
Some Properties of QueryLanguages for BagsLeonid Libkin� Limsoon WongyDepartment of Computer and Information ScienceUniversity of Pennsylvania, Philadelphia, PA 19104-6389, USAemail: fjlibkin, limsoonjg@saul.cis.upenn.eduAbstractIn this paper we study the expressive power of query languages for nestedbags. We de�ne the ambient bag language by generalizing the constructsof the relational language of Breazu-Tannen, Buneman and Wong, whichis known to have precisely the power of the nested relational algebra.Relative strength of additional polynomial constructs is studied, and theambient language endowed with the strongest combination of those con-structs is chosen as a candidate for the basic bag language, which iscalled BQL (Bag Query Language). We prove that achieveing the powerof BQL in the relational language amounts to adding simple arithmeticto the latter. We show that BQL has shortcomings of the relational al-gebra: it can not express recursive queries. In particular, parity test isnot de�nable in BQL. We consider augmenting BQL with powerbag andstructural recursion to overcome this de�ciency. In contrast to the rela-tional case, where powerset and structural recursion are equivalent, thelatter is stronger than the former for bags. We discuss problems with us-ing structural recursion and suggest a new bounded loop construct whichworks uniformly for bags, sets and lists. It has the power of structuralrecursion and does not require any preconditions to be veri�ed. We �ndrelational languages equivalent to BQL with powerbag and structural re-cursion/bounded loop. Finally, we discuss orderings on bags for rigoroustreatment of partial information.1 SummarySets and bags are closely related structures. While sets have been studiedintensively by the theoretical database community, bags have not received thesame amount of attention. However, real implementations frequently use bagsas the underlying data model. For example, the \select distinct" construct andthe \select average of column" construct of SQL can be better explained if bagsinstead of sets are used. In an earlier paper [5], Breazu-Tannen, Buneman, andWong de�ned a language based on monads [20, 29] and structural recursion[3] for querying sets. In section 2 of this report, the same syntax is given abag-theoretic semantics. We use this language as our ambient bag language�Supported in part by NSF Grant IRI-90-04137 and AT&T Doctoral Fellowship.ySupported in part by NSF Grant IRI-90-04137 and ARO Grant DAALO3-89-C-0031-PRIME. 1

and study its properties. Due to space limitations, we give only sketches ofsome of the proofs. Full proofs can be found in [18].The ambient bag language is inadequate in expressive power as it stands;for example, it can not express duplicate elimination. In section 3, additionalprimitives are proposed and their relative strength with respect to the ambientlanguage is fully investigated. The primitive unique which eliminates duplicatesfrom a bag is shown to be independent of the other primitives. A similar resultwas obtained by Van den Bussche and Paredaens in the setting of pure objectoriented databases [8]. The primitive monus which subtracts one bag fromanother is proved to be the strongest amongst the remaining primitives. Thisresult was independently obtained by Albert [2]. However, his investigationon relative strength is not as complete as this report. As a consequence, weregard the ambient language augmented with monus and unique as our basicbag language. This language will be called BQL (Bag Query Language).The relationship between bag and set queries is studied in Section 4. It isshown that the class of set functions computed by the ambient bag languageendowed with equality on base types, an emptiness test, and unique, is preciselythe class of functions computed by the nested relational language of [5]. Fur-thermore, if equality at all types is available, then the former strictly includesthe latter. Grumbach and Milo also examined the relationship between setsand bags [9]. However they considered set functions on relations whose heightof set nesting is at most 2. No such limit is imposed in this report.The relationship between sets and bags can be examined from a di�erentperspective. In the remainder of section 4, we investigate augmenting the setlanguage of [5] to endow it with precisely the expressive power of our basic baglanguage BQL. This is achieved by adding natural numbers, multiplication,subtraction, and a summation construct to the nested relational language. Thisalso illustrates the natural relationship between bags and numbers.In section 5, we use the connection to nested relational language establishedin section 4 to prove several fundamental properties of BQL. In particular, theinexpressibility of properties (such as parity test) on natural numbers that aresimultaneously in�nite and co-in�nite.Breazu-Tannen, Buneman, and Wong proved that the power of structuralrecursion on sets can be obtained by adding a powerset operator to their lan-guage [5]. However, this result is contingent upon the restriction that everytype has a �nite domain. In section 6, the powerbag primitive of Grumbachand Milo [9] is contrasted with structural recursion on bags. In particular,the latter is shown to be strictly more expressive than the former. Althougha powerbag primitive increases expressive power considerably, it is di�cult toexpress algorithms that are e�cient. While structural recursion does not havethis de�ciency, it requires the satisfaction of certain preconditions that cannotbe automatically veri�ed [4]. In section 6, a bounded loop construct which doesnot require the veri�cation of any precondition is introduced. It is shown to beequivalent in expressive power to structural recursion over sets, bags, as well aslists. This con�rms the intuition that structural recursion is just a special caseof bounded loop. Furthermore, in contrast to the powerbag primitive which

gives us all elementary functions [9], structural recursion gives us all primitiverecursive functions. Also in section 6 we show that nonpolynomial operationson bags are more powerful than their set analogs, and �nd the primitive thatprecisely �lls the gap.Finally, in section 7, we show how to extend the approach of Buneman, Jungand Ohori [6] and Libkin [16] that uses certain partial orders to give semanticsof databases with partial information to bags. We extend the idea of Libkinand Wong [18] of de�ning an ordering whose meaning is \being more partial".Such an ordering is fully characterized for bags, and we demonstrate an e�cientalgorithm to test it.Related work. The semantic aspects of programming with collections us-ing structural recursion were studied by Breazu-Tannen and Subrahmanyamin [4]. In particular, they showed that certain preconditions have to be satis-�ed for structural recursion to be well de�ned. Breazu-Tannen, Buneman andNaqvi brought out the connection between structural recursion and databasequery languages [3]. Breazu-Tannen, Buneman and Wong avoided the need ofchecking preconditions by placing a simple syntactic restriction on structuralrecursion [5]. The language so restricted has several equivalent formulations,one of them being NRC [5, 30]. This language is equivalent to the algebra ofAbiteboul and Beeri [1] without the powerset operator.Then Wong [30] proved that the language has the conservative extensionproperty at all input/output heights. That is, the expressive power of the lan-guage is independent of the height of set nesting in the intermediate data. ThenLibkin and Wong [19] showed that in the presence of very simple arithmeticoperators conservativity can be extended uniformly to all input/output heightsfor languages augmented with bounded �xpoint operator, transitive closure,powerset and many other operators.In [17] Libkin and Wong extended the use of the language NRC for queryingor-sets. Grumbach and Milo [9] applied the algebra of Abiteboul and Beeri tobags. In particular, they investigated the relationship between set and baglanguages restricted to certain input/output heights and the expressive powerof bag languages with respect to the level of bag nesting. The basic bag languageproposed in this report (BQL) is precisely the language of Grumbach and Milowithout the powerbag operator. Vickers [28] studied re�nements of bags whichare a more general concept than the ordering we introduce in this paper. Inparticular, our ordering can be expressed as a re�nement, but there exist certainre�nements of bags which lead to counterintuitive results when applied in thestudy of partial information.The expressive power of Datalog under set and bag semantics was comparedin [21]. In particular, an example of query was given that can not be expressedunder the former but can be expressed under the latter. In [27] Saraiya showsthat Datalog can be simulated with structural recursion on sets, preservingthe PTIME complexity, by using as an intermediate step the loop operator de-scribed in section 6.2, and proving in the process that loop can be simulated bystructural recursion (half of theorem 6.3 below). Several complexity-theoreticresults for program properties and transformations are then be obtained by

recourse to known results for Datalog.2 The ambient nested bag languageThe nested relational language proposed by Breazu-Tannen, Buneman, Wong[5] is denoted byNRL here. We now de�ne an ambient bag query languageNBL.It is obtained by replacing the set constructs in NRL by the corresponding bagconstructs. The language has two presentations { algebraic, called NBA, andcalculus style, called NBC { which are equivalent in terms of expressive power.Types. The types in NBL are either complex object types or are functiontypes s ! t where s and t are complex object types. These types are thesame as those of NRL except that bags fjsjg instead of sets fsg are used. Thegrammar for complex object types is given below.s ::= b j unit j s� s j fjsjgA complex object type denotes a set of objects. unit is a special base typehaving exactly one element which we denote by (). s � t is the set of pairswhose �rst component is from s and whose second component is from t. fjsjgare �nite bags containing elements of type s. A bag is di�erent from a set inthat it is sensitive to the number of times an element occurs in it while a set isnot. Finally, b are base types to be speci�ed.Expressions. The expressions of NBA and NBC are given in �gure 1.The type superscripts are usually omitted as they can be inferred [13, 23].The semantics of these constructs is similar to the semantics of NRL exceptduplicates are not eliminated. Semantics of NBA constructs is as follows. Kc isthe constant function that produces the constant c. id is the identity function.g �h is the composition of functions g and h; that is, (g �h)(d) = g(h(d)). Thebang ! produces () on all inputs. �1 and �2 are the two projections on pairs.hg; hi is pair formation; that is, hg; hi(d) = (g(d); h(d)). Kfjjg produces theempty bag.] is the additive bag union. b � forms singleton bags: b �(x) =fjxjg. b � attens a bag of bags: b �fjB1; : : : ; Bnjg = B1] : : :] Bn. b map(f)applies f to every item in the input bag. Function b �2 is used for interactionbetween bags and pairs: b �2(x; y) pairs x with every item in the bag y. Forexample, b �2(1; fj1; 2jg) returns fj(1; 1); (1; 2)jg.Semantics of the NBC constructs which di�er from NBA constructs is as fol-lows. fjjg is the empty bag. fjejg is the singleton bag containing e. U fje1 j x 22 e2jgis the bag obtained by �rst applying the function �x:e1 to each item in the bage2 and then taking the bag union of the results. For example, U fjfjx; x +1jg j x 22 fj1; 2; 3jgjg evaluates to fj1; 2; 2; 3; 3; 4jg.Proposition 2.1 The languages NBA and NBC have the same expressive power.2 Therefore, we normally work with the component that is most convenient.

EXPRESSIONS OF NBACategory with ProductsKc : unit ! b id s : s! s h : r ! s g : s! tg � h : r ! t !s : s! unit�s;t1 : s� t! s �s;t2 : s� t! t g : r ! s h : r ! thg; hi : r ! s� tBag Monadb �s : s! fjsjg b �s : fjfjsjgjg ! fjsjgf : s! tb map(f) : fjsjg ! fjtjg Kfjjgs : unit ! fjsjg]s : fjsjg � fjsjg ! fjsjg b �s;t2 : s� fjtjg ! fjs� tjg
EXPRESSIONS OF NBCLambda Calculus and Productsc : b xs : s e : t�xs:e : s! t e1 : s! t e2 : se1 e2 : t() : unit e : s� t�1 e : s �2 e : t e1 : s e2 : t(e1; e2) : s� tBag Monadfjjgs : fjsjg e : sfjejg : fjsjg e1 : fjsjg e2 : fjsjge1] e2 : fjsjge1 : fjtjg e2 : fjsjgU fje1 j xs 22 e2jg : fjtjgFigure 1: Syntax of NBL

3 Relative strength of bag operatorsBreazu-Tannen, Buneman, and Wong [5] added equality test eqs for all typess to NRL. They showed that the presence of equality tests elevates NRL froma language that merely has structural manipulation capability to a full edgednested relational language. The question of what primitives to add to NBL tomake it a useful nested bag language should now be considered.Unlike languages for sets for which we have a well established yardstick,very little is known about bags. Due to this lack of an adequate guideline, alarge number of primitives are considered. Let us �rst �x some meta notations.A bag is just an unordered collection of items. count(d;B) is de�ned to bethe number of times the object d occurs as an element in the bag B. The bagoperations to be considered are listed below.� monus : fjsjg�fjsjg ! fjsjg. monus(B1; B2) evaluates to a B such that forevery d : s, count(d;B) = count(d;B1) � count(d;B2) if count(d;B1) >count(d;B2); and count(d;B) = 0 otherwise.� max : fjsjg � fjsjg ! fjsjg. max(B1; B2) evaluates to a B such that forevery d : s, count(d;B) = max(count(d;B1); count(d;B2)).� min : fjsjg � fjsjg ! fjsjg. min(B1; B2) evaluates to a B such that forevery d : s, count(d;B) = min(count(d;B1); count(d;B2)).� eq : s � s ! fjunit jg. eq(d1; d2) = fj()jg if d1 = d2; it evaluates to fjjgotherwise. That is, we are simulating booleans as a bag of type fjunit jg.True is represented by the singleton bag fj()jg and False is represented bythe empty bag fjjg.� member : s�fjsjg ! fjunit jg. member(d;B) = fj()jg if count(d;B) > 0; itevaluates to fjjg otherwise.� subbag : fjsjg � fjsjg ! fjunit jg. subbag(B1; B2) = fj()jg if for every d : s,count(d;B1) � count(d;B2); it evaluates to fjjg otherwise.� unique : fjsjg ! fjsjg. unique(B) eliminates duplicates from B. That is,for every d : s, count(d;B) > 0 if and only if count(d; unique(B)) = 1.Each of these operators has polynomial time complexity with respect to sizeof input. Hence every function de�nable inNBL(monus;max ;min; eq;member ;subbag ; unique), where we have explicitly listed the additional primitives inbrackets, has polynomial time and space complexity with respect to the size ofinput.The expressive power of these primitives relative to NBL is compared here.In contrast to NRL, where all nonmonotonic primitives are interde�nable [5],these bag primitives di�er considerably in expressive power. As a consequenceof the theorem below, NBL(monus; unique) can be considered as the most pow-erful candidate for a standard bag query language. We denote NBL(monus ;unique) by BQL.

Theorem 3.1 monus can express all primitives other than unique. uniqueis independent of the rest of the primitives. min is equivalent to subbag andcan express both max and eq. member and eq are interde�nable and both areindependent of max. 2The results of theorem 3.1 can be visualized in the following diagram.monusmin subbag unique��max eq memberThe independence of unique was also proved by Van den Bussche andParedaens [8] and the fact that monus is the strongest amongst the remainingprimitives was also showed by Albert [2]. However, their comparison was in-complete. For example, the incomparability of max and eq was not reported.In contrast, the results presented in this section can be put together in theo-rem 3.1 which completely and strictly summarizes the relative strength of theseprimitives.4 Relationship between bags and setsIn this section, we study the relationship between bags and sets from twoperspectives. First, we �nd a bag language whose set theoretic expressive poweris that of NRL(eq). Then we consider endowing NRL(eq) with new primitivesthat would give it precisely the expressive power of the basic bag language BQL.4.1 Set-theoretic expressive power of bag languagesSeveral fragments of our nested bag language are compared with the nestedrelational language NRL(eq). This can be regarded as an attempt to under-stand the \set theoretic" expressive power of these bag languages. In orderto compare bags and sets, two technical devices are required for conversionsbetween bags and sets. We use the following constructs for this purpose:f : s! tbs map(f) : fjsjg ! ftg f : s! tsb map(f) : fsg ! fjtjgThe semantics is as follows. bs map(f)(R) applies f to every item in the bag Rand then puts the results into a set. For example, bs map(�x:1+x)fj1; 2; 3; 1; 4jgreturns the set f2; 3; 4; 5g. sb map(f)(R) applies f to every item in the set Rand then puts the results into a bag. For example, sb map(�x:4)f1; 2; 3g returnsthe bag fj4; 4; 4jg.

Let s be a complex object type not involving bags. Then to bag(s) is acomplex object type obtained by converting all set brackets in s to bag brackets.Every object o of type s is converted to an object to bags(o) of type to bag(s).Conversely, let s be a complex object type not involving sets. Then from bag(s)is a complex object type obtained by converting all bag brackets in s to setbrackets. Every object o of type s is converted to an object from bags(o) oftype from bag(s). The conversion operations are given inductively below.to bagunit := �x:xto bags�t := �x:(to bags(�1 x); to bag t(�2 x))to bagfsg := sb map(to bags)from bagunit := �x:xfrom bags�t := �x:(from bags(�1 x); from bag t(�2 x))from bagfjsjg := bs map(from bags)De�ne SET (�) to be the class of functions f : s! t where s and t are complexobject types not involving bags and � is a list of primitives such that there is f 0 :to bag(s)! to bag(t) de�nable in NBL(�) and the diagram below commutes.to bag(s) f 0- to bag(t) id - to bag(t)sto bags6 f - t6to bag tid - t?from bagto bag(t)Let eqb be equality test restricted to base types. Let empty : fjunit jg !fjunit jg be a primitive such that it returns the bag fj()jg when applied to theempty bag and returns the empty bag otherwise. ThenTheorem 4.1 1. SET (unique; eqb; empty) = NRL(eq).2. NRL(eq) $ SET (unique; eq)3. NRL(eq) and SET (monus) are incomparable. 2The class SET (�) is precisely the class of \set theoretic" functions express-ible inNBL(�). Consequently, the above results say thatNBL(unique; eqb; empty)is conservative overNRL(eq) in the sense that it has precisely the same set the-oretic expressive power. On the other hand, NBL(unique ; eq) is a true extensionover the set language. However, the presence of unique is in a technical senseessential for a bag language to be an extension of a set language.4.2 A set language equivalent to BQLIt was shown earlier that BQL = NBL(monus; unique) is the most powerfulamongst the bag languages considered so far. From the foregoing discussion,

this bag language is a true extension of NRL(eq). In this subsection, therelationship between sets and bags is studied from a di�erent perspective. Inparticular, the precise amount of extra power BQL possesses over NRL(eq) isdetermined.Let us endow NRL(eq) with natural numbers N together with multiplica-tion, subtraction, and summation as de�ned below.� � : N � N ! N. The semantics of � is multiplication of natural numbers.� : : N � N ! N (sometimes called modi�ed subtraction). The semantics isas follows:n : m = � n�m if n�m � 00 if n�m < 0� P g : fsg ! N where g : s! N. The semantics is as follows:P g fo1; : : : ; ong = g(o1) + : : :+ g(on).In the sequel, the notaion L ' L0 means that two languages L and L0 havethe same expressive power. If L and L0 have di�erent type systems, this requirestranslations from one type system to another. In the following result, this isachieved by treating bags as sets of pairs element{number of occurrences.Theorem 4.2 BQL ' NRL(N;�; �; : ; q). 2In summary, we have the following exact characterization of the relativestrength between the basic bag language and the relational language of Breazu-Tannen, Buneman, and Wong: NRL(N;P; �; : ; q) ' BQL and NRL(eq) =SET (unique; eqb; empty). Klug [15] and Ozsoyoglu, Ozsoyoglu, and Matos[24] had to introduce aggregate functions by repeating them for every columnposition of a relation. That is, aggregate1 is for column one, aggregate2 is forcolumn two, etc. Klausner and Goodman used a notion of hiding to explain thenature of aggregate functions in relational query languages [14]. In addition toprojections, they introduced hiding operators that \hide" columns of a relation.Aggregate functions are then applied to the column that is left exposed. Hidingis di�erent from projection. Let R := f(1; 2); (1; 3)g. Then projecting out col-umn two on R gives f1g while hiding column two on R gives f(1; [2]); (1; [3])g,where [�] signi�es hidden values. The use of hiding to retain duplicates (sincesets have no duplicate by de�nition) is a little clumsy. It is better to use bags.The P primitive can be used to implement aggregate functions and should beseen as a generalization of their approaches.5 Relationship between bags and numbersAs seen earlier, natural numbers are present in our nested bag language asobjects of type fjunit jg, which we now write as N. In this section, the relation-ship between bags and numbers is investigated in more detail. The equivalencebetween BQL and NRL(N;P; �; : ; q) allows us to establish the following funda-mental result.

Theorem 5.1 Let U be a property of natural numbers. That is, U � N. Thenmembership in U can be expressed in BQL i� either U or N � U is �nite.Proof sketch: Assume there is an in�nite and co-in�nite property U ofnatural numbers that is expressible in BQL. Then by theorem 4.2 a functionf : N ! N such that f(n) = 1 for n 2 U and f(n) = 0 for n 62 U is expressiblein NRL(N;�; �; : ; q). In [19] we proved that expressions of NRL(N;�; �; : ; q)are independent of the height of the intermediate data. Careful analysis offunctions of type N ! N that do not involve set constructs shows that theycoincide with polynomials almost everywhere and hence can not have in�nitelymany roots, without being zero almost everywhere. 2It is well known that the traditional relational languages cannot expressparity test [7]. By the result of [30], it cannot be expressed in NRL(eq). Itfollows from the theorem we just proved that it remains inexpressible even inthe greatly enhanced NRL(N;�; �;+; : ; q) and hence not expressible in BQL.From this many other inexpressibility results follow.Corollary 5.2 None of the following functions is expressible in BQL:� parity test;� division by a constant;� bounded summation;� bounded product;� gen : N ! fjNjg given by gen(n) = fj0; 1; : : : ; njg. 2Therefore, the arithmetic of our basic bag query language is very limited.In fact, its arithmetic power can be characterized. A unary function f : N ! Nis said to be almost polynomial if there exists a polynomial function g : N ! N(that is, a function built from its argument and constants by using addition,subtraction and multiplication) and a number n such that f(x) = g(x) for anyx � n (that is, f is g in all but �nitely many points). The class of almostpolynomial functions is denoted by P�.Proposition 5.3 P� is the class of unary arithmetic functions expressible inBQL. 26 Power operators, bounded loop andstructural recursionAbiteboul and Beeri [1] suggested powerset as a new primitive for NRL(eq)to increase its expressive power. For instance, both parity test and transi-tive closure become expressible in NRL(eq; powerset). On the other hand,Breazu-Tannen, Buneman, and Naqvi [3] introduced structural recursion as analternative means for increasing the horsepower of query languages.It was shown in [5] that endowing NRL(eq) with a structural recursionprimitive, which we denote by s sri , or with the powerset operator yields lan-guages that are equi-expressive. However, this is contingent upon the contrived

restriction that the domain of each type is �nite. Since every type has �nitedomain, this result has an important consequence. Suppose the domain of typefsg has cardinality n. Then every use of powerset on an input of type fsg canbe safely replaced by a function that computes all subsets of a set having atmost n elements. Such a function is easily de�nable in NRL(eq). Therefore,NRL(eq) ' NRL(eq; s sri) ' NRL(eq; powerset), if all types have �nite do-mains. Hence the extra power of s sri and powerset has e�ect only when thereare types whose domains are in�nite. Types such as natural numbers provedto be important in the earlier part of this report. Therefore, the relationshipof structural recursion and power operators should be re-examined.The syntax for the structural recursion construct on sets isi : s� t! t e : ts sri(i; e) : fsg ! tThe semantics is s sri(i; e)fo1; : : : ; ong = i(o1; i(o2; i(: : : ; i(on; e) : : :))), pro-vided i satis�es certain preconditions [4]. In particular, it is commutative:i(a; i(b;X)) = i(b; i(a;X)) and idempotent: i(a; i(a;X)) = i(a;X). s sri isunde�ned otherwise. Breazu-Tannen, Buneman, and Naqvi [3] proved thate�cient algorithms for computing functions such as transitive closure can beexpressed using structural recursion. While structural recursion gives rise toe�cient algorithms, its well-de�nedness precondition cannot be automaticallychecked by a compiler [4]. Therefore this approach is not completely satisfac-tory.The powerset operator is always well de�ned. Unfortunately, algorithmsexpressed using powerset are often unintuitive and ine�cient. For example, to�nd transitive closure of a binary relation R : fs � sg, one �nds the domainof R by taking union of �rst and second projections of R, takes powerset ofcartesian product of the domain with itself and then selects all elements fromthis powerset which are transitive and contain R. Intersection of those elementsis the transitive closure of R.To the best of our knowledge, the problem of expressing a polynomial timetransitive closure algorithm in NRL(eq; powerset) is still open. We do not ad-vocate the elimination of every expensive operations from query languages.However, we believe that expressive power should not be achieved using ex-pensive primitives. That is, if a function can be expressed using a polynomialtime algorithm in some languages, then one should not be forced to de�ne itusing an exponential time algorithm. For this reason, powerset is not a goodcandidate for increasing expressive power.This section has three main objectives. First, we endow BQL with the baganalogs of the powerset and structural recursion operators and we show that theformer is strictly less expressive than the latter. Second, we suggest an e�cientbounded loop primitive which captures the power of structural recursion butdoes not require any preconditions. Finally, we show that bag nonpolynomialoperators are strictly more expressive than their set analogs, and we show thatthe analog of the gen primitive on sets �lls the gap.

6.1 Powerset, powerbag and structural recursionGrumbach and Milo [9], following Abiteboul and Beeri [1], introduced thepowerbag operator into their nested bag language. The semantics of powerbag isthe function that produces a bag of all subbags of the input bag. For example,powerbagfj1; 1; 2jg = fjfjjg; fj1jg; fj1jg; fj2jg; fj1; 1jg; fj1; 2jg; fj1; 2jg; fj1; 1; 2jgjg. Theyalso de�ned the powerset operator on bags as unique � powerbag . For exam-ple, powersetfj1; 1; 2jg is fjfjjg; fj1jg; fj2jg; fj1; 1jg; fj1; 2jg; fj1; 1; 2jgjg. We do notconsider powerset on bags further because of the following result.Proposition 6.1 BQL(powerbag) ' BQL(powerset).Proof sketch. Suppose a bag B is given; then another bag B0 can be con-structed such that for any a 2 B, B0 contains a pair (a; fja; : : : ; ajg) where thecardinality of the second component is count(a;B). Let B00 = unique(B0); thenB00 can be computed by BQL. Now observe that changing the second compo-nent of every pair to its powerset and then b map(b �2) followed by atteningwill give us a bag where each element a 2 B will be given a unique label.Now applying powerset to this bag followed by elimination of labels producespowerbag(B). 2Structural recursion on bags is de�ned using the constructe : t i : s� t! tb sri(i; e) : fjsjg ! tIt is required that i satisfy the commutativity precondition: i(a; i(b;X)) =i(b; i(a;X)), which can not be automatically veri�ed [4]. Its semantics is similarto the semantics of s sri . We want to show that it is strictly stronger thanpowerbag .Theorem 6.2 BQL(powerbag) $ BQL(b sri).Proof sketch. First, powerbag can be expressed using b sri , cf. [3]. Thenit can be shown that any function in BQL(powerbag) produces outputs whosesizes are bounded by an elementary function on the size of the input, but inBQL(b sri) it is possible to de�ne a function that on the input of size n producesthe output of the hyperexponential size (where the height of the stack of powersdepends on n) and hence can not be bounded by an elementary function. 2As an illustration of theorem 6.2, we characterize precisely the classes ofarithmetic functions that both languages express. It also gives an alternativeproof of theorem 6.2.Theorem 6.3 a) The class of functions f : N � : : : � N ! N de�nable inBQL(b sri) coincides with the class of primitive recursive functions.b) The class of functions f : N � : : : � N ! N de�nable in BQL(powerbag)coincides with the class of Kalmar-elementary functions. 2Similar results for other languages for bags or sets with built-in natural numberswere proved in [9, 12].

6.2 Bounded loop and structural recursionAs mentioned earlier, powerbag is not a good primitive for increasing the powerof the language. It is not polynomial time and compels a programmer to useclumsy solutions for problems that can be easily solved in polynomial time. Inaddition, powerbag is weaker than structural recursion. On the other hand,b sri is e�cient [3] but its well de�nedness precondition can not be veri�ed bya compiler [4]. In this section, we present a bounded loop constructf : s! sloopt(f) : fjtjg � s! sIts semantics is as follows: loop(f)(fjo1; : : : ; onjg; o) = f(: : : f(o) : : :) where f isapplied n times to o.The bounded loop construct is more satisfactory as a primitive than powerbagand b sri for several reasons. First, in contrast to powerbag , e�cient algorithmsfor transitive closure, division, etc. can be described using it. For example,given R : fjs� sjg, let fR : fjs� sjg ! fjs� sjg be the function whose semanticsis fR(R0) = R�R0. Let dom(R) be the domain of R. Then loop(fR)(dom(R); R)is the transitive closure of R. Second, it is very similar to the for-next-loop con-struct of familiar programming languages such as Pascal and Fortran. Third,in contrast to b sri , it has no preconditions to be satis�ed. Lastly, it has thesame power as b sri .Theorem 6.4 (see also [27]) BQL(loop) ' BQL(b sri).Proof sketch. For one inclusion, observe that loop(f)(n; e) = b sri(f ��2; e)(n). For the reverse inclusion, given an input bag B, �rst generate allpossible permutations of B (that is, all possible rank assignments to elementsof B). It can be done in BQL(loop). Then, using loop, simulate b sri for eachrank assignment, assuming the ranks tell us the order in which elements areprocessed. Having done so, apply unique to the result. Hence, any function oftype s ! fjt1jg � : : :� fjtkjg that is de�nable in BQL(b sri) is also de�nable inBQL(loop). If one of the types is not under the scope of the bag brackets, thenin that position a singleton will be produced. 2Therefore replacing structural recursion by bounded loop eliminates theneed for verifying any precondition. If the i in b sri(i; e) is not commutative,the translation used in the proof simply produces a bag containing all possibleoutcomes of applying b sri(i; e), depending on how elements of the input areenumerated. If i is commutative, then such a bag has one element which isthe result of applying b sri(i; e). Hence b sri is really an optimized boundedloop obtained by exploiting the knowledge that i is commutative. Furthermore,loop coincides with structural recursion over sets, bags, and (with appropriatelychosen primitives) lists. The implementation of b sri(i; e) using the boundedloop construct given in the proof of theorem 6.4 has exponential complexity butthe source of ine�ciency is in computing all permutations in order to return allpossible outcomes. If we are allowed to pick a particular order of application

of i in b sri(i; e), then more e�cient implementations are possible (see the fullpaper [18]).Theorem 6.4 also sheds some light on theorem 6.3 a). It is known thatfunctions computable by a language that has an assignment statement and forn do S are precisely the primitive recursive functions [22]. It was also proved byRobinson and Gladstone that the primitive recursive functions are built fromthe initial functions by composition and iteration: f(n; ~x) = g(n)(~x), see [22].Now we proved that the power of the structural recursion is precisely the powerof the bounded loop, which is in essence the for� do iteration or the iterationschema of Robinson and Gladstone. This is the intuitive reason why the classof functions de�nable by the structural recursion on bags coincides with theclass of the primitive recursive functions.6.3 Power operators and structural recursion on setsand bagsWe have introduced power operators and structural recursion for sets and bags.In section 4.2 we also demonstrated how a set language can be extended tocapture the power of our basic bag language: BQL ' NRL(N;�; �; : ; q). Underthe translations of theorem 4.2, n : N is carried to a bag of n units: fj(); : : : ; ()jg.Consider the following primitive in the set language (cf. corollary 5.2):gen : N ! fNg; gn(n) = f0;1; : : : ;ngUnder translations of theorem 4.2, it corresponds to the bag language primitivethat takes a bag of n units and returns bag of bags containing i units for eachi = 0; 1; : : : ; n. In other words, it is powersetunit = unique � powerbagunit.Observe that it remains a polynomial operation.Having made this observation, we can formulate the �rst result of the sec-tion.Theorem 6.5 a) NRL(N;�; �; : ; q; powerset) $ BQL(powerbag);b) NRL(N;�; �; : ; q; s sri) $ BQL(b sri).Proof sketch. Inclusion easily follows from theorem 4.2. To demonstratestrictness, observe that powersetunit is de�nable in both BQL(powerbag) andBQL(b sri). Hence, in view of theorem 6.2, it is enough to show that genis not expressible in NRL(N;�; �; : ; q; s sri). De�ne the size of an object asfollows: size of an object of a base type is 1 and size of a pair or a set issum of the sizes of the components. Then, it is possible to show that for anyfunction f de�nable in NRL(N;�; �; : ; q; s sri) there exists a primitive recursivefunction 'f such that, if f(i) = o and sizes of i and o are si and so, thenso � 'f (si). Now assume that gen is de�nable. Let n = 'gen(1). Thenn + 1 = size(gen(n+ 1)) � 'gen(size(n + 1)) = n. This contradiction showsthat gen is not de�nable. 2Now we have a problem of �lling the gap between set and bag languages withpower operators or structural recursion. It turns out that the gen primitive is

su�ciently powerful to do the job. The following result is proved by extendingtranslations of theorem 4.2.Theorem 6.6 a) NRL(N;�; �; : ; q; powerset ; gn) ' BQL(powerbag);b) NRL(N;�; �; : ; q; s sri ; gn) ' BQL(b sri). 2As another illustration of the power of the gen primitive, we show that it al-lows us to simplify the loop construct without considerably losing expressivenessof the language. We simplify the loop construct by de�ning iter(f) : fjunitjg !fjunitjg where f : fjunitjg ! fjunitjg as iter(f)(n) = f(f(: : : (f(fjjg)) : : :)) wheref is applied n times.Corollary 6.7 BQL(iter ; powersetunit) expresses all unary primitive recursivefunctions. 27 Orderings on bagsIn the previous sections we have concentrated on comparing expressive powerof set and bag languages. In this section we study another important problemwhere sets and bags di�er considerably, that is, semantics of partial information.We follow the idea of Buneman, Jung and Ohori [6] and Libkin [16], wheredatabases were considered as subsets of certain partially ordered sets in order toprovide rigorous mathematical treatment of partial information. The intuitivemeaning of the ordering is \being more partial". In [6, 16] only sets wereconsidered. A rather intuitive approach to de�ning the orderings was adopted in[6, 16], and later in Libkin and Wong [17] that approach was justi�ed. However,it is not immediately clear how to generalize any of the orderings of [6, 16, 17] tobags, and hence additional study is needed. In this section we use techniques of[17] to de�ne an ordering for bags. Even though the ordering appears somewhatawkward, we demonstrate an e�ective algorithm to test whether two bags arecomparable.As in [11, 6, 16], we assume that partiality can be expressed by means ofa partial order on database objects. That is, a � b expresses the fact thata is more partial than b or b is more informative than a. It was mentionedin [6] that many models of partial information can be captured by this verygeneral scheme. This approach is also suitable for databases without partialinformation. In such a case, values of base types are totally unordered.It is usually assumed that orders on the base types are given. For example,if base type is N? whose values are natural numbers or null (?), the usualordering is ? � n for any n 2 N and any two distinct natural numbers arenot comparable, see Gunter [10]. The ordering is then extended to pairs in theusual way. That is, (x; y) � (x0; y0) i� x �1 x0 and y �2 y0. However, if onewants to extend the ordering to subsets of an ordered set, many possibilitiesarise. In [17] we tried to de�ne an ordering by saying that a set X is lessinformative than a set Y if there is a sequence of simple updates, each leadingto a more informative set. Dealing with sets, we de�ned the primitive updates

as follows: X � (X � fag) [X 0 where a � b for any b 2 X 0. Notice that ifa 62 X , this is equivalent to augmenting X by X 0.To extend this idea to bags, recall that having a bag rather than a setmeans that each element of a bag represents an object and if there are manyoccurrences of some element, then at the moment certain objects are indis-tinguishable. This justi�es the following de�nition. We say that a bag B2 ismore informative than a bag B1 if B2 can be obtained from B1 by a sequenceof updates of the following form: (1) an element a is removed from B1 andis replaced by an element b such that b is more informative than a, or (2) anelement b is added to the bag B1. Formally, let hD;�i be a partially orderedset. Let Pb�n(D) be the set of all �nite bags whose elements are in D. Then,for B1; B2 2 Pb�n(D), B1 B2 i� B2 = (B1monusfjajg)] fjbjg where a � b orB2 = B1]fjbjg. The transitive-reexive closure of is denoted by E. That is,we say that B1 is less informative than B2 if B1 E B2.As proved in [17], the ordering on sets obtained as the transitive-reexiveclosure of � coincides with the lower powerdomain ordering [10] de�ned asX �[Y i� 8x 2 X: 9y 2 Y: x � yA similar construction can be used to characterize E. Let Nq denote thetotally unordered poset whose elements are natural numbers (the superscript isused to distinguish it from N which in this paper denotes natural numbers withthe usual ordering). For a �nite bag B and an injective map � : B ! Nq , whichis sometimes called labeling, by �(B) we denote the set f(b; �(b)) j b 2 Bg. Inother words, � assigns a unique label to each element of a bag. If B 2 Pb�n(D),the ordering on pairs (b; n) where b 2 B and n 2 Nq is the usual pair ordering;that is, (b; n) � (b0; n0) i� b � b0 and n = n0.Proposition 7.1 The binary relation E on bags is a partial order. Given twobags B1; B2, B1 E B2 i� there exist labelings � and on B1 and B2 respectivelysuch that �(B1) �[(B2). 2The lower powerdomain ordering �[of sets can be e�ectively veri�ed. In-deed, if two sets are given, there is an O(n2) time complexity algorithm tocheck if they are comparable. The description of E given above seems to besomewhat awkward algorithmically. However, it is not much harder to test for.Proposition 7.2 There exists an O(n5=2) time complexity algorithm that, giventwo bags B1 and B2 in Pb�n(D), returns true if B1 E B2 and false otherwise.Proof sketch. The problem is reduced to �nding a maximal matching in acertain bipartite graph whose size in linear in the sum of the sizes of the twogiven bags. Hence, it can be solved by the Hopcroft-Karp algorithm in O(n5=2).2 There is a big di�erence between orders on sets and bags. While X �[Ydoes not say anything about cardinality of X and Y , B1 E B2 implies that thecardinality of B1 is less than or equal to the cardinality of B2. This reectsour point of view that having a bag rather than a set stored in a database

means that each element of a bag represents an object and having two or moreoccurrences of the same elements means that at the moment some objects areindistinguishable. Therefore, the cardinality can not be reduced in the processof obtaining more information.8 Conclusion and further workMany results on bags are presented in this report. A large combination ofprimitives have been investigated and the relative strength is determined. Therelationship between bags and sets has been studied from two di�erent per-spectives. First, various bag languages are compared with a standard nestedrelational language to understand their set-theoretic expressive power. Second,the extra expressive power of bags is characterized accurately. The relationshipbetween bags and natural numbers is studied. In particular, we show that prop-erties that are simultaneously in�nite and co-in�nite are inexpressible. Finally,the relationship between structural recursion and the powerbag operator hasbeen re-examined. The former is shown to be stronger than the latter. Then weintroduce the bounded loop construct that captures the power of structural re-cursion but has the advantage of not requiring veri�cation of any precondition.Moreover, we prove that structural recursion gives us all primitive recursivefunctions.There are several conjectures we have not yet proved. Does adding gengive us precisely lower elementary functions [26]? Are functions such as testingwhether a graph is a tree or testing connectivity or transitive closure expressiblein the set language equivalent to BQL? What is the expressive power of thisset language augmented by transitive closure? We know, for example, that testfor balanced binary trees can be expressed in this language, but can it expressbounded �xpoint? When augmented with gen, how powerful is it?Breazu-Tannen, Buneman and Wong [5], Libkin and Wong [17], and thispaper studied the use of monads and structural recursion for querying sets,or-sets and bags respectively. We hope to extend this methodology to othercollection types such as lists, arrays, etc.Acknowledgements. Peter Buneman gave us the initial inspiration andprovided many helpful suggestions. We also thank Val Breazu-Tannen, JeanGallier, Dan Suciu, Bennet Vance, Steve Vickers and Scott Weinstein for valu-able comments and suggestions.References[1] S. Abiteboul and C. Beeri. On the power of languages for the manipulationof complex objects. In Proc. Int. Workshop on Theory and Applicationsof Nested Relations and Complex Objects, Darmstadt, 1988.[2] J. Albert. Algebraic properties of bag data types. In VLDB 91, pages211{219.

[3] V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion as aquery language. In DBPL 91, pages 9{19.[4] V. Breazu-Tannen and R. Subrahmanyam. Logical and computationalaspects of programming with sets/bags/lists. In LNCS 510: ICALP 91,pages 60{75.[5] V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded querylanguages. In ICDT 92, pages 140{154.[6] P. Buneman, A. Ohori, and A. Jung. Using powerdomains to generalizerelational databases. Theoretical Computer Science, 91:23{55, 1991.[7] A. Chandra and D. Harel. Structure and complexity of relational queries.JCSS, 25:99{128, 1982.[8] J. Van den Bussche and J. Paredaens. The expressive power of structuredvalues in pure OODB. Technical Report 90-23, University of Antwerp,1990. Extended abstract in PODS 91.[9] S. Grumbach and T. Milo. Towards tractable algebras for bags. In PODS93, pages 49{60.[10] C. A. Gunter. Semantics of Programming Languages: Structures and Tech-niques. The MIT Press, 1992.[11] T. Imielinski and W. Lipski. Incomplete information in relationaldatabases. Journal of the ACM, 31:761{791, 1984.[12] N. Immerman, S. Patnaik and D. Stemple, The expressiveness of a familyof �nite set languages, in Proceedings of the 10th Symposium on Principlesof Database Systems, 1991, pages 37{52.[13] L. A. Jategaonkar and J. C. Mitchell. ML with extended pattern matchingand subtypes. In Proceedings of ACM Conference on LISP and FunctionalProgramming, pages 198{211, Snowbird, Utah, July 1988.[14] A. Klausner and N. Goodman. Multirelations: semantics and languages.In VLDB 85, pages 251{258.[15] A. Klug. Equivalence of relational algebra and relational calculus querylanguages having aggregate functions. J. ACM, 29(3):699{717, 1982.[16] L. Libkin. A relational algebra for complex objects based on partial infor-mation. In J. Demetrovics and B. Thalheim editors, LNCS 495: Proceed-ings of Symposium on Mathematical Fundamentals of Database Systems,Rostock, May 1991, pages 36{41. Springer-Verlag, 1991.[17] L. Libkin and L. Wong. Semantic representations and query languages foror-sets. In PODS 93, Washington, D. C., May 1993, pages 37{48. Fullpaper available as UPenn Technical Report MS-CIS-92-88.

[18] L. Libkin and L. Wong. Query languages for bags, Technical Report MS-CIS-93-36, University of Pennsylvania, 1993.[19] L. Libkin and L. Wong. Aggregate functions, conservative extension, andlinear orders. This volume.[20] E. Moggi. Notions of computation and monads. Information and Compu-tation, 93:55{92, 1991.[21] I. S. Mumick and O. Shmueli, How expressive if strati�ed aggregation,submitted.[22] P. Odifreddi. Classical Recursion Theory. North Holland, 1989.[23] A. Ohori, P. Buneman, and V. Breazu-Tannen. Database programmingin Machiavelli: a polymorphic language with static type inference. InSIGMOD 89, pages 46{57.[24] G. Ozsoyoglu, Z. M. Ozsoyoglu, and V. Matos. Extending relational alge-bra and relational calculus with set-valued attributes and aggregate func-tions. ACM TODS, 12(4):566{592, 1987.[25] J. Paredaens and D. Van Gucht. Converting nested relational algebraexpressions into at algebra expressions. ACM Transaction on DatabaseSystems, 17(1):65{93, 1992.[26] H. E. Rose. Subrecursion: Functions and Hierarchies. Clarendon Press,Oxford, 1984.[27] Y. Saraiya, Fixpoints and optimizations in a language based on structuralrecursion on sets, Manuscript, December 1992.[28] S. Vickers. Geometric theories and databases. In P. Johnstone and A. Pitts,editors, Applications of Categories in Computer Science, volume 177 ofLondon Mathematical Society Lecture Notes, pages 288{314. CambridgeUniversity Press, 1992.[29] P. Wadler. Comprehending monads. In Proceedings of ACM Conferenceon Lisp and Functional Programming, Nice, June 1990.[30] L. Wong. Normal forms and conservative properties for query languagesover collection types. In PODS 93, pages 26{36, Washington, D. C., May1993. Full paper available as UPenn Technical Report MS-CIS-92-59.

