Tractable XML Data Exchange via Relations

Rada Chirkova
NC State University

chirkova@csc.ncsu.edu

ABSTRACT

We consider the problem of data exchange for XML documents:
given source and target schemas, a mapping between them, and
document that conforms to the source schema, construcget tar

document and answer target queries in a way that is consisittn
the source information. The problem has primarily beenistlioh
the relational context, in which data-exchange systems laiso
been built.

Since many XML documents are stored in relations, it is natu-

ral to consider using a relational system for XML data exgfgan
However, there is a complexity mismatch between query arsge
in relational and XML data exchange, which indicates thatrie-

tions have to be imposed on XML schemas and mappings, as well
as on XML shredding schemes, to make the use of relational sys

tems possible.

We isolate a set of five requirements that must be fulfilled in

order to have a faithful representation of the XML data-extie
problem by a relational translation. We then demonstratttiese
requirements naturally suggest the inlining technique data-
exchange tasks. Our key contribution is to provide shregldigo-
rithms for schemas, documents, mappings and queries, amohde
strate that they enable us to correctly perform XML datahexge
tasks using a relational system.

1. Introduction

Leonid Libkin
University of Edinburgh

libkin@inf.ed.ac.uk

Juan Reutter
University of Edinburgh

juan.reutter@ed.ac.uk

mappingM queryQ

EE——

We have fixed source and target schemas, an inst&ncka
source schema, and a mapping that specifies the relationship
between the source and the target schemas. The goal is to con-
struct an instanc& of the target schema, based on the source and
the mapping, and answer queries against the target data aya w
consistent with the source data.

The mappings rarely specify the target instance completely
for each sourceS and mappingM, there could be multiple tar-
get instanceqi, 72, . . . that satisfy the conditions of the mapping.
Such instances are callsglutions The notion of query answer-
ing has to account for their non-uniqueness. Typically, toies to
computecertain answersSERTAINAM(Q,S) =, Q(T:), i.e., an-
swers independent of a particular solution chosen. Suchswex
must be produced by evaluating some query — not necessarily
but perhaps itsewriting Qrewr OVer a particular solutioff : so that
Qrewr(7) = CERTAINM(Q, S).

Thus, the key tasks in data exchange are: (a) choosing @-parti
ular solution7 among{7:, 7z, . . .} to materialize, and (b) finding
a way of producing query answers over that solution by rumain
rewritten queryQrewr OVer it. Usually one builds a so-callediver-
sal solution [12, 8]; these solutions behave particularly lyigeth
respect to query answering.

These basics of data exchange are independent of a particula
model of data. Most research on data exchange, howevenrredcu
in the relational context [12, 13, 20, 8] or slight extensif®7, 17];

Data exchange is the problem of finding an instance of a tar- the first paper that attempted to extend relational resuttest XML
get schema, given an instance of a source schema and a schemgontext was [6], and a few followups have since appeared][4, 3

mapping, i.e., a specification of the relationship betwéersburce
and the target. Such a target instance should correctlgsept in-
formation from the source instance under the constrainpoged
by the target schema, and should allow one to evaluate guenie
the target instance in a way that is semantically consistéthtthe
source data. The problem has received much attention inaste p
few years, with several surveys already available [20, 9, 8]

The general setting of data exchange is this:

Permission to copy without fee all or part of this materiganted provided
that the copies are not made or distributed for direct corimleadvantage,
the VLDB copyright notice and the title of the publicatiortéts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to postesvers
or to redistribute to lists, requires a fee and/or speciangsion from the
publisher, ACM.

VLDB ‘10, September 13-17, 2010, Singapore

Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0@/

They all concentrate on the algorithmic aspects of querwariag
and constructing solutions, with the main goal of isolatiiagtable
cases. The problem these papers do not addrdssisKML data
exchange can be implemented

One possibility is to use a native XML DBMS such as [18],
but this is not the most common route: XML data is commonly
stored in relational DBMSs. In fact, many ETL products claimat
they handle XML data simply by producing relational tratisias
(known asshredding[21]). This leads to a two-step approach:

e first shred XML data into relations;

e then apply a relational data-exchange engine (and pulbiésh t
result back as an XML document).

The approach seems very natural, but the key question ishehet

it will work correctly That is, are we guaranteed to have the same
result as we would have gotten had we implemented a native XML
data exchange system?

To state this more precisely, assume that we have a trarslati
o(-) that can be applied to (a) XML schemas, (b) XML documents,
(c) XML schema mappings, and (d) XML queries. Then the con-
cept ofcorrectnesf such a translation is shown below:

XML : sourceS W target7 M answer
shred shred shred
Relations : ¢(S) (M) o(T) o(Q) answer

That is, suppose we start with an XML documéhand an XML
schema mapping. In a native system, we would materialize
some solutior?” over which we could answer queri€s

But now we want a relational system to do the job. So we shred
S into o(S) and then apply te(S) the translation of the mapping
o(M) to get a solution — which itself is a shredding of an XML
solution — so that the answer € could be reconstructed from the
result of the query (Q) over that relational solution.

The idea seems simple and natural on the surface, but stakts |
ing challenging once we look deeper into it. Before evermating
to show that the relational translation faithfully repnetsethe XML
data-exchange problem, we need to address the following.

Complexity mismatch Without restrictions, thereannot be a
faithful representatiof XML data exchange by a relational
system. Indeed, it is well known that positive relational-
algebra queries can be efficiently evaluated in relatioatd d
exchange [12, 20, 8], but even for simple XML analogs of

conjunctive queries finding query answers can be coNP-hard

[6]. So any claim that a relational data-exchange system cor
rectly performs XML data exchange for arbitrary documents
and queries is bound to be wrong. We thus need to identify
the cases that can be handled by a relational system.

Which shredding scheme to usePhere are several, that can
roughly be divided into two groups: those that do not

take the schema information into account (e.g., the edge-

representation [14], interval codings [32], and other num-

a simple schema structure under that representation takast of
the class of target constraints that relational data-exghaystems
can handle. Verifiably correct translations based on nuwaken-
codings [31, 32] will necessarily involve numerical anddodering
constraints in relational translations of mappings, amslithsome-
thing that relational data exchange cannot handle at theenbm
[20, 8] (beyond simple ordering constraints [2]).

One translation scheme however that fits in very well with re-
strictions identified in [6, 4, 3] is thalining scheme. It works
very well for DTDs of the “right” shape, and its output schemnia
volve only acyclic constraints, which is perfect for datateange
scenarios. As for queries, for now we follow [6, 4, 3] and deal
with queries whose outputs are relational. (Please seef¢2&n
overview of native-XML processing of queries whose outmares
sets of XML trees.) The main reason for this, as in those gaper
is that for queries with relational outputs the notion oftaer an-
swers is well understood (it is the intersection of answees all
possible solutions).

Desiderata for the translation We now formulate some basic re-
quirements for the translatian, in order to be able to achieve our
goals described in the diagram above. We need the following:

Requirement 1: trandlation of schemas A translations (D) that,
when applied to a DTD of a special form, produces a rela-
tional schema that only has acyclic constraints, which @n b
used in a relational data-exchange setting.

Requirement 2: translation of documents A translation op(-)
for a DTD D that, when applied to a documehtconform-
ing to D, produces a relational databasg (7') of schema
o(D).

Requirement 3: trandation of queries For a DTD D, a trans-
lation op(Q) of (analogs of) conjunctive queries so that
op(Q)(on(T)) = Q(T) (i.e., the result of(T") can be
computed by relational translations).

Requirement 4: trandation of mappings For a mappingM be-
tween a source DTDD, and a target DTDDy, its trans-
lation o (M) is a mapping betwees(D;) ando(Dy) that
preserves universal solutions. That is:

bering schemes [31]), and those that are based on schemas

for XML, such as variants of the inlining technique [26, 21].

Since in data-exchange scenarios we start with two schemas,
it seems more appropriate to apply schema-based techniques

Target constraintsin relational data exchange, constraints in tar-
get schemas are required to satisfy certain acyclicity ieond

tions; without them, the chase procedure that constructs a
target instance does not terminate [12, 20, 8]. Constraints

imposed by general XML schema specifications need not in
general be even definable in relational calculus, let al@ne b

acyclic [19]. We thus need to find a shredding technique that
enables us to encode targets schemas by means of constraints

that guarantee chase termination.

As for the complexity issue, the work on the theory of XML
data exchange has identified a class of mappings for whidiegfti
query answering is possible [6, 4, 3]. The schemas (say, PTDs
have rules of the formib — book™, book — author™ subject (we
shall give a formal definition later), and the mappings tfams
patterns satisfied over the source into patterns satisfixdargets.

This restriction suggests a relational representatios¢o Going
with the edge-representation [14] is problematic: firstheedge in
an XML pattern used in a mapping will result in a join in thearel
tional translation, making it inefficient, and second, eaiieg even

(a) Eachop,-translation of a universal solution far un-
der M is a universal solution of forp, (T') under
o(M); and

(b) Each universal solution farp_ (7") undero (M) con-
taing aop,-translation of a universal solution @fun-
der M.

Requirement 5: query answering For (analogs of) conjunctive
queries over trees, computing ansM(), 7') can be done by
computing as (M)-solution ofo (T"), followed by evaluation
of o(Q) over that solution, as is normally done in a relational
data-exchange system.

Satisfaction of these five requirements would guaranteewba
have acorrect relational translation of an XML data-exchange
problem, which would guarantee correct evaluation of gseri

Contributions Our main contributions are as follows. First, we
introduce an architecture for XML data exchange using icatat
vehicles, with a focus on correct evaluation of (analogscof)-
junctive queries on XML data. Second, we identify a class BfiLX

We cannot require the equivalence as relational soluticmegen
to adding new tuples and thus cannot always be translatibns o
trees; we shall discuss this later.

schema mappings and a shredding mechanism that allow ustto ov
come the complexity mismatch. Third, we provide algoritHiors
relational translation of schemas, XML documents, scherap-m
pings, and queries in our proposed architecture. Finakyprove
the correctness of the translations: namely, we show tlegtsht-
isfy the above five requirements, and thus enable us to uetéorsl
data exchange systems for XML data exchange tasks.

Related work In recent years, significant effort has been devoted to
developing high-performance XML database systems, andikd-b
ing tools for data exchange. One major direction of the XMbf
is the “relational approach”, which uses relational DBM&store
and query XML data. Documents could be translated intoioelat
tuples using either the “DTD-aware” translation [30, 26]tbe
“schemaless” translation. The latter translation inclutlee edge
[14] and the node [32] representation of the data. Indexedco
be prebuilt on the data to improve performance in relatiopary
processing, see, e.g., [31, 32]. Constraints arising itrémslation
are sometimes dealt with explicitly [7, 29]. See [28] for avay of
the relational approach to answering XML queries.

The work on data exchange concentrated primarily on relatio
see [8, 20] for surveys and [24, 25] for system descriptidiap-
pings for the XML data exchange problem were studied in [6, 4]
these papers noticed that the complexity of many tasks in XML
data exchange in higher than for their relational analodsclhw
suggests that restrictions must be imposed for a relatiomale-
mentation. The problem of exchanging XML data was also stilidi
in [15, 25], which give translations of documents and DTD® in
nested-relational schemas, and then show how to perform XML
data exchange under this translation. Most RDBMSs, however
do not provide support for nested relational schemas, dndg, t
specific machinery has to be developed in order to implentesit t
translation under a strictly relational setting. In fabie results of
this paper may aid towards the development of a relationplém
mentation for both XML and nested-relational data exchange

Outline Key definitions are given in Section 2. Section 3 provides
translations of schemas and documents and shows that tifédly fu
requirements 1 and 2. Section 4 provides the main concepts of
relational and XML data exchange. Section 5 provides teditsis

of mappings and queries, and shows that requirements 3d4 an
are fullfilled. Section 6 extends results to handle targestraints

and more complex DTDs. Some technical details of algoritants

the proofs of correctness of the translations are in theragpipe

2. Préiminaries

Relational schemas and constraints. A relational schemaor
justschemais a finite seR = {Ru, ..., Rx} of relation symbols,
possibly with a set of integrity constraintdgpendencigs Con-
straints used most often in data exchange are egd’'s and[id]'s
20, 8] (equality- and tuple-generating dependencies),fdiubur
purposes it will suffice to consider onkgysandforeign keys If R
is a relation over attributel§, and X is a set of attributes, theX
is a key of R if no two tuples of R coincide onX -attributes (i.e.,
for all tuplest:,t2 € R with ¢, # t2 we haverx (t1) # mx (t2)).
If Ry and R2 are relations over sets of attributeés and Us, re-
spectively, then an inclusion constraiR [X] C R[Y], where
X C U; andY C U, are of the same cardinality, holds when
mx(R1) C my(R2). We further say that a foreign key the at-
tributes of R1[X| Crr R2[Y] holds if the inclusion constraint
R1[X] C R:[Y] holds, andY” is a key ofR».

With each set of keys and foreign keys, we associate a graph in
which we put an edge between attributeand B if there is a con-
straintR:[X] Crk R2[Y]with A € X andB € Y. If this graph

is acyclic, we say that the set of constraintaéyclic A schema
is acyclic if its constraints are acyclic. In data excharae often
uses a more technical notion of weak acyclicty: it includess
cyclic schemas for which the chase procedure still terremafor
us, however, the simple concept of acyclicity will suffice, aur
translations of schemas only produce acyclic constraints.

XML documents and DTDs Assume that we have the follow-
ing disjoint countably infinite setsE'l of element namesAtt of
attribute names, andtr of possible values of string-valued at-
tributes. All attribute names start with the symisl

An XML treeis a finite rooted directed tréE = (N, G), where
N is the set of nodes ar@ is the set of edges, together with

1. alabeling functiom\ : N — EI;

2. attribute-value assignments, which are partial fumstio
paaq : N — Str for eachQa € Att; and

3. an ordering on children of every node.

A DTD D over El with a distinguished symboal (for the root)
and a set of attributedtt consists of a mapping’p from El to
regular expressions ovéfl — {r}, usually written as productions
£ — eif Pp(£) = e, and a mappingip from EI to 24 that as-
signs a (possibly empty) set of attributes to each elemeaet tifor
notational convenience, we always assume that attribate® ¢n
some order, just like in the relational case: attributesipids come
in some order so we can write(a1, ..., a,). Likewise, we shall
describe arf labeled tree node with attributes ag(az, ..., an).

A tree' T conforms to a DTDD (written asT’ = D) if its root
is labelledr, the set of attributes for a node labelléds Ap(¢),
and the labels of the children of such a node, read from leftd,
form a string in the language @ (¢).

A class of DTDs In this paper we consider a restriction on DTDs
called nested-relational DTD$1, 6], a class of DTDs that natu-
rally represent nested relational schemas such as the ead<y
the Clio data exchange system [24]. The reason for using them
that outside of this class, it is very easy to construct imsga of
XML data exchange problems that will exhibit coNP-hardnefss
answering conjunctive queries (which are known to be tkdeten
practically all instances of relational data exchangey,[6&

First, a DTDD is non-recursivef there is no cycle in the graph
G(D) defined aq(/,!") | ' is mentioned inP(I)}. Further, a non-
recursive DTDD is anested-relational DTDX all rules of D are of
the forml — Iy .. .1, where all the;’s are distinct, and eadh is
one ofl; andl;. From now on, unless otherwise noted, all DTD’s
are assumed to be nested-relational. We also assume, idaghe
graphG(D) is not a dag but a tree (as one can always unfold a dag
into a tree by tagging an element type with the type of itsipigre

EXAMPLE 2.1. Figure 1(a) shows an example of an XML tree.
In the figure, the node identifiers precede the corresporidingls
of each node ifT’; we omit the attribute names and only show the
attribute values of each node. In addition, figure 1(b) shaws
example of a nested relational DTD. Moreover, it is easy é&that
the treeT of figure 1(a) conforms t®. O

3. Translations of schemas and documents

We now review thénlining technique [26], provide a precise def-
inition of the translation, and show that it satisfRequirements 1
and2. The main idea of inlining is that separate relations are cre
ated for the root and each element type that appears undar, a st
and other element types are inlined in the relations cooredipg
to their “nearest appropriate ancestor”. Each relationaforele-
ment type has an ID attribute that is a key, as well as (for noar)

1ir

/\

2: book 3: book . ~ bookt
Al gori thm Desi gn Al gebra book — author™ subject
/ \ author — name aff
4: author 5: author 6: subject 7: author 8: subject Ap (book = Qtitle
cs et h Ap(subject) = Qsub
/ \ / \ / \ Ap(name) = Qnam
9: name 10: aff 11: name 12: aff 13: name 14: aff Ap(aff) = Qaff
Kl ei nberg CU Tardos cuU Hungerford SLU
(a) Treel’ (b) DTD D

Figurel: TheXML treeT conformsto D

a “parent-ID" attribute that is a foreign key pointing to theear-
est appropriate ancestor” of that element in the documelhthé
attributes of a given element type in the DTD become atteipin
the relation corresponding to that element type when sudtaa r
tion exists, or otherwise become attributes in the relafanthe
“nearest appropriate ancestor” of the given element type.

We begin with a formal definition of theearest appropriate an-
cestorfor the element types used . Given a nested-relational
DTD D = (Pp,Ap,r), we “mark” in G(D) each element type
that occurs under a star Bp. In addition, we mark the root ele-
ment type inG(D). Then, for a given element tygewe define the
nearest appropriate ancestaof ¢, denoted by.(¢), as the closest
marked element typé in the path from the root element fan the
graphG(D). The inlining schema generation is formally captured
by means of the procedurelll SCHEMA below.

Procedure INLSCHEMA(D)
Input : A nested relational DTD.
Output: A relational schem& p and a set of integrity
constraintsA p

SetSp =@ andAp =0

for each marked element typeof D:
add toSp a relationR,, with attributes:

idg
Ap(£)
attr(Re) = < idye) | ifL#T
idg w(€') = £, £ is not marked,
Ap(€') | (') =4, ¢ isnot marked.
endfor

for each relation R, in Sp:
add toA p the constraint stating thadl, is key of R, and,

if £ # r, the foreign key
Relidry] Crr Ry lidue).

endfor
add toA p the dependency (stating the uniqueness of the root)

VVZR.(z,5) A Re(2',2) — . =2’
return (Sp, Ap)

ExamPLE 3.1. Consider again DT in figure 1(b). The rela-
tional schemanNL SCHEMA(D) is as follows:
R.(11D)
Rpook(bookI D, @i tl e, rlD, subl D, @ub)
Rauthor (AUt hi D, book! D, nanel D, af | D, @am @f f)

Keys are underlined; we also have the following foreign

keys: Rbook(rID) Cri RT(rID) and Rauthm(bookID) Cri
Rbook(bOOkID). O

The following shows thaRequirement 1 is satisfied.

PROPOSITION 3.2. For every nested relational DT, the
output ofINLSCHEMA(D) is an acyclic relational schema.

Shredding of XML documents. We now move to the shredding
procedure. Given the inliningNlL SCHEMA(D) = (Sp,Ap) of a
DTD D, and an XML tre€l’ conforming toD, we use the algo-
rithm INLDoc to shredT into an instance of the relational schema
Sp that it satisfies the constraints ihp. Let us first explain this
translation by means of an example.

ExamMPLE 3.3. Recall treel’ from figure 1(a) and DTDD
from figure 1(b). Figure 2 shows relatiod#oox and Rauthor iN
the shredding of". O

To present the algorithm, we define thearest appropriate an-
cestorp(n) of a noden of an XML documentI” = (N, G) that
conforms to a DTDD as follows. Mark each node of 7" such that
A(n) is starred inD, as well as the root of”. Thenu(n) is the
closest marked node' that belongs to the path from the rootito

Procedure INLDOC(T, D)

Input : A nested relational DTD and an XML tre€l” that
conforms toD.
Output: A relational instance of the schemaUSCHEMA(D).

for each marked node: of T':
Let /£ be the label of:; Add to the relationR, of I a tuple
that contain elements

idn

paa(n) | @ac A(0)

idu(n) | if ¢ 75 T

idy | wp(n') =n,n'is not marked.
paa(n’) | wp(n')=n,Qac A(A(n'))and

n’ is not marked
where the identifiers and attributes values for each of the
elementsd,,, id,(,) andpaa(n’) coincide with the
position of the attributes faid ..y, id,) and
AD(A(’IL/)) of Ry.
endfor
return

The following proposition showRequirement 2 is satisfied.

PrOPOSITION 3.4. Let D be a DTD, andT" an XML tree
such thatl’ = D. Let(Sp,Ap) be the schema computed by
INLSCHEMA. Then,INLDOC(T, D) = Ap.

bookl D @itle 1D [sublD | @ub | |-2uLh!D | bookiD | nameiD | aflD @am &

- - - — - : idy ido idg id1o " Kl ei nberg’ Ccu
ido Al gorit hm Design idy idg Ccs) ,

id- " Al gebr a’ id id Mat h ids ido id11 id12 Tar dos Ccu

3 9 1 8 idr7 ids id13 id14 | *Hungerford | SLU

(a) RelationReoor in INLDOC(T, D)

(b) RelationRquthor in INLDOC(T, D)

Figure2: Shredding of T"into INLSCHEMA(D)

4. Relational and XML Data Exchange

We now quickly review the basics of relational data exchange

and introduce XML schema mappings that guarantee tractable

query answering.

Relational Data Exchange A schema mapping\ is a triple
(S,T,), whereS is a source schem&, = (T, Ar) is a target
schema, anll is a set obource-to-target dependencitat specify
how the source and the target are related. Most commony #nese
given as source-to-target tuple generating dependersti¢gds):

p(r) — 3zY(z, 2), @)

wherey andq) are conjunctions of relational atoms o&and T
respectively.

In data-exchange literature, one normally considers im&s
with two types of values: constants and nulls. Instar§esd the
source schemS consist only of constant values, and nulls are used
to populate target instanc€swhen some values are unknown.

Aninstance7 of T (which may contain both constants and nulls)
is called asolution for an instanceS of S under M, or an M-
solutionif every st-tgd (1) fromX is satisfied by(S,T) (i.e., for
each tuplez such thatp(a) is true inS, there is a tuplé such that
(a, b) is true in7), andT = Ar. The set of allM-solutions for
S is denoted by BL4(S) (or SoL(S) is M is understood).

Certain answersand canonical universal solution The main dif-
ficulty in answering a query) against the target schema is that
there could be many possible solutions for a given sourceus;Th
for query answering in data exchange one normally uses ti@no
of certain answers, i.e., answers that do not depend oniayart
solution. Formally, for a sourc& and a mapping\, we define
CERTAINAM(Q, S) as(\{Q(T) | T € SoLm(S)}.

Building all solutions is impractical (or even impossiblap it
is important to find a particular solutiofy € SoLa((S), and a
rewriting Qrewr of @, s0 thatCERTAINA(Q, S) = Qrewr(70).

Universalsolutions were identified in [12] as the preferred solu-
tions in data exchange. Over them, every positive query eaamb
swered, with a particularly simple rewriting: afi@ris evaluated on
a universal solutioffp, tuples containing null values are discarded.
Even among universal solutions there are ones that are roost ¢
monly materialized in data exchange systems [12, 13, 23}.0He
we shall use here is theanonical solutionCANSOL 4 (S), com-
puting by applying the chase procedure with constraihs\d At
to the source instancS§. If all the constraints inS are acyclic
(in fact, even weaker notions suffice), such a chase teresraxd
computes GNSOL 4 (S) in polynomial time [12].

Note that ouRequirement 4 relates universal solutions in rela-
tional and XML data exchange; in particular, we do not insist
working with the canonical solutions, and others, such astire
[13] or the algorithmic constructions of [23] can be used af.w

Towards XML schema mappings: patterns To define XML
schema mappings we need the notions of schemas and source-t
target dependencies. The notions of schema are well unddrst

the XML context. Our dependencies, as in [6, 4, 3] will be lbbse
ontree patternsPatterns are defined inductively as follows:

(0)

e ((Z) is a pattern, wheré is a label, andz is a (possibly
empty) tuple of variables (listing attributes of a node);

o ((Z)[m1,...,] is apattern, where, ..., 7, are patterns,
and/ andz are as above.

We write 7(Z) to indicate thatz is the tuple of all the variables
used in a pattern. The semantics is defined with respect tda no
of a tree and a valuation of all the variables of a patterntaibate
values. Formally(T',v) = w(a) means thatr is satisfied in node

v whenz is interpreted as. It is defined as follows:

e (T,v) E £(a) if vis labeledl and its tuple of attributes i,
] (T7 U) 'I ((a)[ﬂ'1(a1)7 RN Wk(ak)] if

1. (T,v) = ¢(a) and
2. there exist children, . . ., vx of v (not necessarily dis-
tinct) so that(T', v;) = m;(a,) for every: < k.

We writeT' = n(a) if (T,r) = n(a), i.e., the pattern is witnessed
at the root.

EXAMPLE 4.1. Consider tree€l’ from figure 1(a), and the
tree patternt(x,y) = r[book(z)[author[name(y)]]], that finds
books together with the names of their authors. Then, it &y ea
to see thatl’ &= =(' Al gorithm Design’, Tardos). In fact,
the evaluation ofr(z,y) overT returns the tuples @ gorithm
Desi gn’, Tardos), (Al gorithm Design', Kl einberg), and
(Al gebra’ ,Hungerford). O

Given a DTDD and a tree patterm, we say thatr is compatible
with D if there exists a tre@ that conforms taD and a tuple of
attribute values: such thatl’ = =(a). In general checking com-
patibility of patterns with DTDs is NP-complete [10] but ftre
DTDs we consider here it can be easily done in polynomial time

ExAMPLE 4.2.[Example 4.1 continued] The patterifz, y) is
compatible with the DTDD of figure 1(b). On the other hand,
the patternt’(x) = r[author(z)] is not, because no tree consis-
tent with D can have a child of labelled asauthor, or anauthor
labelled node with an attribute

RemarkMore general patterns have been considered in the lit-
erature [5, 22, 10, 4]; in particular, they may involve desant
navigation, wild cards for labels, and horizontal axes. Eaosv,

[6, 4] showed that with these features added, query ansgvétin
data exchange becomes intractable even for very simpléeguén
fact, the restirctions we use in our definition were identifie [6]
as essential for tractability of query answering.

XML schema mappings As our descriptions of XML schemas we
shall use DTDs (since for complex schemas, query answening i
data exchange is known to be intractable [6], and DTDs wil su
fice to capture all the known tractable cases). Sourcergetaon-
straints will be given via patterns.

Formally, anXML schema mappingtriple M = (Ds, Dr, Y),
where Dg is the source (nested relational) DTDy is the target
(nested relational) DTD, anl is a set of XML source-to-target
dependenciefs], or XML stds, that are expressions of the form

@)

m(z) — 7'(3,2),

wherer andr’ are tree patterns compatible withs and D, resp.

As inthe relational case, target trees may contain nulls¢oant
for values not specified by mappings. That is, given a Trabat
conforms toDg, a treeT” (over constants and nulls) is alt-
solution forT if T’ conforms toDr, and the pai(T, T') satisfy
all the dependencies (2) fromM. The latter means that for every
tuple a of attribute values fron¥’, if T' satisfiesr(a), then there
exists a tupleb of attribute values fron¥” such thatT” satisfies
7' (@, b). The set of aM-solutions forT is denoted by 8L (T).

EXAmMPLE 4.3. Consider the data exchange scenario
(D, Dy, M) given by de DTDsD and Dt of figures 1(b) and
3(b), respectively, and wher#1 is specified by the dependency

r[book(z)[author[name(y)]]] —

rlwriter[name(y), work(z)]],

that restructures book-author pairs as writer-work. It barseen
that the XML tre€T” in figure 3(a) is anM-solution forT. O

5. XML data exchange using relations

We now provide algorithms for implementing XML data ex-
change via relational translations. Since we have alreadwis
how to translate DTDs and documents, we need to present trans
lations of stds of mappings and queries. Both of them aredase
on translating patterns into relational conjunctive geriWe first
concentrate on that translation, and then show how to exteads-
ily to mappings and queries, and prove the correctness afahe-
lations. This will complete our program of using a relatibsystem
for XML data exchange in a semantically correct way.

Inlining tree patterns. They key ingredient in our algorithms
is a translation of patterns compatible with a DTDD into a
conjunctive queryNLPATTERN(m, D) over the relational schema
INLSCHEMA(D). Very roughly, it can be viewed as this:

1. View a patternt(z) as a tre€l’: in which some attribute
values could be variables;

2. compute the relational databaseLDoc(7, D) (which
may have variables as attribute values);

3. view INLDOC(T%, D) as a tableau of a conjunctive query;
the resulting query isNLPATTERN(7, D).

The algorithm is actually more complicated becauseDoc
cannot be used in ste 2; we shall explain shortly why.

Towards defining NLPATTERN, observe that each tree pattern
m(z) can be viewed as an XML documefit.), in which both
values and variables can be used as attribute values. fineden-
ductively as followsT, s is a single-node tree labelédwith z as
attribute values, and if is £(z) [71(Z1), . . . , mx (T)], then the root
of T is a labeled and hast as attribute values, and it haschil-
dren, with the subtrees rooted at them b€liagz,), . . . , Tr, (z,)-

However, even for a patterm(z) compatible with a DTDD,
we may not be able to define its inlining as the inliningZGf ;).
becausd’ 5y need not conform td. For example, if a DTD has
aruler — aband we have a patterrja], it is compatible withD,
but T’ does not conform td, as it is missing @-node. Hence,
the procedureNLDoOC cannot be used ‘as-is’ in our algorithm.

Nevertheless, we can still mark the nodesIgf;) wrt D and
define the nearest appropriate ancestor exactly as it hasdose
previously. With this, we define the procedura. PATTERN which,
intuitively, shreds each nodE; z) independently, adding existen-
tial quantifiers to account for the missing information.

Procedure INLPATTERN(7, D)

Input : ADTD D, atree pattermr(z) compatible withD.
Output: Conjunctive query overNL SCHEMA(D).

for each nodev of T}z of form£(z.,):
Construct a querg)., (Z.) as follows:

if v is markedthen

Qv(fﬂu) = Hidvﬂidu(,u)EZR((idlu ’idﬂ(l,) , Loy 2),

wherez is a tuple of fresh variables, and the positions
of variablesid,, id,,) andz, are consistent with the
attributesidy, id,,;) and Ap (¢) in attr(Ry).
If £=r,thenQ, does not used,, ..

else (v is not marked):
setv’:=p(v), £:=X(v"), and

Qv (iv):zﬂidv/ Hidu(v/)ﬂidvﬂélﬁ/ (idv/7 id,u(v’)v idy, To, 5),

wherez is a tuple of fresh variables, and the positions
of the variablesd,, id,, (., id, andz,, are consistent
with the attributegd, , id,,, ide andAp(£) in
attr(R,/). If £/ = r, thenQ,, does not uséd,, ..

endfor

return /\vETn@ Qv (Tw).

Note that the compatibility of with D ensures that the transla-
tion INLQUERY is well-defined. That is, (1) every attribute formula
of the form¢(z) only mentions attributes irl p (¢), and (2) for all
nodesv, v’ € T (s, if v’ is a child ofv, thenA(v') € Pp(A(v)).

Correctness. Given a patternr(z), the evaluation ofr on a tree
Tisw(T) ={a|T E w(a)}. The following proposition shows
the correctness oNL PATTERN.

PrRoOPOSITION 5.1. Given a nested relational DT, a pat-
tern w compatible withD, and a treeT that conforms taD, we
haver(T) = INLPATTERN(m, D) (INLDOC(T, D)).

That s, the inlining ofr, applied to the inlining of", returnsr (7).

Conjunctive queriesover trees. We use the language that is es-
sentially conjunctive queries over trees [6, 16, 10] witkigation
along the child axis. The languag® Q is obtained by closing
patterns under conjunction and existential quantification

Q:=7|QANQ[3zQ,

where 7 is a fully specified tree-pattern formulae. The seman-
tics is straightforward, given the semantics of patternndd
above:Q(a) A Q(b) is true iff bothQ (@) andQ’ (b) are true, and
Jz Q(a, x) is true iff Q(a, ¢) is true for some value. The output
of Q on atre€l” is denoted by (7).

We say that a query) is compatible with the DTDD if every
pattern used in it is compatible with.

The inlining of queries) compatible withD is given by the
following recursive algorithm.

Now we show that every quer® from C7 Q can be computed
by its inlining on the inlining of its input (assuming, of ae, com-
patibility with a DTD). In other wordsRequirement 3 is satisfied.

THEOREM 5.2. Given a DTDD, a treeT that conforms to it,
and a compatible quer§, we have

Q(T) = INLQUERY(Q, D)(INLDOC(T, D)).

writer writer

name work
Hungerford ' Al gebra’

(a) Target Tred”

name work
Tardos ' Al gorithm Design’

/r\\ :uriter

Kl ei nberg ' Al gorithm Desi gn’

— writer*
writer — name work™
Ap(name) = Qnam
Ap(work) = Qtitle

work
(b) Target DTDDr

Figure3: TreeT' isan M-solution for T

Procedure INLQUERY(Q, D)

Input : ADTD D, a query@ compatible withD.
Output: A conjunctive query overNL SCHEMA(D).

if @ = 7 then

return INLPATTERN(7, D)
dseif @ = Q1 A Q2 then

return INLQUERY(Q1, D) A INLQUERY(Q2, D)
dseif Q = 3zQ; then

return 3z INLQUERY(Q1, D)

Inlining XML schema mappings We use our transformation of
tree patterns to define the procedura. M AP, that, given source
and target DTDsDs and Dr, transforms an XML mapping\t
into a relational mappingNLMAP(M,Ds,Dr) specified with a
set of source-to-target tuple generating dependencies.

Procedure INLMAP(M, Dg, Dr)
Input : An XML mapping M from a source DTDDy to a
target DTDDr.
Output: A relational mapping fromNLSCHEMA(Ds) to
INLSCHEMA(D7).
Set NLMAP(M, Dg, Dr) :=
for dependencyt(z) — 3z7’(z,) in M do
INLMAP(M, Ds, Dr) := INLMAP(M, Ds, Dr)J
{INLQUERY(r, Ds)(Z) — 3z INLQUERY(n’, D1)(%, 2)}

end
return INLMAP(M, Dg, Dr)

Correctness While one could be tempted to ask for a translation
that preserves all solutions such a result need not not fblelrela-
tional mapping NLMAP uses null values to represent the shredded
nodes of XML trees, and thus we should only consider solstion
whose null values have not been renamed. However, reldona
lutions are open to renaming of nulls. This intuition can denfal-
ized by means of the universal solutions, which are mostrgéne
among all solutions, and thus do not permit null renamingr- Fu
thermore, one typically materializes a universal solytiasm these
solution contain all the information needed to computeaieran-
swers of conjunctive queries. This motivates the restmctf Re-
quirement 4 to universal solutions.

The theorem below shows that parts (a) and (lRefuirement
4 hold. Note that in part (b), relational universal soluti@me only
required to contain a shredding of an XML universal solutidhis
is because relational soltions are also open to addingamnpitu-
ples, which need not reflect a tree structure of an XML documen

THEOREM 5.3. a) LetM = (Dgs, Dr,) be an XML schema
mapping andl” an XML document that conforms f0s. If 7" is
an M-universal solution fofl", then its inliningINLDOC(T", D)
is anINLMAP(M)-universal solution folNLDOC(T', D).

b) Let M (Ds,Dr,%¥) be an XML schema map-
ping, and T an XML document that conforms tds.
Then, for everNLMAP(M, Ds, Dr)-universal solutionR for
INLDOC(T, Dg) there exists anV-universal solutior?” such that
INLDOC(T", Dr) is contained inR.

Answering XML queriesusing relational data exchange. The
semantics of query answering in data exchange, both re&dtamd
XML [12, 20, 8, 6, 4] is defined by means of certain answers.tTha
is, given a schema mappingyt = (Ds, Dr,Y), a treeT that
conforms toDs and a conjunctive tree quety that is compatible
with Dr, the certain answers of) for T' under M, denoted by
CERTAINAM (@, T'), is the set of tuples that belong to the evaluation
of Q over every possiblé{-solution forT, that is,\{Q(T") | T’

is anM-solution forT'}. Note that our queries return sets of tuples,
so we can talk about the intersection operator.

It was shown in [6, 4] that, for conjunctive tree queries arapm
pings using nested-relational DTDs, the problem of conmgutier-
tain answers for a given source tréeis solvable in polynomial
time. Thus, for the classes of mappings and queries we aamsid
there is no complexity mismatch between relational and XMtad
exchange. The next thorem shows that our translation icborr
with respect to query answering, i.Requirement 5 is satisfied.

THEOREM 5.4. Let M = (Dg, Dr,X) be an XML schema
mapping. Then, for every XML tre€ that satisfiesDs and
for every conjunctive tree quer®, the certain answers af) for
T under M and the certain answers dNLQUERY(Q, Dr) for
INLDOC(T, Ds) overINLMAP(M, Ds, Dr) coincide:

CERTAINM(Q,T) =
CERTAINiy map(a1) (INLQUERY(Q, D), INLDOC(T, Ds)).

This result, combined with the standard procedure of etiaigia
conjunctive queries in relational data exchange, alsosgisean
algorithm for computing certain answers.

COROLLARY 5.5. Under conditions of Theorem 5.4,
CERTAINA (@, T') can be obtained by the following procedure:

1. evaluatd NLQUERY(Q, D7) onanINLMAP(M, Ds, Dr)-
universal solution fotNLDOC(T, Ds);

2. discard all tuples that contain null values.

6. Adding XML constraints

So far, we assumed that target schemas consist exclusifely o
DTDs; now we extend them witintegrity constraints Such exten-
sions are very common: for instance, the and| DREF features
are somewhat similar to keys and foreign keys. Thus, it israato
ask whether our procedures continue to work when targetsatie
are augmented with additional dependencies. Here we kegk
andforeign keyghat naturally extend the functionality 6D and
| DREF:

e A key@a — / states that the attributea uniquely deter-
mines ar’-labeled node;

o aforeign keysl:[@Qa] Crx (2[Qb] states that théda at-
tribute of ¢1-nodes must occur as theb attribute of /-
nodes, and the latter is a key féy.

A natural approach is to to translate XML keys and foreignskey

into relational integrity constraints, and then verify tthiaat our

requirements continue to be satisfied. We now show how to do

this, using our assumption that graphs of DTDs are trees.

Procedure INLCONSTR(A,D)

Input : ADTD D, a set of keys and foreign keys.
Output: A set of relational keys and foreign keys.

Set INLCONSTRA, D) = ()
for each key@a — £in A:
add to NLCONSTR'A, D) the key@a — Ry if Lis
marked, or the ke@a — R,,(,) if £is not marked.
endfor
for each foreign keyl; [@a] — £2[@b] in A
Add to INLCONSTR(A, D) the foreign key
Ry, [@Qa] — Ry, [@Q], replacingRy, for R,y if £1 or {2
are not marked.
endfor

return INLCONSTR A, D)

Using INLCONSTR we can extend the procedureLIMAP for
the case of XML data exchange settings that include a Sergét

constraintsAr in a way that retains its good properties (due to

space constraints, the precise definition is in the appgndix

PrROPOSITION 6.1. For XML data exchange settings that in-
clude a setA of XML keys and foreign keys, the extensions of pro-

cedurelNLMAP and INLQUERY usingINLCONSTR A, D) satisfy
Requirement 4 and Requirement 5, resp.

Unlike in other results in the paper, the restriction to DTDs

whose graphs are trees is essential here: without suchriztiest,
a foreign key can be translated into a disjunctive tgd, andetare
known to lead to intractability in data exchange scenarid$.[

7. Concluding Remarks
Our technique provides a relational approach to solve twibef

most important problems of XML data exchange settings: mate

alizing solutions, and answering queries. The diagranmvbslan-

marizes this. In a pure XML setting, we can start with a docoime

T, and use a mapping/ to find a (universal) solutiof;,,;, over
which we can then answer a quépyto produce certain answers.

M .
T Tiniv @ certain answer
INLDOC INLDOC
INLMAP(M INLQUERY .
R (M) Rlny Q (@) certain answer

Using the translationNLDocC of documents, we generate a
relational instanceR, on which the translation of the mapping

INLMAP(M) generates a universal solutid,,,. This solution
is a shredding of a universal XML solution, and also confotms
the shredding of source DTD. Finally, we apply the standacti
nique [12] for evaluating queries in relational data exdeto the
query translationNL QUERY(Q) to produce the correct answers.

8. References

[1] S. Abiteboul, L. Segoufin and V. Vianu. Representing aodrging
XML with incomplete informationTODS 31(1) (2006), 208-254

[2] F. Afrati, C. Li, V. Pavlaki. Data exchange in the presemé
arithmetic comparisons. IEDBT 2008 pages 487-498.

[3] S. Amano, C. David, L. Libkin, F. Murlak. On the tradeofétween
mapping and querying power in XML data exchangelGBDT 2010

[4] S. Amano, L. Libkin, F. Murlak. XML schema mappings. RODS
2009 pages 33-42.

[5] S. Amer-Yahia, S. Cho, L. Lakshmanan, D. Srivastavaefattern
query minimizationVLDB J.11 (2002), 315-331.

[6] M. Arenas, L. Libkin. XML data exchange: consistency ancry
answeringJ. ACM55(2): (2008).

[7] A.Balmin and Y. Papakonstantinou. Storing and querytdL data
using denormalized relational databasésDB J, 14:30—-49, 2005.

[8] P. Barceld. Logical foundations of relational data leswge.
SIGMOD Record8(1): 49-58 (2009).

[9] P. A. Bernstein, S. Melnik. Model management 2.0: malzifing
richer mappingsSIGMOD’07, pages 1-12

[10] H. Bjorklund, W. Martens, T. Schwentick. Conjunctigeery
containment over trees. DBPL 2007 pages 66-80.

[11] A. Deutsch, V. Tannen. Reformulation of XML queries and
constraints. IHCDT'03, pages 225-241.

[12] R. Fagin, P. G. Kolaitis, R. Miller, L. Popa. Data exchan
semantics and query answerif@CS336(1): 89-124 (2005).

[13] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchangetirgeto the
core.ACM TODS30(1):174-210, 2005.

[14] D. Florescu, D. Kossman. Storing and querying XML datang a
RDBMS IEEE Data Engineering Bulleti22(3): 27-34, 1999.

[15] A. Fuxman, M. Hernandez, H. Ho, R. Miller, P. Papotti,Ropa.
Nested mappings: schema mapping reloat#dB’06, pages 67-78.

[16] G. Gottlob, C. Koch, K. Schulz. Conjunctive queries iotrees.
JACM53(2): 238-272, 2006.

[17] M. Hernandez, H. Ho, et al. Creating nested mappingk @®lio. In
ICDE 2007, pages 1487-1488.

[18] H. V. Jagadish, et al. TIMBER: A native XML databas4.DB
Journal 11(4): 274-291, 2002.

[19] N. Klarlund, T. Schwentick, D. Suciu. XML: Model, Schesy
Types, Logics, and Queries. Lriogics for Emerging Applications of
Databases 20Q3ages 1-41.

[20] Ph. Kolaitis. Schema mappings, data exchange, ancdateta
management. IRODS 2005pages 61-75.

[21] R. Krishnamurthy, R. Kaushik, J. F. Naughton. XML-t®E query
translation literature: the state of the art and open probldn
XSym’'03 pages 1-18.

[22] L. Lakshmanan, et al. On testing satisfiability of tregtern queries.
VLDB 2004 pages 120-131.

[23] G. Mecca, P. Papotti, S. Raunich. Core schema mapgpimgs.
SIGMOD 2009 pages 655-668.

[24] R. Miller, M. Hernandez, L. Haas, L. Yan, H. Ho, R. Fagin Popa.
The Clio project: managing heterogeneiBIGMOD Recor®B0(1):
78-83 (2001).

[25] L. Popa, Y. Velegrakis, R. Miller, M. Hernandez, R. kag
Translating Web data. IMLDB 2002 pages 598-609.

[26] J. Shanmugasundaram, et al. Relational databasesdoyigg XML
documents: limitations and opportunities.\ThDB 1999 pages
302-314.

[27] C. Yu, L. Popa. Constraint-based XML query rewriting fata
integration. INSIGMOD 2004 pages 371-382.

[28] G. Gou and R. Chirkova. Efficiently querying large XMLtda
repositories: A survefEEE TKDE, 19:1381-1403, 2007.

[29] R. Krishnamurthy, R. Kaushik, and J. Naughton. XML vieas
integrity constraints and their use in query translatiolODE’05,
pages 693-704.

[30] J. Shanmugasundaram, et al. A general techniques &yimg XML
documents using a relational database sys&@MOD Record
30:20-26, 2001.

[31] I. Tatarinov, et al. Storing and querying ordered XMlingsa
relational database system.$iGMOD’'02 pages 204-215.

[32] C. Zhang, et al. On supporting containment querieslatiomal
database management systemsSIBMOD’0], pages 425-436.

