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1 IntroductionIt is well-known that while any algebra is a subdirect product of subdirectly irreducible algebras, theanalog of this result is not generally true for direct product. However, it is true for some classesof algebras, for example, for lattices of �nite length. In this paper we prove the existence of suchdecompositions for two classes of lattices. First, we proveTheorem 1 Every atomistic algebraic lattice is a direct product of directly indecomposable (atomisticalgebraic) lattices.(A lattice is called atomistic if every element is the join of atoms below it). The proof is given bydescribing the structure of neutral complemented elements of such lattices. Then we show how theorem1 can be generalized. An element x of a complete lattice L is called strictly join-irreducible if x = WXimplies x 2 X for an arbitrary X � L. Borrowing the terminology from [8], we call a lattice in whichevery element is the join of strictly join-irreducible elements below it a V1�lattice. Our next result is:Theorem 2 Every algebraic V1-lattice is a direct product of directly indecomposable (algebraic V1-)lattices.While theorem 1 can be viewed as a corollary of theorem 2, we prefer to prove theorem 1 �rst andthen outline the proof of theorem 2. The reason for this order of presentation is twofold. Firstly, theproof of theorem 1 demonstrates the nice structure of distributive, standard and neutral elements inatomistic algebraic lattices. Such concise characterizations for those elements can not be obtainedfor V1-lattices although the characterizations that will be obtained are su�cient to prove theorem 2.Secondly, theorem 1 has a clear interpretation when it is reformulated in terms of subalgebra-latticesof idempotent algebras.The rest of the paper is organized in two sections. Section 2 contains the proof of theorem 1 andits applications to subalgebra-lattices of idempotent algebras. In Section 3 an outline of the proof oftheorem 2 is given.�Supported in part by AT&T Doctoral Fellowship and NSF Grant IRI-90-04137.1



2 Proof of theorem 1Recall the de�nitions of distributive, standard and neutral elements [5]. An element a 2 L is calleddistributive (standard or neutral) if for any x; y 2 L (1) ((2) or (3)) holds:(1) a _ (x ^ y) = (a _ x) ^ (a _ y)(2) x ^ (a _ y) = (x ^ a) _ (x ^ y)(3) (x ^ a) _ (y ^ a) _ (x ^ y) = (x _ a) ^ (y _ a) ^ (x _ y):Given a lattice L, its center Cen(L) is de�ned to be the set of neutral complemented elements. Cen(L)is a sublattice of L. Moreover, it is Boolean.To prove theorem 1 it su�ces to show that Cen(L) is a complete atomistic Boolean lattice. Then,if Ac is the set of atoms of Cen(L), Cen(L) �= 2A and L �= Qa2A(a] is a representation of L asa direct product of directly indecomposable lattices. This suggests the following strategy: give acharacterization of neutral complemented elements of L which will make it easy to prove that Cen(L)is complete and atomistic. This is done in four steps, represented by lemmas 1{4.We need some new terminology before we proceed to prove the lemmas. If p1; : : : ; pn 2 L, thenpi = Wj 6=i pj. An inequality r � p1 _ : : :_ pn is called minimal if r 6� pi for any i. An element x 2 L iscalled a face element if r � x and r � p1 _ : : :_ pn where r and all pi's are atoms and the inequality isminimal imply p1 _ : : :_ pn � x (the name is suggested by a lattice theoretic characterization of facesof polytopes as face elements of the lattices of convex subsets of polytopes [1]).Throughout this section, L is an atomistic algebraic lattice and A is the set of its atoms. A(x) isA \ (x].Lemma 1 Given x 2 L, the following are equivalent:1) x is distributive;2) x is standard;3) For any y 2 L, A(x _ y) = A(x) [A(y).Proof: 1) ) 3). Since A(x _ y) � A(x) [ A(y), we have to prove the reverse inequality. Let p be anatom and p � x _ y. Since p is compact, p � a1 _ : : : _ an _ b1 _ : : : _ bm where all ai's and bj 's areatoms, ai � x; bj � y. If all bj 's are below x, then p � x and we are done. So, assume without lossof generality that no bj is below x. Let b = b1 _ : : : _ bm. Then (x _ p) ^ (x _ b) � p. Since x isdistributive, x_ (p^ b) � p too. If p � b, then p � y, and if p 6� b, then p � x. Hence, p 2 A(x)[A(y).The implication 3)) 2) is straightforward and 2)) 1) is known [5]. 2Lemma 2 If x 2 L is a neutral element, then it is complemented and A(x) = A�A(x).Proof: Let x be neutral, A0 = A� A(x) and x = WA0. It is enough to show that x ^ x = 0. Supposethat there is an atom p � x ^ x. Since p is compact, p � a1 _ : : : _ an where all ai's are atoms in2



A0. Assume without loss of generality that the inequality is minimal. Clearly, n > 1 as p � x. Thena1 6= 0 and (x_ a1) ^ (x_ a1) ^ (a1 _ a1) � p. By neutrality, (x^ a1)_ (x^ a1)_ (a1 ^ a1) � p which,by minimality, rewrites to x ^ a1 � p as a1 cannot be below a1. But then p � a1 and this contradictsminimality. Hence, x ^ x = 0. 2Corollary 1 Cen(L) is the sublattice of neutral elements. 2Lemma 3 x 2 Cen(L) i� it is a standard face element.Proof: Let x be in Cen(L). Then x is standard and we must show it is a face element. Let r � x; r �p1 _ : : : _ pn, where the inequality is minimal. If n = 1, we are done. If n > 1, assume that pi 6� x.Then (x _ pi) ^ (x _ pi) ^ (pi _ pi) � r; hence (x ^ pi) _ (x _ pi) _ (pi ^ pi) � r by neutrality. Byminimality of the inequality r � p1_ : : :_pn this rewrites to x^pi � r, i.e. r � pi and this contradictsminimality. Hence, pi � x. Since i was chosen arbitrarily, all pi's are below x and x is a face element.Conversely, let x be face and standard. We must show that x is neutral, i.e. for any atom p,p � (x^ a)_ (x^ b)_ (a^ b) whenever p � (x_a)^ (x_ b)^ (a_ b). By lemma 1, p 2 (A(x)[A(a))\(A(x) [ A(b)) = A(x) [ (A(a) \ A(b)) and p � a _ b. If p 2 A(a) \ A(b), then p � a ^ b and we aredone. Let p � x. Since p � a _ b, by compactness of p: p � a1 _ : : : _ an _ b1 _ : : : _ bm where ai'sare atoms under a, bj's are atoms under b and the inequality is minimal. Since p � x and x is a faceelement, all ai's and bj 's are under x. But then p � (x^ a)_ (x^ b) �nishes the proof of neutrality. 2Lemma 4 x 2 Cen(L) i� it satis�es the following conditions:(1) x is complemented and for its complement x it holds: x = W(A�A(x));(2) if p 2 A and p � a1_ : : :_an_ b1_ : : :_ bm where ai 2 A(x); bj 2 A�A(x), i = 1; :::; n; j = 1; :::;mthen either p � a1 _ : : : _ an or p � b1 _ : : : _ bm.Proof: Let x 2 Cen(L). We have already shown (1) (lemma 2) and only (2) remains to be proved.There are two cases: p � x or p � x as A = A(x)[A(x). Let p � x. >From the set fa1; : : : ; an; b1; : : : ; bmgremove all atoms such that p is below the join of the rest and repeat this operation until no new atomcan be removed. This results in a minimal inequality p � ai1 _ : : : _ aik _ bj1 _ : : : _ bjl . By lemma3, all these atoms must be under x; hence l = 0 and p � ai1 _ : : : _ aik � a1 _ : : : _ an. If p � x, letb = b1_ : : :_bm. Then (x_p)^(x_b)^(b_p) � p; hence (x^p)_(x^b)_(b^p) = (x^b)_(b^p) � p.If p � b, then we are done. If p 6� b, then p � x ^ b = 0, a contradiction. Hence, p � b.Conversely, let x satisfy (1) and (2). Prove that it is standard. Let p � x _ y, where p is an atom.Then p � a1_ : : :_an_b1_ : : :_bm where ai's are atoms under x and bj 's are atoms under y. Withoutloss of generality, assume bj 6� x for all j. Then by (2) p � a1 _ : : : _ an � x or p � b1 _ : : : _ bm � y,i.e. by lemma 1 x is standard. To prove that x is a face element, let r � p1 _ : : : _ pn be a minimalinequality, where r � x. If all pi's are below x, then we are done. Since p � x, there are some pi'sunder x. Let p1; : : : ; pk be below x and pk+1; : : : ; pn below x. Then by (2) p � p1 _ : : : _ pk and byminimality k = n, i.e. all pi's are below x. This proves that x is a face element and by lemma 3 x isin Cen(L). 2Lemma 4 gives us the sought characterization. Now we can prove3



Lemma 5 Cen(L) is a complete sublattice.Proof: Let xi 2 Cen(L), where i 2 I and I is an arbitrary set of indices. Let Xi = A(xi) andx = Vi2I xi. We must prove that x 2 Cen(L). Let X = A(x). Then X = Ti2I Xi and X 0 = A�X =Si2I X 0i where X 0i = A�Xi. Let x = WX 0. Prove x ^ x = 0 �rst. Assume that there exists an atomp � x^ x. Since p is compact, p � a1 _ : : :_ an where all ai's are in X 0. Therefore, there exist �nitelymany indices i1; : : : ; ik 2 I such that fa1; : : : ; ang � Skj=1X 0ij . Let y = xi1 ^ : : :^xik . Since Cen(L) isa sublattice of L, y 2 Cen(L) and A(y) = Tkj=1Xij . Since y 2 Cen(L), it has the complement y andA(y) = Skj=1X 0ij . Hence p � y and p � x � y, i.e. p � y ^ y = 0. This contradiction shows x ^ x = 0.Now, let p � a1 _ : : : _ an _ b1 _ : : : _ bm where ai 2 X; bj 2 X 0, i = 1; :::; n; j = 1; :::;m. Similarly, wecan �nd an element y 2 Cen(L) such that y is the meet of �nitely many xi's and all bj's are in A(y).Since ai � x � y, we now have p � a1 _ : : : _ an or p � b1 _ : : : _ bm by applying (2) of lemma 4 to y.This �nishes the proof that x 2 Cen(L).The proof of x = Wi2I xi 2 Cen(L) is similar. Thus, Cen(L) is a complete sublattice of L. 2Finally,Lemma 6 Cen(L) is atomistic.Proof: Let q 2 A. De�ne cq = V(x j x 2 Cen(L); x � q). By lemma 5, cq 2 Cen(L). To prove that cqthus de�ned is an atom of Cen(L), it is enough to show that for no atom p is cp below cq. Supposecp < cq, i.e. A(cp) � A(cq). Since cp; cq 2 Cen(L), cq ^ cp 2 Cen(L) and A(cq ^ cp) = A(cq)� A(cp).If q 2 A(cp), then q � cp and cq � cp; hence q 2 A(cq) � A(cp), i.e. cq ^ cp � q and cq ^ cp � cq.Then cp � cq and cp < cq � cp. This contradiction proves that cq is an atom in Cen(L). Sincex = Wq2A(x) cq for any x 2 Cen(L), Cen(L) is atomistic. 2Lemmas 5 and 6 �nish the proof of theorem 1 since, if Ac is the set of atoms of Cen(L), Cen(L) �= 2Ac .The characterization of distributive and neutral elements can be given in the following alternativeway. Let [�] be the closure on A de�ned by [X] = A(WX). It is well-known that L is isomorphic tothe lattice of closed subsets of A. Lemma 1 now says that X is a distributive element of the lattice ofclosed subsets of A i� [X [ Y ] = X [ [Y ] for every Y � A. Lemma 4 says that X is a neutral elementi� its complement X 0 = A � X is also closed and [Y ] = [Y \ X] [ [Y \ X 0] for any Y � A. (Thischaracterization of neutral elements can also be derived from [6, theorem 2].)It is possible to use this characterization of neutral elements to prove lemmas 5 and 6 in exactlythe same way as they were proved above. The characterization given in lemmas 1 and 4 points outto a close connection with representation of convex theoretic concepts in lattices (cf. [1, 2]). It alsoallows us to prove two corollaries of theorem 1. Recall that an element a 2 L is called codistributiveif a ^ (x _ y) = (a ^ x) _ (a ^ y) for any x; y 2 L.Corollary 2 In an atomistic algebraic lattice an element is neutral i� it is distributive and codistribu-tive. 4



Proof: Any neutral element is distributive and codistributive. Let a be a distributive and codistributiveelement of L. Let A0 = A�A(a) and a = WA0. Prove that a is a's complement, i.e. a^a = 0. Supposep is an atom under a^ a. Then p � p1 _ : : :_ pn where p1; : : : ; pn 2 A0 and the inequality is chosen tobe minimal. Clearly, n > 1. By codistributivity, p � a^ (p1 _ p1) = (a^ p1)_ (a^ p1) = a^ p1. Thus,p � p1 which contradicts minimality. Prove that a is distributive too. Let p 2 A(a_y). We must showp 2 A(a) [A(y). If p 2 A(a), we are done. If p 62 A(a), p � a and p � a ^ (a _ y) = (a ^ a) _ (a ^ y),i.e. p 2 A(y). Thus, a is distributive. To check (2) of lemma 4, let p � a1 _ : : : _ an _ b1 _ : : : _ bm,ai � a, bj � a. Let p � a. By distributivity of a, p � a _ b1 _ : : : _ bm implies p � b1 _ : : : _ bm sincep 6� a. Similarly, if p � a, then distributivity of a implies p � a1 _ : : : _ an. Thus, a is neutral bylemma 4. 2Atomistic algebraic lattices are subalgebra-lattices of idempotent algebras and one may ask how directdecompositions of such lattices can be viewed in terms of the structure of underlying algebras. Thefollowing de�nition which is reminiscent of lemma 4 provides us with a reformulation of theorem 1 interms of idempotent algebras.Let hA;
i be an idempotent algebra where A is a carrier and 
 is a signature. A subalgebra B � Ais called splitting if A � B is also a subalgebra and, for any b1; :::; bm 2 B and c1; :::; ck 2 A � B andan m + k-ary operation ! 2 
, there exists an 
-term t such that !(b1; : : : ; bm; c1; : : : ; ck) is eithert(b1; : : : ; bm) or t(c1; : : : ; ck).Corollary 3 Any idempotent algebra is the union of its minimal splitting subalgebras and its subalgebra-lattice is isomorphic to the product of subalgebra-lattices of the minimal splitting subalgebras. Moreover,the subalgebra-lattice of an idempotent algebra hA;
i is directly indecomposable i� hA;
i has no propersplitting subalgebras. 2In the case of lattices and semilattices splitting subalgebras are such that their elements are comparablewith every element of their complements, hence the name. Corollary 3 for lattices and semilattices isknown, see [4, 7].3 Proof of theorem 2The idea is similar to that of the proof of theorem 1: we give a characterization of Cen(L) that makesit easy to prove that Cen(L) is an atomistic Boolean lattice. Throughout this section, L is an algebraicV1-lattice, i.e. a lattice in which every element is the join of strictly join-irreducible elements. Let Jbe the set of such elements; J(x) is J \ (x]. Clearly, any element of J is compact.The analog of lemma 1 is not that general as distributive elements are not necessarily standard in L.Lemma 7 An element x 2 L is standard i� J(x _ y) = J(x) [ J(y) for any y 2 L.Proof: Let x be standard. Let p 2 J(x_y). Then p � a1_ : : :_an_ b1_ : : :_ bm where ai 2 J(x); bj 2J(y). Without loss of generality, assume bj 6� x. Let b = b1 _ : : : _ bm. Since p � p ^ (x _ b) and x is5



standard, p � (p^x)_(p^b). By compactness of p, p � a01_ : : :_a0k_b01_ : : :_b0l where a0i 2 J(p^x) �J(x) and b0j 2 J(p^ b) � J(y). But since a0i; b0j � p, one has p = a01 _ : : :_ a0k _ b01 _ : : : _ b0l and p = a0ior p = b0j for some i or j since p 2 J . Thus, p 2 J(x)[ J(y). Conversely, if J(x_ y) = J(x)[ J(y) forany y, it is almost immediate that x is standard. 2Not every neutral element is complemented in a V1-lattice. However,Lemma 8 Let x be a neutral element. Then x is complemented i� for every p 2 J , p 6� x impliesp ^ x = 0.Proof: Let x be complemented. Since x is neutral, for any p: p = (x ^ p) _ (x ^ p) where x is thecomplement of x. If p 2 J , this implies p � x or p � x. If p 6� x, then p � x and p ^ x � x ^ x = 0.Conversely, let the condition of lemma hold. Let J 0 = J � J(x) and x = W J 0. The proof of x ^ x = 0is essentially similar to the proof of lemma 2. Hence, x is the complement of x. 2Lemma 9 x 2 Cen(L) i� x is standard, complemented and the following holds:(�) r � x and r � p1 _ : : : _ pn imply p1; : : : ; pn � xwhere r; p1; : : : ; pn 2 J and the inequality is minimal.Proof: The 'if ' part is proved as in lemma 3. Let x be in Cen(L). Then x is standard and comple-mented. To prove (�), notice that if n = 1, r � p1 easily implies p1 � x (or otherwise p1 � x | seethe proof of lemma 8 | and r � x^x = 0). If n > 1, let pi 6� x. Then (x_pi)^ (x_pi)^ (pi_pi) � r.By lemma 8 x ^ pi = 0; hence by neutrality (x ^ pi) _ (pi ^ pi) � r. If x ^ pi = 0, then r � pi; hencex ^ pi 6= 0. Therefore, there exits r0 2 J such that r0 � x and r0 � pi. Notice that pi 6� x (otherwisewe would have pi � r). Thus, there exists a subset P of fp1; : : : ; png�fpig such that r0 � _P , r0 � x,the inequality is minimal and at least one pj 2 P is not below x. Then we can repeat the process tofurther reduce the size of P . This process will eventually stop when the size of a new subset of P isone, thus giving us r00 � x such that r00 � pl and pl 6� x, where r00 is a nonzero element of J . Sincepl � x, r00 � x ^ x = 0, a contradiction. Lemma is proved. 2We are now in the position to prove the desired characterization of Cen(L).Lemma 10 x 2 Cen(L) i� the following hold:(1) x has a complement x;(2) for every p 2 J , either p � x or p � x;(3) if p 2 J and p � a1 _ : : : _ an _ b1 _ : : : _ bm where ai 2 J(x); bj 2 J(x), i = 1; :::; n; j = 1; :::;mthen either p � a1 _ : : : _ an or p � b1 _ : : : _ bm.Remark: It is easy to see that (2) and (3) guarantee the uniqueness of x.Proof: If (1), (2) and (3) hold, then the conditions of lemma 9 are proved similarly to the proof oflemma 3. Let x 2 Cen(L). Then (1) holds and we have already proved (2). If p � x, then sharpenthe inequality in (3) by deleting elements until it becomes minimal and conclude p � a1 _ : : : _ an by6



applying (�) of lemma 9. If p � x, de�ne b as b1 _ : : : _ bm. Then (x_ p)^ (x_ b)^ (p_ b) � p. Sincep � x, p^x = 0 and by neutrality of x: (x^ b)_ (p^ b) � p. Therefore, p � (x^ b)_ (p^ b) � b whichproves (3). 2Using the characterization given in lemma 10, one can rework the proof of lemma 5 to obtainLemma 11 Cen(L) is a complete sublattice of L. 2To �nish the proof, we needLemma 12 Cen(L) is atomistic.Proof: Let cp = V(x j x 2 Cen(L); x � p) where p 2 J . By lemma 11, cp 2 Cen(L). Every elementof Cen(L) is the join of such elements; in fact, x = W(cp j p 2 J(x)) for any x 2 Cen(L). Provethat cp is compact in Cen(L). It is su�cient to prove that cp � Wi2I cpi implies that cp is belowthe join of �nitely many cpi 's. Since p � cp, p � Wi2I cpi . Hence, p � Wi2If cpi where If is a �nitesubset of I because p is compact. Cen(L) is a sublattice of L, therefore Wi2If cpi 2 Cen(L) and thismeans cp � Wi2If cpi . Thus, cp is compact, and by the observation made earlier Cen(L) is an algebraiclattice. Since Cen(L) is Boolean, it is atomistic, in fact, of form 2X for some set X [3]. 2References[1] M.K. Bennett, Separation conditions on convexity lattices, Springer Lecture Notes in Mathemat-ics, 1149 (1984), 22{37.[2] M.K. Bennett and G. Birkho�, Convexity lattices, Algebra Universalis 20 (1985), 1{26.[3] G. Birkho�. Lattice Theory, 3rd ed., AMS, Providence, RI, 1967.[4] N.D. Filippov, Projectivity of lattices, Matem. Sb. 70 (1966), 36{54.[5] G. Gr�atzer. General Lattice Theory. Birkh�auser Verlag, Basel, 1978.[6] L. Libkin, Direct product decompositions of lattices, closures and relation schemes, DiscreteMathematics 112 (1993), 119{138.[7] L. Libkin, I. Muchnik, The lattice of subsemilattices of a semilattice, Algebra Universalis, 31(1994), 252{255.[8] G. Richter, On the structure of lattices in which every element is a join of join-irreducibleelements, Periodica Mathematica Hungarica 13 (1982), 47{69.
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