
Aggregate Functions, ConservativeExtension, and Linear OrdersLeonid Libkin Limsoon WongDepartment of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphia, PA 19104-6389, USA1 SummaryPractical database query languages are usually equipped with some aggregatefunctions. For example, \�nd mean of column" can be expressed in SQL.However, the manner in which aggregate functions were introduced in thesequery languages leaves something to be desired. Breazu-Tannen, Buneman,and Wong [3] introduced a nested relational languageNRC(=) based on monads[16, 24] and structural recursion [1, 2]. It was shown in Wong [27] that thislanguage is equivalent to the nested relational algebras of Thomas and Fischer[22], Schek and Scholl [20], and Colby [4]. NRC(=) enjoys certain advantagesover these languages: it is naturally embedded in functional languages, it isreadily extensible, and it has a compact equational theory. Therefore, it isused in this report as a basis for investigating aggregate functions.In section 2, the nested relational calculus NRC(=) is described. It is thenendowed with rational numbers, rational arithmetic, and a summation operator.The augmented language,NRC(Q ; +; �; �; �;P; =), is able to express a varietyof aggregate functions commonly found in real database query languages. Themain results of this paper remain valid in a uniform way if any summation-likeprimitive, such as bounded product, is added to the language. This approachis more disciplined and general than those proposed by Klug [12], Ozsoyoglu,Ozsoyoglu, and Matos [18], and Klausner and Goodman [11].In section 3, we prove that every function f : s ! t expressible inNRC(Q ;+; �;�;�;P;=) can be computed without using any intermediate datawhose depth of nesting of sets exceeds that of the input and output. This isknown as the conservative extension property. Conservativity of nested rela-tional query languages in the absence of aggregate functions was studied byParedaens and Van Gucht [19] and Wong [26]. The former proved that it holdswhen input and output are 
at relations. The latter generalized it to any in-put and output. Conservativity in the presence of aggregate functions was notpreviously studied.In section 4, the conservative extension property is used to demonstratethe somewhat surprising fact that NRC(Q ;+; �;�;�;P;=) cannot express theusual linear ordering on rational numbers. As linear orders play a centralrole in fundamental data organization algorithms [14], this calls for specialattention. We present a technique for lifting linear order at base types to linear1



order at all types. This technique yields linear orders that are expressiblein NRC(Q ;+; �;�;�;P;=;�), which is the language obtained by augmentingNRC(Q ;+; �;�;�;P;=) with linear orders at base types. Linear order is knownto increase expressive power in the context of database query languages [8, 23].In our case, this is a major advantage. Queries such as \�nd maximum ofcolumn," \�nd mode of column" and \test parity of cardinality of a set" areexpressible in NRC(Q ;+; �;�;�;P;=;�). More importantly, a function thatassigns rank to elements of a set is now expressible.This rank assignment function is used in section 5 to show thatNRC(Q ;+; �;�;�;P;=;�) augmented with any combination of the transitiveclosure operator tc, the bounded �xpoint operator b�x , or the powerset op-erator powerset retains the conservative extension property. Hull and Su [7]showed that NRC(=; powerset) is not conservative over 
at input and output.This failure of conservativity for NRC(=; powerset) was generalized to all inputand output heights by Grumbach and Vianu [6]. In contrast, our result showsthat conservativity can be repaired with very little extra. Suciu [21] showedthat NRC(=; b�x) is conservative over 
at relations. His result is remarkablein that it did not need any arithmetic nor order. Furthermore, it is also validwhen bounded �xpoint is replaced by bounded partial �xpoint operator. Ourresult uses arithmetic but holds for bounded �xpoint operator over any inputand output. In fact, our proof of conservative extension holds uniformly forNRC(Q ;+; �;�;�;P;=;�;Q;�; �) where Q, �, and � are any triple of addi-tional primitives which are in a relationship like that between P, 0, and +.2 Nested relational calculus with summationThe monad calculus of Breazu-Tannen, Buneman, andWong [3] is denotedNRChere. In this section, it is extended with rational numbers, simple arithmetics,and a summation operator. The extended language is able to express manyaggregate functions commonly found in commercial relational database querylanguages such as SQL.A type in NRC is either a complex object type or is a function type s ! twhere s and t are complex object types. The complex object types are givenby the grammar:s; t ::= b j B j unit j s� t j fsgObjects of type B are the two boolean values true and false . The uniqueobject of type unit is denoted by (). Objects of type s� t are pairs whose �rstcomponents are objects of type s and second components are objects of type t.Objects of type fsg are �nite sets of objects of type s. We also include someuninterpreted base types b.Expressions of NRC are constructed using the rules in the �gure below.Note that [3] uses ext(�xs:e1)(e2); but here we use the equivalent constructSfe1 j xs 2 e2g instead. The language also contains some uninterpreted con-stants c of base type Type(c) and uninterpreted functions p of function type



Type(p). The type superscripts are omitted in the rest of the paper becausethey can be inferred [17, 10]. Throughout this paper we assume the usualconvention that variables are distinct and that expressions are well formed.Lambda Calculus and Productsxs : s e : t�xs:e : s! t e1 : s! t e2 : se1 e2 : t() : unit e : s� t�1 e : s �2 e : t e1 : s e2 : t(e1; e2) : s� tSet Monadfgs : fsg e : sfeg : fsg e1 : fsg e2 : fsge1 [ e2 : fsg e1 : ftg e2 : fsgSfe1 j xs 2 e2g : ftgBooleanstrue : B false : B e1 : B e2 : t e3 : tif e1 then e2 else e3 : tThe semantics of NRC was described in [3]. The lambda calculus, product, andboolean constructs are standard. We brie
y repeat the meaning of the monadconstructs here. fg is the empty set. feg is the singleton set containing e.e1 [ e2 is the union of sets e1 and e2. The construct Sfe1 j x 2 e2g denotesthe set obtained by �rst applying the function �x:e1 to elements of the set e2and then taking their big union. Hence Sfe1 j x 2 e2g = f(o1) [ : : : [ f(on),where f is the function �x:e1 and fo1; : : : ; ong is the set e2. The shorthandfo1; : : : :ong is used to denote fo1g [ : : : [ fong. It must be stressed that thex 2 e2 part in the construct Sfe1 j x 2 e2g is not a membership test; it is theintroduction of a new variable x whose scope is the subexpression e1.As it stands, NRC can merely express queries that are purely structural. Itwas shown in [3] that endowingNRC with equality test =s: s�s! B at all typess elevates NRC to a fully 
edged nested relational language (which was shownby Wong [27] to be equivalent to classical nested relational algebras of Thomasand Fischer[22], Schek and Scholl [20], and Colby [4]). That is, operationssuch as nest, membership test, subset test, set intersection, set di�erence, etc.are expressible in NRC(=). (We write the additional primitive in brackets todistinguish various extensions of the language.) It should also be remarked thatin [3], booleans are simulated by values of type funitg with f()g for true andfg for false . However, over the class of functions of type s! fs1g� � � ��fsng,it does not matter which presentation of booleans is used | the resultinglanguages have the same expressive power.



Examples. Sffx; 5 �xg j x 2 f1; 2; 3gg evaluates to the set f1; 2; 3; 5; 10; 15g.SfSff(x; y)g j x 2 Xg j y 2 Y g forms the cartesian product of sets X andY . SfSff(�1 x; y)g j y 2 �2 xg j x 2 Xg is the unnesting of the set X .Sff(�1 x; Sfif �1 x = �1 y then f�2 yg else fg j y 2 Xgg j x 2 Xg is therelational nesting of X .Real database query languages frequently have to deal with queries suchas \select average from column," \select maximum of column," \select countfrom column," etc. To handle this kind of queries, additional primitives must beadded to NRC. In this paper, we add rational numbers (whose type is denotedby Q ) and the following constructs:e1 : Q e2 : Qe1 + e2 : Q e1 : Q e2 : Qe1 � e2 : Q e1 : Q e2 : Qe1 � e2 : Qe1 : Q e2 : Qe1 � e2 : Q e1 : Q e2 : fsgPfje1 j xs 2 e2jg : Qwhere +, �, �, and � are respectively addition, multiplication, subtraction,and division of rational numbers. The summation construct Pfje1 j xs 2 e2jgdenotes the rational obtained by �rst applying the function �x:e1 to every itemin the set e2 and then adding the results up. That is, Pfje1 j x 2 X jg isf(o1) + : : :+ f(on) if f is the function denoted by �x:e1 and fo1; : : : ong, witho1, ..., on all distinct, is the set denoted by X . It should be emphasized thatthe fje1 j x 2 e2jg part of the construct Pfje1 j x 2 e2jg is not an expression ofthe language; hence Pfj1 j x 2 f5; 6gjg is 2 and not 1.The extended language NRC(Q ;+; �;�;�;P;=) is capable of expressingmany aggregate operations found in commercial databases. Here are someexamples:� \Count the number of records in R" is count(R) ,Pfj1j x 2 Rjg.� \Total the �rst column of R" is total(R) ,Pfj�1 x j x 2 Rjg.� \Average of the �rst column in R" is average(R) , total(R)� count(R).� \Variance of the �rst column of R" is variance(R) , (Pfjsq(�1 x) j x 2Rjg�(sq(Pfj�1 x j x 2 Rjg)�count(R)))�count(R), where sq , �y:y �y.Aggregate functions were �rst introduced into 
at relational algebra byKlug [12]. He introduced these functions by repeating them for every columnof a relation. That is, aggregate1 is for column 1, aggregate2 is for column 2,and so on. Ozsoyoglu, Ozsoyoglu, and Matos [18] generalized this approach tonested relations. Our use of the summation construct is more general. On theother hand, Klausner and Goodman [11] had \stand-alone" aggregate functionssuch as mean : fQg ! Q . However, they had to rely on a notion of hidingto deal correctly with duplicates. Hiding is di�erent from projection. Let



R , f(1; 2); (2; 3); (2; 4)g. Projecting out the second column of R gives us R0 ,f1; 2g. Hiding the second column of R gives us R00 , f(1; [2]); (2; [3]); (2; [4])g,where the hidden components are shown between square brackets. Observe thatthe former \eliminates" duplicates as sets have no duplicate by de�nition. Thelatter \retains" the duplicated 2 by virtue of tagging them with di�erent hiddencomponents. Then mean(R00) produces the average of the �rst column of R,whereas mean(R0) does not compute the mean correctly. The use of hidingto retain duplicates is rather clumsy. Our use of the summation construct issimpler.3 Conservative extensionLet us �rst de�ne the concept of conservative extension. The set height ht(s) ofa type s is de�ned by induction on the structure of type: ht(unit) = ht(b) = 0,ht(s � t) = ht(s ! t) = max(ht(s); ht(t)), and ht(fsg) = 1 + ht(s). Everyexpression of our language has a unique typing derivation. Hence the set heightof expression e is de�ned as ht(e) = maxfht(s) j s occurs in the type derivationof eg. Let Li;o;h denote the class of functions whose input has set height atmost i, whose output has set height at most o, and which are de�nable in thelanguage L using an expression whose set height is at most h � max(i; o). L issaid to have the conservative extension property with �xed constant k if Li;o;h =Li;o;h+1 for all i, o, and h � max(i; o; k). Note that if L has the conservativeextension property with constant k, then for any additional primitive p : s! t,L(p) has it with constant at most max(ht(p); k) = max(ht(s! t); k).In this section, we present a rewrite system forNRC(Q ;+; �;�;�;P;=) thatis strongly normalizing. The normal forms induced by this rewriting are thenused to prove that every de�nable function is de�nable using operators whoseset height is at most the set height of the input/output of the function. The the-orem implies thatNRC(Q ;+; �;�;�;P;=) has the conservative extension prop-erty with �xed constant 0. Consequently, the classNRC(Q ;+; �;�;�;P;=)i;o;his independent of h. Hence using intermediate data structure of great heightdoes not increase the horsepower of the language (though it frequently makesprograms more elegant).We proceed using the strategy developed by Wong [26]. First, observe thatany equality test =s: s� s! B can be implemented in terms of equality testsat base types =b: b � b ! B . Hence, in the rest of the report, we assumethat =s, where s is not a base type, is a syntactic sugar as implemented in theproposition below.Proposition 3.1 Any equality test =s: s�s! B can be implemented in termsof equality tests at base types =b: b� b! B , using NRC(Q ;+; �;�;�;P;=) asthe ambient language.Proof. Proceed by induction on s.� =b is the given equality test at base type b.� x =s�t y , if �1 x =s �1 y then �2 x =t �2 y else false



� X =fsg Y , if X �s Y then Y �s X else false , where� X �s Y , ((Pfjif x 2s Y then 0 else 1 j x 2 X jg) =Q 0)� x 2s Y , (Pfjif x =s y then 1 else 0 j y 2 Y jg) =Q 1. 2The next step toward proving the conservative extension property forNRC(Q ;+; �;�;�;P;=) is a rewrite system adapted from Wong [26]. Lete[e0=x] stands for the expression obtained by replacing all free occurrences ofx in e by e0, provided the free variables in e0 are not captured during thesubstitution. Now, consider the rules below.� (�x:e)(e0); e[e0=x]� �i(e1; e2); ei� �i(if e1 then e2 else e3); if e1 then �i e2 else �i e3� Sfe j x 2 fgg; fg� Sffg j x 2 eg; fg� Sfe j x 2 fe0gg; e[e0=x]� Sfe j x 2 if e1 then e2 else e3g; if e1 then Sfe j x 2 e2g else Sfe j x 2 e3g� Sfe1 j x 2 Sfe2 j y 2 e3gg; SfSfe1 j x 2 e2g j y 2 e3g� Sfe j x 2 e1 [ e2g; Sfe j x 2 e1g [ Sfe j x 2 e2g� Pfje j x 2 fgjg; 0� Pfje j x 2 fe0gjg; e[e0=x]� Pfje j x 2 e1[e2jg;Pfje j x 2 e1jg+Pfjif x 2 e1 then 0 else e j x 2 e2jg� Pfje j x 2 if e1 then e2 else e3jg; if e1 then Pfje j x 2 e2jg else Pfje j x 2 e3jg� Pfje j x 2 Sfe1 j y 2 e2gjg; PfjPfj(e �PfjPfjif x = v then 1 else 0 j v 2 e1jg j y 2 e2jg) j x 2e1jg j y 2 e2jgThis system of rewrite rules preserves the meanings of expressions. The lastrule deserves special attention. Consider the incorrect equation: Pfje j x 2Sfe1 j y 2 e2gjg =PfjPfje j x 2 e1jg j y 2 e2jg. Suppose e2 evaluates to a setof two distinct objects fo1; o2g. Suppose e1[o1=y] and e1[o2=y] both evaluate tofo3g. Suppose e[o3=x] evaluates to 1. Then the left-hand-side of the \equation"returns 1 but the right-hand-side yields 2. The division operation in the lastrule is used to handle duplicates properly.



Proposition 3.2 (Soundness) If e1 ; e2, then e1 = e2. That is, e1 ; e2implies e1 and e2 denote the same value.Proof. Straightforward. 2A system of rewrite rules is said to be strongly normalizing if any sequenceof applications of these rules is guaranteed to terminate.Proposition 3.3 (Strong normalization) The above rewrite system isstrongly normalizing.Proof. While the last three rules seem to increase the \character count" ofexpressions, it should be remarked that Pfje j x 2 e0jg is always rewritten bythese three rules to an expression that decreases in the e0 position. This is thekey to the proof. The detail can be found in the appendix of Libkin and Wong[15]. 2Hence every expression can be rewritten to some normal form. These normalforms have the following property:Theorem 3.4 (Conservative extension) Let e : s be an expression ofNRC(Q ;+; �;�;�;P;=) in normal form. Then ht(e) � max(fht(s)g [fht(t) j t is the type of a free variable occurring in eg). Therefore,NRC(Q ;+; �;�;�;P;=) has the conservative extension property with �xed con-stant 0.Proof. By a fairly routine structural induction on e. 2Conservativity for NRC(=) was studied by Paredaens and Van Gucht [19]and by Wong [26]. The former proved that NRC(=)i;o;h = NRC(=)i;o;h+1 fori = o = 1. The latter generalized it to all i and o. However conservativityin the presence of aggregate functions was not studied. The above theoremimplies that NRC(Q ;+; �;�;�;P;=)i;o;h = NRC(Q ;+; �;�;�;P;=)i;o;h+1 forany i, o, h � max(i; o). Hence we have generalized the results of [19] and [26]to the case where aggregate functions are present.The theorem has practical signi�cance. Some databases are designed tosupport nested sets up to a �xed depth of nesting. For example, Jaeschkeand Schek [9] designed a statistical database whose relations are those havingheight at most 2. Another example is the commercially successful SQL whichsupports just 
at relations. Both of these systems have a suitable collection ofaggregate functions. \NRC(Q ;+; �;�;�;P;=) restricted to height 2 or 1" isa natural query language for such databases. But knowing that NRC(Q ; +; �;�; �;P; =) is conservative at all set heights, one can instead provide the userwith the entire language NRC(Q ; +; �; �; �;P; =) as a more convenient querylanguage for these databases, so long as queries have input/output height notexceeding 2 or 1.



4 Linear ordering on nested relationsThe conservative extension property can be used to study many properties oflanguages (see Libkin and Wong [15] for some examples). In this section, weuse it to demonstrate that NRC(Q ;+; �;�;�;P;=) is incapable of expressingthe usual linear ordering �Q : Q�Q ! B on rational numbers. So we introducelinear order for base types. Then a technique for lifting linear order at basetypes to all types is presented.Proposition 4.1 NRC(Q ;+; �;�;�;P;=) cannot express �Q .Proof. It is enough to show that the following function cannot be expressed:g(x) = 0 if x � 1 and g(x) = 1 if x > 1. Observe that g : Q ! Q hasheight 0. By the conservative extension property, it must be de�nable using anexpression of height 0. However, we can prove the following claim:Claim. Let g(x) : Q be an expression de�ned wholely in terms of +, �, �, �, =b,if -then-else , constants, and the variable x : Q . Then there are two polynomialsp(x) and q(x) with rational coe�cients such that g(x) coincides with p(x)�q(x)almost everywhere. That is, g(x) 6= p(x)� q(x) for only �nitely many x 2 Q .Now p(x) � q(x) = 1 i� p(x) � q(x) = 0. Since p(x) � q(x) = 0 is apolynomial equation, it has �nitely many roots. Hence g(x) cannot coincidewith p(x)� q(x) almost everywhere. Consequently, g is not expressible. 2Therefore, we propose to augment NRC(Q ;+; �;�;�;P;=) with a linearorder �b: b � b ! b for each base type b. Many important data organizationfunctions such as sorting algorithms and duplicate detection/elimination algo-rithms rely on linear orders. In the remainder of this section, we show how tolift linear order at base types to linear order at all types. First recall that theHoare ordering v[ on the subsets of an ordered set is de�ned as X v[ Y i� forevery x 2 X there is y 2 Y such that x v y. ThenProposition 4.2 Let (D;v) be a partially ordered set. De�ne an order .[ onthe �nite subsets of D as follows: X .[ Y i� either X v[ Y and Y 6v[ X,or X v[ Y and Y v[ X and X � Y v[ Y � X. Then .[ is a partial order.Moreover, if v is a linear order, then so is .[.Proof. See Libkin and Wong [15]. 2Kupert, Saake, and Wegner [14] gave three linear orderings on collectiontypes in their study of duplicate detection and elimination. The ordering de-�ned above coincides with one of them and is in fact a particular case of anorder well known in universal algebra and combinatorics [13, 25]. An importantfeature of our technique of lifting linear orders is that the resulting linear ordersare readily seen to be computable by our very limited language. Hence in therest of the report, we assume that �s, where s is not a base type, is a syntacticsugar as implemented in the theorem below.



Theorem 4.3 (Linear order) NRC(Q ;+; �;�;�;P;=) augmented with lin-ear order �b: b � b ! b at every base type b can express a linear order�s: s� s! s at every type s.Proof. Proceed by induction on s.� �b is the given linear order on base type b.� x �s�t y , if �1 x �s �1 y then (if �1 x =s �1 y then �2 x �t�2 y else true) else false� X �fsg Y , if X v[s Y then (if Y v[s X then X .[s Y else true) else false� X v[s Y , (Pfj(if (Pfj(if x �s y then 1 else 0) j y 2 Y jg) = 0 then 1else 0) j x 2 X jg) = 0� X .[ Y , (Pfjif x 2s Y then 0 else (if (Pfjif y 2s X then 0 else (if x�s y then 1 else 0) j y 2 Y jg) = 0 then 1 else 0) j x 2 X jg) = 0. 2Hence we denote the language endowed with linear order at base types byNRC(Q ;+; �;�;�;P;=;�). Several other queries commonly encountered inpractical database environments, as well as some unusual ones, are now easilyexpressed:� \Rows of R whose �rst column value is the maximum of the column"is maxrows(R) , Sfif (Pfjif �1(x) = �1(y) then 0 else if �1(y) ��1(x) then 1 else 0 j x 2 Rjg = 0) then fyg else fg j y 2 Rg.� \Rows of R whose �rst column value is the mode of the column" ismoderows(R) , maxrows(Sff( Pfjif f(y) = f(x) then 1 else 0 j y 2Rjg; x)g j x 2 Rg).� \Parity of the cardinality of a set R" is odd(R) , Sfif Pfjif x �y then 1 else 0 j y 2 Rjg =Pfjif y � x then 1 else 0 j y 2 Rjg thenf()g elsefg j x 2 Rg = f()g.More signi�cantly, the rank assignment function can be expressed. The rankassignment function leads to a few rather surprising results to be discussedshortly.Proposition 4.4 A rank assignment sorts : fsg ! fs � Qg is the func-tion such that sortfo1; : : : ; ong = f(o1; 1); : : : ; (on; n)g where o1 < : : : < on.NRC(Q ;+; �;�;�;P;=;�) can de�ne sorts.Proof. sort(R) , Sff(x; Pfjif y � x then 1 else 0 j y 2 Rjg)g j x 2 Rg. 25 More conservative extension resultsThe ability to compute a linear order and a rank assignment function at ev-ery type proves to be an asset. In this �nal section, we present a few moreconservative extension results. First, let us consider the following primitives:



g : fsg f : fsg ! fsgb�xs(f; g) : fsgtcs : fs� sg ! fs� sg powersets : fsg ! ffsggwhere tc(R) is the transitive closure of R; b�x(f; g) is the bounded �xpointof f with respect to g; that is, it is the least �xpoint of the equation f(R) =g \ (R [ f(R)); and powerset(R) is the powerset of R.Corollary 5.1 The followings have the conservative extension property:� NRC(Q ;+; �;�;�;P;=;�; tc) with �xed constant 1.� NRC(Q ;+; �;�;�;P;=;�; b�x) with �xed constant 1.� NRC(Q ;+; �;�;�;P;=; �; powerset) with �xed constant 2.Proof. We provide the proof for the �rst one, the other two are straightforwardadaptation of the same technique. First observe that NRC(Q ;+; �;�;�;P;=;�; tcQ ), where we restrict computation of transitive closure to binary relationsof rational numbers, has the conservative extension property with constant 1.Therefore, it su�ces for us to show that tcs is expressible in it for any s. Thiscan be achieved by exploiting the rank assignment function sort by de�ning� tc(R) , decode(tcQ (encode(R; sort(dom(R)))); sort(dom(R))), where� dom(R) , Sff�1 xg j x 2 Rg [ Sff�2 xg j x 2 Rg,� encode(R;C) , SfSfSfif �1 x = �1 y then if �2 x = �1 z then f(�2 y;�2 z)g else fg else fg j z 2 Cg j y 2 Cg j x 2 Rg, and� decode(R;C) , SfSfSfif �1 x = �2 y then if �2 x = �2 z then f(�1 y;�1 z)g else fg else fg j z 2 Cg j y 2 Cg j x 2 Rg. 2Conservativity of NRC(=; powerset) was considered by Hull and Su [7] andGrumbach and Vianu [6]. The former showed that NRC(=; powerset)i;o;h 6=NRC(=; powerset)i;o;h+1 for any h and i = o = 1. This implies the failure ofconservative extension for NRC(=; powerset) with respect to 
at relations. Thelatter generalized this result to any i and o. The corollary above showed thatthe failure at higher heights can be repaired by augmenting NRC(=; powerset)with a summation operator.More recently, Suciu [21] showed, using a technique related to that of Vanden Bussche [5], that NRC(=; b�x)i;o;h = NRC(=; b�x)i;o;h+1 for i = o = 1.This is remarkable because he did not need any arithmetic operation. Thecorollary above showed that the conservativity of bounded �xpoint can be ex-tended to all input and output in the presence of arithmetics.



Immerman [8] showed that �rst-order logic with least �xpoint and order isequivalent to PTIME. This may imply NRC(Q ;+; �;�;�;P;=;�; lfp)1;1;h =NRC(Q ;+; �;�;�;P;=;�; lfp)1;1;h+1. In which case, NRC(Q ;+; �; �;�;P;=;�; lfp) is conservative over 
at relations. This should be contrasted with thecorollary above. The languages in the corollary do not necessarily give us allPTIME queries over 
at relations. Furthermore, conservativity holds for themover any input and output.The technique used in our proof of conservative extension has an intrin-sic uniformity. To illustrate this, let us introduce three partially interpretedprimitives �, � and Q to NRC(Q ;+; �;�;�;P;=;�),� : b e1 : b e2 : be1 � e2 : b e1 : b e2 : fsgQfje1 j xs 2 e2jg : bwhere b is some �xed type, � : b � b ! b is a commutative associative binaryoperation, � : b is the identity for �, andQfje j xs 2 fo1; : : : ; ongjg = e[o1=xs]�: : : � e[on=xs] � � for any set fo1; : : : ; ong, with o1, ..., on all distinct, of typefsg. As an example, take � to be � and b to be Q , then � becomes 1 and Qbecomes a sort of bounded product.Proposition 5.2 For every i, o, and h � max(i; o; ht(b)), NRC(B ;Q ;+; �;�;�;P;=;�;�;Q; �)i;o;h = NRC(B ;Q ;+; �;�;�;P;=;�;�;Q; �)i;o;h+1.Proof. It su�ces to append the rules below to the rewrite system of section 3.Note the use of the linear ordering �. (If � is also idempotent, simpler rulescan be used.)� Qfje j x 2 fgjg; �� Qfje j x 2 fe0gjg; e[e0=x]� Qfje j x 2 e1[e2jg;Qfje j x 2 e1jg�Qfjif x 2 e1 then � else e jx 2 e2jg� Qfje j x 2 if e1 then e2 else e3jgnewline ; if e1 then Qfje j x 2e2jg else Qfje j x 2 e3jg� Qfje j x 2 Sfe1 j y 2 e2gjg; QfjQfjif (Pfjif x 2 e1[w=y] then (if w =y then 0 else (if w � y then 1 else 0)) else 0 j w 2 e2jg) = 0 then e else �j x 2 e1jg j y 2 e2jg. 26 Conclusion and future work.The conservative extension property of nested relational calculi is studied inthe presence of aggregate functions and linear orders. We showed that thisproperty is retained by the nested relational calculus NRC(=) when very sim-ple arithmetics and a summation operator are added to the language. Weproved also that the presence of linear orders at base types leads to a more
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