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1 Introduction

It is well-known that while any algebra is a subdirect product of subdirectly irreducible algebras, the
analog of this result is not generally true for direct product. However, it is true for some classes
of algebras, for example, for lattices of finite length. In this paper we prove the existence of such
decompositions for two classes of lattices. First, we prove

Theorem 1 Every atomistic algebraic lattice is a direct product of directly indecomposable (atomistic
algebraic) lattices.

(A lattice is called atomistic if every element is the join of atoms below it). The proof is given by
describing the structure of neutral complemented elements of such lattices. Then we show how theorem
1 can be generalized. An element x of a complete lattice L is called strictly join-irreducible if z = \/ X
implies z € X for an arbitrary X C L. Borrowing the terminology from [8], we call a lattice in which
every element is the join of strictly join-irreducible elements below it a Vj—lattice. Our next result is:

Theorem 2 Every algebraic Vi-lattice is a direct product of directly indecomposable (algebraic Vi-)
lattices.

While theorem 1 can be viewed as a corollary of theorem 2, we prefer to prove theorem 1 first and
then outline the proof of theorem 2. The reason for this order of presentation is twofold. Firstly, the
proof of theorem 1 demonstrates the nice structure of distributive, standard and neutral elements in
atomistic algebraic lattices. Such concise characterizations for those elements can not be obtained
for Vi-lattices although the characterizations that will be obtained are sufficient to prove theorem 2.
Secondly, theorem 1 has a clear interpretation when it is reformulated in terms of subalgebra-lattices
of idempotent algebras.

The rest of the paper is organized in two sections. Section 2 contains the proof of theorem 1 and
its applications to subalgebra-lattices of idempotent algebras. In Section 3 an outline of the proof of
theorem 2 is given.
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2 Proof of theorem 1

Recall the definitions of distributive, standard and neutral elements [5]. An element a € L is called
distributive (standard or neutral) if for any xz,y € L (1) ((2) or (3)) holds:

(1) aV(zAy)=(aVzx)A(aVy)
(2) zA(aVy =(xANa)V(zAy)
(3) (xANa)V(yAa)V(zAy)=(zVa)A(yVa)A(zVy).

Given a lattice L, its center Cen(L) is defined to be the set of neutral complemented elements. Cen(L)
is a sublattice of L. Moreover, it is Boolean.

To prove theorem 1 it suffices to show that Cen(L) is a complete atomistic Boolean lattice. Then,
if A, is the set of atoms of Cen(L), Cen(L) = 2% and L = [[,c4(a] is a representation of L as
a direct product of directly indecomposable lattices. This suggests the following strategy: give a
characterization of neutral complemented elements of L which will make it easy to prove that Cen(L)
is complete and atomistic. This is done in four steps, represented by lemmas 1-4.

We need some new terminology before we proceed to prove the lemmas. If pi,...,p, € L, then
Pt = Vj.ipj- An inequality r <p; V...V py, is called minimal if r £ p' for any 7. An element z € L is
called a face element if r <z and r < p; V...V p, where r and all p;’s are atoms and the inequality is
minimal imply p; V...V p, <z (the name is suggested by a lattice theoretic characterization of faces

of polytopes as face elements of the lattices of convex subsets of polytopes [1]).

Throughout this section, L is an atomistic algebraic lattice and A is the set of its atoms. A(z) is

AN (z].

Lemma 1 Given x € L, the following are equivalent:
1) x is distributive;

2) x is standard;

3) For any y € L, A(z Vy) = A(z) U A(y).

Proof: 1) = 3). Since A(x Vy) D A(z) U A(y), we have to prove the reverse inequality. Let p be an
atom and p < z Vy. Since p is compact, p < a1 V... Va, Vb V...V by, where all a;’s and b;’s are
atoms, a; < z,b; < y. If all b;’s are below z, then p < x and we are done. So, assume without loss
of generality that no b; is below z. Let b = by V...V by,. Then (z Vp) A (z Vb) > p. Since z is
distributive, 2V (pAb) > p too. If p < b, then p < y, and if p £ b, then p < z. Hence, p € A(x) U A(y).
The implication 3) = 2) is straightforward and 2) = 1) is known [5]. O

Lemma 2 If z € L is a neutral element, then it is complemented and A(T) = A — A(x).

Proof: Let z be neutral, A’ = A — A(z) and 7 = \/ A’. Tt is enough to show that 2 AT = 0. Suppose
that there is an atom p < z A Z. Since p is compact, p < a1 V ...V a, where all g;’s are atoms in



A’. Assume without loss of generality that the inequality is minimal. Clearly, n > 1 as p < z. Then
a' #0and (zVay) A(zVa')A(a; Va') > p. By neutrality, (z Aay) V (z Aa')V (a' Aar) > p which,
by minimality, rewrites to 2 A a' > p as a; cannot be below a'. But then p < a' and this contradicts
minimality. Hence, x AT = 0. g

Corollary 1 Cen(L) is the sublattice of neutral elements. 0

Lemma 3 z € Cen(L) iff it is a standard face element.

Proof: Let = be in Cen(L). Then z is standard and we must show it is a face element. Let r < z,r <
p1 V...V py, where the inequality is minimal. If n = 1, we are done. If n > 1, assume that p; £ z.
Then (z V p;) A (z V') A (pi Vp') > 7; hence (z Ap;) V (zVp')V (p; Ap') > r by neutrality. By
minimality of the inequality r < p; V...V p, this rewrites to 2 Ap’ > r, i.e. r < p’ and this contradicts
minimality. Hence, p; < . Since ¢ was chosen arbitrarily, all p;’s are below z and z is a face element.

Conversely, let x be face and standard. We must show that z is neutral, i.e. for any atom p,
p < (xAa)V(xAb)V (aAb) whenever p < (zVa)A(xVb)A(aVb). By lemmal, p e (A(z)UA(a))N
(A(z) U A(D)) = A(z) U (A(a) N A(b)) and p < aVb. Ifp € A(a) N A(D), then p < a A b and we are
done. Let p < z. Since p < a V b, by compactness of p: p < a1 V...Va, Vb V...Vb, where a;’s
are atoms under a, b;’s are atoms under b and the inequality is minimal. Since p < z and z is a face
element, all a;’s and b;’s are under z. But then p < (z Aa)V (2 Ab) finishes the proof of neutrality. O

Lemma 4 x € Cen(L) iff it satisfies the following conditions:

(1) z is complemented and for its complement T it holds: T = \/(A — A(x));

(2)ifpe Aandp <arV...Va, Vb V...Vby where a; € A(z),bj € A-A(z),i=1,..,n,7=1,...,m
then either p < a1 V...Vay orp<bjyV...Vbp.

Proof: Let © € Cen(L). We have already shown (1) (lemma 2) and only (2) remains to be proved.
There are two cases: p < zorp <Tas A= A(z)UA(T). Let p < z. jFrom theset {ai,...,an,b1,...,bn}
remove all atoms such that p is below the join of the rest and repeat this operation until no new atom
can be removed. This results in a minimal inequality p < a;; V...V a; Vb;; V...V b;. By lemma
3, all these atoms must be under z; hence l =0 and p < a;, V...Va;, <a1V...Va, Ifp <7, let
b=">b1V...Vby. Then (zVp)A(zVb)A(bVDp) > p; hence (xAp)V (zAb)V (bApP) = (zAb)V(bADP) > p.
If p < b, then we are done. If p £ b, then p < 2 A b =0, a contradiction. Hence, p < b.

Conversely, let z satisfy (1) and (2). Prove that it is standard. Let p < z V y, where p is an atom.
Thenp <a;V...Va,VbiV...Vb, where a;’s are atoms under z and b;’s are atoms under y. Without
loss of generality, assume b; £ x for all j. Then by (2) p<a1V...Va, <zorp<b V...Vby <y,
i.e. by lemma 1 z is standard. To prove that x is a face element, let » < p; V...V p, be a minimal
inequality, where r < z. If all p;’s are below z, then we are done. Since p < z, there are some p;’s
under z. Let py,...,p; be below z and pyiq,...,p, below Z. Then by (2) p < p; V...V p; and by
minimality £ = n, i.e. all p;’s are below z. This proves that = is a face element and by lemma 3 z is
in Cen(L). O

Lemma 4 gives us the sought characterization. Now we can prove



Lemma 5 Cen(L) is a complete sublattice.

Proof: Let z; € Cen(L), where ¢ € I and I is an arbitrary set of indices. Let X; = A(z;) and
z = N\jc; ;- We must prove that z € Cen(L). Let X = A(z). Then X =(;c; X;and X' = A - X =
User X! where X] = A — X;. Let T = \/ X'. Prove £ AZ = 0 first. Assume that there exists an atom
p < x AT. Since p is compact, p < a1 V...V a, where all a;’s are in X'. Therefore, there exist finitely
many indices i1,...,i; € I such that {a1,...,a,} C U§:1 XZ(],. Let y = ;, A...Ax;,. Since Cen(L) is
a sublattice of L, y € Cen(L) and A(y) = ﬂle X;;. Since y € Cen(L), it has the complement 7 and
Ay) = Ule XZ'J Hence p <y and p <z <y, ie. p<yA7y=0. This contradiction shows z AT = 0.
Now, let p<a;V...Va, Vb V...Vby where q; € X,bj € X', i=1,...,n,j =1,..,m. Similarly, we
can find an element y € Cen(L) such that y is the meet of finitely many z;’s and all b;’s are in A(7).
Since a; < x <y, we now have p < a; V...Va, or p<byV...Vb, by applying (2) of lemma 4 to y.
This finishes the proof that 2 € Cen(L).

The proof of 2 = \/;c; x; € Cen(L) is similar. Thus, Cen(L) is a complete sublattice of L. ]
Finally,

Lemma 6 Cen(L) is atomistic.

Proof: Let g € A. Define ¢, = \(z | z € Cen(L),z > q). By lemma 5, ¢, € Cen(L). To prove that ¢,
thus defined is an atom of Cen(L), it is enough to show that for no atom p is ¢, below ¢,. Suppose
¢p < g, 1.e. A(cp) C A(eq). Since ¢y, ¢4 € Cen(L), ¢q AT, € Cen(L) and A(cy ATp) = A(eq) — Aley).
If ¢ € A(cp), then g < ¢, and ¢4 < ¢p; hence g € A(cy) — A(cp), ie. ¢ AT > qand ¢g AT, > ¢y
Then ¢, > ¢, and ¢, < ¢; < ¢,. This contradiction proves that ¢, is an atom in Cen(L). Since
T =V yea(z) ¢q for any z € Cen(L), Cen(L) is atomistic. 0

Lemmas 5 and 6 finish the proof of theorem 1 since, if A, is the set of atoms of Cen(L), Cen(L) = 24¢,

The characterization of distributive and neutral elements can be given in the following alternative
way. Let [-] be the closure on A defined by [X]| = A(V X). It is well-known that L is isomorphic to
the lattice of closed subsets of A. Lemma 1 now says that X is a distributive element of the lattice of
closed subsets of A iff [X UY] = X U[Y] for every Y C A. Lemma 4 says that X is a neutral element
iff its complement X' = A — X is also closed and [Y] = [Y N X]U[Y N X'] for any Y C A. (This
characterization of neutral elements can also be derived from [6, theorem 2].)

It is possible to use this characterization of neutral elements to prove lemmas 5 and 6 in exactly
the same way as they were proved above. The characterization given in lemmas 1 and 4 points out
to a close connection with representation of convex theoretic concepts in lattices (cf. [1, 2]). It also
allows us to prove two corollaries of theorem 1. Recall that an element a € L is called codistributive
ifan(zVy)=(aNz)V(aAy) for any z,y € L.

Corollary 2 In an atomistic algebraic lattice an element is neutral iff it is distributive and codistribu-
tive.



Proof: Any neutral element is distributive and codistributive. Let a be a distributive and codistributive
element of L. Let A" = A— A(a) and @ = \/ A’. Prove that @ is a’s complement, i.e. @Aa = 0. Suppose
p is an atom under @A a. Then p < p; V...V p, where py,...,p, € A" and the inequality is chosen to
be minimal. Clearly, n > 1. By codistributivity, p < a A (p1 Vp') = (a Ap1) V (a Ap') = a Ap'. Thus,
p < p' which contradicts minimality. Prove that @ is distributive too. Let p € A(@Vy). We must show
p € A(@) U A(y). If pe A(a), we are done. If p € A(@), p<aandp<aA@Vy)=(aAa)V(aAy),
i.e. p € A(y). Thus, @ is distributive. To check (2) of lemma 4, let p < a; V... Va, Vb V... Vb,
a; < a, bj <a. Let p <a. By distributivity of a, p < aV by V...V by, impliesp < by V...V by, since
p £ a. Similarly, if p < a, then distributivity of @ implies p < a1 V...V a,. Thus, a is neutral by
lemma 4. O

Atomistic algebraic lattices are subalgebra-lattices of idempotent algebras and one may ask how direct
decompositions of such lattices can be viewed in terms of the structure of underlying algebras. The
following definition which is reminiscent of lemma 4 provides us with a reformulation of theorem 1 in
terms of idempotent algebras.

Let (A,Q) be an idempotent algebra where A is a carrier and Q is a signature. A subalgebra B C A
is called splitting if A — B is also a subalgebra and, for any by, ...,b,, € B and ¢1,...,c; € A — B and
an m + k-ary operation w € €, there exists an Q-term ¢ such that w(by,...,bpy,c1,...,cg) is either
t(by,...,bm) or t(cy, ... ck).

Corollary 3 Any idempotent algebra is the union of its minimal splitting subalgebras and its subalgebra-
lattice is isomorphic to the product of subalgebra-lattices of the minimal splitting subalgebras. Moreover,
the subalgebra-lattice of an idempotent algebra (A, Q) is directly indecomposable iff (A, Q) has no proper
splitting subalgebras. O

In the case of lattices and semilattices splitting subalgebras are such that their elements are comparable
with every element of their complements, hence the name. Corollary 3 for lattices and semilattices is
known, see [4, 7].

3 Proof of theorem 2

The idea is similar to that of the proof of theorem 1: we give a characterization of Cen(L) that makes
it easy to prove that Cen(L) is an atomistic Boolean lattice. Throughout this section, L is an algebraic
Vi-lattice, i.e. a lattice in which every element is the join of strictly join-irreducible elements. Let J
be the set of such elements; J(x) is J N (z]. Clearly, any element of J is compact.

The analog of lemma 1 is not that general as distributive elements are not necessarily standard in L.

Lemma 7 An element x € L is standard iff J(z Vy) = J(z) U J(y) for any y € L.

Proof: Let z be standard. Let p € J(zVy). Thenp < a1V...Va, Vb V...Vby, wherea; € J(z),b; €
J(y). Without loss of generality, assume b; £ . Let b =0y V...V b,,. Since p <pA (zVb) and z is



standard, p < (pAz)V (pAb). By compactness of p, p < ajV...Va,VhV...Vb where a; € J(pAz) C
J(z) and b} € J(pAb) C J(y). But since a;,b; <p,one hasp=aj V... Vap Vb V...Vl and p = q;
or p = bl; for some i or j since p € J. Thus, p € J(z) U J(y). Conversely, if J(zVy) = J(x)U J(y) for

any y, it is almost immediate that z is standard. O
Not every neutral element is complemented in a Vj-lattice. However,

Lemma 8 Let x be a neutral element. Then x is complemented iff for every p € J, p £ x implies
pAzx=0.

Proof: Let z be complemented. Since z is neutral, for any p: p = (z Ap) V (T A p) where T is the
complement of . If p € J, this impliesp <z orp<Z. Ifp Lz, thenp<TandpAz<zAZ=0.
Conversely, let the condition of lemma hold. Let J' = .J — J(z) and T = \/ J'. The proof of x AT =0
is essentially similar to the proof of lemma 2. Hence, T is the complement of z. O

Lemma 9 x € Cen(L) iff z is standard, complemented and the following holds:
(%) r<zand r<p; V...Vp, imply p1,...,pn <z
where r,p1,...,pn € J and the inequality is minimal.

Proof: The ’if ' part is proved as in lemma 3. Let 2 be in Cen(L). Then z is standard and comple-
mented. To prove (x), notice that if n = 1, r < p; easily implies p; < x (or otherwise p; < T — see
the proof of lemma 8 — and r < AT = 0). If n. > 1, let p; £ 2. Then (zVp*) A (xVp;) A (p; V') > r.
By lemma 8 x A p; = 0; hence by neutrality (z A p*) V (p; Ap’) > r. If z Ap' =0, then r < p’; hence
x Ap' # 0. Therefore, there exits 7' € J such that v/ < z and ' < p’. Notice that p’ £ = (otherwise
we would have p’ > r). Thus, there exists a subset P of {py,...,pn} — {p;} such that ' < VP, 7' <z,
the inequality is minimal and at least one p; € P is not below . Then we can repeat the process to
further reduce the size of P. This process will eventually stop when the size of a new subset of P is
one, thus giving us 7’/ < z such that r” < p; and p; £ z, where r” is a nonzero element of .J. Since
p <7, r" <z AZT =0, a contradiction. Lemma is proved. O

We are now in the position to prove the desired characterization of Cen(L).

Lemma 10 z € Cen(L) iff the following hold:

(1) z has a complement T;

(2) for every p € J, either p <z or p <Z;

(3)ifpeJandp<aiV...Va, Vb V...Vby where a; € J(z),b; € J(T),i=1,...,n,5=1,...,m
then either p < a1 V...Va, orp<byV...Vby.

Remark: It is easy to see that (2) and (3) guarantee the uniqueness of 7.

Proof: 1f (1), (2) and (3) hold, then the conditions of lemma 9 are proved similarly to the proof of
lemma 3. Let z € Cen(L). Then (1) holds and we have already proved (2). If p < z, then sharpen
the inequality in (3) by deleting elements until it becomes minimal and conclude p < a; V...V a, by



applying (%) of lemma 9. If p <7, define b as by V...V by,. Then (zVp)A(zVb)A(pVb) > p. Since
p < T, pAx =0 and by neutrality of z: (2 Ab)V (p Ab) > p. Therefore, p < (£ Ab)V (pAb) < b which
proves (3). 0

Using the characterization given in lemma 10, one can rework the proof of lemma 5 to obtain
Lemma 11 Cen(L) is a complete sublattice of L. 0
To finish the proof, we need

Lemma 12 Cen(L) is atomistic.

Proof: Let ¢, = N(z | x € Cen(L),x > p) where p € J. By lemma 11, ¢, € Cen(L). Every element
of Cen(L) is the join of such elements; in fact, z = \/(c, | p € J(z)) for any = € Cen(L). Prove
that ¢, is compact in Cen(L). It is sufficient to prove that ¢, < \/;c;¢,, implies that ¢, is below
the join of finitely many c¢,,’s. Since p < ¢,, p < V;c7¢p;- Hence, p < Vielf cp; where Iy is a finite
subset of I because p is compact. Cen(L) is a sublattice of L, therefore Vier, ¢p; € Cen(L) and this
means ¢, < ;¢ + Cpi- Thus, ¢, is compact, and by the observation made earlier Cen(L) is an algebraic

lattice. Since Cen(L) is Boolean, it is atomistic, in fact, of form 2% for some set X [3]. 0
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