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ABSTRACT

We consider the problem of data exchange for XML documents:
given source and target schemas, a mapping between them, anda
document that conforms to the source schema, construct a target
document and answer target queries in a way that is consistent with
the source information. The problem has primarily been studied in
the relational context, in which data-exchange systems have also
been built.

Since many XML documents are stored in relations, it is natu-
ral to consider using a relational system for XML data exchange.
However, there is a complexity mismatch between query answering
in relational and XML data exchange, which indicates that restric-
tions have to be imposed on XML schemas and mappings, as well
as on XML shredding schemes, to make the use of relational sys-
tems possible.

We isolate a set of five requirements that must be fulfilled in
order to have a faithful representation of the XML data-exchange
problem by a relational translation. We then demonstrate that these
requirements naturally suggest the inlining technique fordata-
exchange tasks. Our key contribution is to provide shredding algo-
rithms for schemas, documents, mappings and queries, and demon-
strate that they enable us to correctly perform XML data-exchange
tasks using a relational system.

1. Introduction
Data exchange is the problem of finding an instance of a tar-

get schema, given an instance of a source schema and a schema
mapping, i.e., a specification of the relationship between the source
and the target. Such a target instance should correctly represent in-
formation from the source instance under the constraints imposed
by the target schema, and should allow one to evaluate queries on
the target instance in a way that is semantically consistentwith the
source data. The problem has received much attention in the past
few years, with several surveys already available [20, 9, 8].

The general setting of data exchange is this:
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sourceS targetT
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We have fixed source and target schemas, an instanceS of a
source schema, and a mappingM that specifies the relationship
between the source and the target schemas. The goal is to con-
struct an instanceT of the target schema, based on the source and
the mapping, and answer queries against the target data in a way
consistent with the source data.

The mappings rarely specify the target instance completely, i.e.,
for each sourceS and mappingM, there could be multiple tar-
get instancesT1, T2, . . . that satisfy the conditions of the mapping.
Such instances are calledsolutions. The notion of query answer-
ing has to account for their non-uniqueness. Typically, onetries to
computecertain answersCERTAINM(Q,S) =

T

i Q(Ti), i.e., an-
swers independent of a particular solution chosen. Such an answer
must be produced by evaluating some query – not necessarilyQ
but perhaps itsrewritingQrewr over a particular solutionT : so that
Qrewr(T ) = CERTAINM(Q,S).

Thus, the key tasks in data exchange are: (a) choosing a partic-
ular solutionT among{T1, T2, . . .} to materialize, and (b) finding
a way of producing query answers over that solution by running a
rewritten queryQrewr over it. Usually one builds a so-calleduniver-
sal solution [12, 8]; these solutions behave particularly nicely with
respect to query answering.

These basics of data exchange are independent of a particular
model of data. Most research on data exchange, however, occurred
in the relational context [12, 13, 20, 8] or slight extensions [27, 17];
the first paper that attempted to extend relational results to the XML
context was [6], and a few followups have since appeared [4, 3].
They all concentrate on the algorithmic aspects of query answering
and constructing solutions, with the main goal of isolatingtractable
cases. The problem these papers do not address ishow XML data
exchange can be implemented?

One possibility is to use a native XML DBMS such as [18],
but this is not the most common route: XML data is commonly
stored in relational DBMSs. In fact, many ETL products claimthat
they handle XML data simply by producing relational translations
(known asshredding[21]). This leads to a two-step approach:

• first shred XML data into relations;

• then apply a relational data-exchange engine (and publish the
result back as an XML document).

The approach seems very natural, but the key question is whether
it will work correctly. That is, are we guaranteed to have the same
result as we would have gotten had we implemented a native XML
data exchange system?



To state this more precisely, assume that we have a translation
σ(·) that can be applied to (a) XML schemas, (b) XML documents,
(c) XML schema mappings, and (d) XML queries. Then the con-
cept ofcorrectnessof such a translation is shown below:

XML : sourceS
mappingM

- targetT
queryQ

- answer

Relations : σ(S)

shred

?
σ(M)

- σ(T )

shred

?
σ(Q)

- answer

shred

?

That is, suppose we start with an XML documentS and an XML
schema mappingM. In a native system, we would materialize
some solutionT over which we could answer queriesQ.

But now we want a relational system to do the job. So we shred
S into σ(S) and then apply toσ(S) the translation of the mapping
σ(M) to get a solution – which itself is a shredding of an XML
solution – so that the answer toQ could be reconstructed from the
result of the queryσ(Q) over that relational solution.

The idea seems simple and natural on the surface, but starts look-
ing challenging once we look deeper into it. Before even attempting
to show that the relational translation faithfully represents the XML
data-exchange problem, we need to address the following.

Complexity mismatch. Without restrictions, therecannot be a
faithful representationof XML data exchange by a relational
system. Indeed, it is well known that positive relational-
algebra queries can be efficiently evaluated in relational data
exchange [12, 20, 8], but even for simple XML analogs of
conjunctive queries finding query answers can be coNP-hard
[6]. So any claim that a relational data-exchange system cor-
rectly performs XML data exchange for arbitrary documents
and queries is bound to be wrong. We thus need to identify
the cases that can be handled by a relational system.

Which shredding scheme to use?There are several, that can
roughly be divided into two groups: those that do not
take the schema information into account (e.g., the edge-
representation [14], interval codings [32], and other num-
bering schemes [31]), and those that are based on schemas
for XML, such as variants of the inlining technique [26, 21].
Since in data-exchange scenarios we start with two schemas,
it seems more appropriate to apply schema-based techniques.

Target constraints. In relational data exchange, constraints in tar-
get schemas are required to satisfy certain acyclicity condi-
tions; without them, the chase procedure that constructs a
target instance does not terminate [12, 20, 8]. Constraints
imposed by general XML schema specifications need not in
general be even definable in relational calculus, let alone be
acyclic [19]. We thus need to find a shredding technique that
enables us to encode targets schemas by means of constraints
that guarantee chase termination.

As for the complexity issue, the work on the theory of XML
data exchange has identified a class of mappings for which efficient
query answering is possible [6, 4, 3]. The schemas (say, DTDs),
have rules of the formdb→ book∗, book → author∗ subject (we
shall give a formal definition later), and the mappings transform
patterns satisfied over the source into patterns satisfied over targets.

This restriction suggests a relational representation to use. Going
with the edge-representation [14] is problematic: first, each edge in
an XML pattern used in a mapping will result in a join in the rela-
tional translation, making it inefficient, and second, enforcing even

a simple schema structure under that representation takes us out of
the class of target constraints that relational data-exchange systems
can handle. Verifiably correct translations based on numerical en-
codings [31, 32] will necessarily involve numerical and/orordering
constraints in relational translations of mappings, and this is some-
thing that relational data exchange cannot handle at the moment
[20, 8] (beyond simple ordering constraints [2]).

One translation scheme however that fits in very well with re-
strictions identified in [6, 4, 3] is theinlining scheme. It works
very well for DTDs of the “right” shape, and its output schemas in-
volve only acyclic constraints, which is perfect for data-exchange
scenarios. As for queries, for now we follow [6, 4, 3] and deal
with queries whose outputs are relational. (Please see [28]for an
overview of native-XML processing of queries whose outputsare
sets of XML trees.) The main reason for this, as in those papers,
is that for queries with relational outputs the notion of certain an-
swers is well understood (it is the intersection of answers over all
possible solutions).

Desiderata for the translation We now formulate some basic re-
quirements for the translationσ, in order to be able to achieve our
goals described in the diagram above. We need the following:

Requirement 1: translation of schemas A translationσ(D) that,
when applied to a DTD of a special form, produces a rela-
tional schema that only has acyclic constraints, which can be
used in a relational data-exchange setting.

Requirement 2: translation of documents A translation σD(·)
for a DTDD that, when applied to a documentT conform-
ing toD, produces a relational databaseσD(T ) of schema
σ(D).

Requirement 3: translation of queries For a DTDD, a trans-
lation σD(Q) of (analogs of) conjunctive queries so that
σD(Q)

`

σD(T )
´

= Q(T ) (i.e., the result ofQ(T ) can be
computed by relational translations).

Requirement 4: translation of mappings For a mappingM be-
tween a source DTDDs and a target DTDDt, its trans-
lation σ(M) is a mapping betweenσ(Ds) andσ(Dt) that
preserves universal solutions. That is:

(a) EachσDt
-translation of a universal solution forT un-

der M is a universal solution of forσDs
(T ) under

σ(M); and
(b) Each universal solution forσDs

(T ) underσ(M) con-
tains1 aσDt

-translation of a universal solution ofT un-
derM.

Requirement 5: query answering For (analogs of) conjunctive
queries over trees, computing answM(Q,T ) can be done by
computing aσ(M)-solution ofσ(T ), followed by evaluation
of σ(Q) over that solution, as is normally done in a relational
data-exchange system.

Satisfaction of these five requirements would guarantee that we
have acorrect relational translation of an XML data-exchange
problem, which would guarantee correct evaluation of queries.

Contributions Our main contributions are as follows. First, we
introduce an architecture for XML data exchange using relational
vehicles, with a focus on correct evaluation of (analogs of)con-
junctive queries on XML data. Second, we identify a class of XML

1We cannot require the equivalence as relational solutions are open
to adding new tuples and thus cannot always be translations of
trees; we shall discuss this later.



schema mappings and a shredding mechanism that allow us to over-
come the complexity mismatch. Third, we provide algorithmsfor
relational translation of schemas, XML documents, schema map-
pings, and queries in our proposed architecture. Finally, we prove
the correctness of the translations: namely, we show that they sat-
isfy the above five requirements, and thus enable us to use relational
data exchange systems for XML data exchange tasks.

Related work In recent years, significant effort has been devoted to
developing high-performance XML database systems, and to build-
ing tools for data exchange. One major direction of the XML effort
is the “relational approach”, which uses relational DBMSs to store
and query XML data. Documents could be translated into relational
tuples using either the “DTD-aware” translation [30, 26] orthe
“schemaless” translation. The latter translation includes the edge
[14] and the node [32] representation of the data. Indexes could
be prebuilt on the data to improve performance in relationalquery
processing, see, e.g., [31, 32]. Constraints arising in thetranslation
are sometimes dealt with explicitly [7, 29]. See [28] for a survey of
the relational approach to answering XML queries.

The work on data exchange concentrated primarily on relations,
see [8, 20] for surveys and [24, 25] for system descriptions.Map-
pings for the XML data exchange problem were studied in [6, 4];
these papers noticed that the complexity of many tasks in XML
data exchange in higher than for their relational analogs, which
suggests that restrictions must be imposed for a relationalimple-
mentation. The problem of exchanging XML data was also studied
in [15, 25], which give translations of documents and DTDs into
nested-relational schemas, and then show how to perform XML
data exchange under this translation. Most RDBMSs, however,
do not provide support for nested relational schemas, and, thus,
specific machinery has to be developed in order to implement this
translation under a strictly relational setting. In fact, the results of
this paper may aid towards the development of a relational imple-
mentation for both XML and nested-relational data exchange.

Outline Key definitions are given in Section 2. Section 3 provides
translations of schemas and documents and shows that they fullfill
requirements 1 and 2. Section 4 provides the main concepts of
relational and XML data exchange. Section 5 provides translations
of mappings and queries, and shows that requirements 3, 4, and 5
are fullfilled. Section 6 extends results to handle target constraints
and more complex DTDs. Some technical details of algorithmsand
the proofs of correctness of the translations are in the appendix.

2. Preliminaries
Relational schemas and constraints. A relational schema, or
justschema, is a finite setR = {R1, . . . , Rk} of relation symbols,
possibly with a set of integrity constraints (dependencies). Con-
straints used most often in data exchange are egd’s and tgd’s[12,
20, 8] (equality- and tuple-generating dependencies), butfor our
purposes it will suffice to consider onlykeysandforeign keys. If R
is a relation over attributesU , andX is a set of attributes, thenX
is a key ofR if no two tuples ofR coincide onX-attributes (i.e.,
for all tuplest1, t2 ∈ R with t1 6= t2 we haveπX(t1) 6= πX(t2)).
If R1 andR2 are relations over sets of attributesU1 andU2, re-
spectively, then an inclusion constraintR1[X] ⊆ R2[Y ], where
X ⊆ U1 andY ⊆ U2 are of the same cardinality, holds when
πX(R1) ⊆ πY (R2). We further say that a foreign key the at-
tributes ofR1[X] ⊆F K R2[Y ] holds if the inclusion constraint
R1[X] ⊆ R2[Y ] holds, andY is a key ofR2.

With each set of keys and foreign keys, we associate a graph in
which we put an edge between attributesA andB if there is a con-
straintR1[X] ⊆F K R2[Y ] with A ∈ X andB ∈ Y . If this graph

is acyclic, we say that the set of constraints isacyclic. A schema
is acyclic if its constraints are acyclic. In data exchange,one often
uses a more technical notion of weak acyclicty: it includes some
cyclic schemas for which the chase procedure still terminates. For
us, however, the simple concept of acyclicity will suffice, as our
translations of schemas only produce acyclic constraints.

XML documents and DTDs Assume that we have the follow-
ing disjoint countably infinite sets:El of element names,Att of
attribute names, andStr of possible values of string-valued at-
tributes. All attribute names start with the symbol@.

An XML treeis a finite rooted directed treeT = (N,G), where
N is the set of nodes andG is the set of edges, together with

1. a labeling functionλ : N → El;

2. attribute-value assignments, which are partial functions
ρ@a : N → Str for each@a ∈ Att; and

3. an ordering on children of every node.

A DTD D overEl with a distinguished symbolr (for the root)
and a set of attributesAtt consists of a mappingPD from El to
regular expressions overEl − {r}, usually written as productions
ℓ → e if PD(ℓ) = e, and a mappingAD fromEl to 2Att that as-
signs a (possibly empty) set of attributes to each element type. For
notational convenience, we always assume that attributes come in
some order, just like in the relational case: attributes in tuples come
in some order so we can writeR(a1, . . . , an). Likewise, we shall
describe anℓ labeled tree node withn attributes asℓ(a1, . . . , an).

A treeT conforms to a DTDD (written asT |= D) if its root
is labelledr, the set of attributes for a node labelledℓ is AD(ℓ),
and the labels of the children of such a node, read from left toright,
form a string in the language ofPD(ℓ).

A class of DTDs In this paper we consider a restriction on DTDs
called nested-relational DTDs[1, 6], a class of DTDs that natu-
rally represent nested relational schemas such as the ones used by
the Clio data exchange system [24]. The reason for using themis
that outside of this class, it is very easy to construct instances of
XML data exchange problems that will exhibit coNP-hardnessof
answering conjunctive queries (which are known to be tractable in
practically all instances of relational data exchange), see [6].

First, a DTDD is non-recursiveif there is no cycle in the graph
G(D) defined as{(l, l′) | l′ is mentioned inP (l)}. Further, a non-
recursive DTDD is anested-relational DTDif all rules ofD are of
the forml → l̃0 . . . l̃m where all theli’s are distinct, and each̃li is
one ofli andl∗i . From now on, unless otherwise noted, all DTD’s
are assumed to be nested-relational. We also assume, wlog, that the
graphG(D) is not a dag but a tree (as one can always unfold a dag
into a tree by tagging an element type with the type of its parent).

EXAMPLE 2.1. Figure 1(a) shows an example of an XML tree.
In the figure, the node identifiers precede the correspondinglabels
of each node inT ; we omit the attribute names and only show the
attribute values of each node. In addition, figure 1(b) showsan
example of a nested relational DTD. Moreover, it is easy to see that
the treeT of figure 1(a) conforms toD. 2

3. Translations of schemas and documents
We now review theinlining technique [26], provide a precise def-

inition of the translation, and show that it satisfiesRequirements 1
and2. The main idea of inlining is that separate relations are cre-
ated for the root and each element type that appears under a star,
and other element types are inlined in the relations corresponding
to their “nearest appropriate ancestor”. Each relation foran ele-
ment type has an ID attribute that is a key, as well as (for non-root)



1: r

2: book
‘Algorithm Design’

4: author

9: name
Kleinberg

10: aff
CU

5: author

11: name
Tardos

12: aff
CU

6: subject
CS

3: book
‘Algebra’

7: author

13: name
Hungerford

14: aff
SLU

8: subject
Math

(a) TreeT

r → book∗

book → author∗ subject
author → name aff
AD(book) = @title
AD(subject) = @sub
AD(name) = @nam
AD(aff ) = @aff

(b) DTDD

Figure 1: The XML tree T conforms to D

a “parent-ID” attribute that is a foreign key pointing to the“near-
est appropriate ancestor” of that element in the document. All the
attributes of a given element type in the DTD become attributes in
the relation corresponding to that element type when such a rela-
tion exists, or otherwise become attributes in the relationfor the
“nearest appropriate ancestor” of the given element type.

We begin with a formal definition of thenearest appropriate an-
cestorfor the element types used inD. Given a nested-relational
DTD D = (PD, AD, r), we “mark” inG(D) each element type
that occurs under a star inPD. In addition, we mark the root ele-
ment type inG(D). Then, for a given element typeℓ, we define the
nearest appropriate ancestorof ℓ, denoted byµ(ℓ), as the closest
marked element typeℓ′ in the path from the root element toℓ in the
graphG(D). The inlining schema generation is formally captured
by means of the procedure INLSCHEMA below.

Procedure INLSCHEMA(D)

Input : A nested relational DTDD.
Output: A relational schemaSD and a set of integrity

constraints∆D

SetSD = ∅ and∆D = ∅
for each marked element typeℓ ofD:

add toSD a relationRℓ, with attributes:

attr(Rℓ) =

8

>

>

>

<

>

>

>

:

idℓ

AD(ℓ)
idµ(ℓ) | if ℓ 6= r.
idℓ′ | µ(ℓ′) = ℓ, ℓ′ is not marked,
AD(ℓ′) | µ(ℓ′) = ℓ, ℓ′ is not marked.

endfor
for each relationRℓ in SD :

add to∆D the constraint stating thatidℓ is key ofRℓ and,
if ℓ 6= r, the foreign key

Rℓ[idµ(ℓ)] ⊆F K Rµ(ℓ)[idµ(ℓ)].

endfor
add to∆D the dependency (stating the uniqueness of the root)

∀ȳ∀z̄Rr(x, ȳ) ∧ Rr(x
′
, z̄) → x = x

′
.

return (SD,∆D)

EXAMPLE 3.1. Consider again DTDD in figure 1(b). The rela-
tional schema INLSCHEMA(D) is as follows:

Rr (rID)
Rbook(bookID,@title,rID,subID,@sub)
Rauthor (authID,bookID,nameID,afID,@nam,@aff)

Keys are underlined; we also have the following foreign

keys: Rbook(rID) ⊆F K Rr(rID) andRauthor(bookID) ⊆F K

Rbook(bookID). 2

The following shows thatRequirement 1 is satisfied.

PROPOSITION 3.2. For every nested relational DTDD, the
output ofINLSCHEMA(D) is an acyclic relational schema.

Shredding of XML documents. We now move to the shredding
procedure. Given the inlining INLSCHEMA(D) = (SD,∆D) of a
DTD D, and an XML treeT conforming toD, we use the algo-
rithm INLDOC to shredT into an instance of the relational schema
SD that it satisfies the constraints in∆D . Let us first explain this
translation by means of an example.

EXAMPLE 3.3. Recall treeT from figure 1(a) and DTDD
from figure 1(b). Figure 2 shows relationsRbook andRauthor in
the shredding ofT . 2

To present the algorithm, we define thenearest appropriate an-
cestorµ(n) of a noden of an XML documentT = (N,G) that
conforms to a DTDD as follows. Mark each noden of T such that
λ(n) is starred inD, as well as the root ofT . Thenµ(n) is the
closest marked noden′ that belongs to the path from the root ton.

Procedure INLDOC(T,D)

Input : A nested relational DTDD and an XML treeT that
conforms toD.

Output: A relational instance of the schema INLSCHEMA(D).

for each marked noden of T :
Let ℓ be the label ofn; Add to the relationRℓ of I a tuple
that contain elements
8

>

>

>

>

>

<

>

>

>

>

>

:

idn

ρ@a(n) | @a ∈ A(ℓ)
idµ(n) | if ℓ 6= r
idn′ | µ(n′) = n, n′ is not marked.
ρ@a(n′) | µ(n′) = n , @a ∈ A(λ(n′)) and

n′ is not marked
where the identifiers and attributes values for each of the
elementsidn′ , idµ(n) andρ@a(n′) coincide with the
position of the attributes foridλ(n′), idµ(ℓ) and
AD(λ(n′)) of Rℓ.

endfor
return I

The following proposition showsRequirement 2 is satisfied.

PROPOSITION 3.4. Let D be a DTD, andT an XML tree
such thatT |= D. Let (SD,∆D) be the schema computed by
INLSCHEMA. Then,INLDOC(T,D) |= ∆D .



bookID @title rID subID @sub

id2 ’Algorithm Design’ id1 id6 CS
id3 ’Algebra’ id1 id8 Math

(a) RelationRbook in INLDOC(T,D)

authID bookID nameID afID @nam @af

id4 id2 id9 id10 ’Kleinberg’ CU
id5 id2 id11 id12 ’Tardos’ CU

id7 id3 id13 id14 ’Hungerford’ SLU

(b) RelationRauthor in INLDOC(T,D)

Figure 2: Shredding of T into INLSCHEMA(D)

4. Relational and XML Data Exchange
We now quickly review the basics of relational data exchange

and introduce XML schema mappings that guarantee tractable
query answering.

Relational Data Exchange A schema mappingM is a triple
(S,T,Σ), whereS is a source schema,T = (T,∆T) is a target
schema, andΣ is a set ofsource-to-target dependenciesthat specify
how the source and the target are related. Most commony theseare
given as source-to-target tuple generating dependencies (st-tgds):

ϕ(x̄) → ∃z̄ ψ(x̄, z̄), (1)

whereϕ andψ are conjunctions of relational atoms overS andT

respectively.
In data-exchange literature, one normally considers instances

with two types of values: constants and nulls. InstancesS of the
source schemaS consist only of constant values, and nulls are used
to populate target instancesT when some values are unknown.

An instanceT of T (which may contain both constants and nulls)
is called asolution for an instanceS of S underM, or anM-
solution if every st-tgd (1) fromΣ is satisfied by(S ,T ) (i.e., for
each tuplēa such thatϕ(ā) is true inS , there is a tuplēb such that
ψ(ā, b̄) is true inT ), andT |= ∆T. The set of allM-solutions for
S is denoted by SOLM(S) (or SOL(S) isM is understood).

Certain answers and canonical universal solution The main dif-
ficulty in answering a queryQ against the target schema is that
there could be many possible solutions for a given source. Thus,
for query answering in data exchange one normally uses the notion
of certain answers, i.e., answers that do not depend on a particular
solution. Formally, for a sourceS and a mappingM, we define
CERTAINM(Q,S) as

T

{Q(T ) | T ∈ SOLM(S)}.
Building all solutions is impractical (or even impossible), so it

is important to find a particular solutionT0 ∈ SOLM(S), and a
rewritingQrewr of Q, so thatCERTAINM(Q,S) = Qrewr(T0).

Universalsolutions were identified in [12] as the preferred solu-
tions in data exchange. Over them, every positive query can be an-
swered, with a particularly simple rewriting: afterQ is evaluated on
a universal solutionT0, tuples containing null values are discarded.
Even among universal solutions there are ones that are most com-
monly materialized in data exchange systems [12, 13, 23]. The one
we shall use here is thecanonical solutionCANSOLM(S), com-
puting by applying the chase procedure with constraintsΣ and∆T

to the source instanceS . If all the constraints inS are acyclic
(in fact, even weaker notions suffice), such a chase terminates and
computes CANSOLM(S) in polynomial time [12].

Note that ourRequirement 4 relates universal solutions in rela-
tional and XML data exchange; in particular, we do not insiston
working with the canonical solutions, and others, such as the core
[13] or the algorithmic constructions of [23] can be used as well.

Towards XML schema mappings: patterns To define XML
schema mappings we need the notions of schemas and source-to-
target dependencies. The notions of schema are well understood in
the XML context. Our dependencies, as in [6, 4, 3] will be based
on tree patterns. Patterns are defined inductively as follows:

• ℓ(x̄) is a pattern, whereℓ is a label, and̄x is a (possibly
empty) tuple of variables (listing attributes of a node);

• ℓ(x̄)[π1, . . . , πk] is a pattern, whereπ1, . . . , πk are patterns,
andℓ andx̄ are as above.

We write π(x̄) to indicate that̄x is the tuple of all the variables
used in a pattern. The semantics is defined with respect to a node
of a tree and a valuation of all the variables of a pattern as attribute
values. Formally,(T, v) |= π(ā) means thatπ is satisfied in node
v whenx̄ is interpreted as̄a. It is defined as follows:

• (T, v) |= ℓ(ā) if v is labeledℓ and its tuple of attributes is̄a;

• (T, v) |= ℓ(ā)[π1(ā1), . . . , πk(āk)] if

1. (T, v) |= ℓ(ā) and
2. there exist childrenv1, . . . , vk of v (not necessarily dis-

tinct) so that(T, vi) |= πi(āi) for everyi ≤ k.

We writeT |= π(ā) if (T, r) |= π(ā), i.e., the pattern is witnessed
at the root.

EXAMPLE 4.1. Consider treeT from figure 1(a), and the
tree patternπ(x, y) = r[book(x)[author[name(y)]]], that finds
books together with the names of their authors. Then, it is easy
to see thatT |= π(’Algorithm Design’, Tardos). In fact,
the evaluation ofπ(x, y) overT returns the tuples (’Algorithm
Design’, Tardos), (’Algorithm Design’, Kleinberg), and
(’Algebra’, Hungerford). 2

Given a DTDD and a tree patternπ, we say thatπ is compatible
with D if there exists a treeT that conforms toD and a tuple of
attribute values̄a such thatT |= π(ā). In general checking com-
patibility of patterns with DTDs is NP-complete [10] but forthe
DTDs we consider here it can be easily done in polynomial time.

EXAMPLE 4.2.[Example 4.1 continued] The patternπ(x, y) is
compatible with the DTDD of figure 1(b). On the other hand,
the patternπ′(x) = r[author(x)] is not, because no tree consis-
tent withD can have a child ofr labelled asauthor, or anauthor-
labelled node with an attribute.2

RemarkMore general patterns have been considered in the lit-
erature [5, 22, 10, 4]; in particular, they may involve descendant
navigation, wild cards for labels, and horizontal axes. However,
[6, 4] showed that with these features added, query answering in
data exchange becomes intractable even for very simple queries. In
fact, the restirctions we use in our definition were identified in [6]
as essential for tractability of query answering.

XML schema mappings As our descriptions of XML schemas we
shall use DTDs (since for complex schemas, query answering in
data exchange is known to be intractable [6], and DTDs will suf-
fice to capture all the known tractable cases). Source-to-target con-
straints will be given via patterns.

Formally, anXML schema mappinga tripleM = (DS, DT ,Σ),
whereDS is the source (nested relational) DTD,DT is the target
(nested relational) DTD, andΣ is a set ofXML source-to-target
dependencies[6], or XML stds, that are expressions of the form

π(x̄) → π
′(x̄, z̄), (2)



whereπ andπ′ are tree patterns compatible withDS andDT , resp.
As in the relational case, target trees may contain nulls to account

for values not specified by mappings. That is, given a treeT that
conforms toDS , a treeT ′ (over constants and nulls) is anM-
solution forT if T ′ conforms toDT , and the pair(T, T ′) satisfy
all the dependencies (2) fromΣ. The latter means that for every
tuple ā of attribute values fromT , if T satisfiesπ(ā), then there
exists a tuplēb of attribute values fromT ′ such thatT ′ satisfies
π′(ā, b̄). The set of alM-solutions forT is denoted by SOLM(T ).

EXAMPLE 4.3. Consider the data exchange scenario
(D,DT ,M) given by de DTDsD andDT of figures 1(b) and
3(b), respectively, and whereM is specified by the dependency

r[book(x)[author[name(y)]]] →

r[writer[name(y),work(x)]],

that restructures book-author pairs as writer-work. It canbe seen
that the XML treeT ′ in figure 3(a) is anM-solution forT . 2

5. XML data exchange using relations
We now provide algorithms for implementing XML data ex-

change via relational translations. Since we have already shown
how to translate DTDs and documents, we need to present trans-
lations of stds of mappings and queries. Both of them are based
on translating patterns into relational conjunctive queries. We first
concentrate on that translation, and then show how to extendit eas-
ily to mappings and queries, and prove the correctness of thetrans-
lations. This will complete our program of using a relational system
for XML data exchange in a semantically correct way.

Inlining tree patterns. They key ingredient in our algorithms
is a translation of patternsπ compatible with a DTDD into a
conjunctive queryINLPATTERN(π,D) over the relational schema
INLSCHEMA(D). Very roughly, it can be viewed as this:

1. View a patternπ(x̄) as a treeTπ in which some attribute
values could be variables;

2. compute the relational database INLDOC(Tπ,D) (which
may have variables as attribute values);

3. view INLDOC(Tπ,D) as a tableau of a conjunctive query;
the resulting query is INLPATTERN(π,D).

The algorithm is actually more complicated because INLDOC

cannot be used in ste 2; we shall explain shortly why.
Towards defining INLPATTERN, observe that each tree pattern

π(x̄) can be viewed as an XML documentTπ(x̄), in which both
values and variables can be used as attribute values. It is defined in-
ductively as follows:Tℓ(x̄) is a single-node tree labeledℓ, with x̄ as
attribute values, and ifπ is ℓ(x̄)[π1(x̄1), . . . , πk(x̄k)], then the root
of Tπ is a labeledℓ and has̄x as attribute values, and it hask chil-
dren, with the subtrees rooted at them beingTπ1(x̄1), . . . , Tπk(x̄k).

However, even for a patternπ(x̄) compatible with a DTDD,
we may not be able to define its inlining as the inlining ofTπ(x̄),
becauseTπ(x̄) need not conform toD. For example, if a DTD has
a ruler → ab and we have a patternr[a], it is compatible withD,
butTr[a] does not conform toD, as it is missing ab-node. Hence,
the procedure INLDOC cannot be used ‘as-is’ in our algorithm.

Nevertheless, we can still mark the nodes ofTπ(x̄) wrt D and
define the nearest appropriate ancestor exactly as it has been done
previously. With this, we define the procedure INLPATTERNwhich,
intuitively, shreds each nodeTπ(x̄) independently, adding existen-
tial quantifiers to account for the missing information.

Procedure INLPATTERN(π,D)

Input : A DTD D, a tree patternπ(x̄) compatible withD.
Output: Conjunctive query over INLSCHEMA(D).

for each nodev of Tπ(x̄) of formℓ(x̄v):
Construct a queryQv(x̄v) as follows:

if v is markedthen

Qv(x̄v) := ∃idv∃idµ(v)∃z̄Rℓ(idv, idµ(v), x̄v, z̄),

wherez̄ is a tuple of fresh variables, and the positions
of variablesidv idµ(v) andx̄v are consistent with the
attributesidℓ, idµ(ℓ) andAD(ℓ) in attr(Rℓ).
If ℓ = r, thenQv does not useidµ(v).

else (v is not marked):
setv′:=µ(v), ℓ′:=λ(v′), and

Qv(x̄v):=∃idv′∃idµ(v′)∃idv∃z̄Rℓ′(idv′ , idµ(v′), idv, x̄v, z̄),

wherez̄ is a tuple of fresh variables, and the positions
of the variablesidv′ , idµ(v′), idv andx̄v are consistent
with the attributesidℓ′ , idµ(ℓ′), idℓ andAD(ℓ) in
attr(Rℓ′). If ℓ′ = r, thenQv does not useidµ(v′).

endfor
return

V

v∈Tπ(x̄)
Qv(x̄v).

Note that the compatibility ofπ with D ensures that the transla-
tion INLQUERY is well-defined. That is, (1) every attribute formula
of the formℓ(x̄) only mentions attributes inAD(ℓ), and (2) for all
nodesv, v′ ∈ Tπ(x̄), if v′ is a child ofv, thenλ(v′) ∈ PD(λ(v)).

Correctness. Given a patternπ(x̄), the evaluation ofπ on a tree
T is π(T ) = {ā | T |= π(ā)}. The following proposition shows
the correctness of INLPATTERN.

PROPOSITION 5.1. Given a nested relational DTDD, a pat-
tern π compatible withD, and a treeT that conforms toD, we
haveπ(T ) = INLPATTERN(π,D)

`

INLDOC(T,D)
´

.

That is, the inlining ofπ, applied to the inlining ofT , returnsπ(T ).

Conjunctive queries over trees. We use the language that is es-
sentially conjunctive queries over trees [6, 16, 10] with navigation
along the child axis. The languageCT Q is obtained by closing
patterns under conjunction and existential quantification:

Q := π | Q ∧Q | ∃x Q,

whereπ is a fully specified tree-pattern formulae. The seman-
tics is straightforward, given the semantics of patterns defined
above:Q(ā) ∧Q′(b̄) is true iff bothQ(ā) andQ′(b̄) are true, and
∃x Q(ā, x) is true iffQ(ā, c) is true for some valuec. The output
of Q on a treeT is denoted byQ(T ).

We say that a queryQ is compatible with the DTDD if every
pattern used in it is compatible withD.

The inlining of queriesQ compatible withD is given by the
following recursive algorithm.

Now we show that every queryQ from CT Q can be computed
by its inlining on the inlining of its input (assuming, of course, com-
patibility with a DTD). In other words,Requirement 3 is satisfied.

THEOREM 5.2. Given a DTDD, a treeT that conforms to it,
and a compatible queryQ, we have

Q(T ) = INLQUERY(Q,D)
`

INLDOC(T,D)
´

.
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Figure 3: Tree T ′ is an M-solution for T

Procedure INLQUERY(Q,D)

Input : A DTD D, a queryQ compatible withD.
Output: A conjunctive query over INLSCHEMA(D).

if Q = π then
return INLPATTERN(π,D)

else if Q = Q1 ∧Q2 then
return INLQUERY(Q1,D) ∧ INLQUERY(Q2,D)

else if Q = ∃xQ1 then
return ∃x INLQUERY(Q1,D)

Inlining XML schema mappings We use our transformation of
tree patterns to define the procedure INLMAP, that, given source
and target DTDsDS andDT , transforms an XML mappingM
into a relational mapping INLMAP(M,DS ,DT ) specified with a
set of source-to-target tuple generating dependencies.

Procedure INLMAP(M,DS ,DT)

Input : An XML mappingM from a source DTDDS to a
target DTDDT .

Output: A relational mapping from INLSCHEMA(DS) to
INLSCHEMA(DT ).

Set INLMAP(M,DS, DT ) := ∅
for dependencyπ(x̄) → ∃z̄π′(x̄, z̄) in M do

INLMAP(M,DS ,DT ) := INLMAP(M,DS ,DT )
S

{INLQUERY(π,DS)(x̄) → ∃z̄ INLQUERY(π′,DT )(x̄, z̄)}

end
return INLMAP(M,DS ,DT )

Correctness While one could be tempted to ask for a translation
that preserves all solutions such a result need not not hold.The rela-
tional mapping INLMAP uses null values to represent the shredded
nodes of XML trees, and thus we should only consider solutions
whose null values have not been renamed. However, relational so-
lutions are open to renaming of nulls. This intuition can be formal-
ized by means of the universal solutions, which are most general
among all solutions, and thus do not permit null renaming. Fur-
thermore, one typically materializes a universal solution, as these
solution contain all the information needed to compute certain an-
swers of conjunctive queries. This motivates the restriction of Re-
quirement 4 to universal solutions.

The theorem below shows that parts (a) and (b) ofRequirement
4 hold. Note that in part (b), relational universal solutionsare only
required to contain a shredding of an XML universal solution. This
is because relational soltions are also open to adding arbitrary tu-
ples, which need not reflect a tree structure of an XML document.

THEOREM 5.3. a) LetM = (DS ,DT ,Σ) be an XML schema
mapping andT an XML document that conforms toDS . If T ′ is
anM-universal solution forT , then its inliningINLDOC(T ′,DT )
is an INLMAP(M)-universal solution forINLDOC(T,DS).

b) Let M = (DS ,DT ,Σ) be an XML schema map-
ping, and T an XML document that conforms toDS .
Then, for everyINLMAP(M,DS ,DT )-universal solutionR for
INLDOC(T,DS) there exists anM-universal solutionT ′ such that
INLDOC(T ′,DT ) is contained inR.

Answering XML queries using relational data exchange. The
semantics of query answering in data exchange, both relational and
XML [12, 20, 8, 6, 4] is defined by means of certain answers. That
is, given a schema mappingM = (DS ,DT ,Σ), a treeT that
conforms toDS and a conjunctive tree queryQ that is compatible
with DT , the certain answers ofQ for T underM, denoted by
CERTAINM(Q,T ), is the set of tuples that belong to the evaluation
of Q over every possibleM-solution forT , that is,

T

{Q(T ′) | T ′

is anM-solution forT}. Note that our queries return sets of tuples,
so we can talk about the intersection operator.

It was shown in [6, 4] that, for conjunctive tree queries and map-
pings using nested-relational DTDs, the problem of computing cer-
tain answers for a given source treeT is solvable in polynomial
time. Thus, for the classes of mappings and queries we consider,
there is no complexity mismatch between relational and XML data
exchange. The next thorem shows that our translation is correct
with respect to query answering, i.e.,Requirement 5 is satisfied.

THEOREM 5.4. Let M = (DS ,DT ,Σ) be an XML schema
mapping. Then, for every XML treeT that satisfiesDS and
for every conjunctive tree queryQ, the certain answers ofQ for
T underM and the certain answers ofINLQUERY(Q,DT ) for
INLDOC(T,DS) over INLMAP(M,DS,DT ) coincide:

CERTAINM(Q,T ) =
CERTAININLMAP(M)(INLQUERY(Q,DT ), INLDOC(T,DS)).

This result, combined with the standard procedure of evaluating
conjunctive queries in relational data exchange, also gives us an
algorithm for computing certain answers.

COROLLARY 5.5. Under conditions of Theorem 5.4,
CERTAINM(Q,T ) can be obtained by the following procedure:

1. evaluateINLQUERY(Q,DT ) on anINLMAP(M,DS ,DT )-
universal solution forINLDOC(T,DS);

2. discard all tuples that contain null values.

6. Adding XML constraints
So far, we assumed that target schemas consist exclusively of

DTDs; now we extend them withintegrity constraints. Such exten-
sions are very common: for instance, theID andIDREF features
are somewhat similar to keys and foreign keys. Thus, it is natural to
ask whether our procedures continue to work when target schemas
are augmented with additional dependencies. Here we lookkeys
and foreign keysthat naturally extend the functionality ofID and
IDREF:



• A key@a → ℓ states that the attribute@a uniquely deter-
mines anℓ-labeled node;

• a foreign keysℓ1[@a] ⊆F K ℓ2[@b] states that the@a at-
tribute of ℓ1-nodes must occur as the@b attribute of ℓ2-
nodes, and the latter is a key forℓ2.

A natural approach is to to translate XML keys and foreign keys
into relational integrity constraints, and then verify that that our
requirements continue to be satisfied. We now show how to do
this, using our assumption that graphs of DTDs are trees.

Procedure INLCONSTR(∆,D)
Input : A DTD D, a set of keys and foreign keys∆.
Output: A set of relational keys and foreign keys.

Set INLCONSTR(∆,D) = ∅
for each key@a→ ℓ in ∆:

add to INLCONSTR(∆,D) the key@a→ Rℓ if ℓ is
marked, or the key@a→ Rµ(ℓ) if ℓ is not marked.

endfor
for each foreign keyℓ1[@a] → ℓ2[@b] in ∆

Add to INLCONSTR(∆,D) the foreign key
Rℓ1 [@a] → Rℓ2 [@b], replacingRℓi

for Rµ(ℓi) if ℓ1 or ℓ2
are not marked.

endfor
return INLCONSTR(∆,D)

Using INLCONSTR, we can extend the procedure INLMAP for
the case of XML data exchange settings that include a set oftarget
constraints∆T in a way that retains its good properties (due to
space constraints, the precise definition is in the appendix).

PROPOSITION 6.1. For XML data exchange settings that in-
clude a set∆ of XML keys and foreign keys, the extensions of pro-
cedureINLMAP and INLQUERY usingINLCONSTR(∆,D) satisfy
Requirement 4 andRequirement 5, resp.

Unlike in other results in the paper, the restriction to DTDs
whose graphs are trees is essential here: without such a restriction,
a foreign key can be translated into a disjunctive tgd, and those are
known to lead to intractability in data exchange scenarios [11].

7. Concluding Remarks
Our technique provides a relational approach to solve two ofthe

most important problems of XML data exchange settings: materi-
alizing solutions, and answering queries. The diagram below sum-
marizes this. In a pure XML setting, we can start with a document
T , and use a mappingM to find a (universal) solutionT ′

univ, over
which we can then answer a queryQ to produce certain answers.

T
M

- T ′
univ

Q
- certain answer

R

INLDOC

? INLMAP(M)
- R′

univ

INLDOC

? INLQUERY(Q)
- certain answer

w

w

w

w

w

w

w

w

w

w

Using the translation INLDOC of documents, we generate a
relational instanceR, on which the translation of the mapping
INLMAP(M) generates a universal solutionR′

univ. This solution
is a shredding of a universal XML solution, and also conformsto
the shredding of source DTD. Finally, we apply the standard tech-
nique [12] for evaluating queries in relational data exchange to the
query translation INLQUERY(Q) to produce the correct answers.
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