
Tractable XML Data Exchange via Relations

Rada Chirkova
Department of Computer Science

North Carolina State University
chirkova@csc.ncsu.edu

Leonid Libkin
School of Informatics

University of Edinburgh
libkin@inf.ed.ac.uk

Juan L. Reutter
School of Informatics

University of Edinburgh
juan.reutter@ed.ad.uk

ABSTRACT
We consider data exchange for XML documents: given source and
target schemas, a mapping between them, and a document con-
forming to the source schema, construct a target document and an-
swer target queries in a way that is consistent with the source infor-
mation. The problem has primarily been studied in the relational
context, in which data-exchange systems have also been built.

Since many XML documents are stored in relations, it is natu-
ral to consider using a relational system for XML data exchange.
However, there is a complexity mismatch between query answer-
ing in relational and in XML data exchange. This indicates that
to make the use of relational systems possible, restrictions have to
be imposed on XML schemas and mappings, as well as on XML
shredding schemes.

We isolate a set of five requirements that must be fulfilled in
order to have a faithful representation of the XML data-exchange
problem by a relational translation. We then demonstrate that these
requirements naturally suggest the inlining technique fordata-
exchange tasks. Our key contribution is to provide shredding algo-
rithms for schemas, documents, mappings and queries, and demon-
strate that they enable us to correctly perform XML data-exchange
tasks using a relational system.

Categories and Subject Descriptors
H.2.5 [Heterogeneous Databases]: Data translation

General Terms
Algorithms, Theory

Keywords
Data Exchange, XML, XML Shredding, Inlining

1. Introduction
In the problem of data exchange, given an instance of a source

schema and a schema mapping, which is a specification of the re-
lationship between the source and the target, the objectiveis to
find an instance of a target schema. The target instance should
correctly represent information from the source instance under the
constraints imposed by the target schema, and should allow one to
evaluate queries on the target instance in a way that is semantically
consistent with the source data. The problem has received much at-
tention in the past few years, with several surveys already available
[21, 9, 8].

The general setting of data exchange is this:

queryQ

sourceS targetT
mappingM

We have fixed source and target schemas, an instanceS of the
source schema, and a mappingM that specifies the relationship
between the source and the target schemas. The goal is to construct
an instanceT of the target schema, based on the source and on the
mapping, and to answer queries against the target data in a way
consistent with the source data.

The mappings rarely specify the target instance completely. That
is, for each sourceS and mappingM, there could be multiple
target instancesT1, T2, . . . that satisfy the conditions of the map-
ping. Such instances are calledsolutions. The notion of query
answering has to account for their non-uniqueness. Typically, one
tries to computecertain answersCERTAINM(Q,S), i.e., answers
independent of a particular solution chosen. IfQ produces re-
lations, these are usually defined as

T

i Q(Ti). Certain answers
must be produced by evaluating some query – not necessarilyQ
but perhaps itsrewritingQrewr over a particular solutionT , so that
Qrewr(T) = CERTAINM(Q,S).

Thus, the key tasks in data exchange are: (a) choosing a partic-
ular solutionT among{T1, T2, . . .} to materialize, and (b) finding
a way of producing query answers over that solution by running a
rewritten queryQrewr over it. Usually one builds a so-calleduniver-
sal solution [12, 8]; these solutions behave particularly nicely with
respect to query answering.

These basics of data exchange are independent of a particular
model of data. Most research on data exchange, however, has oc-
curred in the relational context [12, 13, 21, 8] or slight extensions
[32, 18]. The first paper that attempted to extend relationalresults
to the XML context was [6], and a few followups have since ap-
peared [4, 3]. They all concentrate on the algorithmic aspects of
query answering and constructing solutions, with the main goal of
isolating tractable cases. The problem these papers do not address
is how can XML data exchange be implemented?

Previous work on algorithms for XML data exchange has tacitly
assumed that one uses a native XML DBMS such as [19]. How-
ever, this is not the only (and perhaps not even the most common)
route: XML documents are often stored in relational DBMSs. Note
that it is natural and in many cases desirable to be able to usethe
established relational technology to solve the considerably more re-
cent and not as well understood XML data-exchange task. In fact,
many ETL products claim that they handle XML data simply by
producing relational translations (known asshredding[22]). This
leads to a two-step approach:

• first shred XML data into relations;

• then apply a relational data-exchange engine (and publish the
result back as an XML document).

The approach seems very natural, but the key question is whether
it will work correctly. That is, are we guaranteed to have the same

result as we would have gotten had we implemented a native XML
data-exchange system? We answer this question in this paper.

To state more precisely the main question addressed in this paper,
assume that we have a translationσ(·) that can be applied to (a)
XML schemas, (b) XML documents, (c) XML schema mappings,
and (d) XML queries. Then the concept ofcorrectnessof such a
translation is shown below:

XML : sourceS
mappingM

- targetT
queryQ

- answer

Relations : σ(S)

shred

? σ(M)
- σ(T)

shred

? σ(Q)
- answer

shred

?

That is, suppose we start with an XML documentS and an XML
schema mappingM. In a native system, we would materialize
some solutionT over which we could answer queriesQ.

But now we want a relational system to do the job. So we shred
S into σ(S) and then apply toσ(S) the translation of the mapping
σ(M) to get a solution – which itself is a shredding of an XML
solution – so that the answer toQ could be reconstructed from the
result of the queryσ(Q) over that relational solution.

The idea seems simple and natural on the surface, but starts look-
ing challenging once we look deeper into it. Before even attempting
to show that the relational translation faithfully represents the XML
data-exchange problem, we need to address the following.

Complexity mismatch. Without restrictions, therecannot be a
faithful representationof XML data exchange by a relational
system. Indeed, it is well known that positive relational-
algebra queries can be efficiently evaluated in relational data
exchange [12, 21, 8]. At the same time, finding query an-
swers even for simple XML analogs of conjunctive queries
can be coNP-hard [6]. So any claim that a relational data-
exchange system correctly performs XML data exchange for
arbitrary documents and queries is bound to be wrong. We
thus need to identify the cases that can be handled by a rela-
tional system.

Which shredding scheme to use?There are several, which can
roughly be divided into two groups: those that do not take
the schema information into account (e.g., the edge repre-
sentation [14], interval codings [33], and other numbering
schemes [30]), and those that are based on schemas for XML,
such as variants of the inlining technique [28, 22]. Since in
data-exchange scenarios we start with two schemas, it seems
more appropriate to apply schema-based techniques.

Target constraints. In relational data exchange, constraints in tar-
get schemas are required to satisfy certain acyclicity condi-
tions; without them, the chase procedure that constructs a
target instance does not terminate [12, 21, 8]. Constraints
imposed by general XML schema specifications need not in
general be even definable in relational calculus, let alone be
acyclic [20]. We thus need to find a shredding technique that
enables us to encode target schemas by means of constraints
that guarantee chase termination.

As for the complexity issue, the work on the theory of XML
data exchange has identified a class of mappings for which efficient
query answering is possible [6, 4, 3]. The schemas (say, DTDs),
have rules of the formdb → book∗, book → author∗ subject
(we shall give a formal definition later), and the mappings trans-
form patterns satisfied over the source into patterns satisfied over
targets. Observe that these mappings (just as nested-relational tgds

[15, 27]) are strictly more expressive than relational tgds; see the
Related-Work section for a discussion.

This restriction suggests a relational representation to use. Going
with the edge representation [14] is problematic: First, each edge
in an XML pattern used in a mapping will result in a join in the
relational translation, making it inefficient. Second, enforcing even
a simple schema structure under that representation takes us out of
the class of target constraints that relational data-exchange systems
can handle. Verifiably correct translations based on numerical en-
codings [30, 33] will necessarily involve numerical and/orordering
constraints in relational translations of mappings, and this is some-
thing that relational data exchange cannot handle at the moment
[21, 8], beyond simple ordering constraints [2].

One translation scheme however that fits in well with the restric-
tions identified in [6, 4, 3] is theinlining scheme. It works very well
for DTDs of the “right” shape, and its output schemas involveonly
acyclic constraints, which is perfect for data-exchange scenarios.

Desiderata for the translation We now formulate some basic re-
quirements for the translationσ, in order to be able to achieve our
goals described in the diagram above.1 We need the following:

Requirement 1: translation of schemas A translationσ(D) that,
when applied to a DTD of a special form, produces a rela-
tional schema that has only acyclic constraints, which can be
used in a relational data-exchange setting.

Requirement 2: translation of documents A translation σD(·)
for a DTDD that, when applied to documentT conforming
toD, produces relational databaseσD(T) of schemaσ(D).

Requirement 3: translation of queries For a DTDD, a trans-
lation σD(Q) of (analogs of) conjunctive queries so that
σD(Q)

`

σD(T)
´

= Q(T) (that is, the result ofQ(T) can
be computed by relational translations).

Requirement 4: translation of mappings For a mappingM be-
tween a source DTDDs and a target DTDDt, its trans-
lation σ(M) is a mapping betweenσ(Ds) andσ(Dt) that
preserves universal solutions. That is:

(a) EachσDt -translation of a universal solution forT under
M is a universal solution forσDs(T) underσ(M); and

(b) Each universal solution forσDs(T) underσ(M) contains2

aσDt -translation of a universal solution ofT underM.

Requirement 5: query answering For (analogs of) conjunctive
queries over trees, computing the answer toQ underM over
a source treeT is the same as computing aσ(M)-solution
of σ(T), followed by evaluation ofσ(Q) over that solution,
as is normally done in a relational data-exchange system.

Satisfaction of these five requirements would guarantee that we
have acorrect relational translation of an XML data-exchange
problem, which would guarantee correct evaluation of queries. The
relational approach to XML data exchange, which we propose in
this paper, satisfies all the five requirements.

For the choice of the query language, one has to be careful
since the definition of certain answers depends on the outputof
the queries. We consider two classes of conjunctive queriesover
trees. The first is tree patterns that output tuples of attribute values.
These are the queries most commonly considered in XML data ex-
change [6, 4, 3], because for them we can define certain answers as
1In the next sections we formalize each desideratum.
2We cannot require the equivalence, as relational solutionsare open
to adding new tuples and thus cannot always be translations of
trees; we shall discuss this later.

the usual intersectionCERTAINM(Q,S) =
T

i Q(Ti). The second
is a simple XML-to-XML query language, in which queries output
trees. It is essentially the positive fragment of FLWR expressions
of XQuery [31]. For outputs which are XML trees, the intersec-
tion operator is no longer meaningful for defining certain answers.
Instead, we use recent results of [11] that show how to define and
compute certain answers for XML-to-XML queries.

Contributions We provide a relational approach to solve two of
the most important problems of XML data-exchange settings:ma-
terializing solutions and answering queries. Our specific contribu-
tions are as follows. First, we introduce an architecture for XML
data exchange using relational vehicles, with a focus on correct
evaluation of (analogs of) conjunctive queries on XML data.Sec-
ond, we identify a class of XML schema mappings and a shredding
mechanism that allows us to overcome the complexity mismatch.
Third, we provide algorithms for relational translation ofschemas,
XML documents, schema mappings, and queries in our proposed
architecture. Finally, we prove the correctness of the translations:
namely, we show that they satisfy the above five requirements, and
thus enable us to use relational data-exchange systems for XML
data-exchange tasks. Since the computational complexity of our
proposed algorithms is quite low, and their correctness hasbeen
established, we believe this paper makes a case for using therela-
tional technology for provably correct XML data exchange.

Related work In recent years, significant effort has been devoted to
developing high-performance XML database systems, and to build-
ing tools for data exchange. One major direction of the XML effort
is the “relational approach,” which uses relational DBMSs to store
and query XML data. Documents could be translated into rela-
tional tuples using either a “DTD-aware” translation [29, 28] or a
“schemaless” translation. The latter translations include the edge
[14] and the node [33] representations of the data. Indexes could
be prebuilt on the data to improve performance in relationalquery
processing, see, e.g., [30, 33]. Constraints arising in thetranslation
are sometimes dealt with explicitly [7, 23]. See [17] for a survey of
the relational approach to answering XML queries.

The work on data exchange has concentrated primarily on re-
lations, see [8, 21] for surveys and [26, 27] for system descrip-
tions. Mappings for the XML data-exchange problem were studied
in [6, 4]; it was noticed there that the complexity of many tasks
in XML data exchange is higher than for their relational analogs,
which suggests that restrictions must be imposed for a relational
implementation. The problem of exchanging XML data was also
studied in [15, 27], which give translations of documents and of
DTDs into nested-relational schemas, and then show how to per-
form XML data exchange under this translation. Most RDBMSs,
however, do not provide support for nested-relational schemas, and,
thus, specific machinery has to be developed in order to imple-
ment this translation under a strictly relational setting.Moreover,
XML mappings considered in this paper are strictly more expres-
sive than nested-relational mappings, and every nested-relational
data-exchange setting can be efficiently transformed into an equiv-
alent XML data-exchange setting. Thus, the results of this paper
may aid towards the development of a relational implementation
for both XML and nested-relational data exchange.

Outline Key definitions are given in Section 2. Section 3 provides
translations of schemas and documents, and shows that they fulfill
our Requirements 1 and 2. Section 4 states the main concepts of
relational and XML data exchange. Section 5 provides translations
of mappings and queries, and shows that our Requirements 3, 4,
and 5 are fulfilled. Section 6 studies queries that output XMLtrees.

2. Preliminaries

Relational schemas and constraints. A relational schema, or
justschema, is a finite setR = {R1, . . . , Rk} of relation symbols,
possibly with a set of integrity constraints (dependencies). Con-
straints used most often in data exchange are equality- and tuple-
generating dependencies [12, 21, 8], but for our purposes itwill
suffice to consider onlykeysand foreign keys. If R is a relation
over attributesU , andX is a set of attributes, thenX is a key
of R if no two tuples ofR coincide onX-attributes (that is, for
all tuplest1, t2 ∈ R with t1 6= t2 we haveπX(t1) 6= πX(t2)).
If R1 andR2 are relations over sets of attributesU1 andU2, re-
spectively, then an inclusion constraintR1[X] ⊆ R2[Y], where
X ⊆ U1 andY ⊆ U2 are of the same cardinality, holds when
πX(R1) ⊆ πY (R2). We further say that a foreign key on the at-
tributes ofR1[X] ⊆F K R2[Y] holds if the inclusion constraint
R1[X] ⊆ R2[Y] holds, andY is a key ofR2.

With each set of keys and foreign keys, we associate a graph in
which we put an edge between attributesA andB if there is a con-
straintR1[X] ⊆F K R2[Y] with A ∈ X andB ∈ Y . If this graph
is acyclic, we say that the set of constraints isacyclic. A schema
is acyclic if its constraints are acyclic. In data exchange,one often
uses a more technical notion of weak acyclicity: it includessome
cyclic schemas for which the chase procedure still terminates. For
us, however, the simple concept of acyclicity will suffice, as our
translations of schemas only produce acyclic constraints.

XML documents and DTDs Assume that we have the follow-
ing disjoint countably infinite sets:El of element names,Att of
attribute names, andStr of possible values of string-valued at-
tributes. All attribute names start with the symbol@.

An XML treeis a finite rooted directed treeT = (N,G), where
N is the set of nodes andG is the set of edges, together with

1. a labeling functionλ : N → El;

2. attribute-value assignments, which are partial functions
ρ@a : N → Str for each@a ∈ Att; and

3. an ordering on the children of every node.

A DTD D overEl with a distinguished symbolr (for the root)
and a set of attributesAtt consists of a mappingPD from El to
regular expressions overEl − {r}, usually written as productions
ℓ → e if PD(ℓ) = e, and a mappingAD fromEl to 2Att that as-
signs a (possibly empty) set of attributes to each element type. For
notational convenience, we always assume that attributes come in
some order, just like in the relational case: attributes in tuples come
in some order, so we can writeR(a1, . . . , an). Likewise, we shall
describe anℓ labeled tree node withn attributes asℓ(a1, . . . , an).

A treeT conforms to a DTDD (written asT |= D) if its root is
labeledr, the set of attributes for a node labeledℓ isAD(ℓ), and the
labels of the children of such a node, read from left to right,form a
string in the language ofPD(ℓ).

A class of DTDs In this paper we consider a restriction on DTDs
called nested-relational DTDs[1, 6], a class of DTDs that natu-
rally represent nested relational schemas such as the ones used by
the Clio data-exchange system [26]. The reason for using them is
that outside of this class, it is very easy to construct instances of
XML data-exchange problems that will exhibit coNP-hardness of
answering conjunctive queries (which are known to be tractable in
practically all instances of relational data exchange), see [6].

A DTD D isnon-recursiveif the graphG(D) defined as{(ℓ, ℓ′) |
ℓ′ is mentioned inP (ℓ)} is acyclic. A non-recursive DTDD is
nested-relationalif all rules of D are of the forml → l̃0 . . . l̃m
where all theli’s are distinct, and each̃li is one of li and l∗i .

1: r

2: book
‘Algorithm Design’

4: author

9: name
Kleinberg

10: aff
CU

5: author

11: name
Tardos

12: aff
CU

6: subject
CS

3: book
‘Algebra’

7: author

13: name
Hungerford

14: aff
SLU

8: subject
Math

(a) TreeT

r → book∗

book → author∗ subject
author → name aff
AD(book) = @title
AD(subject) = @sub
AD(name) = @nam
AD(aff) = @aff

(b) DTDD

Figure 1: The XML tree T conforms to D

From now on, unless otherwise noted, all DTDs are assumed to be
nested-relational. We also assume, without loss of generality, that
the graphG(D) is not a directed acyclic graph (DAG) but a tree.
(One can always unfold a DAG into a tree by tagging occurrences
of element types with the types of their predecessors.)

EXAMPLE 2.1. Figure 1(a) shows an example of an XML tree.
In the Figure, the node identifiers precede the corresponding labels
of each node inT ; we omit the attribute names and only show the
attribute values of each node. In addition, Figure 1(b) shows an
example of a nested-relational DTD. Moreover, it is easy to see
that the treeT of Figure 1(a) conforms toD. 2

3. Translations of schemas and documents
We now review theinlining technique [28], provide a precise

definition of the translation, and show that it satisfies ourRequire-
ments 1 and2. The main idea of inlining is that separate relations
are created for the root and for each element type that appears un-
der a star, and other element types are inlined in the relations cor-
responding to their “nearest appropriate ancestor”. Each relation
for an element type has an ID attribute that is a key, as well as(for
non-root) a “parent-ID” attribute that is a foreign key pointing to the
“nearest appropriate ancestor” of that element in the document. All
the attributes of a given element type in the DTD become attributes
in the relation corresponding to that element type when sucha re-
lation exists, or otherwise become attributes in the relation for the
“nearest appropriate ancestor” of the given element type.

We begin with a formal definition of thenearest appropriate an-
cestorfor the element types used inD. Given a nested-relational
DTD D = (PD, AD, r), we “mark” inG(D) each element type
that occurs under a star inPD. In addition, we mark the root ele-
ment type inG(D). Then, for a given element typeℓ, we define the
nearest appropriate ancestorof ℓ, denoted byµ(ℓ), as the closest
marked element typeℓ′ in the path from the root element toℓ in the
graphG(D). The inlining schema generation is formally captured
by means of the procedure INLSCHEMA below.

EXAMPLE 3.1. Consider again DTDD in Figure 1(b). The
relational schema INLSCHEMA(D) is as follows:

Rr (rID)
Rbook(bookID,@title,rID,subID,@sub)
Rauthor (authID,bookID,nameID,afID,@nam,@aff)

Keys are underlined; we also have the following foreign
keys: Rbook(rID) ⊆F K Rr(rID) andRauthor(bookID) ⊆F K

Rbook(bookID). 2

The following shows that ourRequirement 1 is satisfied.

PROPOSITION 3.2. For every nested relational DTDD, the
output ofINLSCHEMA(D) is an acyclic relational schema.

Procedure INLSCHEMA(D)

Input : A nested relational DTDD.
Output: A relational schemaSD and a set of integrity

constraints∆D

SetSD = ∅ and∆D = ∅
for each marked element typeℓ ofD:

add toSD a relationRℓ, with attributes:

attr(Rℓ) =

8

>

>

>

<

>

>

>

:

idℓ

AD(ℓ)
idµ(ℓ) | if ℓ 6= r.
idℓ′ | µ(ℓ′) = ℓ, ℓ′ is not marked,
AD(ℓ′) | µ(ℓ′) = ℓ, ℓ′ is not marked.

endfor
for each relationRℓ in SD :

add to∆D the constraint stating thatidℓ is key ofRℓ and,
if ℓ 6= r, the foreign key

Rℓ[idµ(ℓ)] ⊆F K Rµ(ℓ)[idµ(ℓ)].
endfor
add to∆D the dependency (stating the uniqueness of the root)

∀ȳ∀z̄Rr(x, ȳ) ∧Rr(x
′, z̄) → x = x′.

return (SD,∆D)

PROOF. LetD be a DTD over a set of element typesEl. No-
tice that all the foreign key constraints created with the procedure
INLSCHEMA(D) are of the formRℓ[idµ(ℓ)] ⊆F K Rµ(ℓ)[idµ(ℓ)],
for some marked labelℓ ∈ El; that is, each relationRℓ refer-
ences the relationRµ(ℓ) that corresponds to thenearest appropri-
ate ancestorof ℓ. Thus, the graph associated with the constraints
of INLSCHEMA(D) only contains edges from the attributeidµ(ℓ)

of relationRℓ to attributeidµ(ℓ) relationRµ(ℓ). The proof then fol-
lows from the fact thatG(D) is acyclic, and thus the labels ofD
cannot form a cycle of nearest appropriate ancestors.2

Shredding of XML documents. We now move to the shredding
procedure. Given the inlining INLSCHEMA(D) = (SD,∆D) of a
DTD D, and an XML treeT conforming toD, we use the algo-
rithm INLDOC to shredT into an instance of the relational schema
SD that satisfies the constraints in∆D. Let us first explain this
translation by means of an example.

EXAMPLE 3.3. Recall treeT from Figure 1(a) and DTDD
from Figure 1(b). Figure 2 shows relationsRbook andRauthor in
the shredding ofT . 2

To present the algorithm, we define thenearest appropriate an-
cestorµ(n) of a noden of an XML documentT that conforms to
a DTDD, as follows. Mark each noden of T such thatλ(n) is

bookID @title rID subID @sub

id2 ’Algorithm Design’ id1 id6 CS

id3 ’Algebra’ id1 id8 Math

(a) RelationRbook in INLDOC(T,D)

authID bookID nameID afID @nam @af

id4 id2 id9 id10 ’Kleinberg’ CU
id5 id2 id11 id12 ’Tardos’ CU
id7 id3 id13 id14 ’Hungerford’ SLU

(b) RelationRauthor in INLDOC(T,D)

Figure 2: Shredding of T into INLSCHEMA(D)

starred inD, as well as the root ofT . Thenµ(n) is the closest
marked noden′ that belongs to the path from the root ton. In the
following algorithm, and for the remainder of the paper, we denote
by idn the relational element representing the noden of a treeT .

Procedure INLDOC(T,D)

Input : A nested relational DTDD and an XML treeT that
conforms toD.

Output: A relational instance of the schema INLSCHEMA(D).

for each marked noden of T :
Let ℓ be the label ofn; Add to the relationRℓ of I a tuple
that contains elements
8

>

>

>

>

>

<

>

>

>

>

>

:

idn

ρ@a(n) | @a ∈ AD(ℓ)
idµ(n) | if ℓ 6= r
idn′ | µ(n′) = n, n′ is not marked.
ρ@a(n′) | µ(n′) = n , @a ∈ AD(λ(n′)) and

n′ is not marked
where the identifiers and attributes values for each of the
elementsidn′ , idµ(n) andρ@a(n′) coincide with the
position of the attributes foridλ(n′), idµ(ℓ) and
AD(λ(n′)) of Rℓ.

endfor
return I

The following proposition shows that ourRequirement 2 is sat-
isfied.

PROPOSITION 3.4. LetD be a DTD, andT an XML tree such
that T |= D. ThenINLDOC(T,D) is an instance of the schema
computed byINLSCHEMA(D).

PROOF. Let D and T as stated in the Proposition, and
(SD,∆D) be the output of INLSCHEMA(D). That INLDOC(T,D)
satisfies the key constraints of∆D is trivial, since the identifier of
each node inT is unique. The same applies for the dependency
stating the uniqueness of the root; sinceT conforms toD, the root
of T (and only the root) must be labelledr. Moreover, for each
foreign key in∆ of the formRℓ[idµ(ℓ)] ⊆ Rµ(ℓ)[idµ(ℓ)], notice
that, sinceG(D) is a tree, for eachℓ ∈ El − {r}, there is exactly
one elementℓ′ such thatℓ′ = µ(ℓ). SinceT conforms toD, every
ℓ-labelled node inT must be a descendant of anℓ′-labelled node.
This guarantees that the interpretation of relationsRℓ andRℓ′ in
INLDOC(T,D) satisfy the constraintRℓ[idµ(ℓ)] ⊆ Rµ(ℓ)[idµ(ℓ)];
each tuple in the interpretation ofRℓ over INLDOC(T,D) corre-
sponds to a noden in T that must be a descendant of anℓ′ labelled
noden′ in T , and thus there must be a tuple in the interpretation of
Rℓ′ identified with the elementidn′ . 2

4. Relational and XML Data Exchange
We now quickly review the basics of relational data exchange

and introduce XML schema mappings that guarantee tractable
query answering.

Relational Data Exchange A schema mappingM is a triple
(S,T,Σ), whereS is a source schema,T = (T,∆T) is a target
schema with a set of constraints∆T , andΣ is a set ofsource-to-
target dependenciesthat specify how the source and the target are
related. Most commonly these are given as source-to-targettuple
generating dependencies (st-tgds):

ϕ(x̄) → ∃z̄ ψ(x̄, z̄), (1)

whereϕ andψ are conjunctions of relational atoms overS andT,
respectively.

In data-exchange literature, one normally considers instances
with two types of values: constants and nulls. InstancesS of the
source schemaS consist only of constant values, and nulls are used
to populate target instancesT when some values are unknown.

An instanceT of T (which may contain both constants and nulls)
is called asolution for an instanceS of S underM, or anM-
solution, if every st-tgd (1) fromΣ is satisfied by(S ,T) (that is, for
each tuplēa such thatϕ(ā) is true inS , there is a tuplēb such that
ψ(ā, b̄) is true inT).The set of allM-solutions forS is denoted by
SOLM(S) (or SOL(S) if M is understood).

Certain answers and canonical universal solution The main dif-
ficulty in answering a queryQ against the target schema is that
there could be many possible solutions for a given source. Thus,
for query answering in data exchange one normally uses the notion
of certain answers, that is, answers that do not depend on a particu-
lar solution. Formally, for a sourceS and a mappingM, we define
CERTAINM(Q,S) as

T

{Q(T) | T ∈ SOLM(S)}.
Building all solutions is impractical (or even impossible), so it

is important to find a particular solutionT0 ∈ SOLM(S), and a
rewritingQrewr of Q, so thatCERTAINM(Q,S) = Qrewr(T0).

Universal solutionswere identified in [12] as the preferred solu-
tions in data exchange. (We provide a precise definition later in this
section.) Over them, every positive query can be answered, with a
particularly simple rewriting: afterQ is evaluated on a universal so-
lution T0, tuples containing null values are discarded. Even among
universal solutions there are ones that are most commonly mate-
rialized in data-exchange systems, such as thecanonical solution
CANSOLM(S), computed by applying the chase procedure with
constraintsΣ and∆T to the source instanceS . If all the constraints
in ∆T are acyclic (in fact, even a weaker notion suffices), such a
chase terminates and computes CANSOLM(S) in polynomial time
[12].

Note that ourRequirement 4 relates universal solutions in rela-
tional and XML data exchange. In particular, we do not insiston
working with the canonical solutions; others, such as the core [13]
or the algorithmic constructions of [25], can be used as well.

Towards XML schema mappings: patterns To define XML
schema mappings, we need the notions of schemas and source-to-
target dependencies. The notion of schema is well understood in
the XML context. Our dependencies, as in [6, 4, 3], will be based
on tree patterns. Patterns are defined inductively as follows:

• ℓ(x̄) is a pattern, whereℓ is a label, and̄x is a (possibly
empty) tuple of variables (listing attributes of a node);

• ℓ(x̄)[π1, . . . , πk] is a pattern, whereπ1, . . . , πk are patterns,
andℓ andx̄ are as above.

We writeπ(x̄) to indicate that̄x is the tuple of all the variables used
in a pattern. The semantics is defined with respect to a node ofa
tree and to a valuation of all the variables of a pattern as attribute
values. Formally,(T, v) |= π(ā) means thatπ is satisfied in node
v whenx̄ is interpreted as̄a. It is defined as follows:

• (T, v) |= ℓ(ā) if v is labeledℓ and its tuple of attributes is̄a;

• (T, v) |= ℓ(ā)[π1(ā1), . . . , πk(āk)] if

1. (T, v) |= ℓ(ā) and
2. there exist childrenv1, . . . , vk of v (not necessarily dis-

tinct) so that(T, vi) |= πi(āi) for everyi ≤ k.

We writeT |= π(ā) if (T, r) |= π(ā), that is, the pattern is wit-
nessed at the root.

EXAMPLE 4.1. Consider treeT from Figure 1(a), and the tree
patternπ(x, y) = r[book(x)[author[name(y)]]], which finds
books together with the names of their authors. Then it is easy
to see thatT |= π(’Algorithm Design’, Tardos). In fact,
evaluation ofπ(x, y) over T returns the tuples (’Algorithm
Design’, Tardos), (’Algorithm Design’, Kleinberg), and
(’Algebra’, Hungerford). 2

Given a DTDD and a tree patternπ, we say thatπ is compatible
with D if there exists a treeT that conforms toD and a tuple of
attribute values̄a such thatT |= π(ā). In general, checking com-
patibility of patterns with DTDs is NP-complete [10], but for the
DTDs we consider here it can be easily done in polynomial time.

EXAMPLE 4.2.[Example 4.1 continued] The patternπ(x, y) is
compatible with the DTDD of Figure 1(b). On the other hand, the
patternπ′(x) = r[author(x)] is not, because no tree consistent
withD can have a child ofr labeled asauthor, or anauthor-labeled
node with an attribute.2

RemarkMore general patterns have been considered in the liter-
ature [5, 24, 10, 4, 3]; in particular, they may involve descendant
navigation, wild cards for labels, and sibling order. However, [6,
4, 3] showed that with these features added, query answeringin
data exchange becomes intractable even for very simple queries. In
fact, the restrictions we use in our definition were identified in [6]
as essential for tractability of query answering. Note thatthe same
restriction was imposed on queries when transforming XML data
into nested-relational schemas [15, 27].

XML schema mappings As our descriptions of XML schemas we
shall use DTDs. Indeed, for complex schemas, query answering
in data exchange is known to be intractable [6], and DTDs will
suffice to capture all the known tractable cases. Source-to-target
constraints will be given via patterns.

Formally, an XML schema mappingis a triple M =
(DS ,DT ,Σ), whereDS is the source (nested relational) DTD,
DT is the target (nested relational) DTD, andΣ is a set ofXML
source-to-target dependencies[6], or XML stds, of form

π(x̄) → π′(x̄, z̄), (2)

whereπ andπ′ are tree patterns compatible withDS andDT , re-
spectively.

As in the relational case, target trees may contain nulls to account
for values not specified by mappings. Given a treeT that conforms
toDS , a treeT ′ (over constants and nulls) is anM-solution forT if
T ′ conforms toDT , and the pair(T, T ′) satisfies all the dependen-
cies of the form (2) fromΣ. The latter means that for every tuple
ā of attribute values fromT , if T satisfiesπ(ā), then there exists

a tupleb̄ of attribute values fromT ′ such thatT ′ satisfiesπ′(ā, b̄).
The set of allM-solutions forT is denoted by SOLM(T).

EXAMPLE 4.3. Consider the data-exchange scenario
(D,DT ,M) given by the DTDsD andDT of Figures 1(b) and
3(b), respectively, and whereM is specified by the dependency

r[book(x)[author[name(y)]]] →

r[writer[name(y),work(x)]],

that restructures book-author pairs as writer-work. It canbe shown
that the XML treeT ′ in Figure 3(a) is anM-solution forT . 2

We now formally define universal solutions. While building up
auxiliary definitions that are needed to define the term, we also
introduce some technical notions that will be used through the re-
mainder of the paper.

Homomorphisms and tree homomorphisms. Let K1 andK2

be instances of the same schemaR. A homomorphismh fromK1

to K2 is a functionh defined from the domain ofK1 to the do-
main ofK2 such that: (1)h(c) = c for every constant elementc
in K1, and (2) for everyR ∈ R and every tuplēa = (a1, . . . , ak)
in the relationR in K1, it holds thath(ā) = (h(a1), . . . , h(ak))
belongs to the relationR in K2. Notice that this definition of ho-
momorphism slightly differs from the usual one, as the additional
constraint that homomorphisms are the identity on the constants is
imposed.

Given a conjunctive queryQ(x̄) over a schemaR, we denote by
IQ(x̄) the instance ofR constructed as follows: for every relational
symbolR ∈ R and relational atomR(b̄) occurring inQ(x̄), we
include tuplēb in the relationR of IQ(x̄). We define all variables
in x̄ to be constant elements inIQ(x̄), whereas every existentially
quantified variable ofQ is a null element.

It is now straightforward to prove the following lemma:

LEMMA 4.4. Let I be an instance of schemaR, andQ a con-
junctive query.Then, a tuplēa of constant elements belongs to the
evaluation ofQ overI if and only if there is a homomorphism from
IQ(ā) to I .

We also need to introduce the equivalent definition of homomor-
phisms for XML trees, ortree homomorphism[6]. LetT = (N,G)
andT ′ = (N ′, G′) be XML trees, letnr andn′

r be the roots ofT
andT ′, respectively, and letStr(T) = {s ∈ Str | there exists
n ∈ N and@a ∈ Att such thatρ@a(n) = s}, Str(T ′) defined
correspondingly. Then,h : N ∪ Str(T) → N ′ ∪ Str(T ′) is a
homomorphism fromT to T ′, if:

• for everyn ∈ N , h(n) ∈ N ′;

• for every constant elements ∈ Str(T), h(s) = s, and for
every nulls ∈ Str(T), h(s) ∈ Str(T ′);

• h(nr) = n′
r;

• for everyn1, n2 ∈ N , if G(n1, n2), thenG′(h(n1), h(n2));

• for everyn ∈ N , λT (n) = λT ′(h(n)); and

• for everyn ∈ N and@a ∈ Att such thatρ@a(n) is defined,
h(ρ@a(n)) = ρ@a(h(n)).

Given a tree patternπ(x̄), we construct the treeTπ(x̄) induc-
tively: if π(x̄) = ℓ(x̄)[π1(x̄1), . . . , πk(x̄k)], then the root ofTπ(x̄)

is a node labelledℓ, with attributesx̄, andk children correspond-
ing toTπ1(x̄1), . . . , Tπk(x̄k). As for the relational case, it is easy to
prove the following lemma:

r

writer

name
Tardos

work
’Algorithm Design’

writer

name
Hungerford

work
’Algebra’

writer

name
Kleinberg

work
’Algorithm Design’

(a) Target TreeT ′

r → writer∗

writer → name work∗

AD(name) = @nam
AD(work) = @title

(b) Target DTDDT

Figure 3: Tree T ′ is an M-solution for T

LEMMA 4.5. LetT be an XML tree,π(x̄) a tree pattern, ands
a tuple of values inStr. Then,s̄ ∈ π(T) if and only if there is a
homomorphism fromTπ(s̄) to T .

Universal Solutions. By means of homomorphisms, we give a
precise definition of universal solutions in relational or XML data
exchange settings. Formally, let(S,T,M) be a relational data ex-
change setting. Then, given an instanceI of S, we say that anM-
solutionJ for I is anM-universal solution forI if for every other
M-solutionJ ′ for I , there exists an homomorphism fromJ to J ′

[12]. The definition for the case of XML data exchange setting
is analogously formulated using the notion of tree homomorphism
[6].

5. XML data exchange using relations
We now provide algorithms for implementing XML data ex-

change via relational translations. Since we have already shown
how to translate DTDs and documents, we need to present trans-
lations of stds of mappings and queries. Both of them are based
on translating patterns into relational conjunctive queries. We first
concentrate on that translation. Then we show how to extend it
easily to mappings and queries, and prove the correctness ofthe
translations. This will complete our program of using a relational
system for XML data exchange in a semantically correct way.

Inlining tree patterns. The key ingredient in our algorithms
is a translation of patternsπ compatible with a DTDD into a
conjunctive queryINLPATTERN(π,D) over the relational schema
INLSCHEMA(D). Very roughly, it can be viewed as this:

1. View a patternπ(x̄) as a treeTπ in which some attribute
values could be variables;

2. Compute the relational database INLDOC(Tπ,D) (which
may have variables as attribute values);

3. View INLDOC(Tπ,D) as a tableau of a conjunctive query;
the resulting query is INLPATTERN(π,D).

The algorithm is actually more complicated because INLDOC

cannot be used in Step 2; we shall explain shortly why.
Towards defining INLPATTERN, observe that each tree pattern

π(x̄) can be viewed as an XML documentTπ(x̄), in which both
values and variables can be used as attribute values. It is defined in-
ductively as follows:Tℓ(x̄) is a single-node tree labeledℓ, with x̄ as
attribute values, and ifπ is ℓ(x̄)[π1(x̄1), . . . , πk(x̄k)], then the root
of Tπ is labeledℓ and has̄x as attribute values. It also hask chil-
dren, with the subtrees rooted at them beingTπ1(x̄1), . . . , Tπk(x̄k).

However, even for a patternπ(x̄) compatible with a DTDD,
we may not be able to define its inlining as the inlining ofTπ(x̄),
becauseTπ(x̄) need not conform toD. For example, if a DTD has
a ruler → ab and we have a patternr[a], it is compatible withD,
butTr[a] does not conform toD, as it is missing ab-node. Hence,
the procedure INLDOC cannot be used ‘as-is’ in our algorithm.

Nevertheless, we can still mark the nodes ofTπ(x̄) with respect to
D and define the nearest appropriate ancestor exactly as it hasbeen
done previously. Intuitively, the procedure INLPATTERN shreds
each node ofTπ(x̄) into a different predicate, and then joins these
predicates using the nearest appropriate ancestor.

Procedure INLPATTERN(π,D)

Input : A DTD D, a tree patternπ(x̄) compatible withD.
Output: Conjunctive query over INLSCHEMA(D).

for each nodev of Tπ(x̄) of formℓ(x̄v):
Construct a queryQv(x̄v) as follows:

if v is markedthen

Qv(x̄v) := ∃idv∃idµ(v)∃z̄Rℓ(idv, x̄v, idµ(v), z̄),

wherez̄ is a tuple of fresh variables, and the positions
of variablesidv , x̄v andidµ(v) are consistent with the
attributesidℓ,AD(ℓ) andidµ(ℓ) respectively in
attr(Rℓ).
If ℓ = r, thenQv does not useidµ(v).

else (v is not marked):
setv′:=µ(v), ℓ′:=λ(v′), and letQv(x̄v) be

∃idv′∃idµ(v′)∃idv∃z̄Rℓ′(idv′ , idµ(v′), idv, x̄v, z̄),

wherez̄ is a tuple of fresh variables, and the positions
of the variablesidv′ , idµ(v′), idv andx̄v are consistent
with the attributesidℓ′ , idµ(ℓ′), idℓ andAD(ℓ)
respectively inattr(Rℓ′). If ℓ′ = r, thenQv does not
useidµ(v′).

endfor
return

V

v∈Tπ(x̄)
Qv(x̄v).

Note that the compatibility ofπ with D ensures that
INLPATTERN is well defined. That is, (1) every attribute formula
of the formℓ(x̄) only mentions attributes inAD(ℓ), and (2) for all
nodesv, v′ ∈ Tπ(x̄), if v′ is a child ofv, thenλ(v′) ∈ PD(λ(v)).

Correctness. Given a patternπ(x̄), the evaluation ofπ on a tree
T is π(T) = {ā | T |= π(ā)}. The following proposition shows
the correctness of INLPATTERN.

PROPOSITION 5.1. Given a nested relational DTDD, a pat-
tern π compatible withD, and a treeT that conforms toD, we
haveπ(T) = INLPATTERN(π,D)

`

INLDOC(T,D)
´

.

That is, the inlining ofπ, applied to the inlining ofT , returnsπ(T).

PROOF. The proof has two parts: First, we show (1) that

π(T) ⊆ INLPATTERN(π,D)
`

INLDOC(T,D)
´

holds, and then complete the proof by showing (2)

INLPATTERN(π,D)
`

INLDOC(T,D)
´

⊆ π(T).

Part (1): To prove that

π(T) ⊆ INLPATTERN(π,D)
`

INLDOC(T,D)
´

,

letπ(x̄),D andT be as defined, so thatT conforms toD. Assume
now thatā is a tuple of attribute values such thatā ∈ π(T), and
let h be the homomorphism fromTπ(ā) to T . (By Lemma 4.5,h is
guaranteed to exist.)

In order to show that ā belongs to
INLPATTERN(π,D)

`

INLDOC(T,D)
´

, we show how to construct
a homomorphismg from IINLPATTERN(π,D)(ā) to INLDOC(T,D)
(this, by Lemma 4.4, suffices for the proof). Recall that the ele-
ments ofIINLPATTERN(π,D)(ā) corresponds precisely to the variables
of INLPATTERN(π,D)(ā). Defineg as follows:

• For each variable of the formidv in INLPATTERN(π,D)(ā),
wherev is a node ofTπ(ā), defineg(idv) = idh(v),

• for eacha ∈ ā, let g(a) = h(a), and

• for each other existentially quantified variablez in
INLPATTERN(π,D)(ā) not of form idv, assume thatz be-
longs to a predicateRℓ(z̄) in INLPATTERN(π,D)(ā). Let
idv be the variable in predicateRℓ(z̄) that corresponds to the
position of the attributeidℓ of relationRℓ, and assume that
h(v) = n, for some noden ∈ T . Then, as defined in the pre-
vious item,g(idv) = idn. From the definition of the inlining
procedure, we know that INLDOC(T,D) contains a fact (and
only one, since the attibuteidℓ is a key for the relationRℓ)
of the formRℓ(idn, b̄), for some tuplēb of elements. Define
g so that it maps the variablez to the element in the position
of (idn, b̄) that corresponds to the position thatz occupies in
the predicateRℓ(z̄) in INLPATTERN(π,D)(ā).

We first show thatg is well defined. First, it is easy to see thatg is
defined for every element ofIINLPATTERN(π,D)(ā). We now prove that
there is no element inIINLPATTERN(π,D)(ā) that is mapped byg to two
different values in INLDOC(T,D). To see this, assume for the sake
of contradiction that there is an elementx in IINLPATTERN(π,D)(ā)

such thatg is defined to mapx to two elements of INLDOC(T).
Then, there are three facts to consider:

• x cannot be a variable in INLPATTERN(π,D)(ā) of the form
idv for some nodev of Tπ(ā), since we have definedx to be
mapped toidh(v) only;

• x cannot belong tōa, since we have defined everya ∈ ā to
be mapped only toh(a);

• then, x is an existentially quantified variable in
INLPATTERN(π,D)(ā) that is not of formidv (that is, it is
a fresh variable generated by the procedure INLPATTERN).
But notice then thatx belongs to only one predicate of
INLPATTERN(π,D)(ā). Moreover, as explained in the
definition ofg, there is only one tuple in INLDOC(T,D) to
whichx is being mapped.

We now prove thatg is indeed a valid homomorphism. First, it
is easy to see that for everya ∈ ā, g(a) = a. This follows (i) from
two facts: (i) we have definedg(a) ash(a), and (ii) by construction
of Tπ(ā), everya ∈ ā is a constant, and thush(a) = a.

Consider now a fact of the formRℓ(w̄) in IINLPATTERN(π,D)(ā).
We need to show thatRℓ(g(w̄)) belongs to INLDOC(T,D). We
will assume for the sake of readability thatℓ 6= r. The proof
can be easily adapted for the case whenℓ = r. From the inlin-
ing procedure for queries, there must be a nodev of Tπ(ā) such

that INLPATTERN adds to INLPATTERN(π,D)(ā) some existential
quantification of the predicateRℓ(w̄) in the step that corresponds
to v (that is,Rℓ(w̄) is part ofQ(āv)). We have two cases. Assume
first thatv is marked. Then,

Qv(āv) = ∃idv∃idµ(v)∃z̄Rℓ(idv, āv, idµ(v), z̄),

where z̄ is a tuple of fresh variables not used elsewhere in
INLPATTERN(π,D)(ā) and the position of the variablesidv, āv

and idµ(v) coincide with the attributesidℓ, AD(ℓ) and idµ(ℓ) in
attr(Rℓ).

Further, we now have that the homomorphismh maps the node
v of Tπ(ā) to some nodeh(v) in T . Thus, from the proper-
ties of tree homomorphisms, we also know thath(v) has the el-
ement typeℓ, and that for everya ∈ av and @a ∈ Att, if
ρ@a(v) = a, then ρ@a(h(v)) = a. Moreover, since homo-
morphisms must preserve the child relation, it is easy to seethat
the nearest appropriate ancestor ofh(v) in T must beh(µ(v)).
Then, it is clear that INLDOC(T,D) must contain a tuple of the
formRℓ(idh(v), āv, idh(µ(v)), b̄), for some tuplēb of elements, and
where the positions of̄av correspond to the attributes inAD(ℓ) of
attr(Rℓ) whereρ(v) is defined. From the definition ofg, it is clear
that g(idv, āv, idµ(v), z̄) is the tuple(idh(v), idh(µ(v)), āv, g(z̄)).
The proof then follows sinceg(z̄) is defined to bēb.

Second, assume thatv is not marked, and thatλ(v) = ℓ, µ(v) in
Tπ(ā) is the nodev′, andλ(v′) = ℓ′. Then, as defined, the query
Qv(āv) is of form:

Qv(āv) = ∃idv′∃idµ(v′)∃idv∃z̄Rℓ′(idv′ , idµ(v′), idv, āv, z̄),

where z̄ is a tuple of fresh variables not used elsewhere in
INLPATTERN(π,D)(ā), and the position of the variablesidv′ idv,
idµ(v′) andāv is consistent with the attributesidℓ′ , idℓ, idµ(ℓ′) and
AD(ℓ) in attr(Rℓ′).

Further, we know that the homomorphismh maps the nodesv
andv′ of Tπ(x̄) to some nodesh(v) andh(v′) in T . Then, from
the properties of tree homomorphisms, we obtain thatλ assigns the
typesℓ andℓ′ to h(v) andh(v′), respectively, and that for every
a ∈ av and @a ∈ Att, if ρ@a(v) = a, thenρ@a(h(v) = a.
Moreover, since homomorphisms preserve the child relation, it is
easy to see thath(v′) must be the nearest appropriate ancestor of
h(v) in T , and that the nearest appropriate ancestor ofh(v′) must
beh(µ(v′)). Then, it is clear that the inlining ofT must contain
a tuple of the formRℓ′(idh(v′), idh(µ(v′)), idh(v), āv, b̄) for some
tuple b̄ of elements, where the positions ofāv correspond to the
attributes inAD(ℓ) such thatρ(v) is defined. Again, the proof
follows since we have definedg(z̄) asb̄.

Part (2): For the proof that

INLPATTERN(π,D)
`

INLDOC(T,D)
´

⊆ π(T),

assume that for a tuplēa of constants there is a homomorphismh
from IINLPATTERN(π,D)(ā) to INLDOC(T,D). We construct a homo-
morphismg from Tπ(ā) to T . By Lemma 4.5, this suffices for the
proof.

Defineg as follows:

• For every nodev of Tπ(ā), consider the variableidv defined
in the procedure INLDOC, and assume thath(idv) = idn,
for some elementidn of INLDOC(T,D). Defineg(v) =
n. Notice that this is well defined: from the definition of
INLDOC, and the properties of homomorphisms, we know
thatn must be a node ofT . (Both idv and idn occur in a
position of the predicates that corresponds to the identifiers
of the nodes in the schema INLSCHEMA(D).)

• For everys ∈ Str(Tπ(ā)), let v be the node ofTπ(ā) such
that s = ρ@a(v). Then, notice that from the definition of
the translation of patterns,s must be a free variable of the
queryQv in INLPATTERN(π,D), and thusIINLPATTERN(π,D)

contains the variables. Defineg(s) = h(s).

We now prove thatg is a valid homomorphism fromTπ(ā) to T .
First, as mentioned in the definition ofg, it is clear thatg(v) ∈ N ,
for everyv ∈ Tπ(ā).

Second, we prove that, ifv is the root ofTπ(ā), theng(v) = nr,
wherenr is the root ofT . This follows from the fact that, sinceπ
is fully specified,π must be of formr(ā)[π′]. Then, the variable
idv must be mentioned in a predicate ofRr of INLPATTERN(π,D).
Sinceh is a homomorphism,h(idv) must belong to a tuple inRr. It
follows from the construction of INLSCHEMA(D) and from Propo-
sition 3.4 that it must be the (unique) identifier ofRr, and thus the
identifier of the root node ofT .

Next, we prove that for every nodev of Tπ(ā), λTπ(ā)(v) =
λT (g(v)). Assume that for a nodev in Tπ(ā) it is the case that
λTπ(ā)(v) = ℓ. There are two cases. The claim for the case when
v is marked follows from the fact that there must be a tuple in the
interpretation of the relationRℓ in INLDOC(T,D) that contains
h(idv) in its idℓ-attribute. Then, sinceg mapsv to the node inT
that corresponds toh(idv) in INLDOC(T,D), it must be the case
that λT (g(v)) = ℓ. If v is not marked, letℓ′ be the nearest ap-
propriate ancestor ofℓ, and consider the tuple in the interpretation
of relationRℓ′ in INLDOC(T,D) that contains the elementidv in
the position that corresponds to the attributeidℓ. The proof follows
easily using the same argument as for the other case.

Assume now that two nodesv1, v2 of Tπ(ā) are such thatv2 is
a child of v1 in Tπ(ā). For the sake of readability, we shall write
λ instead ofλTπ(ā)

, since it will always be clear from the context.
Let thenℓ1 = λ(v1) andℓ2 = λ(v2), and assume thath(idv1) =
idn1 andh(idv2) = idn2 , for some nodesn1, n2 of T . Thus,
g(v1) = n1, andg(v2) = n2. The proof thatg(v2) is a child of
g(v1) follows easily from the fact thatg preserves the labelling of
the nodes, the graphG(D) is a tree,π is compatible withD and
andT conforms toD: If v2 is a child ofv1 in Tπ(ā), then it must be
thatℓ1 ∈ PD(ℓ1), and thatℓ1 does not appear in the production of
any other label inD. Then, sinceλT (n2) = ℓ2 andλT (n1) = ℓ1
andT conforms toD, it must be thatn2 is a child ofn1.

Next, it is easy to see that for everys ∈ Str(Tπ(ā)), g(s) ∈
Str(T). Moreover, since we have definedg(s) = h(s), we also
have that thatg(s) = s for every constants.

Finally, we prove that for every nodev of Tπ(ā) and@a ∈ Att
such thatρ@a(v) is defined,g(ρ@a(v)) = ρ@a(g(v)). Assume
that for a nodev of Tπ(ā) and for an attribute@a ∈ Att, it is the
case thatρ@a(v)) = s. We must prove thatg(s) = ρ@a(g(v)).
But we have definedg(s) = h(s), and thus, we need to prove that
h(s) = ρ@ag(v). Assume first thatv is marked. Then, notice thats
is the variable in the position corresponding to@a in attr(Rλ(v)) in
the predicate of INLPATTERN(π,D) added in the step correspond-
ing toQv. Thus, from the properties of relational homomorphisms,
smust belong to the tuple inRλ(v) in INLDOC(T,D) that contains
h(idv) in its first position. Sinceg mapsv to the node inT iden-
tified by h(idv), it must be the case thatρ@a(g(v)) = h(s). For
the case wherev is not marked, consider the nearest appropriate
ancestor ofv in Tπ(ā), and letv′ be such node. Notice that sinceg
preserves the child relation,g(v′) is the nearest appropriate ances-
tor of g(v). The proof then follows by considering the attribute cor-
responding to@a in AD(ℓ) in the relationRℓ′ , whereℓ′ = λ(v′)
and then using the same argument as in the previous case.2

By combining this result with Lemmas 4.4 and 4.5, it is not dif-
ficult to obtain the following corollary:

COROLLARY 5.2. LetD be a DTD,T an XML document that
conforms toD, andπ a pattern compatible withD. In addition, let
ā be a tuple of elements and variables. Then, there exists a homo-
morphism fromTπ(ā) to T if and only if there is a homomorphism
from IINLPATTERN(π,D)(ā) to INLDOC(T,D).

Moreover, it is not difficult to adapt this proof to show the fol-
lowing:

LEMMA 5.3. LetD be a DTD, andT1, T2 two trees that con-
form to D. There is a tree homomorphism fromT1 and T2 if
and only if there is a homomorphism fromINLDOC(T1,D) to
INLDOC(T2,D)

Conjunctive queries over trees. We use the language that is es-
sentially conjunctive queries over trees [6, 16, 10] with navigation
along the child axis.

The languageCT Q is obtained by closing patterns under con-
junction and existential quantification:

Q := π | Q ∧Q | ∃x Q,

where π is a fully specified tree-pattern formula. The seman-
tics is straightforward, given the semantics of patterns defined
above:Q(ā) ∧Q′(b̄) is true iff bothQ(ā) andQ′(b̄) are true, and
∃x Q(ā, x) is true iffQ(ā, c) is true for some valuec. The output
of Q on a treeT is denoted byQ(T).

We say that a queryQ is compatible with the DTDD if every
pattern used in it is compatible withD.

The inlining of queriesQ compatible withD is given by the
recursive algorithm INLQUERY below.

Procedure INLQUERY(Q,D)

Input : A DTD D, a queryQ compatible withD.
Output: A conjunctive query over INLSCHEMA(D).

if Q = π then
return INLPATTERN(π,D)

else if Q = Q1 ∧Q2 then
return INLQUERY(Q1,D) ∧ INLQUERY(Q2,D)

else if Q = ∃xQ1 then
return ∃x INLQUERY(Q1,D)

Now we show that every queryQ in CT Q can be computed by
its inlining on the inlining of its input (assuming, of course, com-
patibility with a DTD). In other words,Requirement 3 is satisfied.

THEOREM 5.4. Given a DTDD, a treeT that conforms to it,
and a compatible queryQ, we have

Q(T) = INLQUERY(Q,D)
`

INLDOC(T,D)
´

.

PROOF. Fix a DTDD and a treeT . The proof is done by in-
duction. We have already proved the base case with the proof of
Proposition 5.1.

For the induction step, assume first thatQ is of form∃zQ1(x̄, z̄),
and thatQ1(T) = INLQUERY(Q1,D)(INLDOC(T,D)). It is now
easy to see thatQ(T) = INLQUERY(Q,D)(INLDOC(T,D)): As-
sume first that a tuplēa belongs toQ(T). Then, there must be a
tuple z̄ of variables such that(ā, z̄) belongs toQ1(T). Thus, from
the inductive hypothesis, we obtain that(ā, z̄) belong to the evalu-
ation of INLQUERY(Q1,D)(ā, z̄) over INLDOC(T,D). It follows
that(ā, z̄) belong to the evaluation of INLQUERY(Q,D)(ā, z̄) over

INLDOC(T,D), since the algorithms defines INLQUERY(Q,D) =
∃z̄INLQUERY(Q1,D). The other direction is analogous.

Next, assume thatQ = Q1(x̄1) ∧ Q2(x̄2), and that
Q1(T) = INLQUERY(Q1,D)(INLDOC(T,D)) andQ2(T) =
INLQUERY(Q2,D)(INLDOC(T,D)). The argument is similar to
the previous case: assume first that a tupleā belongs toQ(T).
Then, there must be subtuplesā1, ā2 of ā such that(ā1) and
(ā2) belong toQ1(T) andQ2(T), respectively. We obtain that
(ā1) and (ā2) belong to the evaluation of INLQUERY(Q1, D)
and INLQUERY(Q2,D) over INLDOC(T,D), and thus, since
INLQUERY(Q,D) = INLQUERY(Q1,D) ∧ INLQUERY(Q2,D),
ā belongs to the evaluation of INLQUERY(Q,D) overT . The other
direction is also analogous.2

Inlining XML schema mappings We use our transformation of
tree patterns to define the procedure INLMAP, that, given source
and target DTDsDS andDT , transforms an XML mappingM
into a relational mapping INLMAP(M,DS ,DT) specified with a
set of source-to-target tuple generating dependencies.

Procedure INLMAP(M,DS ,DT)

Input : An XML mappingM from a source DTDDS to a
target DTDDT .

Output: A relational mapping from INLSCHEMA(DS) to
INLSCHEMA(DT).

Set INLMAP(M,DS, DT) := ∅
for dependencyπ(x̄) → ∃z̄π′(x̄, z̄) in M do

INLMAP(M,DS ,DT) := INLMAP(M,DS, DT)
S

{INLQUERY(π,DS)(x̄) → ∃z̄ INLQUERY(π′,DT)(x̄, z̄)}

end
return INLMAP(M,DS ,DT)

Correctness While one could be tempted to ask for a translation
that preserves all solutions, such a result need not hold. The rela-
tional mapping INLMAP uses null values to represent the shredded
nodes of XML trees, and thus we should only consider solutions
whose null values have not been renamed. However, relational so-
lutions are open to renaming of nulls. This intuition can be for-
malized by means of the universal solutions, which are the most
general among all solutions, and thus do not permit null renam-
ing. Furthermore, one typically materializes a universal solution,
as these solutions contain all the information needed to compute
certain answers of conjunctive queries. This motivates therestric-
tion of ourRequirement 4 to universal solutions.

The theorem below shows that parts (a) and (b) ofRequirement
4 hold. Note that in part (b), relational universal solutionsare only
required to contain a shredding of an XML universal solution. This
is because relational solutions are also open to adding arbitrary tu-
ples, which need not reflect a tree structure of an XML document.

THEOREM 5.5. a) Let M = (DS ,DT ,Σ) be an XML
schema mapping andT an XML document that conforms to
DS . If T ′ is an M-universal solution forT , then its inlining
INLDOC(T ′,DT) is an INLMAP(M,DS ,DT)-universal solution
for INLDOC(T,DS).
b) Let M = (DS,DT ,Σ) be an XML schema map-
ping, and T an XML document that conforms toDS .
Then for everyINLMAP(M,DS, DT)-universal solutionR for
INLDOC(T,DS) there exists anM-universal solutionT ′ such that
INLDOC(T ′,DT) is contained inR.

To prove Theorem 5.5, we first provide a key lemma. LetM =
(DS ,DT ,Σ) be an XML schema mapping,T be an XML tree

that conforms toDS , andJ an INLMAP(M,DS ,DT)-solution
for INLDOC(T,D). For a relationRℓ of INLSCHEMA(DT), we
denote all the positions that correspond to an attributeidℓ or idµ(ℓ)

of Rℓ as theidentifier positionsofRℓ. Moreover, an elementa in a
tuple t in the interpretation ofRℓ in J is anidentifier elementif it
occupies an identifier position int. We also define theattributepo-
sitions of a relationRℓ as the positions that correspond to attributes
of ℓ or of ℓ′ | µ(ℓ′) = ℓ in D, and define the notion of anattribute
elementas expected. We now present the lemma:

LEMMA 5.6. LetM = (DS ,DT ,Σ) be an XML schema map-
ping, andT be an XML tree that conforms toDS . Moreover, let
J be anINLMAP(M,DS ,DT)-solution for INLDOC(T,D) such
that (1) every identifier element inJ does not appear in two iden-
tifier positions in two (not necessarily different) tuples,and (2) no
identifier element is also an attribute element. Then, thereexists a
treeT ′ such thatINLDOC(T ′,DT) ⊆ J , and such thatT ′ is an
M-solution forT .

Lemma 5.6 formalizes the intuition that this class of "well
behaved" INLMAP(M,DS ,DT)-solutions contains the correct
representation of a shredded tree. The proof of this Lemma
constructs fromJ a correct tree representation, in which each
identifier element inJ represents a node of the treeT ′ such that
INLDOC(T ′,DT) ⊆ J . We leave out the details, since the proof
is lengthy and straightforward.

We now prove Theorem 5.5.

PROOF. Part a: Let M = (DS ,DT ,Σ) be an XML schema
mapping, andT an XML document that conforms toDS . Con-
sider an arbitraryM-universal solutionT ′ for T . We need to show
that INLDOC(T ′,DT) is an INLMAP(M,DS ,DT)-universal so-
lution for T . The proof is split into two parts, proving first that
INLDOC(T ′,DT) is a solution, and then that it is universal.

As stated, we first prove that INLDOC(T ′,DT) is an
INLMAP(M,DS,DT)-solution for INLDOC(T,DS). From
Proposition 3.4, it is clear that INLDOC(T ′,DT) satisfies
the dependencies in∆D . We now show that the pair
`

INLDOC(DS , T), INLDOC(Dt, T
′)

´

satisfies all the dependen-
cies of INLMAP(M,DS,DT). Assume that for a dependency of
the form

INLPATTERN(π(x̄),DS) → ∃z̄INLPATTERN(π′(x̄, z̄),DT)

there is a tuple t̄x such that INLDOC(DS, T) |=
INLPATTERN(π(t̄x),D). From Proposition 5.1, it must be
the case thatT |= π(t̄x). Thus, sinceT ′ is a solution forT ,
there must be a tuplētz of constant and/or null elements such that
T ′ |= π′(t̄x, t̄z). Again, from Proposition 5.1, we obtain that
INLDOC(DT , T

′) |= INLPATTERN(π′(t̄x, t̄z),D). This finishes
the proof that INLDOC(T ′, DT) is an INLMAP(M,DS ,DT)-
solution for INLDOC(T,DS).

We now prove that INLDOC(T ′,DT) is indeed universal. As-
sume for the sake of contradiction that it is not an universalsolu-
tion, that is, there exists a solutionJ such that there does not exist a
homomorphism from INLDOC(T ′,DT) to J . Construct fromJ a
solutionJ ′ as follows: For each identifier position of every relation
Rℓ in INLSCHEMA(DT), and for each tuple in the interpretation of
Rℓ, replace each identifier elementa of t with a fresh null element
za. In addition, replace each occurrence ofa in the positionidµ(ℓ′)

of tuples in the interpretation of relationsRℓ′ that referenceRℓ in a
constraint in INLSCHEMA(DT) for za, and replace each other oc-
currence ofa with a different, fresh null element. It is easy to see
thatJ ′ is an INLMAP(M,DS ,DT)-solution for INLDOC(T,DS)

as well. In fact, since we have replaced each of those elements
a with nulls in a "cascade" fashion,J ′ clearly satisfies all depen-
dencies in INLSCHEMA(DT). The same argument can be used to
show that(INLDOC(T,DS), J ′) satisfies as well the dependencies
in INLMAP(M,DS ,DT). Finally, there is a homomorphism from
J ′ to J : map eachza and each fresh null replacinga as explained
above back to the elementa, and map each other element to it-
self. Thus, by composition of homomorphisms, there cannot exist
a homomorphism from INLDOC(T ′,DT) to J ′, as this would im-
ply the existence of a homomorphism from INLDOC(T ′,DT) to
J . However, note that solutionJ ′ satisfies the property of Lemma
5.6, since all identifying elements not satisfying it have been re-
placed by fresh new null elements. Let thenTJ′ be theM-solution
for T such that INLDOC(TJ′ ,DT) ⊆ J ′ . (Lemma 5.6 proves
the existence ofTJ′ .) Notice that, since INLDOC(TJ′ ,DT) ⊆ J ′,
there also exists a homomorphism from INLDOC(TJ′ ,DT) to J ′.
Yet again, by composition of homomorphisms, we conclude that
there cannot exist a homomorphism from INLDOC(T ′,DT) to
INLDOC(TJ′ ,DT).

On the other hand, the XML treeT ′ is anM-universal solution,
and thus there is an homomorphisms fromT ′ to TJ′ . But then, by
Lemma 5.3, there exists a homomorphism from INLDOC(T ′,DT)
to INLDOC(TJ′ ,DT). This is a contradiction.

Part b: Assume thatR is an INLMAP(M,DS ,DT)-universal
solution for INLDOC(T,DS). By inspecting the form of the de-
pendencies of INLMAP(M,DS ,DT), one notes thatR needs to
satisfy the conditions of Lemma 5.6, that is, every identifier ele-
ment inR does not appear in two tuples in two different identifier
positions; this can be easily using simple tools from relational data
exchange (see [12]). Then, from Lemma 5.6, letT ′ be anM-
solution forT such that INLDOC(T ′,DT) ⊆ R.

To prove thatT ′ is an M-universal solution forT , let T ′′

be anM-solution for T ; we need to prove that there is a ho-
momorphism fromT ′ to T ′′. From the part a) of this The-
orem, INLDOC(T ′′,DT) is an INLMAP(M,DS ,DT)-solution
for INLDOC(T,DS), and, sinceR is universal, there is a ho-
momorphismh from R to INLDOC(T ′′,DT). Moreover, since
INLDOC(T ′,DT) ⊆ R, h is also a homomorphism from
INLDOC(T ′,DT) to INLDOC(T ′,DT). Thus, from Lemma 5.3,
there is a homomorphism fromT ′ toT ′′. This concludes the proof.
2

Answering XML queries using relational data exchange. The
semantics of query answering in data exchange, both relational and
XML [12, 21, 8, 6, 4], is defined by means of certain answers.
That is, given a schema mappingM = (DS,DT ,Σ), a treeT that
conforms toDS , and a conjunctive tree queryQ that is compatible
with DT , the certain answers ofQ for T underM, denoted by
CERTAINM(Q,T), is the set of tuples that belong to the evaluation
of Q over every possibleM-solution forT , that is,

T

{Q(T ′) | T ′

is anM-solution forT}. Note that our queries return sets of tuples,
so we can talk about the intersection operator.

It was shown in [6, 4] that, for conjunctive tree queries and map-
pings using nested-relational DTDs, computing certain answers for
a given source treeT is solvable in polynomial time. Thus, for the
classes of mappings and queries we consider, there is no complex-
ity mismatch between relational and XML data exchange. The next
theorem shows that our translation is correct with respect to query
answering, that is, ourRequirement 5 is satisfied.

THEOREM 5.7. Let M = (DS ,DT ,Σ) be an XML schema
mapping. Then, for every XML treeT that satisfiesDS and
for every conjunctive tree queryQ, the certain answers ofQ for

T underM and the certain answers ofINLQUERY(Q,DT) for
INLDOC(T,DS) over INLMAP(M,DS,DT) coincide:

CERTAINM(Q,T) =
CERTAININLMAP(M)(INLQUERY(Q,DT), INLDOC(T,DS)).

PROOF. Assume first that a tuplēt belongs to the certain an-
swers of a queryQ over a treeT under a mappingM =
(DS ,DT ,Σ). Then, clearly,t̄ belongs to the evaluation ofQ
over the canonical solution CANSOL(T) for T (which, in this
case, is guaranteed to exists [6]) underM. Then, by Propo-
sition 5.4, t̄ belongs to the evaluation of INLQUERY(Q,DT)
over INLDOC(CANSOL(T),DT). Moreover, from Proposition
5.5, INLDOC(CANSOL(T),DT) is an INLMAP(M,DS ,DT)-
universal solution for INLDOC(T,DS). From results in [12], we
obtain that̄t belongs to the certain answers of INLQUERY(Q,DT)
over INLDOC(T,DS) underM. The other direction is symmetric.
2

The result of Theorem 5.7, combined with the standard proce-
dure for evaluating conjunctive queries in relational dataexchange,
also gives us an algorithm for computing certain answers.

COROLLARY 5.8. Under the conditions of Theorem 5.7,
CERTAINM(Q,T) can be obtained by the following procedure:

1. run INLQUERY(Q,DT) on an INLMAP(M,DS ,DT)-
universal solution forINLDOC(T,DS);

2. discard all tuples that contain null values.

6. XML-to-XML Queries
Up to now, we have only considered queries that output tuplesof

attribute values. In this section we shall focus on proper XML-to-
XML query languages, that is, on queries that output XML trees.

Some immediate questions arise when dealing with these for-
malisms in the data-exchange context. LetM = (DS ,DT ,Σ) be
an XML schema mapping,T be a tree conforming toDS , andQ be
an XML-to-XML query. Since the evaluation ofQ overT returns
an XML tree, we cannot define certain answers as

T

{Q(T ′)) | T ′

is a solution forT}, since the meaning of the intersection operator
for XML documents is not clear.

To overcome this problem, we use recent results from [11],
which showed how to define certain answers for queries return-
ing XML trees, and how to use them in the data-exchange context.
The key idea of [11] is to use tree patterns to define information
contained in documents, and to use them to represent compactly
the certain knowledge from the collection{Q(T ′)) | T ′ is a solu-
tion for T}. More precisely, ifΠ is a set of tree patterns which are
matched by every treeQ(T ′), we look for a small setΠ0 of pat-
terns that is equivalent toΠ as a description of certain answers. By
equivalence we mean that a tree matches every pattern inΠ iff it
matches every pattern inΠ0. If the setΠ0 is finite, then its patterns
can be put together to create a tree with nulls, which we then view
as the certain answer.

We shall not need here additional details of the construction;
instead, we shall use a result from [11] that tells us how certain
answers can be computed for a specific XML-to-XML query lan-
guage. The language, which is called TQL (to be defined shortly),
is inspired by XQuery’s FLWR (for-let-where-return) expressions,
and is restricted to positive features (i.e., no negation).The key
result from [11] is the following:

PROPOSITION6.1 ([11]). Let M = (DS ,DT ,Σ) be an
XML schema mapping,Q a TQL query, andT a tree that con-
forms toDS . If T ′ is an M-universal solution forT , then
CERTAINM(Q,T) = Q(T ′).

Given this result, we now do the following. We provide a formal
definition of the TQL language of [11], which can express XML-to-
XML analogs of relational conjunctive queries. We then showhow
to adapt the machinery that we have previously developed foreval-
uating certain answers over a universal solution. Note thatfor this
new translation, a TQL queryQ returning trees needs to be trans-
lated into asetof relational queries generating views that define the
shredding of the treeQ(T).

6.1 TQL queries

TQL queries [11] are inspired by the FLWR (for-let-where-
return) expressions of XQuery [31], but use only positive features.
The key construct isfor π(x̄) return q(x̄), whereπ(x̄) is a pattern
andq(x̄) is a query that defines a “forest expression.” Formally, the
syntax of forest expressions is

q(x̄) ::= ǫ
| ℓ(ā, x̄′)[q′(x̄′′)]
| q′(x̄′), q′′(x̄′′)
| for π(ā, x̄, ȳ) return q′(x̄, ȳ)

whereℓ ranges over node labels,ā over constant attribute values,
andx̄ etc are tuples of variables.

A TQL queryQ is an expression of the formr[q], whereq is
a forest expression without variables. To define the semantics of
this language, we first define inductively the forest[[q(x̄)]]T,v , for
a valuationv of all variables inx̄ as attribute values. We use the
notationℓ(ā)[f] for a tree whose root is labeledℓ and carries a tuple
of attributes̄a; further,f is the forest of subtrees below the root.

[[ǫ]]T,v = ǫ (empty forest)
[[ℓ(ā, x̄′)[q′(x̄′′)]]]T,v = ℓ(ā, v(x̄′))

ˆ

[[q′]]T,v

˜

[[q′(x̄), q′′(x̄′′)]]T,v = [[q′]]T,v ∪ [[q′′]]T,v

[[for π(ā, x̄, ȳ) return q′(x̄, ȳ)]]T,v =

[

˘

[[q′]]T,v′ | v
′ extendsv andT |= π(ā, v′(x̄), v′(ȳ))

¯

For a treeT and a queryQ = r[q], the evaluationQ(T) of Q over
T is defined as the treer[[[q]]T], i.e., the forest[[q]]T under rootr.

EXAMPLE 6.2. Recall the tree T from Figure 1(a). The treeT ′

from Figure 3(a) can also be obtained as the transformationQ(T)
resulting from the evaluation of a TQL queryQ over T , where
Q = r[q], andq is defined as

for r/book (x)/author/name(y) return

writer [name(y),work(x)] (3)

For the sake of readability, we use the/ operator to denote the child
axis in tree patterns.2

6.2 Inlining TQL queries

If Q is a TQL query, then, to be able to define its inlining trans-
lation, we need to specify a DTD for treesQ(T). Note that TQL
queries define the shape of their outputs, and at the same timedo
not put restrictions on the number of appearances of labels.Hence
it is natural to define the DTD for outputs ofQ as astarredDTD
DQ, whose shape is determined byQ, and where each element type
except the root occurs under the Kleene star.

More precisely, for a forest expressionq, we define a forestFq

inductively as follows: Fε is the empty forest;Fℓ[q′] is ℓ[Fq′];
Fq′∪q′′ = Fq′ ∪ Fq′′ , andFfor π return q′ = Fq′ . ForQ = r[q]
we letTQ = r[Fq].

ThenDQ is a non-recursive DTD that has a rulep → c∗1 · · · c
∗
n

for each nodep in TQ with children labelledc1, . . . , cn. As usual,
we require thatDQ be acyclic and we assume without loss of gen-
erality thatG(DQ) is a tree.

EXAMPLE 6.3. (Example 6.2 continued) Recall queryQ =
r[q]. Then,TQ is the XML tree given byr[writer [name,work]],
and thusDQ contains productionsr → writer

∗, writer →
name

∗
work

∗, name → ǫ andwork → ǫ. 2

Before showing the algorithm INLTQL, we need to introduce
some features that will be used in the algorithm. Consider again
query (3) and DTDDQ in Examples 6.2 and 6.3. For each pair
of attributes that satisfyr/book(x)/author/name(y), the query
Q creates a subtreewriter [name(y),work(x)] in the treeQ(T).
Thus, the relational translation would need to create one tuple in
the relations corresponding towriter, nameandwork for each pair
of attributesx, y that satisfy the relational translation of the pattern
r/book (x)/author/name(y) in the instance INLDOC(T).

In the relational translation we need a way to associate eachpar-
ticularwriter wih a particularnameandwork. One possible way of
doing this is by creating a (Skolem) functionf that associates with
each pair(name,work) a unique identifier for the correspond-
ing writer. The functionf must be defined in such a way that
f(book ,name) is different for each different pair(name,work).
We enforce this requirement by letting each termf(ā) represent a
distinct constantcf(ā).

We will define our translation algorithm inductively. The key
procedure TQLSTEPfor the inductive step is described below. Its
inputs, in addition to a query and a DTD, include a conjunctive
query corresponding to the conjunction of patterns in the query,
and a function term corresponding to the parent in the treeQ(T)
(for example, when creating views for relationRwork , we would
input the identifierf(x, y) of the parent node labelledwriter). This
is illustrated by the example below.

EXAMPLE 6.4. (Example 6.3 continued) Assume that query
Q = r[q] of Examples 6.2 and 6.3 is posed overT under schema
D. The following views define the translation forQ:

Rr(fr) := true

Rwriter (fwriter(x, y), fr) :=

INLQUERY(r/book (x)/author/name(y), D)

Rname(fname(x, y), fwriter(x, y), y) :=

INLQUERY(r/book (x)/author/name(y), D)

Rwork (fwork(x, y), fwriter(x, y), x) :=

INLQUERY(r/book (x)/author/name(y), D)

Notice how each tuple in relationsRname andRwork is set to ref-
erence the correct tuple in relationRwriter . 2

To define the inlining translation INLTQL, we simply need a
Skolem term for the root of the tree, as the basis for the inductive
procedure TQLSTEP.

A TQL queryQ is compatible with a DTDD if all the patterns
used inQ are compatible withD. The following proposition shows
that INLTQL satisfies an analog ofRequirement 3 for queries that
output trees.

PROPOSITION 6.5. Given a DTDD, a TQL queryQ com-
patible withD, and a treeT that conforms toD, we have that
INLDOC(Q(T),DQ) = INLTQL(Q,D)(INLDOC(T)), up to re-
naming of nulls.

That is, the set of views INLTQL(Q,D) applied to the inlining
of T yields the same answer as the inlining ofQ(T).

Procedure TQLSTEP(Q,D, ϕ, t)

Input : A forest expressionq(x̄), a DTDD, a conjunctive
queryϕ(x̄) and a Skolem termt.

Output: A set of views over INLSCHEMA(DQ).

if q(x̄) ::= ǫ then
return ∅

else if q(x̄) ::= q′(x̄′), q′′(x̄′′) then
return TQLSTEP(q′,D, ϕ, t) ∪ TQLSTEP(q′′,D, ϕ, t)

else if q(x̄) ::= ℓ(ā, x̄′)[q′(x̄′′)] then
Let f be a fresh Skolem function. Define viewV as
Rℓ(f(x̄), t, ā, x̄′) := INLQUERY(ϕ,D), or just
Rℓ(f(), t, ā) := true if ϕ = ∅.
return {V } ∪ TQLSTEP(q′,D, ϕ, f(x̄))

else if q(x̄) ::= for π(ā, x̄, ȳ) return q′(x̄, ȳ) then
Letϕ′(ā, x̄, ȳ) = ϕ(x̄) ∧ π(ā, x̄, ȳ).
return TQLSTEP(q′,D, ϕ′, t)

Procedure INLTQL(Q,D)

Input : A TQL queryQ = r[q] and a DTDD.
Output: A set of views over INLSCHEMA(DQ).

Create a 0-ary functionfr.
return TQLSTEP(Q,D, ∅, fr())

PROOF. We begin by proving that
INLTQL(Q,D)(INLDOC(T,D)) ⊆ INLDOC(Q(T),DQ).
Let DQ be the DTD corresponding toQ. Assume that there
exists a tuplet that is part of the evaluation of a viewV
in INLTQL(Q,D)(INLDOC(T,D)), with view V of form
Rℓ(f(x̄), g(x̄′′), ā, x̄′) := INLQUERY(ϕ(x̄),D) (we do not prove
the case whenℓ = r since it is very similar). Letv be a homomor-
phism so thatv(f(x̄), g(x̄′′), ā, x̄′) = t. For the sake of readabil-
ity, we let v(x̄) = b̄. Notice that, from the definition of INLTQL,
we have that̄b belongs to INLQUERY(ϕ,D)(INLDOC(T,D)). By
Theorem 5.4,̄b belongs toϕ(T). Assume that the forest query that
created viewV in the inlining ofQ is of the formℓ(ā, x̄′)[q′(x̄′′)].
It can be proved by induction that[[q(x̄)]]T,v must contain a node
of the formℓ(ā, v(x̄′))[[[q′(x̄′′)]]T,v]. Thus, the inlining ofQ(T)

must contain a tuple inRℓ of the form(idn, idµ(n), ā, v(x̄
′)); the

proof follows by renaming nullsidn andidµ(n) into v(f(x̄)) and
v(g(x̄′′)), respectively. We only need to show that no null value
has to be renamed as two different constants. This follows since
the attributesidℓ and idµ(ℓ) correspond respectively to a key and
foreign key of relationRℓ, and the algorithm INLDOC chooses
fresh null symbols for each value in the position corresponding to
the attributeidℓ.

Next, we show that INLDOC(Q(T),DQ) ⊆
INLTQL(Q,D)(INLDOC(T,D)), up to renaming of nulls.

Since every element ofDQ is under a star, it is easy to see that
relationRℓ will contain only attributesidℓ, idµ(ℓ) andADQ

(ℓ).
We first rename all elements that are in a position corresponding to
attributesidℓ as follows:

Let t̄ be a tuple of relationRℓ in INLDOC(Q(T),DQ), and as-
sume thatidn is the element that corresponds to attributeidℓ of
Rℓ. If ℓ = r, renameidn by the 0-ary termfr() used in proce-
dure INLTQL. For the case whenℓ 6= r, it is easy to see from
the definition of the procedure INLDOC thatQ(T) must contain an
ℓ-labelled noden.

Thus, from the semantics of TQL queries, there must be a sub-
forestq of Q of the formq(x̄) = ℓ(ā, x̄′)[q′(x̄′′)] and a valuation

v such thatn is the top node of forest[[q(x̄]]T,v. Let f be the func-
tion created by procedure INLTQL in the step corresponding toq.
Finally, letπ1(z̄1), . . . , πk(z̄k) be the sequence of patterns present
in for-return constructs inQ from the root untilq, and letz̄ be the
union of z̄1, . . . , z̄k. Then, renameidn ascf(v(z̄)). Notice that this
procedure is well defined, sincev must apply to each variable ofz̄.

Let us denote byJ the instance resulting from renaming all el-
ements of INLDOC(Q(T),DQ) accordingly. We show thatJ ⊆
INLTQL(Q,D)(INLDOC(T,D)), up to renaming of nulls in at-
tribute positions, that is, nulls in positionsAD(ℓ) in tuples onRℓ.

Let t̄ be a tuple of relationRℓ in J , and assume that the ele-
ments int corresponding to attributesidℓ, idµ(ℓ) andADQ

(ℓ) are
cf(b̄), cg(b̄′), ā, respectively.

We need to show that such tuple is in fact in
INLTQL(Q,D)(INLDOC(T,D)). Let n andn′ be the nodes in
Q(T) such thatidn and idn′ were replaced bycf(b̄) and cg(b̄′),
respectively,v andv′ the valuations witnessing the membership of
n andn′ in Q(T), as explained above; andq(x̄), q′(x̄′) the forest
queries that give rise to the creation off and respectivelyg by
procedure INLTQL. Moreover, letϕ(z̄) = π1(z̄1), . . . , πk(z̄k) be
the sequence of patterns present infor-return constructs inQ from
the root untilq, wherez̄ is the union ofz̄1, . . . , z̄k. Then notice
that valuationv is such that(T, v) |= ϕ(z̄).

In the same fashion, we selectϕ′(z̄′) = π′
1, (z̄

′
1), . . . , π

′

k′(z̄k′)
andz̄′ for forest queryq′. As a remark, sincen′ is the parent ofn,
observe that each patternπ′

i corresponds to a patternπj , for some
j ≤ k. Finally, it is easy to see that there is no other query of
the form ℓ(ȳ, ā)[q′′(ȳ′)] in betweenq and q′. Thus, the step of
INLTQL corresponding toq(x̄) must have received the termg(z̄′)
as input.

By following these remarks, one notices that procedure
INLTQL creates the following viewV for the step ofq(x̄):
Rℓ(f(z̄), g(z̄′), d̄, x̄) := INLQUERY(ϕ,D).

All that remains to see is that, since(T, v) |= ϕ(z̄), it must be
that INLDOC(T,D) |= INLQUERY(ϕ(v(z̄)),D). This ensures the
existence of a fact of the formRℓ(cf(v(z̄)), cg(v(z̄′)), d̄, v(x̄)) =
Rℓ(cf(b̄), cg(b̄′), ā) in INLTQL(Q,D)(INLDOC(T,D)). 2

Translating relations back into XML
To complete the translation, we need an algorithm to publish

back the relational data as an XML document. This is done by
means of the algorithm PUBREL. We say that an instanceI of
INLSCHEMA(D) D-representsa treeT that conforms toD if
I = INLDOC(T,D).

This algorithm will only work for relational instances thatrep-
resent shredded documents. The following proposition shows its
correctness.

PROPOSITION 6.6. Given a DTD D and a rela-
tional instance I of INLSCHEMA(D), it is the case that
INLDOC(PUBREL(D, I)) = I .

PROOF. Let T be a tree such that INLDOC(T,D) = I . We
construct a mappingh betweenT and PUBREL(I) as follows:

• For each noden of T that is marked, letℓ be its label, and
idn be the identifier ofI = INLDOC(T,D) that belongs to
the attributeidℓ of the tuplet created by procedure INLDOC

from noden. Then, defineh so that it mapsn to the node of
PUBREL(I) created by procedure PUBREL from tuplet of
Rℓ.

• For each noden that is not marked, letn′ = µ(n), andt
the corresponding tuple in INLDOC. Let ℓ andℓ′ be the la-
bels ofn andn′, respectively, and assume thatidn, idn′ are

Procedure PUBREL(D,I)
Input : A DTD D and an instanceI thatD-represents some

tree.
Output: An XML treeT that isD-represented byI .

for each nodeℓ ofG(D), traversed as Depth-first-searchdo
for each tuplet ofRℓ in I with elementsn, ā andn′

corresponding to attributesidn,AD(ℓ) andidµ(n) do
for every non-starred nodeℓ′ ofG(D) such that
µ(ℓ′) = ℓ, and elementsn′′ and b̄ in t corresponding
to attributesidℓ′ andAD(ℓ′) do

Create a noden′′ in T labelledℓ′, with attributes̄b,
in a parent-child scheme that resemblesG(D).

endfor
Add toT a noden labelledℓ, with attributes̄a, with n′

as ancestor, according to the parent-child sequence
defined byG(D (no parent ifℓ = r).

endfor
endfor
return T

the identifiers oft in positionsidℓ andidℓ′ of tuple t in R′
ℓ.

Then, procedure PUBREL will create fromt a noden′
t la-

belledℓ′ and a nodent labelled withℓ, such thatµ(nt) = n′
t

in PUBREL(I). Defineh so that it mapsn to nt.

It is clear that this mapping is one to one, sinceI =
INLDOC(T,D). Furthermore, sinceG(D) is a tree, it is also clear
that this mapping preserves the relationµ of nearest appropriate an-
cestors, as the way in which procedure PUBREL creates the parent-
child relation of nodes is always unique. Finally, from the defini-
tion of procedures PUBREL and INLDOC it must be the case that
for everyn in T labelledℓ, the set{ρ@a(n) | @a ∈ AD(ℓ)} is the
same as{ρ@a(h(n)) | @a ∈ AD(ℓ)} in PUBREL(I).

It is now an easy exercise to prove that INLDOC creates the same
relations (up to renaming of nulls) for PUBREL(I) and(T), since
for every marked noden of T the procedure creates exactly the
same tuple as marked nodeh(n) of PUBREL(I). 2

6.3 TQL queries in XML data exchange

Combining the previously mentioned result in [11] with the
correctness of the algorithms we presented we conclude thatRe-
quirements 1-5 are satisfied for data exchange with XML-to-XML
queries:

THEOREM 6.7. Let M = (DS ,DT ,Σ) be an XML schema
mapping. Then, for every XML treeT that satisfiesDS and
for every TQL queryQ, the certain answers ofQ for T under
M coincide with the certain answers ofINLTQL(Q,DT) for
INLDOC(T,DS) over INLMAP(M,DS ,DT) :

INLDOC(CERTAINM(Q,T),DQ) =
CERTAININLMAP(M)(INLTQL(Q,DT), INLDOC(T,DS)).

Remark: The notion of certain answers naturally (component-wise)
extends to queries computing multiple relations.

PROOF. Fix anM -universal solutionT ′ for T . By Proposition
6.1, CERTAINM(Q,T) = Q(T ′), whereT ′ is a universal solu-
tion. Furthermore, by Proposition 6.5, INLDOC(Q(T ′),DQ) =
INLTQL(Q,DT)(INLDOC(T ′,DT)).

Finally, since the views created by the procedure
INLTQL are essentially conjunctive queries using Skolem

terms, and (by Theorem 5.5) INLDOC(T ′,DT) is an
INLMAP(M,DS, DT)-universal solution for INLDOC, it
can be proved that INLTQL(Q,DT)(INLDOC(T ′, DT)) =
CERTAININLMAP(M)(INLTQL(Q,DT), INLDOC(T,DS)), using
standard tools from the data-exchange literature (see [12,8]). 2

Theorem 6.7 and Proposition 6.6 give us a way
of computing CERTAINM(Q,T). First, compute
CERTAININLMAP(M)(INLTQL(Q,DT), INLDOC(T,DS)) by
materializing views INLTQL(Q,DT) over the canonical solution
for INLDOC(T,DS), and then use the procedure PUBREL to
output it as the treeCERTAINM(Q,T).

7. Concluding Remarks
Our technique provides a relational approach to solve two ofthe

most important problems of XML data-exchange settings: materi-
alizing solutions and answering queries. The diagram belowsum-
marizes this. In a pure XML setting, we can start with a document
T and use a mappingM to find a (universal) solutionT ′

univ, over
which we can then answer a queryQ to produce certain answers.

T
M

- T ′
univ

Q
- certain answer

R

INLDOC

? INLMAP(M)
- R′

univ

INLDOC

? INLQUERY(Q)
- certain answer

w

w

w

w

w

w

w

w

w

w

Using the translation INLDOC of documents, we generate a
relational instanceR, on which the translation of the mapping
INLMAP(M) generates a universal solutionR′

univ. This solution
is a shredding, via INLDOC, of a universal XML solution, and also
conforms to the shredding of source DTD. Finally, we apply the
standard technique [12] for evaluating queries in relational data ex-
change to the query translation INLQUERY(Q) or INLTQL(Q) to
produce the correct answers, in the latter case with the possibility
of using PUBREL to publish back the results into XML.

Implementing our proposed algorithms for use in practical sys-
tems would be straightforward using the specifications given in this
paper. A natural next step is to evaluate XML data-exchange sys-
tems using relational data storage and implementations of our al-
gorithms. We are currently working in this direction.

We finish with a remark about the possibility of allowing opera-
tors? and+ in DTDs, as well as a choice operator for representing
multiple choices. We say that a non-recursive DTDD is an ex-
tended nested relationalDTD if all rules of D are of the form
ℓ→ ℓ̃0 . . . ℓ̃m, or ℓ→ ℓ0 + . . .+ℓm, where all theℓi’s andℓ̃i’s are
distinct, and each̃ℓi is one ofℓi, ℓi?, ℓ∗i or ℓ+i (as usual,ℓ? stands
for ℓ|ǫ andℓ+ for ℓℓ∗).

The procedure INLSCHEMA can be extended to these DTDs. For
each elementℓ that is under the operator?, the transformation cre-
ates a special relationℓ that references the relation of the nearest ap-
propriate ancestor ofℓ. Furthermore, the transformation for a rule
of the formℓ1 → ℓ+2 can be defined by including a dependency that
ensures that there is at least one tuple in the relationRℓ2 for each
tuple inRℓ1 . Finally, for the choice operatorℓ → ℓ0 + . . . + ℓm
the transformation would create one relationRℓ for each possible
choice ofℓ0, . . . , ℓm. Then, it is possible to extend all the proce-
dures in a way that still satisfiesRequirements 1-5 under extended
nested relational DTDs.

8. References
[1] S. Abiteboul, L. Segoufin and V. Vianu. Representing and

querying XML with incomplete information.TODS, 31(1)
(2006), 208-254

[2] F. Afrati, C. Li, V. Pavlaki. Data exchange in the presence of
arithmetic comparisons. InEDBT 2008, pages 487-498.

[3] S. Amano, C. David, L. Libkin, F. Murlak. On the tradeoff
between mapping and querying power in XML data
exchange. InICDT 2010.

[4] S. Amano, L. Libkin, F. Murlak. XML schema mappings. In
PODS 2009, pages 33-42.

[5] S. Amer-Yahia, S. Cho, L. Lakshmanan, D. Srivastava. Tree
pattern query minimization.VLDB J.11 (2002), 315–331.

[6] M. Arenas, L. Libkin. XML data exchange: consistency and
query answering.J. ACM55(2): (2008).

[7] A. Balmin and Y. Papakonstantinou. Storing and querying
XML data using denormalized relational databases.VLDB J.,
14:30–49, 2005.

[8] P. Barceló. Logical foundations of relational data exchange.
SIGMOD Record38(1): 49–58 (2009).

[9] P. A. Bernstein, S. Melnik. Model management 2.0:
manipulating richer mappings.SIGMOD’07, pages 1-12

[10] H. Björklund, W. Martens, T. Schwentick. Conjunctive query
containment over trees. InDBPL 2007, pages 66-80.

[11] C. David, L. Libkin, F. Murlak. Certain answers for XML
queries. InPODS 2010, pages 191-202.

[12] R. Fagin, P. G. Kolaitis, R. Miller, L. Popa. Data exchange:
semantics and query answering.TCS336(1): 89–124 (2005).

[13] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: getting
to the core.ACM TODS30(1):174–210, 2005.

[14] D. Florescu, D. Kossman. Storing and querying XML data
using a RDBMSIEEE Data Engineering Bulletin22(3):
27–34, 1999.

[15] A. Fuxman, M. Hernández, H. Ho, R. Miller, P. Papotti, L.
Popa. Nested mappings: schema mapping reloaded.
VLDB’06, pages 67-78.

[16] G. Gottlob, C. Koch, K. Schulz. Conjunctive queries over
trees.JACM53(2): 238-272, 2006.

[17] G. Gou and R. Chirkova. Efficiently querying large XML
data repositories: A survey.IEEE TKDE, 19:1381–1403,
2007.

[18] M. Hernández, H. Ho, L. Popa, A. Fuxman, R. Miller, T.
Fukuda, P. Papotti. Creating nested mappings with Clio. In
ICDE 2007.

[19] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. Lakshmanan,
A. Nierman, S Paparizos, J. Patel, D. Srivastava, N.
Wiwatwattana, Y. Wu, C. Yu. TIMBER: A native XML
database.VLDB Journal11(4): 274-291, 2002.

[20] N. Klarlund, T. Schwentick, D. Suciu. XML: model,
schemas, types, logics, and queries. InLogics for Emerging
Appl. of Databases 2003.

[21] Ph. Kolaitis. Schema mappings, data exchange, and metadata
management. InPODS 2005, pages 61-75.

[22] R. Krishnamurthy, R. Kaushik, J. Naughton. XML-to-SQL
query translation literature: state of the art and open
problems. InXSym’03.

[23] R. Krishnamurthy, R. Kaushik, and J. Naughton. XML views
as integrity constraints and their use in query translation. In
ICDE’05.

[24] L. Lakshmanan, G. Ramesh, H. Wang, Z. Zhao. On testing
satisfiability of tree pattern queries.VLDB 2004, pages

120–131.
[25] G. Mecca, P. Papotti, S. Raunich. Core schema mappings.In

SIGMOD 2009, pages 655-668.
[26] R. Miller, M. Hernández, L. Haas, L. Yan, H. Ho, R. Fagin,

L. Popa. The Clio project: managing heterogeneity.
SIGMOD Record.30 (2001).

[27] L. Popa, Y. Velegrakis, R. Miller, M. Hernández, R. Fagin.
Translating Web data. InVLDB 2002, pages 598–609.

[28] J. Shanmugasundaram, et al. Relational databases for
querying XML documents: limitations and opportunities.
VLDB’99, pages 302-314.

[29] J. Shanmugasundaram, et al. A general techniques for
querying XML documents using a relational database
system.SIGMOD Record, 30:20–26, 2001.

[30] I. Tatarinov, et al. Storing and querying ordered XML using a
relational database system. InSIGMOD’02, pages 204–215.

[31] XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery.

[32] C. Yu, L. Popa. Constraint-based XML query rewriting for
data integration. InSIGMOD 2004, pages 371-382.

[33] C. Zhang, et al. On supporting containment queries in
relational database management systems. InSIGMOD’01,
pages 425–436.

