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Abstract

A lattice theoretic approach is developed to study the properties of functional
dependencies in relational databases. The particular attention is paid to the analysis
of the semilattice of closed sets, the lattice of all closure operations on a given set
and to a new characterization of normal form relation schemes. Relation schemes with
restrictions on functional dependencies are also studied.

1. Introduction

The relational datamodel was defined by E.F. Codd [14] in 1970, and it is still one
of the most powerful database models. In this model a relation is a matrix (table) every
row of which corresponds to a record and every column to an attribute. This model has
been widely studied. One of the most important branches in the theory of relational
databases is that dealing with the design of database schemes. This branch is based on
the theory of dependencies and constraints.

In this paper we study the functional dependencies. Informally, functional depen-
dency means that some attributes’ values can be reconstructed unambiguously by the
others. A pair consisting of a set of attributes and a set of functional dependencies on
it is called a relational database scheme, or relation scheme.

The concept of functional dependency was introduced by W.W. Armstrong [2]. It
was shown in [2] that the families of functional dependencies (or, equivalently, relation
schemes) can be described by closure operations on the attributes’ set. This represen-
tation was successfully applied to find many properties of functional dependencies.

There is another representation of relation schemes. In fact, the closed sets of
a closure form a semilattice. Hence, the semilattices with greatest elements give an
equivalent description of functional dependencies. Sometimes this representation is
very useful, for instance, in order to construct a relation representing a given relation
scheme (so-called Armstrong relation). However the representation of relation schemes
by semilattices is not developed well enough in contrast to that by closure operations.
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The main purpose of this paper is to develop a lattice point of view for the study
of the relation schemes. The rest of the paper is organized in six parts.

In the second section some necessary definitions and facts about relational databases
and lattice theory are given.

Section 3 deals with the semilattice of closed sets. It is shown how to construct the
semilattice if a relation scheme is given. This construction is applied to find the lattice
theoretic form of such concepts as cover, FD-implication, nonredundancy etc. It is also
used to estimate the number of non-equivalent relation schemes.

It was proposed in [11] to study the poset of all closures on an attributes’ set as a
model of changing databases. In the section 4 we show that this poset is in fact a lattice
(moreover, the lattice of subsemilattices of a semilattice). The properties of this lattice
are used to establish the new properties of relation schemes. For instance, it is shown
how to implement the lattice operations for closures and how to construct arbitrary
relation schemes from the simple ones.

Section 5 deals with a lattice theoretic characterization of normal form relation
schemes. In fact we characterize the semilattices of closed sets if a relation scheme
is in the second, third or Boyce-Codd normal form [44]. This characterization has
practical applications. It is well-known that the recognizing the third and Boyce-Codd
normal forms are NP-complete problems for relation schemes [8,32]. More precisely, it
is NP-complete to find out if a proper subset of attributes’ set is in Boyce-Codd normal
form. However, the new characterization being used, it is easy to construct algorithms
recognizing these normal forms in polynomial time if we are given a relation instead of
a relation scheme. Besides, we give a new characterization of relation schemes which
are uniquely determined by their candidate keys.

In the section 6 we study the relation schemes with restrictions on functional de-
pendencies. These restrictions are of two types: either the size of lefthand sides of
functional dependencies is limited or a relation scheme has to provide the closure be-
long to a given class of closures. It is shown that relation schemes with restrictions
have some nice properties. For instance, for some schemes it is easy to find a compact
representation of closures or to construct an Armstrong relation with small number of
tuples. Some problems which are generally NP-complete can be solved in polynomial
time for special schemes. Sometimes the structure of candidate keys can be described
very clearly. Moreover, the database concepts being studied for known types of closures,
we obtain some new results about these closures and related mathematical objects.

In the last section we briefly recall the main results of the paper and outline some
ideas of the further development.

The extended abstract of this paper was published in [19].

2. Basic definitions

In this section we present briefly the main concepts of the relational design theory
which will be needed in sequel. The main concepts of a relation [14] and a functional
dependency [2] are given. The other concepts and facts given in this section can be
found in [8-10, 19-22, 25, 43-47, 50, 51].

Let U be a finite set of attributes (e.g. name, age etc.). The elements of U will
be denoted by a,b,c,...z,y,z or, if an ordering on U is needed, by ai,...a,. A map
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dom associates with each a € U its domain dom(a). A relation R over U is a subset of
Cartesian product [],. , dom(a).
We can think of a relation R over U as being a set of tuples : R = {h1,...,hAm},

h; :U — Ugeudom(a), hi(a) € dom(a), i =1,...,m.

A functional dependency (FD for short) is an expression of form X — Y, where
X,Y C U. We say that FD X — Y holds for a relation R = {h1,...,An} (or R
obeys X — Y) if hij(a) = hj(a) for all @ € X implies hij(a) = hj(a) for all a € Y,
Vhi,h; € Rt # j.

Let Fr be a family of all FDs that hold for R.

Then F = Fg satisfies
(F1) X - X € F;

(F2) (X =Y e F,Y - ZcF)= (X - Z € F);
(F3) (X = Ye FFXCV,WCY)= (V-WeF),
(F4)) (X Y e F,VsWecF)=— (XUV-YUWE€F).

A family of FDs satisfying (F1) — (F4) is called a full family. Fg is a full family
and for every full family F there is a relation R with F' = Fpg.

Given a family F of FDs, there is unique minimal full family F* that contains F.
In fact, F™ consists of all FDs that can be derived from FDs of F by using (F1) — (F4).

A family G of FDs is called a cover of F if GT = F™.

A pair < U, F > consisting of an attributes’ set &/ and a family F' of FDs on U is
called a relation scheme. A relation R over U is called an instance of < U, F > if R
obeys F and does not obeys any FD not from FT. Clearly, R is an instance of < U, F >
iff it is an instance of < U,G > for G a cover of F.

Further we will not distinguish an element a € ¢ and one-element set {a}. We will
write simply a instead of {a}.

Let F be a family of FDs. Define the mapping Cr : P(U) — P(U), where P(U) is
the set of all subsets of U, as follows:

Cr(X)={ac X|X wac F'},X CU.

Cr thus constructed satisfies the properties:
(Cl) X C Cp(X);
(C2) X CY = Cr(X) CCr(Y),
(C3) Cr(Cr(X)) = Cr(X),
i.e. Cp is a closure operation closure on U (or simply closure for short). Conversely,
given a closure C on U, there is a family F' of FDs with C = CF. Clearly, Cr = Cg iff
G is a cover of F'.
Define Sp = {X CU|Cr(X) = X}. Sp satisfies the properties:
(Sl) U e Sr;
(S2) X, Y € Sp = X NY € Sp,
i.e. Sp is a meet-semilattice (SL for short) with the greatest element. Conversely, if S
satisfies (S1) — (52), there is F' such that S = Sp.
An element X € SF is called (meet)-irreducible if X =Y NZ,and Y,Z € Sp imply
Y=XorZ=X.
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The set of all irreducible elements is denoted by M (SF). Every element of Sg is an
intersection of elements from M(SF).

Thus, closures and SLs satisfying (S51) are the models of full families of FDs, that
is, of families of FDs holding for relations over U.

Let C be a closure on U. A subset X C U is called closed if C(X) = X. The family of
closed sets is denoted S¢. If S'is a SL containing U, define Cs(X) = N(Y|X CY,Y € 5).
Then C — S¢ and § — Cg are mutually inverse one-to-one correspondences between
closures on &/ and SLs containing U.

If we are given a relation scheme < U, F > (or, equivalently, if we are given a
closure or a SL), a set K C U is called a key if K — U € F* (Cp(K) = U). Minimal
keys are called candidate keys. The candidate keys of a relation R are the candidate
keys of <U,Fr > .

The candidate keys obviously form an antichain. Conversely, given an antichain
of subsets of U, there is a relation scheme (and, of course, a relation) whose candidate
keys are exactly the elements of this antichain.

Maximal non-key is called an antikey. Maximal element of a SL Sp — {{} is called
its coatom. The antikeys of < U, F' > are exactly the coatoms of Sr.

An attribute a € U is prime if for some candidate key K of < U, F > one hasa € K,
and nonprime otherwise. The sets of prime and nonprime attributes are denoted by 4,
and U, respectively (U,(F') and U,(F) if F is not understood). The following holds:
U, (F) is the intersection of all antikeys.

A relation scheme < U, F > is in

1) second normal form (2NF for short) if for every candidate key K and a € U,,

K' — a ¢ F* for no proper subset K' C K;

2) third normal form (3NF for short) if X — a € F¥,a € Up,a ¢ X imply that X is

a key;

3) Boyce-Codd normal form (BCNF for short) if X — a € F™,a ¢ X imply that X
is a key.

Now recall some basic facts about lattices and SLs. A SL is an algebra < §,- >
with one binary idempotent commutative associative operation. A partial order on S is
defined as follows: z >y iff z -y = y. §' C S is called a subsemilattice (SSL for short)
of §if S’ is closed under - . A finite SL is free if it is isomorphic to < P(U) — {U},N >
for some U.

An algebra < £,V, A > with two semilattice operations V and A satisfying z V (z A
y)=z,z A (z Vy)==zis called a lattice. V and A sometimes are called supremum and
infimum. A partial order on L is defined as follows: z < y <= zVy =y <= z Ay = z.
The lattices are isomorphic as algebras iff they are isomorphic as posets.

A lattice is called distributive iff 2V (yAz) = (zVy)A(zVz) for all z,y, 2z € L. Finite
distributive lattices and only they can be represented as sublattices of < P(U),U,N >,
where U is finite.

An element z € L is said to be join- (meet-) irreducible if ¢ =y V z (z = y A 2)
implies # = y or # = z. The sets of join- (meet) irreducible elements are denoted by
J(L) and M(L).

The last concept to be used is that of an interval. If XY C U and X C Y, then
(X, Y|={ZCU| X CZand ZCY}.



Finally, recall the main abbreviations. FD stands for functional dependency, SL for
semilattice, SSL for subsemilattice, 2N F', 3N F, BC N F for the second, third and Boyce-

Codd normal forms respectively. Remind also that all the sets are finite throughout the
paper.

3. The semilattice of closed sets.

In this section we find the formula that gives us an immediate representation of the
SL of closed sets by FDs. As it was mentioned in the previous section, closure operators
and SLs give the equivalent descriptions of the families of FDs. However, if we are given
a family of FDs, the closure operator corresponding to this family can be constructed.
That is, given a family of FDs and a set X C U, we can find the closure of X (note
that it can be done in polynomial time [8]). On the other hand, to find the SL of closed
sets we must check up all the sets in order to find out if they are closed or not. Thus
the closure is used as an intermediate step to construct SL. In order to avoid this step
we find the direct representation of SL by FDs.

This representation will show us that the use of lattice theoretic concepts is not
poorer than that of closure operators in order to describe FDs on a given set of at-
tributes. For instance, we will give the structural representation of FD implication and
some problems related to covers of FDs. It also will be shown how to find a relation
representing given SL.

Making use of the semilattice terminology also allows us to transfer some results
of lattice theory to relational databases. E.g., some different algebras has been studied
on the set of SSLs of a SL, cf. [41], [49]. The results obtained in these works will be
applied in the next section. The other idea is to consider some known classes of lattices
and SLs in order to study special families of FDs. A part of this program of research
will be carried out in the section 6.

Now we are ready to formulate the main result of this section.

Theorem 3.1. Let F be a family of FDs on U and Sg the SL of closed subsets of
U. Then

(3.1) Sr=PU)- |J [X,U-al

Proof. First prove that

(3.2) Sr=PU)- |J X,uU-ad.
X—oYeFt
a€CY -X
Denote | J([X, U4 —a]|X — Y € Fia € Y — X) by Dp. Let Z € Dg+. Then
Ze[X,U—a|for X »ac Ftand Z +ac Ft,ie. Z & Sp.If Z ¢ Sp, there is
nontrivial FD Z — a € F* and Z € [Z,U — a] C Dp+. This proves (3.2).
Now we must prove D = Dp+. Because of FF C FT, Dp C Dp4+ is obvious. In
order to prove Dp+ C DF we must show that for F} obtained from F by a single FD
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being derived according to one of the rules (F'1)—(F4) it holds: D, C Dp.Let X —» Y
be this single FD and a € Y — X. If it is obtained by (F'1), the inclusion is evident.
Suppose it is obtained by (F'2). Then for a set Z we have X - Z € Fand Z - Y € F.
If a € Z then [ X,Ud —a] C Dp.If a ¢ Z, suppose V € [X,U — a]. Suppose there is
beZ—V.ThenV € [X,U —bCDp.If ZCV,then V € [Z,U —a] C Dp. Hence in
all the cases V € Dp, and [X,U — a] C Dp.

Let X — Y be obtained by (F3),ie. V- W € Fand V C X,Y C W. Then
aeW —Vand [X,U —a| C[V,U—a] C Dp.

Finally, if X — Y is obtained by (F4),ie. X = X;UX,,Y =Y1UY2, X; - Y, € F,
1 =1,2, suppose a € Y;. Then [X,U —a] C [X1,U —a] C Dp.

Hence Dp, C Dp and since (F1) — (F4) is sound and complete system for FD
implication, Dp+ C Dp. This inclusion together with (3.2) proves (3.1).

Remark. Formula (3.1) is the special case of the interval representation of SSLs
of distributive SLs which was established first for Boolean in [36] and afterwards for
arbitrary distributive SLs in [40, 41].

Now we are going to give the structural representation of such concepts as cover,
FD implication, e.t.c.

Corollary 3.2. Let F and G be two families of FDs on U. Then F is a cover of
G iff

(3.3) U xu-a= (J XuU-ad.
X—->YcF X—=YeG
a€Y —-X a€Y—X

Remind that a family of FDs is called open [26] if every FD has one-element right-
hand part. A family F of FDs is called nonredundant [26, 44] if for any FD f € F one

has f ¢ (F — f)*.
Corollary 3.3. An open family F of FDs is nonredundant iff

(3.4) X,Uu-a ¢ |J MU-BVYX—acF

Y —»bEF
Y —=bAX —a

A single FD f is implied by a family of FDs F(F |= f) if f € Ft (cf. [26, 44, 47,
51)).

Corollary 3.4. F = X — Y holds iff

(3.5) U xu-dc (J [Zu-b.
a€CY -X Z—-WEeEF
bew -7

Notice that (3.3) is a weak form of (3.5). The formula (3.3) gives rise to an algorithm
for checking up if two SLs are identical or not. In fact, it was proved in [36, 41] that
each SL of sets can be represented as



S = P(U) — UX,U — d]

for some collection of pairs (X,a). Then, given two SLs, construct two families of FDs
consisting of FDs X — a for representing collections of pairs. Then the SLs coincide iff
one family of FDs is a cover of the other according to (3.3). Note also that, given two
families F; and F5, we can find out if F1+ = Frj in polynomial time in size of F; U F3
[8].

Two following corollaries may be valuable for practical purposes because they both
establish concrete covers for full families of FDs.

Remind that a FD X — a is called primitive and mazimal (cf. [10]) for a full family
Ftif X wac F*,a¢ X and for each proper subset X' C X we have X' - a ¢ F™.

Corollary 3.5. For a full family F' the subfamily of primitive mazimal FDs is a
cover of F't.

Proof follows immediately from (3.1).

In [11] it was proposed to describe a family F' of FDs by a collection of sets {Hj|j €
J} such that Sg U {H;} is again a SL for all j € J and no other set H € P(U) — SF
satisfies this condition. It was proved that {H;|j € J} unambiguously determines the
closure and SL. Now we show how to construct the interval representation of a SL by
using the family of H}s.

Proposition 3.6. Let F be a family of FDs. Suppose {H;|j € J} is constructed
as above. Then

(3.6) Sr = PU) - U([H;,U — al|j € J,a € Cp(H;) — Hj).

Proof. Let X € [H;,U —a] for j € J,a € Cp(H;) — Hj. Thena € Cp(X) — X
and X ¢ Sp. Conversely, if X belongs to the right-hand side of (3.6), suppose X ¢ SF.
According to [8, th.1] for some j € J : H; C X and Cp(H;) € X, i.e. there is
a € Cp(Hj;) — Hj such that X € [H;,U — a]. Proposition is proved.

The sets Hj,j € J, were called quasiclosed in [52]. A quasiclosed set Hj is called
pseudoclosed if there is no H; C H; with Cr(H;) = Cr(H;).
It follows immediately from (3.1) and (3.6)

Corollary 3.7. Let F be a family of FDs and {H;|j € J'} the family of pseudo-
closed sets. Then {H; — Cp(Hj)|7 € J'} is a cover of F.

In fact, the cover constructed above is a minimum one [52].

In the first part of the section we have shown that the lattice theoretic language
is equivalent to that of closures in order to describe FDs, and that it is rather clear.
Moreover, the use of SLs allows us to construct a relation over U representing a given
family F' of FDs (so-called Armstrong relation for F' [9,27,45]).

Armstrong relations are very useful for practical purposes as they reveal concealed
(to database designer) FDs. Now we remind the main idea of construction of Armstrong
relations because it will be used further.
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Let M(SF) be the set of irreducible elements of Sg. (It was called GEN(F) in [9].
In [46] M(SF) was represented as a collection of so-called M AX-sets, which express, in
fact, the concept of copoints (cf. [25]) for FD terminology).

The earliest example of Armstrong relation for F' was found in [16] and it contained
2-|M(SF)| tuples. Afterwards, the lower and upper bounds for the size of Armstrong
relation were found in [9] as [(1 4+ /1 + 8|M(SF)|)/2] + 1 and |M(SF)|, where [z]
stands for the greatest integer less than z. These bounds show that the number of
tuples of an Armstrong relation representing F' is polynomial in || iff so is |[M(SF)|.

Mannila and Raiha [45] presented an algorithm to construct an Armstrong relation.

Suppose |M(Sr)| = {Xo,..., Xk}, where Xo = U. With each X; associate the tuple h;

0, CLEX.L',
hi(“):{i, ad X;.

Then R = {ho,...,hr} is an Armstrong relation for F. Notice that in general the
size of R is exponential because so is the size of M(SF). The example of exponential
M(SF) was given in [9] and the upper bound was established in [34]:

n

)1 o)

We finish this section by the calculation of lower bound for the number of full
families of FDs on an n-element set which do not contain FDs of type § — X, X # 0.
Denote the number of such families by a(n). Clearly, a(n) is the number of SLs on
U, |U| = n, containing {0}.

The following was proved in [12]: a(n) > 9mi=1),

Consider (¥) = {X CU||X| = k} and the SLs S4 = P(U) — U{[X,U — alla € U,
XeAc (D

Clearly, S4 is a SL and A; # A, implies S4, # Sa,.

Let % = P(U) — U{[X,U —a]|X € AC (Y.}

Then S% is a SL and for each a € U A; # A, implies §% # S5 . The above

constructions immediately lead us to

[M(SF)| < (

Proposition 3.8. For eachn > 3

afn) > 28 4 0 3205,

This lower bound is more precise then one given in [12]. However, it is still unknown

if log,a(n) ~ ((n721)‘

4. The lattice of subsemilattices as a model of changing databases.

Usually databases are constantly changing during their lives. For instance, each
update such as insertion, deletion etc. leads to a new state of a database, and, of course,
to a new family of FDs. Thus, it is quite natural to describe how the families of FDs can
change. First the efforts have been carried out in this direction in the paper [11], where
the partially ordered set (poset for short) of all closure operators on a fixed set was
studied in some detail. In this section we continue the study of this model of changing



databases which is based on the fact the poset of closures is a lattice isomorphic to the
lattice of SSLs of a free SL.

Before giving the formal results we are going to set forth some arguments why
the study of this model seems to be useful for database design theory. There are many
algorithms related to database design theory which cannot be solved in polynomial time,
for instance, testing third and Boyce-Codd normal forms [8, 32], prime attribute and
key cardinality problems [20, 23, 43|, problem of G. Gottlob (that is, given a relation
scheme < U, F > and a relation over U, decide whether Fg C F* [27]) and others.
However, as it will be shown in section 6, some of these problems can be solved in
polynomial time if a scheme satisfies some additional properties (e.g. if all FDs are
unary, testing normal forms can be done in polynomial time in |U]| , see [46]). Some
additional conditions being added, the corresponding closures and SLs have to belong
to some special classes. Thus, if polynomiality of some algorithms is needed, we can
propose to a database designer to choose families of FDs corresponding to a given class.
Moreover, if it is not possible, we can approximate a given scheme in some of ”good”
classes (for normal forms it has been done in [18]). However, in order to solve these
problems we must know the structure of the set of all schemes (closures, SLs).

To give the other reason, notice that in databases theory the mathematical concepts
are used in the main in order to describe some database problems. Here we propose
another approach. The poset of closures being well-studied algebraic object, we can
interpret its properties in the context of database problems and get some new properties
and concepts related to FDs in relational databases.

To begin with, we establish the algebraic characterization of poset of closures
(schemes, SLs). Let |U/| = n. Suppose C1,C> are two closures on Y. According to
[11], introduce the partial order on the set of all closures on U as follows:

(4.1) C1 > Cy <= VYX CU: C1(X) C Cy(X)
There are two equivalent descriptions of this order.
Lemma 4.1 [11]. C; > C, iff Sc, C S,

Lemma 4.2 [19]. C; > C, iff C1 0 Cy = Ca.

Denote the poset of closures on U by Cl,,. Consider the SL < P(U) — {U},N > .
According to [19, 28] it is isomorphic to the free SL with n generators denoted by F(n),
and the mapping X — z;, -...-2;,, where  — X = {a;,,...,a;, } and z1,..., z, are the
generators of F(n), is the isomorphism.

Let S be an arbitrary finite SL. Then the set Sub S of SSLs of S is a lattice in
which the inf and sup operations can be expressed as follows (cf. [41, 49]):

(4.2) S1ASy =8NS,

(43) 51 V 52 = 51 U 52 U {51 . 52|51 € 51,52 € 52}
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Now we are ready to formulate the characterization theorem.
Theorem 4.3. The poset Cl,, of closures on U is a lattice isomorphic to SubF(n).

Proof. According to the above remark, we have to prove that Cl,, is isomorphic
to Sub < P(U) — {U},N > . Consider the mapping ¢ : Cl,, — Sub < P(U) — {U},N >:
©(C) = S¢ — {U}. According to lemma 4.1 C; < C, iff p(C1) C ¢(C2). Moreover, ¢
is one-to-one because so is C — S¢ and each S¢ contains {U/}. Hence, ¢ is an order
isomorphism and, therefore, a lattice isomorphism. Q.E.D.

We are going now to calculate the operations A and V for Cl,, and also to find join-
and meet-irreducible elements.

Let 01,02 c Cl,,. Let Clz(X) = Cl(X) U Cz(X), Clzz(X) = Clz(Clz(X)), ceny
CEFH(X) = C15(CH(X)) for all X C U.

Proposition 4.4. For every X CU the following hold:

(45) 01\/02(X) :Cl(X)ﬂ02(X),

(4.6) C1 A Cy(X) = e ¥l x).

Proof. Let § = S¢, V S¢,. According to theorem 4.3 C; V 03 = Cgs and (4.5)
follows immediately from (4.3).

Let S = S¢, A Sc, = Sc;, N Sc, by (4.2). Then according to theorem 4.3, C; A
02 == Cs, ie.

(47) Ci A Cz(X) = ﬂ(Y|X C Y, Y ¢ Scl, Y ¢ 502).

Let Z C C1 A Co(X). Since C1 A Co(X) € Sc, (see (4.7)), C1(Z) C C1(C1 A
C2(X)) = C1 A C2(X). Analogously Cy(Z) C €1 A Co(X). Hence C1a C C1 A Co(X).
Because of X C C; A Co(X) we have CF,(X) C C; A Co(X) for all k.

Because of the finiteness of U, CE™(X) = CF,(X) for some k < n — |X|. Then
CF,(X) C C; A C2(X) and simultaneously C;(CF,(X)) U Cy(CF, (X)) = CE(X), ie.
CE(X) € S, N So,. It means CF(X) = C; A Ca(X). Since C2(X) = CL,(X) for
m >k and k <n — |X]|, (4.6) is proved.

Corollary 4.5. C; VU = C1 NCy;C1 ACy = CT,.

Before finding irreducible elements, let us give the interpretation of formulas (4.5)
and (4.6). Formula (4.5) states that if we are given two families F; and F5 of FDs there
exists unique maximal full family of FDs that is contained in both F;' and F;; in fact,
FrnFt.

Moreover, there exists unique minimal full family that contains both F1+ and F; ;
in fact, (F; U F»)* and the closure corresponding to this family can be calculated by
(4.6).
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However, we can find more clear formula for C; V C; if the families F; and Fy of
FDs are used to represent the closures. In fact, we find a cover of (F; U F2)+ if F; and
F, are given.

Remind that sometimes a family F' is treated as a binary relation on P(U) :
(X,Y) e Fif X - Y € F, cf. [51]. Suppose without loss of generality that F' is
supplemented by all the pairs (X, X),X C U, ie. F is reflexive.

Proposition 4.6. Let C; = Cp,, Co = CF, and the binary relations Fy and F,
are reflexive. Let F' = Fy o Iy be superposition of binary relations Fy and F>. Then
C1 ANCy = CF, i.e. F is a cover of (F1 U Fy)*.

Proof. According to theorem 3.1,

Si=8k =So;=PU)- |J [X,U-a],i=1,2
X—>YcEF;
a€CY-X
Family F' of FDs contains such FDs X — Y that for some Z C U we have X —
Z € Fy and Z — Y € F,. Because of reflexivity, F; U 5 C F. It shows S C 51 N S,.
Suppose V ¢ Sp. Then forsome X - Y € Fanda € Y —X we have V € [ X,/ —a].
fFX Y eF,thenV&5;,i=121fX Y ¢dF,i=1,2, then for some Z we have
X—>ZcFiandZ Y cF,.lfac ZthenV € [X,U—a] CP(U)—51.lfa & Z, there
are two cases. Either V O Z and V € [Z,U —a] C P(U) — 5>, or thereisbe Z —V, and
thenbe Z—X,ie. V € [X,U—b C P(U)— S1. Hence, V € (P(U) — S1) U(P(U) — S2)
and S1 NSy C Sp. S1 NSy = Sp having been proved, C; A Cy = CF is valid by (4.3)
and (4.7).

Thus, in order to find C; A Cy (or (Fy U F3)") we must find the superposition
Fy o F5. Notice that though the superposition is not commutative, both F; o F5 and
F o Fy are the covers of (F; U F3)™T.

Propositions 4.4 and 4.6 show the importance of finding irreducible elements. Re-
ally, if Fi,...,F, represent the join-irreducible elements of Cl, (i.e. {Cr,,...,CF,}
= J(C1,)) then each full family of FDs can be represented as nieIg{l,...,p} F;r.

If Fy,...,F, represent the meet-irreducible elements of Cl,, (i.e. {Cp,,...,Cr.}

= M(Cl,)) and each F; contains all FDs X — X, then each full family has a cover
which is the superposition of some F;s, i.e. for every full family F' there is Fy such that
Fo= oircq,.F; and Fy” = F.
Let X be a subset of ¢. Define Cx as follows:

(4.8) CX(Y) — {u}fa § é_ §a

Let X C U and a € Y. Define C% as follows:

(19) Ca(¥) = {YUa, ifY € [X,U — al,

Y, otherwise.
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(If a € X, [X,U — a] is empty).

Proposition 4.7. Join-irreducible elements of Cl, are exactly the closures Cx
(4.8) and meet-irreducible elements are exactly the closures C% (4.9).

Proof. Clearly, Sc, = {X,U} and Sce = P(U) — [X,U — al]. Hence, for isomor-
phism ¢ from the proof of theorem 4.1 we have ¢(Cx) = {X} and ¢(C%) = P(U) —
([X,U —a]U{U}). Since the single elements are exactly the join-irreducible elements of
Sub < P(U) — {U},N > and the SLs of type P(U) — ({U} U [X,U — a]) are exactly the
meet-irreducible elements of Sub < P(U) — {U},N > (see [40, 41]), the corresponding
closures are join- and meet-irreducible elements of Cl,.

We do not study in detail the lattice theoretic properties of Cl,, here. Some of
them are common properties of the lattices of SSLs and can be found in [41]. Other
properties are the properties of so-called meet-distributive lattices and can be found in
[24]. Here we only recall some properties given in [19].

The dual lattice CI}, is semimodular. Hence, Cl,, has a rank function and r(C) =
|Sc| — 1 (cf. [11]). This rank function satisfies the inequalities »(C1) + 7(C2) < r(C; V
Cz) + 'I"(Cl N Cz) S 'I"(Cl) + 'I"(Cz) + ('I"(Cl) — 'I"(Cl N Cz)) ('I"(Cz) — 'I"(Cl N Cz)) AlSO,
r(C) is the number of join-irreducible elements under C'. Every semimodular sublattice
of Cl, is distributive. If an ideal of Cl,, is a distributive sublattice of Cl,, then it is
Boolean.

Finishing this section, we characterize the subsets of Cl,, corresponding to the
following restriction

(4.10) FCF,

where F' is a fixed family of FDs. Let Cl,(F) = {Cp'|F C F'}. Suppose C = Cp.
Then Cpr < C. Conversely, if C' < C, then {X — Y|Y C C'(X)} contains F and
C' € Cl,(F). Hence, Cl,(F) = {C'|C" < C}, i.e.Cl,(F) is the principal ideal (C] in
Cl,.

Proposition 4.8. Let F be a family of FDs. Then Cl,(F) is a lattice isomorphic
to Sub < Sp — {U},N > . Moreover, for arbitrary finite SL S there is a number n, an
n-element set U and a family F of FDs on U such that Cl,(F') is isomorphic to Sub S.

Proof. The first part follows immediately from the proof of theorem 4.1. To
prove the second part, consider an arbitrary finite SL S. Suppose without loss of
generality that S is meet-SL (because SubS ~ SubS*). Then S can be embedded in
< P(U)—{U},n > [1,28]. Suppose F' = {X = Y|Y C Csyquy(X)}. Then Sp = SU{U}
and Cl,(F) ~ SubS. Proposition is proved.

Remark. The direct product decompositions of the lattices Cl,(F) were com-
pletely characterized in [19]. In particular, the lattices Cl,, are directly indecomposable.
5. A lattice theoretic characterization of normal form relation schemes.

In this section we study the properties of a SL SF if a relation scheme < U, F >
is in second, third or Boyce-Codd normal form. The subsets of Cl,, corresponding to
these normal forms will be investigated in the next section.
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The main idea of normalization was proposed by E.F. Codd. That is, to construct
the relations with ”good” families of FDs if we are given a relation R over U such that R
is a join of "good” relations which are in fact projections onto some attributes’ sets, see
[44]. Here we study only the most widely used second, third and Boyce-Codd normal
forms (2NF, 3NF and BCNF in sequel) which were introduced in the early 70th.
Afterwards these normal forms have been studied both theoretically and practically (cf.
[8,9,13,32,44,45,46,47]).

There are some stimuli to study the lattice properties of normal forms. First,
presenting a lattice theoretic characterization of Sg if F' is in 2NF,3NF or BCNF,
we continue the line of research that has been proposed in the section 3. That is, to
formulate the main results about FDs using semilattice terminology. In section 3 we
generally described S and studied covers, FD implication and some related problems.
Here we use the semilattice representation in order to give a new characterization of
normal form relation schemes.

The other result is more close to practical purposes and has to do with the problem
of complexity. It was proved that the problems SNFTEST of testing third normal
form and BOCNFTEST of testing if a proper subset X C U is in Boyce-Codd normal
form are N P-complete [8,32]. One related problem is N P-complete too. It is the prime
attribute problem, i.e. given an attribute a € U, decide whether a is prime or not (recall
that a is prime if it belongs to a candidate key) [44]. Using the representation of the
SL of closed sets by means of an equality set of a relation [22, 23], Demetrovics and
Thi proved that the prime attribute problem can be solved in polynomial time if we are
given a relation instead of a relation scheme [20,23]. Here we prove the analogous result
for normal forms. That is, SNFTEST and BCNFTEST can be done in polynomial
time if we are given a relation over Y. The lattice characterization of normal forms
plays an essential role in the construction of these polynomial algorithms.

We use the lattice characterization in order to give a new solution of the problem if
the candidate keys determine closure uniquely [11]. Also, we show that the problem of
G. Gottlob [27] (to find out if a relation R is an Armstrong relation of F,i.e. Fg = F)
can be solved in polynomial time if a scheme is known to be in BC N F and the number of
candidate keys or tuples of a relation is bounded by a constant. Note that for arbitrary
schemes it is unknown if this problem has polynomial complexity.

Now we are going to give the characterization of normal forms. To do this, we need
one definition. A set X € Sp is called prime if X = Cp(Y) where Y is a subset of a
candidate key.

Remind that the sets Uy,(F') of prime attributes and U, (F') of nonprime ones can be
obtained as follows: U, (F) is the intersection of all coatoms of Sg, Uy(F) = U — Un(F)
[20,23].

Theorem 5.1. Let <U,F > be a relation scheme. Then <U,F > is in 1) 2NF
2) 3NF 3) BONF iff
1) For every prime X € Sp, X #U : [X NUp(F), X] C SF;
2) For every X € Sp, X #U : [ X NUp(F),X] C SF;
3) For every X € Sp, X #U : [0,X] C SF.

Proof. 1) Let [X NUp, X] C SF for all prime X € Sg, X # U (we will write U,
instead of U,(F') if F is understood). Suppose < U, F > is not in 2NF, i.e. K' — a €
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F*, where K' C K, K is a candidate key and a € U,. Let X = Cp(K'). Clearly, X
is prime and X # Y. Sincea € X anda ¢ K', X —a - a € F" and X —a ¢ SF.
Simultaneously X —a € [X NUp, X] C SF, a contradiction. Hence, <Y, F > isin 2N F.

Suppose < U, F > is in 2NF and X = Cp(Y) is prime, Y C K, K is a candidate
key, X # U.Let a € U,. Then a ¢ Y. If X —a - a € Ft then Y - a € F*, a
contradiction. Hence X —a € SF. Since S is a SL, [X —Uy,, X| = [X NUp, X]| C SF.
Case 1 is proved.

2) Let < U,F > bein 3NF, X € Sp, X # U, a € Uyp. Suppose X —a ¢ SF.
Since X € Sp, Cr(X —a) = X and X —a — @ € F'. Hence, X — U € FT and
X = Cr(X) = U, a contradiction. It shows X — a € S and therefore [X — U, X] =
(X NUp, X] C SF.

Conversely, let [X NU,, X] C Spforall X € Sp,X #U.Let X —a € F,a €Up,,
a ¢ X. We must prove Cp(X) =U. Suppose Cp(X) =Y #U. Wehave X CY —-a CY
and Cp(Y —a) =Y. But Y NU, CY —a CY and Y —a € SF, a contradiction. Hence
Y=Uand <U,F >isin 3NF.

3) Let <U,F >bein BOCNF. Suppose X € Sp,X #U,a € X.If X —a ¢ S then
X—-—a—acFtand X —a—U € F',ie. X =Cp(X) =U. Therefore, X —a € Sp
for all @ € X and [0, X] C S because S is a SL.

Conversely, let [0, X] C Sp for all X € Sp,X # U. Suppose X —a € F*,a ¢ X.
If Cr(X)=Y #U, then X € [0,Y] C Sp and a € X, a contradiction. Hence ¥ = U
and X — U € F*. Thus, <U,F > is in BOCNF. Theorem is completely proved.

The result about BCNF can be expressed in a more clear form.

Corollary 5.2. Let < U,F > be a relation scheme and X1,...,X; its antikeys.
Then <U,F > is in BONF iff Sp = U;_,[0, X;] U {U}.

Of course, this corollary is equivalent to the following one.

Corollary 5.3. [5]. Let <U,F > be a relation scheme and K1,...,K, its candi-
date keys. Then <U,F > is in BONF iff P(U) — Sr = U._,[K:, U] — {U}.

It is well-known that the problems SNFTEST and BCNFTEST are N P-complete
if we are given a relation scheme [8,32]. Now we are going to prove that these problems
can be solved in polynomial time if we are given a relation instead of a relation scheme.

Algorithm 5.4.
Input: a relation R = {h1,...,hn} over U;
Output: 3NF(R) € {0,1}.
Step 1. Construct the equality set Eg = {h;j|1 <i < j <m}, h;; = {a € U|hi(a) = hj(a)}.
Step 2. Find E}; as the family of maximal elements of Eg — {U}.
Step 3. Find U, =U — N(X|X € ER).
Step 4. Put

1, if for all X € Ep,a ¢ Up,a ¢ X we have Cr(X —a) = X — a;

0, otherwise.

SNF(R) = {

Step 5. Stop.
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It is almost obvious that this algorithm requires time 0(m®*n?). According to [21,22],
M(Sgr) C ErU{U} C Sg and E; is the set of antikeys of R, and U, = U,(R) by [20,23].
Hence, 3NF(R) = 1 iff Ris in 3N F according to theorem 5.1 (2). Thus, we have

Theorem 5.5.There exists an algorithm that given a relation R over U, decides if
R is in 3NF or not in polynomial time in the number of attributes and tuples of R.

Consider the following algorithm.

Algorithm 5.6.
Input: a relation R = {hi,...,hn} over U; a proper subset X C U;
Output: BOCNF(R,X) € {0,1}.
Step 1. Find the projection R' of R onto X.
Step 2. Construct the equality set Er = {h;;|1 < i < j < n}, hi; = {a € X|hi(a) =
hj(a)}.
Step 8. Find E}, as the family of maximal elements of Eg — {X}.
Step 4.

1, if for every Y € Ef,,and a € Y we have Cr/(Y —a) =Y — q;

0, otherwise.

BCNF(R,X) = {

Step 4. Stop.
Again, this algorithm requires time 0(m®*n?). It follows immediately from corollary

5.2 that BONF(R) =1 iff R is in BCNF. Therefore, we have

Theorem 5.7. There is an algorithm that given a relation R over U and X C U,
decides if the projection R|x is in BCNF in polynomzial time in the number of attributes
and tuples of R.

In the rest of this section we give two applications of the characterization of BC N F.

It was proved in [15] that the family of candidate keys of a relation (scheme) is an
antichain (sometimes it is called a Sperner family), and for every antichain there exists
a scheme the candidate keys of which are exactly the elements of this antichain. The
following problem was formulated in [11]: find a condition which guarantees that the
antichain of candidate keys uniquely determines the scheme. In other words, when does
a family of candidate keys determine a closure (or SL) uniquely? In this case we say
that a family of candidate keys satisfies the unigqueness condition. We also say that a
scheme satisfies the uniqueness condition if its candidate keys satisfy one. That means,
a scheme can be unambiguously reconstructed by its keys.

Theorem 5.8. A scheme < U, F > satisfies the uniqueness condition iff it is in
BCNF and for every X € Sp,X #U and a € X there is b ¢ X such that (X —a) U
bec Sp.

Proof. According to [11], < U, F > satisfies the uniqueness condition iff for every
X lying under an antikey, X is an intersection of antikeys.

In this case < U, F' > isin BCNF by corollary 5.2. Let X € Sp,X ¢ U. Then X —a
is an intersection of antikeys and since < U, F > is in BOCNF we have (X —a)Ub € Sp
for some b ¢ X.
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Conversely, let < U, F > satisfy the conditions of theorem. Suppose X is an
antikey and @ € X. Then (X —a)Ub € Sp for some b ¢ X. Since (X —a)Ub CY,
Y is an antikey, we have X — a = X NY. Therefore, all the sets of form X — a can be
represented as X NY, X, Y antikeys. It shows that all the elements of Sr except {{} are
the intersections of antikeys, i.e. < U, F > satisfies the uniqueness condition. Theorem
is proved.

Notice that the corollary 5.2. states exactly that < U, F > isin BCNF iff Sp—{U}
is an independence system [1]. One of the most important examples of an independence
system is a matroid [1].

Corollary 5.9. Let Sgp — {U} be a family of independent sets of a matroid on U
containing more than one base. Then < U,F > satisfies the uniqueness condition.

Proof. If Sp — {U} is a family of independent sets of a matroid, then antikeys
Xi,...,X; of F are exactly the bases of this matroid, ¢t > 1.

Consider a € X;. According to [1], (X; —a) Ub is a base for some b € X;,j # ¢.
Since X; —a = X;N[(X; —a)Ub|, each subset of an antikey is an intersection of antikeys
and < U, F > satisfies the uniqueness condition.

Finishing this section, we prove that the problem to decide if F'* = Fg for given
scheme < U, F > and a relation over ¢ can be solved in a polynomial time if we know
that <U,F > is in BCNF and the number of keys is bounded by a constant. Really,
minimum cover of F' can be found in a polynomial time in |F'|, see [44]. According to [52]
we may construct such a minimum cover which consists of FDs K; — U,..., K, - U,
where Ki,...,K, are the candidate keys. If we are given a relation, we can decide
whether R is in BCNF in polynomial time in |R| + n and also find its antikeys
Xi,..., X, see algorithm 5.6. Hence, F™ = Fg iff {Ky,...,K,}7! = {X1,..., X}
Here {Ki,...,K,} ! is the family of all antikeys corresponding to the family of keys
{K1,...,K.},i.e. the family of all maximal nonkeys. According to [50], the last equal-
ity can be checked up in a polynomial time in r-¢-n if r is bounded by a constant. This
proves the polynomiality of checking F™ = Fg. If the number of tuples of a relation
is bounded by a constant and a relation is in BCNF, we can find out if Fg = FT' in
polynomial time too. See [27] for details.

6. Relation schemes with restrictions on functional dependencies

In this section we study the problem which was mentioned in [19] and, to our
knowledge, has not been studied in detail formerly. That is, to study the schemes
< U, F > such that P(F) is true, where P is a predicate. For instance, (4.10) represents
a predicate P(F) = ’true’ iff F DO F', F' being a fixed family of FDs. Also, Mannila
and R&ih& [46] established some properties of the schemes in which the left-hand sides
of all the FDs consist of one or two attributes. But we can use another idea as well.
Many types of closures have been widely studied. Thus, each class of closures induces a
predicate P such that P(F) is ’true’iff Cr belongs to this class. In this section we are
going to study some types of predicates that appear either by means of the restriction
on the left-hand sides of FDs or by letting C'r belong to a given class of closures. The
classes of closures to be studied in this section are the following: topological, exchange
[1], antiexchange [25, 35], and separatory [19, 40]. Of course, these classes do not cover
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all the possibilities to introduce a predicate P, but they demonstrate some typical results
that can be obtained in this way.

For instance, it will be shown that some problems which are, generally speaking,
NP-complete, become polynomial for the special classes of relation schemes. Also, some
new results about keys, antikeys, prime attributes, normal forms e.t.c. can be obtained.
Besides, for some classes we can guarantee the existence of an Armstrong relation whose
number of tuples is polynomial in the number of attributes.

It is important to know what the complexity of the problem of recognizing these
properties is. This is one of the topics of paper [27], and here we pay attention mostly
to the structural properties of the classes of closures to be introduced, and to the
complexity of known problems in the arising particular cases.

Since some classes of FDs have nice properties, one can either choose schemes of
these classes or approximate a given scheme in one of this classes. In order to solve
the approximation problem, we need to know the structure of the set of all closures Cr
from a given class. In this paper we discuss only the problem if a given class is closed
with respect to one of the operations described in proposition 4.4. That is the most
important information to find approximation, cf. [18]. Notice that the approximation
problem is completely solved for normal forms [18].

Now we are going to give the analysis of database concepts for some special classes
of closures. We begin with topological closures.

6.1. Topological closures and unary dependencies

A FD is called unary if its left-hand side consists of unique element [46]. A closure
C on U is called topological if

C(XUY)=C(X)UC(Y) for all X,Y CU.

It is almost evident that Cr is topological iff there is a cover G of F' consisting of
unary dependencies. That is,

(6.1) X sacFt = 3bcX:bvacFT.

It has been shown in [46] that if F' consists only of unary FDs then to find a relation
R with Fr = FT (i.e. an Armstrong relation for F') requires polynomial time in |U/|.
Hence, prime attribute problem [43], 3BNFTEST and BCNFTEST [8,32,46] can be
solved in polynomial time for unary FDs while they are NP-complete in general. Note
also that Gottlob’s problem mentioned above can be solved in polynomial time.

Given a family F' of FDs, Cr is topological iff a minimum cover of F' consists of
unary FDs. Thus, if we are given a family F' of FDs, we can check up if CF is topological
or not in time polynomial in |F|+ |U|.

A closure CF is topological iff

(6.2) X,Y e Sp = XUY € SF,
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i.e. Sp is a distributive lattice. Since Sg can be embedded in P(U/), it means that
|M(SF)| is less than |U|, i.e. the number of tuples of a minimal Armstrong relation is
at most |U|.

Theorem 3.1. and (6.1) immediately imply the following

Proposition 6.1. Let F be a family of FDs. Then CF is topological iff

(6.3) Sp=PU)- |J [a&u-0b.
a—beFt

According to [48] and (6.3), CF is topological iff SF is a distributive lattice and for
every distributive lattice £ we can find a scheme < U, F' > such that Cr is topological
and £ ~ Sp.

The formula (6.3) gives rise to two matrix representations of topological closures.

Let F' consist of unary FDs only. Suppose without loss of generality that the right-

hand sides of FDs of F also consist of single elements. Define two n x n — (0, 1)-matrices
pPF = ||pZF]|| and TF = ||tZF]||, ,7j=1,...,n, U = {ai,...,a,} as follows:

oF = 1, a; —a; € I
" 0, ai—>aj€F;

tF- B 1, a; € Cp(ai),
Y10 e ¢ OF(ai)

Assume that pf; = 1 for all i. Thus, every reflexive * (0,1)-matrix represents some
topological closure as a matrix P¥. Note that some different matrices may represent
the same closure.

Matrix TF is transitive and reflexive. It is easy to see that each transitive and
relexive matrix induces a topological closure with C(0) = 0, and that different matrices
induce different closures.

Now we are going to find the relationship between P and TF.

Proposition 6.2. If F consists of unary FDs only, then TY is the transitive
closure of PF.

Proof. Let G¥ = ||gf;|| be the transitive closure of P¥. Suppose gf;-' = 1. It means
that pgl =1, piF1i2’ = 1,...,pfzj =1 for some a;,,...,a;, €U.

Then a; — a;, € F and a;, € Cr(a;). Further, a;, — a;, and a;, € Cp(a;;) C
Cr(a1), e.t.c. Finally, a; € Cr(a;) and tfj =1.

Conversely, let tfj = 1. Then a; — a; € FT, ie. it can be derived by using
(F1)-(F4) from F. Clearly, (F1,F3,F4) do not lead us to new unary FDs. Hence,
a; — a;j can be derived only by (F2), i.e. there are such a;,,...,a;, that a; — a;, € F,
a;, —+a;, €F,...,a; — a; € F. That is, pgl = 1,...,pfzj =1 and gf;-' = 1. Therefore,
G¥ = TF. Proposition is proved.

* We say that (0,1) — (n X n)-matrix is reflexive (transitive) if so is binary relation
whose adjancency matrix is the given matrix.
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In the rest of the subsection we discuss the problems related to antikeys and BC N F.

Let F consist of unary FDs. Then the antikeys {X;,...,X:} can be character-
ized by the property that X; U X; = U, ¢ # j, due to (6.2) and [50]. Conversely, if
{X1,...,X;} satisfies the above property, consider a SL generated by {X;,..., X;,0,U}.
Clearly, it is a distributive lattice (i.e. it satisfies (6.2)) and its antikeys are exactly
{X1,..., X}

This fact immediately implies that if all the FDs in F are unary, < U, F > is in
BCNF iff it has unique antikey X and Sp = [0, X]| U {U}.

Really, ’if’ is obvious. To prove ’only if’ suppose there are two antikeys X; and
X5. Since X; UX3; =U and < U, F > is in BCNF, for every a € U we have a € Sg and
Sr = P(U), i.e. it has unique antikey U, a contradiction. Hence, < U, F' > has unique
antikey X and by corollary 5.2 Sp = [0, X| U {U}.

6.2. Binary dependencies

A dependency is called binary if its left-hand side is a two-element set. A family
of FDs is called binary if it has a cover consisting only of binary FDs.

It was proved in [9] that there exists a binary family F' of FDs on |U/| such that
every Armstrong relation for F' has at least exponential number of tuples in |I/|. Also,
it was proved in [46] that the prime attribute problem remains NP-complete for binary
FDs.

However, in order to check up if a family F of FDs is binary we only have to find a
minimum cover G of F, because F is binary iff G consists only of binary FDs. Hence,
this checking can be done in polynomial time.

In order to characterize the closures C'r for binary families F', remind the construc-
tion that appeared in [41]. Let C be a closure on Y. Define C3(X) = U(C({z,y})|z,y €
X). Then C is said to have a binary representation iff for every X C U there is k such
that C'(X) = C¥(X), and C(z) =z for all z € U.

Proposition 6.3. A family F of FDs is binary iff Cr has a binary representation.

Proof. Let F be binary. Suppose without loss of generality that F itself consists of
binary FDs. Suppose a € Cp(X). Then a can be derived as follows. At the first step, all
the FDs from F being applied to X, we obtain X;. Then, all the FDs being applied to
X1, we obtain X5 etc. Finally, a € Xj. Clearly, X; C C3(X),Xs C Cy(X1),...,Xk C
Ca(Xk—1),ie. a € Xy C C¥(X). Therefore, C has a binary representation.

Conversely, let C' have a binary representation. Define F' as the family of all FDs
{z,y} — a such that a € C({z,y}). Clearly, F is binary and C' = Cp.

There are two interesting classes of closures which are the subclasses of closures
having binary representation.

Remind that Sz is in fact a lattice. If F' is binary, ¢ € Sg for all z € &/ and Sf
is atomistic [28], that is, every element of Sp is the join of atoms. An atomistic Sp
(i.e. z € Sp Ve € U) is called biatomic [3] if a € Cp(X UY) implies that there are
z € Cp(X), y € Cp(Y) such that a € Cp({z,y}). (We modified the definition from [3]
for our purposes). Clearly, if SF is biatomic, Cr has a binary representation (cf. [41]).
It also can be easily seen that to check up if Sg is biatomic requires polynomial time.
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The other example is the following. Suppose Cr satisfies the properties: Cp(X) =
U(Cr({z,y})|z,y € X) and Cp(z) = z for all z € Y. Clearly, Cr has a binary repre-
sentation, and S is biatomic. Moreover, the full characterization of Sg can be given.
In fact, it follows from [38] that Cp satisfies the above property iff Sr is atomistic
and 2-distributive (remind, that a lattice < £,V,A > is called n-distributive [28,30] iff

Ve, Yoy syn € L1 A Vi gyi = Vj:o(m A \/i#j ¥i)). It also can be shown that the
recognizing of 2-distributivity requires polynomial time.

6.3. Exchange closures.

The closures satisfying ezchange property were widely studied because they give
one of the equivalent descriptions of matroids [1]. Remind, that C satisfies the exchange
property (or it is an ezchange closure for short) if

(6.4) (z,y ¢ C(A),z € C(AUy)) =y € C(AUz) VACU,Vz,y € U.

A pair (U, C), where C is an exchange closure on U, is called a matroid. Note that
there are many equivalent definitions of matroids [1].

In this subsection Sg is regarded to as a lattice. The lattices Sg for closures Cr
satisfying (6.4) are exactly finite atomistic semimodular lattices [1]. These lattices are
known to have complements.

Before presenting the properties of exchange closures, we prove one useful lemma
about complemented lattices Sr.

Lemma 6.4. Let F be a family of FDs such that Sp is a complemented lattice.
Then the set U, of prime attributes is U — Cp(0).

Proof. If Cr is complemented, then the intersection of coatoms of Sg is the
intersection of all the elements of Sg [33],i.e. Cr(0). Since coatoms of Sg are antikeys
[50], and the intersection of antikeys is the set of nonprime attributes [20, 23], the set
of prime attributes is & — Cp(0).

Proposition 6.5. Let F be a family of FDs such that Sg is a complemented lattice.
Then the following are equivalent:
1) <U,F > is in 2NF;
2) <U,F > is in 3NF;
3) CF(Q)) = 0.

Proof. If Cr(0) = 0 then U, = U and < U,F > is in 3NF (and in 2NF) by
theorem 5.1. Let Cp(0) = X # 0. Suppose < U, F > is in 2NF. Then X is a prime set
and by theorem 5.1 ) = (U — Cr(0)) N Cr(0) = U, N X € SF, a contradiction. Hence,
< U, F > is neither in 2NF nor in 3NF. Proposition is proved.

Corollary 6.6. Let F' be a family of FDs such that Cp is an exchange closure.
Then the following are equivalent: 1) < U,F > is in 2NF; 2) <U,F > is in 3NF; 3)
Cr(0) =0.

In order to characterize BCNF for exchange closures we need some new concepts.

If CF is exchange, then candidate keys are called the bases of matroid (cf. [1]).
Since the characterization of bases is well-known, it gives another characterization of
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families of FDs generating exchange closures. Antikeys are called copoints for exchange

closures [1].
Let || = n. Consider the following closure C* [17], where k < n:

oy = X X<k
U, X >k

Ck is called uniform (or k — uniform closure). CF is exchange closure whose antikeys
are the sets of cardinality k& and candidate keys are the sets of cardinality & + 1 [17].
If ¥ = [n/2] then there are (“:;21) meet-irreducible elements in the SL of closed sets.
Hence, if we are given a family F' of FDs generating an exchange closure Cr, the minimal
size of Armstrong relation for F' may be exponential in |U|.

Now we can characterize BCNF for exchange closures.

Proposition 6.7 Let F be a family of FDs such that Cr is an ezchange closure.
Then <U,F > is in BONF iff Cr is uniform closure.

Proof. Clearly, if CF = CF then < U, F > is in BCNF. Conversely, let [U/| = n,
CFr be an exchange closure and < U, F > be in BCNF. Let X be an antikey, X =
{a1,...,a,}. Since 0 is an independent set and Cp(#) = 0 by theorem 5.1 (3), {a1}
is independent by [1,6.3]. If {a;,...,as_1} is independent, then Cr({a1,...,as_1}) =
{a1,...,a5-1} and again by [1,6.3] {a1,...,as} is independent. Hence, X is indepen-
dent, and so are the sets X Ua,a ¢ X. Cp(X Ua) = U because X is an antikey. Since
every independent set can be extended to a base, for some a ¢ X X Ua is a base. If for
b¢ X X Ubis not a base, thereis a base Y C X Ub, and |Y| # |X Ual, a contradiction.
Hence, all the sets X Ua, a ¢ X, are the bases, i.e. candidate keys of < U, F > .
Now let there be two antikeys X; and X with |X;| # |X3|. Then for some a ¢ X; and
b¢ Xs X1 Ua and X3 U b are two bases of a matroid having different cardinalities, a
contradiction. Hence all the antikeys have the same cardinality k.

Let X be an antikey, |X| = k. Since antikeys and only they are meet-irreducible
elements of SF because they are copoints [1], for every a € X there is an antikey X'
such that X —a = X N X'. Clearly, X' = (X —a)Ubforsomeb¢ X. Ifz ¢ X,z #b
then (X — a) U {b,z} is a candidate key.

Consider X” = (X —a)Uz. If Cp(X”) # X” then Cp(X”) =Y # U since X” is a
proper subset of a candidate key and |Y| > k, a contradiction. Hence X” € S and X”
is an antikey. Therefore, given an antikey X, a € X and z ¢ X, (X —a) Uz is again an
antikey. It shows that all the sets of cardinality k are the antikeys. Hence, Cr = C* is
a uniform closure. Proposition is proved.

Mannila and Raiha [46] introduced the concept of nonredundant set. A set X CU
is called nonredundant if Y — X € FT for no proper subset Y C X. Clearly, X is
nonredundant iff X — a — X fails in F* for all @ € X, that is, a & Cp(X —a). If Cp
is exchange closure, this is the definition of independent set of a matroid. Hence, Cp is
exchange iff for two nonredundant sets X and Y, |X| > |Y|, there is a € X — Y such
that Y U a is nonredundant [1].

It was proved in [46] that F' is in BCNF iff every meet-irreducible element of Sp
is nonredundant. A matroid is called uniform iff it is induced by a wuniform closure.
Combining the above result and proposition 6.6, we obtain
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Corollary 6.8. A matroid is uniform iff every copoint is independent.

6.4. Antiexchange closures

A closure is said to satisfy the antiezchange property (or to be antiexchange)

[24,25,31,35] if

(z,y ¢ C(A),z € C(AUy)) = (y ¢ C(AU))VAC U Vz,yc U

Let X CU. A subset Y C X is called a minimal key of X (w.r.t. a family F of
FDs) if Cp(Y) = Cp(X) and Y is a minimal set with this property.

Proposition 6.9 [24,25]. Let F be a family of FDs. Then Cp is antiexchange iff
every X C U has unique minimal key.

Notice that a minimal key of U/ is a candidate key. Hence, if C'r is antiexchange,
it has unique candidate key. According to [24,25], this candidate key K can be found
as follows: a € K iff a ¢ Cp(U — a). Hence, key (and prime attributes) can be found in
polynomial time if we are given a relation scheme.

Consider the following example. Let a € U. Suppose S = {X CU|la e X} U{X C
Ula ¢ X,|X| <k} u{U}. Clearly S is a SL and according to [24,25] Cs is antiexchange.
Therefore, the minimal size of Armstrong relation for an antiexchange closure may be
exponential because |M(S)| > ('), where n = [U|.

Finally, notice that {ezp(X) — X|X € Sr} is a cover of F' if Cr is antiexchange,
where ezp(X) = {a € X|a & Cr(X — a)}.

6.5. Separatory closures

The concept of separatory SSL appeared in [40] in order to study the separation
properties of SLs*. For our purposes, we will call a SL S C P(U) separatory if P(U)— S
is also a SL, i.e. if it is closed under intersection.

A closure C on U is called separatory if S¢ is a separatory SL.

Proposition 6.10. Let F be a family of FDs. Then CF is separatory iff F has a
cover of type {X; — a;lt =1,...,p}, where X; C X; C ... C X,,.

Proof. According to [40], a SL § C P(U),{U} € S is separatory iff it can be

represented as

-

(6.5) S=PU)— | )[X:U — ay,

1

[

where X; C ... C X,. Now the proposition follows from (3.1) and (6.5).

Corollary 6.11. Let F be a family of FDs such that Cg is separatory. Then every
nonredundant cover of F contains at most (n — 1)n? FDs.

Proof. According to proposition 6.10, F' has a cover containing at most n? FDs.
Hence, by [26], every nonredundant cover contains at most (n — 1)n? FDs.

* Note that these properties had been studied formely by R.E. Jamison [31].
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Similarly to the topological closures, separatory closures have a matrix representa-
tion. Let U = {ai,...,a,}. Given a closure C, define (0,1) —n X n—matrix P¢ = ||pg||
as follows:

1 U—{a;,a;} € Sc;
C ’ » 7 3

0, U — {ai,aj} € Sc.

Given a (0,1) — n x n—matrix P = ||p;;||, define CF : P(U) — P(U) as follows:

U—A{a;,a;},a;,a; & X, p;; = 1) if such a;,a; exist,
(6.7) CP(X):{H( { .7} 7 € Dij ) f]

U, otherwise.

A n x n— matrix A = ||a;j|| is called absolutely determined if every its submatrix
has a saddle-point, i.e. min maz A’ = mazr min A’ for any submatrix A’ [29].

Proposition 6.12 [29]. The mappings (6.6) and (6.7) establish one-to-one mu-
tually inverse correspondences between the families of separatory closures on U and
(0,1) — n X n absolutely determined symmetrical matrices, where n = |U|.

Using this matrix representation, we obtain two results.

First notice that according to [40] every closure is a meet (in the sense of operation
(4.6)) of separatory closures. Hence, it is interesting to know how many separatory
closures exist.

Remind that a(n) is the number of all closures on U, [U| = n, satisfying C(0) = 0.
Let B(n) stand for the number of all separatory closures on Y. Clearly, B(n) is the
number of (0,1) — n X n absolutely determined symmetrical matrices. According to
[29], B(n) is the number of (0,1) — n X n symmetrical matrices which can be reduced
to Joung’s form by some permutations of rows and columns. And this fact implies (we
omit the calculations)

Proposition 6.13. (27?) <B(n) <2"-n! —2n.-n! 4271 —2,
Using a(n) > 9(r721) and Stirling’s formula, we obtain

Corollary 6.14. limn_mo% =0.

The other corollary of proposition 6.12 is that the problem of recognizing F'* = Fg
can be solved in polynomial time if we know that Cr is separatory. Really, given a
relation R, M(Sg) can be found in polynomial time in the number of tuples of R and
attributes [21,22]. If CF is separatory, all the elements of M (SF) have cardinality n —2,
n — 1 or n see (6.7). Hence, they also can be found in polynomial time in |F|. Since
Ft = Fg iff M(Sr) = M(SR), the first equality can be checked up in polynomial time.

Notice also that since all the irreducible elements have cardinality n,n —1 or n — 2,
one can always find an Armstrong relation for a separatory closure containing at most
1+ (n+ 1)2/4 tuples.

Finishing this subsection we show that for separatory closures 3NF implies BCNF,
and that every separatory closure has unique minimal key.
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Proposition 6.15. Let F be a family of FDs such that Cr is separatory. Then
<U,F > is in 3NF iff it 1s in BCNF.

Proof. Let < U,F > be in 3NF. We have to prove that it is in BCNF. Suppose
without loss of generality 4 = {a1,...,an}, W —a; € Spiff 1 <k.

According to (6.7), W — a;, 1 < k are exactly coatoms of Sp, i.e. antikeys.
Hence, {ak+1,...,an} is the set of nonprime attributes. According to theorem 5.1,

k
W — {ai,a;} € Sp for all i < k and all j, ie. Sp = U[0,W — a;] U {U}. Therefore,
<U,F > is in BCNF.

=1

Corollary 6.16. If C is a separatory closure, it has unique candidate key K which
can be found as follows: a € K iff a ¢ C(U — a).

Proof. Use the designations of the previous corollary. Let U, = {a1,...,ar} be
the set of prime attributes. Since Up —a; CW —a; € S¢,C(Up — a;) # U. Hence, U, is
unique candidate key. Clearly, a; ¢ C(U — a;) iff < k.

Remarks. 1) The concept of a separatory sublattice had been introduced as well.
It can be used if we study topological closures represented as distributive lattices. See
[37] for details.

2) We have shown that the closures of two types have unique candidate key which
can be found as follows: a € K iff a ¢ C(U —a). In fact, a closure has unique candidate
key iff K thus constructed is a key. See [7].

We finish the section by the propositions summing up all the results about subsets
of Cl,, generated by closures considered above. Let TC,, Bi,,Ez,, AEx,, Sep, be the
family of topological (having binary representation, exchange, antiexchange, separatory)
closures in Cl,.

Propositions 6.17.
1) TC, and Bi,, are closed under A but not V.
2) Ez,, and AEz,, are closed under V but not A.
3) Sepy is closed under neither V nor A.

Proof. 1) Let C1,Cy € TC,,. Then Cy = Cp,,C2 = Cp, where F; and F; consist
only of unary FDs. According to (3.1), C1 ACy = Cp,ur, € TC,,. Analogously Cy,Cs €
Bi,, implies C; ACy € Bi,. The contraexamples related to the operation V can be easily
constructed for the both cases.

2) See [1] for Ez,, and [24,25] for AEz,,.
3) See [40].

Let 2NF,,, 3NF,,, BCNF, C Cl, be the families of closures induced by schemes
in 2NF,3NF and BCNF respectively.

Proposition 6.18 [18]. 1) Neither 2N F,, nor 3NF,, is closed under V or A in
Cl,. 2) BCNF, is a distributive sublattice of Cl,,.
7. Conclusion

In this paper the lattice theoretic approach to the analysis of functional depen-
dencies in relational databases has been developed. Formerly in many papers having
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studied formally the functional dependencies, closure operations were mostly used to
represent them. Here we have proposed to make use of semilattices instead of closure
operations. The use of semilattice description is formally equivalent to that of closures
but sometimes it is more convenient because of the simplicity of the representation of
semilattice of closed sets by functional dependencies.

Partially ordered set of closures on a set of attributes was studied in [11] as a model
of changing databases. The semilattice representation having been used, we proved that
this partially ordered set is a lattice and characterized it. This characterization gives
rise to some application which might be useful for practical purposes. For instance, some
ways to construct arbitrary families of functional dependencies from given families are
proposed.

We have given a new lattice theoretic characterization of normal form relation
schemes. Using this characterization we got some applications. First, we proved that
recognizing relation schemes in third and Boyce-Codd normal forms can be done in
polynomial time if we are given a relation instead of a relation scheme. We also have
given a new characterization of schemes which are unambiguously determined by their
keys as BCNF schemes satisfying an additional condition.

In the last section of the paper we have been studying the relation schemes satisfying
some special conditions providing the closures to belong to a given class of closures.
On this way relationships between functional dependencies and various objects having
lattice representation (such as distributive lattice, matroids [1], antimatroids or convex
geometries [24,25,35], separatory subsemilattices [40]) have been found.

In the rest of the paper we are going to outline some problems to be solved. First,
notice that all the results related either to the representation of Sg (3.1) or to the lattice
Cl,, can be interpreted for functional dependencies.

Second, third and Boyce-Codd normal forms are the main and the oldest examples
of normal forms. It seems to be quite interesting to obtain a lattice theoretic character-
ization of other normal forms, because it may be useful, for instance in order to receive
the results about complexity. Now the characterization of object normal form intro-
duced by J. Biskup [6] is also known and this characterization gives rise to a polynomial
algorithm for recognizing this normal form, see [7].

We noticed in the paper that SF is, generally speaking, a lattice whose operations
A and V can be expressed as X AY = X NY,X VY = Cp(X UY). However, Sg
was not investigated as being a lattice formerly. On this way we can make use of well-
developed lattice theory more profoundly. The closures corresponding to distributive,
2-distributive [30,38], geometric [1,28], biatomic [3] lattices were studied in section 6.

The last mentioned class of lattices is the generalization of so-called convezity lat-
tices [4]. In turn, convexity lattices were introduces to generalize the lattices of convex
sets. Consider one of the most important examples of finite convexity lattice. Let
U= {ar,...,an} and F = {{as,a;} = ax|l <i <k < j < n}. Then SF is so-called
lattice Co(n) [3,4]. It is in fact the lattice of points and segments of n collinear points
in a vector space.

It was mentioned in [4] that many geometric concepts have interpretation in con-
vexity lattices. This idea was particularly developed in [39, 42]. Thus the use of finite
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convexity lattices allows us to interpret some geometric concepts for functional depen-
dencies. Notice that the idea to attract geometry to database theory was also proposed

in [51].

One of the most important constructions in lattice theory is the direct product.

In [17] the concepts of direct product and decomposition of closures were introduced.
However, there is no one-to-one correspondence between direct product decompositions
of Sr regarded to as a lattice and those of Cr. Knowing the structure of direct product
decompositions of Sg seems to be useful because it might simplify the algorithm of
derivation of FDs if we know a decomposition of Sp.

N
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We plan to dedicate further research to the problems mentioned above.
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