rank of a convexity lattice coincides with its a�ne rank de�ned as the height of thelattice of \a�ne 
ats" (in fact, the height of the modular core). Under natural assumptions aboutthe properties of the underlying betweenness relation convexity lattices of dimension n (equivalently,of a�ne rank n + 1) arise as lattices of convex sets of convexities of dimension n (see section 2 forthe de�nition). Finally, we will relate the dual n-distributivity to dimension in convexity lattices. Westart with some terminology.De�nition [3] An atomistic lattice is called biatomic if p � x _ y where p is an atom and x; y arenonzero implies p � x0 _ y0 where x0 � x and y0 � y are atoms.Given a lattice L, ha1; : : : ; ani denotes the sublattice of L generated by a1; : : : ; an 2 L.De�nition [4] A biatomic algebraic lattice L is called a convexity lattice if it satis�es the followingproperties CL1 and CL2:CL1 If p; q; r are distinct atoms, then hp; q; ri is isomorphic to 23 or Co(3);CL2 If p; q; r; s are distinct atoms and both hp; q; ri and hq; r; si are isomorphic to Co(3), then hp; q; r; siis isomorphic to Co(4).Co(n) is the lattice of intervals of an n-element chain. The diagrams of Co(3) and Co(4) are shownbelow: 
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JJJ�����\\\\\ ��\\ @@@��������@@@���AAAAA���AAA Co(4)Co(3)The conditions CL1 and CL2 can be better understood if one thinks in terms of the betweennessrelation �. If three points are non-collinear, i.e. they form a triangle, the lattice of convex sets of sucha con�guration is 23. If they are collinear, i.e. one of them is between the others, the lattice of convexsets is Co(3). The condition CL2 says that if two triples of points, (p; q; r) and (q; r; s) are collinear,13



then all four are collinear. The conditions CL1 and CL2 imply, in particular, that the closure on theset of atoms induced by L satis�es the antiexchange property.Usually the de�nition of convexity lattices is augmented by properties reminiscent of Hilbert's orderaxioms for the betweenness3. To introduce them, some preliminary work needs to be done.An element a of a lattice L is called modular if, for any x 2 L, c � a implies c _ (x ^ a) = (c _ x) ^ a.The set of modular elements is denoted by M(L). The following results appeared in [4]: If L is thelattice Co(V ) of convex sets in a vector space V over an ordered division ring, M(Co(V )) is themeet-subsemilattice of a�ne 
ats. If L is a convexity lattice, M(L) is closed under arbitrary meetsand 1 2M(L). De�ne x_y def= ^(M(L)\ "(x _ y))Then hM(L);_;^i is an algebraic atomistic lattice, its atoms being the atoms of L. If p; q are distinctatoms, p_q is called a line. A line given by p and q consists of all atoms r such that hp; q; ri �= Co(3).In other words, p_q consists of all atoms r such that r � p _ q or p � q _ r or q � p _ r.A convexity lattice is said to be a Peano convexity lattice if for distinct atoms p; q; r; s; t such thats � p _ q and t � q _ r there exists an atom w � (s _ r) ^ (p _ t), see the picture below.������ ZZZZLLLLLL����qp rts wA convexity lattice is said to have the divisibility property if for any two distinct atoms p and q thereexists an atom r � p _ q, r 6= p; q. It is called unbounded [20, 22] if for any p and q there exists anatom r such that p � r_q (this is reminiscent of Hilbert's axiom II2). Equivalently, a convexity latticeis unbounded if 0 and 1 are the only codistributive elements [20, 22].Any convexity lattice with the divisibility property is Peano. If L is a Peano convexity lattice, M(L)has the exchange property [4]. Hence, if it is of �nite length, it is a geometric lattice and its length isdenoted by a�(L) and is called the a�ne rank of L. If L is unbounded and a�(L) > 2, then L hasthe divisibility property [22].Given a convexity lattice L with the set of atoms A, de�ne CL � 2A to be the family of sets of atomsunder elements of L, i.e. X 2 CL if and only if there exists x 2 L such that X is the set of atomsbelow x. Now we are ready to prove the �rst result of this section.Theorem 5.1 Let L be a convexity lattice of a�ne rank n satisfying the divisibility property and Athe set of its atoms. Then (A; CL) is an n� 1-dimensional convexity.Proof: We need a few auxiliary de�nitions �rst. By A(x) we mean the set of atoms below x. If L is aconvexity of �nite a�ne rank n, a coatom of M(L) is called a hyperplane. Given a hyperplane h and3Axiomatization of elementary geometry in terms of the betweenness relation was given by Tarski [31]. One canconsult that work or [4] for the motivation for the conditions to be introduced.14



two atoms p and q, either p_ q � h or (p_ q)^h = 0 or (p_ q)^h is an atom (if (p_ q)^h containedtwo atoms, it would contain the whole line p_q).De�ne a relation Eh on A by pEhq , p_ q � h or (p_ q)^ h = 0. Then Eh is an equivalence relationhaving two or three equivalence classes, A(h) being one of them [2, 22]. We denote the equivalenceclasses di�erent from A(h) by h+ and h�. h� may not exist. h+ def= h _ h+ and h� def= h _ h� arecalled the closed halfspaces [22]. A(h�) = A(h) [ A(h�), where � 2 f+;�g. Given atoms p1; : : : ; pn,d = p1 _ : : : _ pn is called a simplex [22] if p1_ : : :_pn = 1. Its ith side is di = Wj 6=i pj.If x is an element of L, _x is the minimal element of M(L) above x, i.e. V(y 2M(L) j y � x).It is clear that the lattice of convex sets of (A; CL) is L. To prove that (A; CL) is n� 1-dimensional,(ccn) must be shown to hold in L. But this follows from [4, theorem 19]. Thus, it is enough to showthat the compact elements of L form a sublattice. We start with two claims.Claim 1: Let d be a simplex and h a hyperplane. Then d ^ h+ is compact.Proof of claim 1: If h� does not exist, d ^ h+ = d which is a compact element. Assume that h�exists. Let d = p1 _ : : : _ pn where p1_ : : :_pn = 1. If all pi's are under h�, 0 = d ^ h+ is a compactelement. Now, let p1; : : : ; pk 2 A(h+) and pk+1; : : : ; pn 2 A(h�). For any i � k and j > k de�nepij = (pi _ pj)^h. According to the de�nition of Eh, pij 6= 0. Moreover, it follows from the propertiesof the modular core elements that pij is an atom, cf. [22]. Letd0 = p1 _ : : : _ pk _ _i�k;j>k pij:We claim d0 = d ^ h+. Clearly, d0 � d ^ h+. To prove the reverse inequality, let v � d ^ h+,v 2 A. Then, by biatomicity, there exist atoms q � p1 _ : : : _ pk and r � pk+1 _ : : : _ pn such thatv � q _ r. Since q � h+ and r � h�, w = (q _ r) ^ h is an atom and v � w _ q. If w does notcoincide with one of pij's, consider the line w_pij. By [4, theorem 10] there exists an index i0 andan atom s � di0 such that w � pij _ s. Since s � pij_w � h, this shows w � Wnl=1(dl ^ h). Now,dl ^ h = (h ^ (_dl)) ^ dl. If _dl � h, then dl � p1 _ : : : _ pk. If h 6� _dl, then h ^ _dl is a hyperplanein _dl because M(L) is a geometric lattice, and h ^ dl = Wm(h ^ dlm). Continuing this process, we�nally obtain w � p1_ : : :_pk_W(l;m)(h^ (pl_pm)) where (l;m)'s range over a set of pairs of indices.Since h ^ (pl _ pm) is either pl _ pm (and then l;m � k) or 0 or plm, this shows w � d0 and v � d0as q � d0. Hence, d0 = d ^ h+. Since d0 is the join of �nitely many atoms, it is compact. Claim 1 isproved.Using claim 1, we can prove the followingClaim 2: If x is a compact element and h is a hyperplane, then x ^ h+ is compact.Proof of claim 2: Assume without loss of generality that _x = 1 (if this is not the case, considerh0 = h^(_x). Then, if x 6� h, h0 is a hyperplane in #_x). Since a�(L) = n, the Carath�eodory condition(ccn) holds [4]. Therefore, there exist simplexes d1; : : : ; dl such that x = d1 _ : : : _ dl and, moreover,A(x) = A(d1) [ : : : [ A(dl). Let xi = di ^ h+. Then x ^ h+ = Wi xi which proves compactness ofx ^ h+.Now, let x; y be two compact elements. Since x^ y = (x^ (_x))^ (y ^ (_x)), we may assume withoutloss of generality that _x = 1. Again, A(x) = Sli=1A(di) and x = Wni=1 di where di's are simplexes.According to [22, theorem 15], for each simplex di there exist n hyperplanes hij , j = 1; : : : ; n such thatdi = Vj h+ij. Then, according to claim 2, di ^ y = yi is a compact element. We claim x ^ y = Wi yi.15



Clearly, yi � x ^ y. Conversely, given an atom p � x ^ y, there exists an index i such that p � di.Hence, p � yi. Thus, x ^ y is compact, which �nishes the proof of the theorem. 2Corollary 5.2 Given a convexity lattice L with the divisibility property, a�(L) = Hn(L). 2In the rest of the section we will show that the a�ne rank can be characterized via the dual n-distributivityas well. The key lemma establishes the relationship between the dual n-distributivity and the Hellycondition of dimension n in a class of lattices that, as we shall show, includes many convexity lattices.The Helly condition of dimension n, reminiscent of Helly's theorem, reads as follows:Let L be a lattice with 0 and x1; : : : ; xk 2 L, k > n+ 1. Then Vki=1 xi 6= 0 whenever Vn+1j=1 xij 6= 0 forany sequence i1; : : : ; in+1 of indices.Lemma 5.3 Let L be a biatomic algebraic lattice satisfying the following property: If x0; x1; y0; y1 areatoms and p is an atom below xi _ yi for i = 0; 1, then for any atom x � x0 _ x1 there exists an atomy � y0 _ y1 such that p � x _ y. Then L is dually n-distributive if the Helly condition of dimensionn� 1 holds.Proof: We �rst prove that the condition of lemma implies the following, more general property: Ifx0; : : : ; xk; y0; : : : ; yk are atoms and p is an atom below xi _ yi for all i = 1; : : : ; k, then for any atomx � x0 _ : : :_ xk there exists an atom y � y0 _ : : :_ yk such that p � x_ y. The proof is by inductionon k. For k = 1 this is the condition of lemma. For an arbitrary k, by biatomicity there exists an atomx0 � x1_ : : :_xk such that x � x0_x0. By induction hypothesis, there exists an atom y0 � y1_ : : :_yksuch that p � x0 _ y0. Then there exist an atom y � y0 _ y0 � y0 _ : : : _ yk such that p � x _ y.Let the Helly condition of dimension n� 1 hold. To prove that L is dually n-distributive, it is enoughto show that for any atom p, p � n̂i=0(x _ ĵ 6=i yj) implies p � x _ n̂i=0 yi:Let p be below the left hand side. If any Vj 6=i yj is 0, then p is trivially under x. Assume Vj 6=i yj 6= 0for all i. Then for any i there exist atoms pi � x and qi � Vj 6=i yj such that p � pi _ qi. De�ne y0ias Wj 6=i qj � yi. Then qi � Vj 6=i y0j. By the Helly condition, there exists an atom q � Vni=0 y0i. Thenq � q0_ : : :_ qn�1 and there exists an atom r � p0_ : : :_pn�1 � x such that p � r_ q � x_Vni=0 y0i �x _Vni=0 yi, proving dual n-distributivity. 2Theorem 5.4 Let L be an unbounded convexity lattice of a�ne rank n, n � 3. Then L is duallyn-distributive but not dually n� 1-distributive.Proof: Since a�(L) � 3, L has the divisibility property [22]. Therefore, L satis�es the condition oflemma 5.3, see [22, lemma 1]. According to [4], the Helly condition of dimension n � 1 is true in L.Therefore, L is dually n-distributive by lemma 5.3.To show that L is not n � 1-distributive, notice that the Helly condition of dimension n � 2 doesnot hold [4]. Therefore, there exist y1; : : : ; yn 2 L such that each Vj 6=i yj contains an atom qi but16



Vni=1 yi = 0. Some qi's may be the same. Let fq1; : : : ; qkg be distinct elements of fq1; : : : ; qng, k � n.Clearly, we can assume that k > 1 for otherwise q1 would be in Vi yi. Using the antiexchange property,it is easy to show that there exists qi which is not under the join of all qj's, j 6= i. Without loss ofgenerality, let i = 1. Since L is unbounded, �nd an atom ri such that q1 � ri _ qi, i = 2; : : : ; k.Let x = r2 _ : : : _ rk. If q1 � x, then q1 � r2 _ r02 where r02 is an atom under r3 _ : : : _ rk. Bythe property proved in lemma 5.3, there exists an atom q02 � q3 _ : : : _ qk such that q1 � r02 _ q02.Then from CL2 it follows that q1; q2; r2; q02; r02 lie on the same line and then it is easy to show thatq1 � q2 _ q02 � q2 _ : : : _ qk, a contradiction. Hence, q1 6� x.Let y0i = Wj 6=i qj. Then qi � Vj 6=i y0i and Vi y0i � Vi yi = 0. We have: x _ Vni=1 y0i = x 6� q1 butq1 � x _ Vj 6=i y0j for any i = 1; : : : ; n, hence q1 � Vni=1(x _ Vj 6=i y0j). Therefore, L is not n � 1-distributive. 2The assumption a�(L) � 3 was needed only in order to prove that L has the divisibility property.Since the divisibility property is true in Co(En) for an arbitrary n, we obtainCorollary 5.5 [13] The dual of Co(En) is in �n+1 ��n. 26 Concluding remarksIn this paper we have developed the idea of [13] that dimension can be expressed as an algebraicproperty of lattices of convex sets. We have proved that in a large class of lattices (algebraic latticesin which every element is the join of completely join irreducible elements) the lattice theoretic form ofCarath�eodory's theorem is equivalent to n-distributivity . Moreover, such lattices are n-distributive ifand only if they are in the variety generated by the �nite n-distributive lattices. These results wereapplied to characterize n-distributivity in various classes of lattices. For example, in a geometriclattice it is the size of the maximal circuit of the underlying matroid that determines the least n suchthat the lattice is n-distributive. In convexity lattices, which are a generalization of lattices of convexsets, the dual n-distributivity determines dimension as well.A few questions remain open. One of them was mentioned already. While a concise characterizationof n-distributivity of subsemilattice-lattices is easy to obtain, it is not known whether a similar resultcan be proved for sublattice-lattices.The lattices of convex sets (and even convexity lattices with the divisibility property) are n-distributivei� they are dually n-distributive. Since Carath�eodory's theorem is equivalent to n-distributivity andHelly's theorem implies the dual n-distributivity, this suggests that there may exist a lattice theoreticduality between Carath�eodory's and Helly's theorems. This is not a mere speculation. Indeed, takea convexity lattice L of a�ne rank n with the divisibility property. Then it is dually n-distributivewhich means its dual is n-distributive. The dual of any algebraic lattice is CJ-generated. Now, if wenotice that algebraicity was not used to prove 1) ) 3) of theorem 2.1, we conclude that (ccn) holdsin the dual of L, i.e. Helly's theorem of dimension n implies the dual of Carath�eodory's theorem ofthe same dimension. This kind of duality will be further investigated.n-distributivity was �rst introduced and studied for modular lattices. It was observed that it allowsus to characterize the dimension of a projective geometry in the way similar to the one exploited in17
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