Aggregate Functions, Conservative
Extension, and Linear Orders

Leonid Libkin Limsoon Wong

Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104-6389, USA

1 Summary

Practical database query languages are usually equipped with some aggregate
functions. For example, “find mean of column” can be expressed in SQL.
However, the manner in which aggregate functions were introduced in these
query languages leaves something to be desired. Breazu-Tannen, Buneman,
and Wong [3] introduced a nested relational language N'RC (=) based on monads
[16, 24] and structural recursion [1, 2]. It was shown in Wong [27] that this
language is equivalent to the nested relational algebras of Thomas and Fischer
[22], Schek and Scholl [20], and Colby [4]. NRC(=) enjoys certain advantages
over these languages: it is naturally embedded in functional languages, it is
readily extensible, and it has a compact equational theory. Therefore, it is
used in this report as a basis for investigating aggregate functions.

In section 2, the nested relational calculus NRC(=) is described. It is then
endowed with rational numbers, rational arithmetic, and a summation operator.
The augmented language, NRC(Q, +, -, —, =, >_, =), is able to express a variety
of aggregate functions commonly found in real database query languages. The
main results of this paper remain valid in a uniform way if any summation-like
primitive, such as bounded product, is added to the language. This approach
is more disciplined and general than those proposed by Klug [12], Ozsoyoglu,
Ozsoyoglu, and Matos [18], and Klausner and Goodman [11].

In section 3, we prove that every function f : s — ¢ expressible in
NRC(Q, +, -, —, =+, Y., =) can be computed without using any intermediate data
whose depth of nesting of sets exceeds that of the input and output. This is
known as the conservative extension property. Conservativity of nested rela-
tional query languages in the absence of aggregate functions was studied by
Paredaens and Van Gucht [19] and Wong [26]. The former proved that it holds
when input and output are flat relations. The latter generalized it to any in-
put and output. Conservativity in the presence of aggregate functions was not
previously studied.

In section 4, the conservative extension property is used to demonstrate
the somewhat surprising fact that ARC(Q, +,-, —, =+, >, =) cannot express the
usual linear ordering on rational numbers. As linear orders play a central
role in fundamental data organization algorithms [14], this calls for special

Y

attention. We present a technique for lifting linear order at base types to linear

order at all types. This technique yields linear orders that are expressible
in NRC(Q, +, -, —,+,>.,=, <), which is the language obtained by augmenting
NRC(Q,+, -, —,+,>.,=) with linear orders at base types. Linear order is known
to increase expressive power in the context of database query languages [8, 23].
In our case, this is a major advantage. Queries such as “find maximum of
column,” “find mode of column” and “test parity of cardinality of a set” are
expressible in NRC(Q, +,-, —, =+, Y., =,<). More importantly, a function that
assigns rank to elements of a set is now expressible.

This rank assignment function is used in section 5 to show that
NRC(Q, +,-, —, =+, Y., =, <) augmented with any combination of the transitive
closure operator tc, the bounded fixpoint operator bfiz, or the powerset op-
erator powerset retains the conservative extension property. Hull and Su [7]
showed that A'RC (=, powerset) is not conservative over flat input and output.
This failure of conservativity for NRC (=, powerset) was generalized to all input
and output heights by Grumbach and Vianu [6]. In contrast, our result shows
that conservativity can be repaired with very little extra. Suciu [21] showed
that NRC(=, bfiz) is conservative over flat relations. His result is remarkable
in that it did not need any arithmetic nor order. Furthermore, it is also valid
when bounded fixpoint is replaced by bounded partial fixpoint operator. Our
result uses arithmetic but holds for bounded fixpoint operator over any input
and output. In fact, our proof of conservative extension holds wuniformly for
NRC(Q,+,-,—,+,>.,=,<,[I,®,t) where [], ¢, and ® are any triple of addi-
tional primitives which are in a relationship like that between >, 0, and +.

2 Nested relational calculus with summation

The monad calculus of Breazu-Tannen, Buneman, and Wong [3] is denoted N'RC
here. In this section, it is extended with rational numbers, simple arithmetics,
and a summation operator. The extended language is able to express many
aggregate functions commonly found in commercial relational database query
languages such as SQL.

A type in NRC is either a complex object type or is a function type s — ¢
where s and ¢ are complex object types. The complex object types are given
by the grammar:

s,t =0 | B | unit|sxt]|{s}

Objects of type B are the two boolean values true and false. The unique
object of type unit is denoted by (). Objects of type s x ¢ are pairs whose first
components are objects of type s and second components are objects of type .
Objects of type {s} are finite sets of objects of type s. We also include some
uninterpreted base types b.

Expressions of NRC are constructed using the rules in the figure below.
Note that [3] uses ext(Az®.e1)(e2); but here we use the equivalent construct
U{e1 | 2° € e2} instead. The language also contains some uninterpreted con-
stants ¢ of base type Type(c) and uninterpreted functions p of function type

Type(p). The type superscripts are omitted in the rest of the paper because
they can be inferred [17, 10]. Throughout this paper we assume the usual
convention that variables are distinct and that expressions are well formed.

Lambda Calculus and Products

e:t e1:s—t ey:s
z5: s Axde:s—t e; eyt
e:sxt e;:s eyt
() : unit T e:s mye:t (e1,€2) s x t
Set. Monad

e:s er:{s} ex:{s} er: {t} ex:{s}
{}*: {s} {e} : {s} erUes : {s} Ufer | 2° € ex} : {t}

Booleans

€1ZIB egit 632t
true : B false : B if e1 then es else eg : t

The semantics of N'RC was described in [3]. The lambda calculus, product, and
boolean constructs are standard. We briefly repeat the meaning of the monad
constructs here. {} is the empty set. {e} is the singleton set containing e.
e1 U ey is the union of sets e; and es. The construct | J{e; | x € e2} denotes
the set obtained by first applying the function Az.e; to elements of the set e
and then taking their big union. Hence J{e; | x € ea} = f(o1) U ... U f(on),
where f is the function Axz.e; and {oi,...,0,} is the set es. The shorthand
{01,....0n} is used to denote {01} U...U {o,}. It must be stressed that the
T € ey part in the construct [J{e1 | ¢ € e2} is not a membership test; it is the
introduction of a new variable x whose scope is the subexpression e.

As it stands, A'RC can merely express queries that are purely structural. It
was shown in [3] that endowing NRC with equality test =%: sxs — B at all types
s elevates NRC to a fully fledged nested relational language (which was shown
by Wong [27] to be equivalent to classical nested relational algebras of Thomas
and Fischer[22], Schek and Scholl [20], and Colby [4]). That is, operations
such as nest, membership test, subset test, set intersection, set difference, etc.
are expressible in A’RC(=). (We write the additional primitive in brackets to
distinguish various extensions of the language.) It should also be remarked that
in [3], booleans are simulated by values of type {unit} with {()} for true and
{} for false. However, over the class of functions of type s — {s1} x --- % {s,},
it does not matter which presentation of booleans is used — the resulting
languages have the same expressive power.

Examples. |J{{z,5 -2} | € {1,2,3}} evaluates to the set {1,2,3,5,10,15}.
U{U{{(z,y)} | x € X} | y € Y} forms the cartesian product of sets X and
Y. U{U{H{(m z,y)} | y € ma 2} | * € X} is the unnesting of the set X.
U{{(m =, U{if m1 x = m1 y then {my y} else {} |y € X}} | z € X} is the
relational nesting of X.

Real database query languages frequently have to deal with queries such
as “select average from column,” “select maximum of column,” “select count
from column,” etc. To handle this kind of queries, additional primitives must be
added to A’RC. In this paper, we add rational numbers (whose type is denoted
by Q) and the following constructs:

612@ 62:@ 612@ 62:@ 61:@ 62:@
e1+er:Q e1-e:Q e1 e :Q

e1:Q e:Q e1:Q ey:{s}
el —ex: Q S{er | z° €esft : Q

where +, -, —, and + are respectively addition, multiplication, subtraction,
and division of rational numbers. The summation construct Y {e; | z° € ea}
denotes the rational obtained by first applying the function Az.e; to every item
in the set es and then adding the results up. That is, Y {le; | x € X[} is
f(o1) +...+ f(on) if f is the function denoted by Az.e; and {oy,...0,}, with
01, ..., op all distinct, is the set denoted by X. It should be emphasized that
the {le; | = € es} part of the construct Y {e; | z € ea[} is not an expression of
the language; hence Y {|1 | z € {5,6}]} is 2 and not 1.

The extended language NRC(Q,+,,—, =, >.,=) is capable of expressing
many aggregate operations found in commercial databases. Here are some
examples:

e “Count the number of records in R” is count(R) 2 S {1| = € R[}.
e “Total the first column of R” is total(R) 2 S {m = | = € R]}.
e “Average of the first column in R” is average(R) £ total(R) <+ count(R).

e “Variance of the first column of R” is variance(R) & (3 {sq(m1 =) | = €
R} — (sq(X {71 z | © € R[}) =+ count(R))) +count(R), where sq = \y.y-y.

Aggregate functions were first introduced into flat relational algebra by
Klug [12]. He introduced these functions by repeating them for every column
of a relation. That is, aggregate; is for column 1, aggregates is for column 2,
and so on. Ozsoyoglu, Ozsoyoglu, and Matos [18] generalized this approach to
nested relations. Our use of the summation construct is more general. On the
other hand, Klausner and Goodman [11] had “stand-alone” aggregate functions
such as mean : {Q} — Q. However, they had to rely on a notion of hiding
to deal correctly with duplicates. Hiding is different from projection. Let

R 2{(1,2),(2,3),(2,4)}. Projecting out the second column of R gives us R' £
{1,2}. Hiding the second column of R gives us R £ {(1,[2]),(2,[3]), (2,[4])},
where the hidden components are shown between square brackets. Observe that
the former “eliminates” duplicates as sets have no duplicate by definition. The
latter “retains” the duplicated 2 by virtue of tagging them with different hidden
components. Then mean(R") produces the average of the first column of R,
whereas mean(R') does not compute the mean correctly. The use of hiding
to retain duplicates is rather clumsy. Our use of the summation construct is
simpler.

3 Conservative extension

Let us first define the concept of conservative extension. The set height ht(s) of
a type s is defined by induction on the structure of type: ht(unit) = ht(b) = 0,
ht(s x t) = ht(s — t) = max(ht(s), ht(t)), and ht({s}) = 1+ ht(s). Every
expression of our language has a unique typing derivation. Hence the set height
of expression e is defined as ht(e) = max{ht(s) | s occurs in the type derivation
of e}. Let L;, n denote the class of functions whose input has set height at
most 7, whose output has set height at most o, and which are definable in the
language £ using an expression whose set height is at most A > max(i,0). £ is
said to have the conservative extension property with fized constant k if L; , p, =
L; o n+1 for all i, o, and h > max(i,0, k). Note that if £ has the conservative
extension property with constant k, then for any additional primitive p : s — ¢,
L(p) has it with constant at most max(ht(p), k) = max(ht(s — t), k).

In this section, we present a rewrite system for NRC(Q, +, -, —, +, Y., =) that
is strongly normalizing. The normal forms induced by this rewriting are then
used to prove that every definable function is definable using operators whose
set height is at most the set height of the input/output of the function. The the-
orem implies that NRC(Q, +, -, —, +, Y_, =) has the conservative extension prop-
erty with fixed constant 0. Consequently, the class NRC(Q, +, -, —, +,32,=); 5 1
is independent of h. Hence using intermediate data structure of great height
does not increase the horsepower of the language (though it frequently makes
programs more elegant).

We proceed using the strategy developed by Wong [26]. First, observe that
any equality test =°: s x s — B can be implemented in terms of equality tests
at base types =%: b x b — B. Hence, in the rest of the report, we assume
that =*, where s is not a base type, is a syntactic sugar as implemented in the
proposition below.

Proposition 3.1 Any equality test =°: s x s — B can be implemented in terms
of equality tests at base types =": b x b — B, using NRC(Q, +,-, —,+,>.,=) as
the ambient language.

Proof. Proceed by induction on s.

e =’ is the given equality test at base type b.

o p =5t y Y Zf ™ x=%m Y then m x =t Ty Y else false

X =U}Y 2if XC°V then Y C* X else false, where
XCVE(X{if r€Y then0else 1|z € X[}) =Q 0)

€Y 2 (S {if £ ="y then 1 else 0|y € Y]}) -Q. O

The next step toward proving the conservative extension property for
NRC(Q,+,-,—,=+,>.,=) is a rewrite system adapted from Wong [26]. Let
ele’/z] stands for the expression obtained by replacing all free occurrences of
x in e by €', provided the free variables in e’ are not captured during the
substitution. Now, consider the rules below.

(Az.e)(e') ~ ele' /]

Ti(e1, €2) ~ €;

mi(if e1 then e else e3) ~ if ey then m; es else m; e3
Ufelze{}}~{}

U{} [z ee}~{}

U{e | = € {e'}} ~ e[e'/a]

U{e | = € if e1 then ey else e3}
~ if e; then J{e | z € ea} else | J{e | = € e3}

Ufer [z e U{ea |y € e}~ U{Ufer [z € €2} [y € es}
UfelzeerUe}~Ule|lzee}u Ule| o €en}
>Aelze{}f~0

>le |z e {e'}}~ ele'/a]

S|z € erUesl) ~ Yle |2 € et + X {if € e1 then 0 else e | @ € es)

Y{le | x € if ey then es else esl}
~ if e; then Y {le | z € eaf} else Y {e |z € esf}

2AlelzeUfer |y €entf
~ 2 A Al(e = A Aif « =v ithen 1else 0| veel |yeel))|ze

e} |y € eaf}

This system of rewrite rules preserves the meanings of expressions. The last
rule deserves special attention. Consider the incorrect equation: Y {e | z €

Uler ly€edl =2 {>{le| z € eil} | y € eal}. Suppose e evaluates to a set
of two distinct objects {01,02}. Suppose e;[o1 /y] and e;[o2/y] both evaluate to

{os}.

Suppose e[os/z] evaluates to 1. Then the left-hand-side of the “equation”

returns 1 but the right-hand-side yields 2. The division operation in the last
rule is used to handle duplicates properly.

Proposition 3.2 (Soundness) If e; ~ es, then e; = ey. That is, e; ~ ey
implies e; and es denote the same value.

Proof. Straightforward. |

A system of rewrite rules is said to be strongly normalizing if any sequence
of applications of these rules is guaranteed to terminate.

Proposition 3.3 (Strong normalization) The above rewrite system is
strongly normalizing.

Proof. While the last three rules seem to increase the “character count” of
expressions, it should be remarked that > {e | z € €'} is always rewritten by
these three rules to an expression that decreases in the e’ position. This is the
key to the proof. The detail can be found in the appendix of Libkin and Wong
[15]. O

Hence every expression can be rewritten to some normal form. These normal
forms have the following property:

Theorem 3.4 (Conservative extension) Let e : s be an expression of
NRC(Q,+,,—,+,>.,=) in normal form. Then ht(e) < max({ht(s)} U
{ht(t) | t is the type of a free wvariable occurring in e}). Therefore,
NRC(Q, +, -, —, =+, >, =) has the conservative extension property with fized con-
stant 0.

Proof. By a fairly routine structural induction on e. O

Conservativity for NRC(=) was studied by Paredaens and Van Gucht [19]
and by Wong [26]. The former proved that NRC(=); 0n = NRC(=)i,0,n+1 for
i = o = 1. The latter generalized it to all + and o. However conservativity
in the presence of aggregate functions was not studied. The above theorem
implies that NRC(Q, +, -, =, +, 32, =); o = NRC(Q, +, =, +, 32, =); o 5y for
any 4, o, h > max(i,0). Hence we have generalized the results of [19] and [26]
to the case where aggregate functions are present.

The theorem has practical significance. Some databases are designed to
support nested sets up to a fixed depth of nesting. For example, Jaeschke
and Schek [9] designed a statistical database whose relations are those having
height at most 2. Another example is the commercially successful SQL which
supports just flat relations. Both of these systems have a suitable collection of
aggregate functions. “NRC(Q, +,+,—, =, Y., =) restricted to height 2 or 1” is
a natural query language for such databases. But knowing that NRC(Q, +, -,
—, =+, Y, =) is conservative at all set heights, one can instead provide the user
with the entire language NRC(Q, +, -, —, =, Y., =) as a more convenient query
language for these databases, so long as queries have input/output height not
exceeding 2 or 1.

4 Linear ordering on nested relations

The conservative extension property can be used to study many properties of
languages (see Libkin and Wong [15] for some examples). In this section, we
use it to demonstrate that NRC(Q, +,-, —, +, Y., =) is incapable of expressing

the usual linear ordering SQ: QxQ — B on rational numbers. So we introduce
linear order for base types. Then a technique for lifting linear order at base
types to all types is presented.

Proposition 4.1 NRC(Q, +,-,—, =, Y., =) cannot express SQ.

Proof. It is enough to show that the following function cannot be expressed:
g(z) = 0if z < 1 and g(z) = 1if x > 1. Observe that g : Q — Q has
height 0. By the conservative extension property, it must be definable using an
expression of height 0. However, we can prove the following claim:

Claim. Let g(z) : Q be an expression defined wholely in terms of +, —, -, +, =?,

if-then-else, constants, and the variable x : Q. Then there are two polynomials
p(z) and ¢(z) with rational coefficients such that g(z) coincides with p(z)+q(z)
almost everywhere. That is, g(z) # p(z) + q(z) for only finitely many z € Q.
Now p(z) + q(z) = 1 iff p(z) — ¢(z) = 0. Since p(z) —q(z) = 0is a
polynomial equation, it has finitely many roots. Hence g(x) cannot coincide
with p(z) + ¢(z) almost everywhere. Consequently, g is not expressible. O

Therefore, we propose to augment ARC(Q, +,-, —, +,>.,=) with a linear
order <’: b x b — b for each base type b. Many important data organization
functions such as sorting algorithms and duplicate detection/elimination algo-
rithms rely on linear orders. In the remainder of this section, we show how to
lift linear order at base types to linear order at all types. First recall that the
Hoare ordering C” on the subsets of an ordered set is defined as X C” Y iff for
every ¢ € X thereis y € Y such that z C y. Then

Proposition 4.2 Let (D,C) be a partially ordered set. Define an order <° on
the finite subsets of D as follows: X <" Y iff either X C" Y and Y Z° X,
or XY and Y C" X and X =Y C° Y — X. Then Sb s a partial order.
Moreover, if C is a linear order, then so is Sb.

Proof. See Libkin and Wong [15]. O

Kupert, Saake, and Wegner [14] gave three linear orderings on collection
types in their study of duplicate detection and elimination. The ordering de-
fined above coincides with one of them and is in fact a particular case of an
order well known in universal algebra and combinatorics [13, 25]. An important
feature of our technique of lifting linear orders is that the resulting linear orders
are readily seen to be computable by our very limited language. Hence in the
rest of the report, we assume that <®, where s is not a base type, is a syntactic
sugar as implemented in the theorem below.

Theorem 4.3 (Linear order) NRC(Q,+,:, —,+,>.,=) augmented with lin-
ear order <': b x b — b at every base type b can express a linear order
<*:sx s — s at every type s.

Proof. Proceed by induction on s.
e <% is the given linear order on base type b.

o <5ty B f o <* my oy then (if m x =° m y then m z <!
7o y else true) else false

X <Y 2if X0V then (if Y T8 X then X <)Y else true) else false

XY 2 ({6 G © <°ythen 1else 0) |y € Y[}) = 0 then 1
else 0) |z € X[}) =0

X <Y & ({if x €Y then 0 else (if (3 {if y € X then 0 else (if =
<y then 1else 0) |y € Y[}) =0 then 1 else 0) | z € X|}) = 0. O

Hence we denote the language endowed with linear order at base types by
NRC(Q,+,+,—,+,>.,=,<). Several other queries commonly encountered in
practical database environments, as well as some unusual ones, are now easily
expressed:

e “Rows of R whose first column value is the maximum of the column”

is mazrows(R) 2 U{if ({if m(z) = m1(y) then 0 else if m(y) <
m1(z) then 1 else 0 | x € R[} = 0) then {y} else {} | y € R}.

e “Rows of R whose first column value is the mode of the column” is
moderows(R) £ mazrows(J{{({if f(y) = f(x) then 1 else 0 | y €
R},)} |z € R}).

e “Parity of the cardinality of a set R” is odd(R) 2 {if S {lif = <
ythenlelse0|y € R} = {lif y < x thenlelse0|y € R[} then{()} else
{} [z € R} = {0}

More significantly, the rank assignment function can be expressed. The rank
assignment function leads to a few rather surprising results to be discussed
shortly.

Proposition 4.4 A rank assignment sort® : {s} — {s x Q} is the func-
tion such that sort{oi,...,0n,} = {(01,1),...,(0n,n)} where 01 < ... < 0y.
NRC(Q,+,-,—,+,>.,=,<) can define sort®.

Proof. sort(R) 2 U{{(z, S{if y<z then 1 else 0|y € R})} | z € R}. O

5 More conservative extension results
The ability to compute a linear order and a rank assignment function at ev-

ery type proves to be an asset. In this final section, we present a few more
conservative extension results. First, let us consider the following primitives:

g9:{st f:{s} = {s}
bfiz®(f.g) : {s}

te® 1 {s x s} = {s x s} powerset® : {s} = {{s}}

where tc(R) is the transitive closure of R; bfix(f,g) is the bounded fixpoint
of f with respect to g; that is, it is the least fixpoint of the equation f(R) =
gN (RU f(R)); and powerset(R) is the powerset of R.

Corollary 5.1 The followings have the conservative extension property:

o NRC(Q,+,,—,+,>.,=,<, tc) with fized constant 1.
o NRC(Q,+,-,—,+,>.,=,<, bfiz) with fized constant 1.
o NRC(Q,+,-,—,+,>., =, <,powerset) with fized constant 2.

Proof. We provide the proof for the first one, the other two are straightforward
adaptation of the same technique. First observe that NRC(Q, +,, —, +,>.,=
, <, th), where we restrict computation of transitive closure to binary relations
of rational numbers, has the conservative extension property with constant 1.
Therefore, it suffices for us to show that tc® is expressible in it for any s. This
can be achieved by exploiting the rank assignment function sort by defining

e tc(R) £ decode(th(encode(R, sort(dom(R)))), sort(dom(R))), where
e dom(R) & J{{m =} | * € R} U U{{m 2} | = € R},

e encode(R,C) 2 J{U{U{if 71 = =, y then if mo = = m 2z then {(ma y,
7 z)} else {} else {} | z€ C} |y € C} | © € R}, and

e decode(R,C) & J{U{U{if 71 = my y then if m x = my 2 then {(m; y,
m z)} else {} else {} | z€ C} |y € C} |z € R}. O

Conservativity of N'RC(=, powerset) was considered by Hull and Su [7] and
Grumbach and Vianu [6]. The former showed that NRC(=, powerset); ,n #
NRC(=, powerset); o p+1 for any h and i = o = 1. This implies the failure of
conservative extension for NRC (=, powerset) with respect to flat relations. The
latter generalized this result to any ¢« and o. The corollary above showed that
the failure at higher heights can be repaired by augmenting N'RC (=, powerset)
with a summation operator.

More recently, Suciu [21] showed, using a technique related to that of Van
den Bussche [5], that NRC(=, bfiz)io.n = NRC(=, bfix)iont1 for i = o = 1.
This is remarkable because he did not need any arithmetic operation. The
corollary above showed that the conservativity of bounded fixpoint can be ex-
tended to all input and output in the presence of arithmetics.

Immerman [8] showed that first-order logic with least fixpoint and order is
equivalent to PTIME. This may imply NRC(Q,+,-,—, +, >, =, <,lfp)11.n =
NRC(Q,+,,—, =, >, =, <,lfp)1,1,h+1. In which case, NRC(Q, +, -, —, +,>.,=
,<,lfp) is conservative over flat relations. This should be contrasted with the
corollary above. The languages in the corollary do not necessarily give us all
PTIME queries over flat relations. Furthermore, conservativity holds for them
over any input and output.

The technique used in our proof of conservative extension has an intrin-
sic uniformity. To illustrate this, let us introduce three partially interpreted

primitives ¢, ® and [] to NRC(Q, +,-, —, =, ., =, <),
e1:b ey:b e1:b es:{s}
t:b e1®ex:d [[{lex | z° € eaf}: b

where b is some fixed type, ® : b x b — b is a commutative associative binary
operation, ¢ : b is the identity for ®, and [[{e | * € {01,...,0n}} = €e[o1/2°]®
... ®e€[o,/z*] ©® ¢ for any set {o1,...,0,}, with o1, ..., 0, all distinct, of type
{s}. As an example, take ® to be - and b to be Q, then ¢ becomes 1 and []
becomes a sort of bounded product.

Proposition 5.2 For every i, o, and h > max(i, 0, ht(b)), NRC(B,Q, +,-, —,
5. =<0, Vion = NRCB,Q, +,, —, +. >, =, <, O, [,)i,0,ht1-
Proof. It suffices to append the rules below to the rewrite system of section 3.
Note the use of the linear ordering <. (If ® is also idempotent, simpler rules
can be used.)

o [Helze{} i~
[He | z € {e'}]} ~ ele'/2]

[Helz€eiUes} ~T[{e| v € er} GTI{if = € e1 then ¢ else e |z € e}

[I{le | x € if e then es else es[inewline ~ if e; then [[{le | z €

eaf} else [[{le| = € e3f}
[Hle |z €U{er |y € e}t ~ [T C{lif 2 € ea[w/y] then (if w=

y then 0 else (if w <y then 1 else 0)) else 0 | w € es}) = 0 then e else ¢
|z € el |y€ el O

6 Conclusion and future work.

The conservative extension property of nested relational calculi is studied in
the presence of aggregate functions and linear orders. We showed that this
property is retained by the nested relational calculus NRC(=) when very sim-
ple arithmetics and a summation operator are added to the language. We
proved also that the presence of linear orders at base types leads to a more

uniform and perhaps unexpected demonstration of the conservative extension
property of several nested relational calculi. In particular, the well-known fail-
ure of conservativity of ARC(=, powerset) is shown to be repairable at higher
heights when very simple arithmetics, bounded summation, and linear orders
are available. These results have many consequences, including an interesting
finite-cofiniteness property of the bag query language of Libkin and Wong [15];
we hope to present them in detail in a future report.

It is known that the presence of a linear order adds power to first-order
query languages [8, 23]. Our nested set language has enough power to express
a linear order at all types. It is a good framework for investigating the impact
of linear orders on nested collections. Also, other kinds of linear orders on
nested collections such as those in [14] should be studied.

We were able to demonstrate the conservative extension property for the
nested set language with aggregate functions and additional primitives such as
transitive closure, bounded fixpoint and powerset by reducing these primitives
to the corresponding ones on rational numbers. What is the general property
of these primitives that allowed this reduction?

The nested relational language with summation seems to be adequate for
statistical databases. Does it have sufficient expressive power for querying
databases for other advanced applications such as spatial databases, geographic
databases, and genome databases?

Acknowledgements. Discussions with Peter Buneman, Val Breazu-Tannen,
and especially Dan Suciu directly resulted in this paper. We thank them for
their encouragement and insights. We are also grateful to Anthony Kosky and
Paula Ta-Shma for their valuable comments. Support for Leonid Libkin is
provided in part by National Science Foundation Grant IRI-90-04137 and a
AT&T Doctoral Fellowship. Support for Limsoon Wong is provided in part
by National Science Foundation Grant IRI-90-04137 and Army Research Office
Grant DAAL03-89-C-0031-PRIME.

References

[1] V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion as a
query language. In Proceedings of 3rd International Workshop on Database
Programming Languages, Naphlion, Greece, pages 9-19. Morgan Kauf-
mann, August 1991.

[2] V. Breazu-Tannen and R. Subrahmanyam. Logical and computational as-
pects of programming with Sets/Bags/Lists. In LNCS 510: Proceedings
of 18th International Colloquium on Automata, Languages, and Program-
ming, Madrid, Spain, July 1991, pages 60-75. Springer Verlag, 1991.

[3] Val Breazu-Tannen, Peter Buneman, and Limsoon Wong. Naturally em-
bedded query languages. In LNCS 646: Proceedings of International Con-
ference on Database Theory, Berlin, Germany, October, 1992, pages 140—
154. Springer-Verlag, October 1992.

[4]

[5]

Latha S. Colby. A recursive algebra for nested relations. Information
Systems, 15(5):567-582, 1990.

Jan Van den Bussche. Complex object manipulation through identifiers:
An algebraic perspective. technical Report 92-41, University of Antwerp,
Department of Mathematics and Computer Science, Universiteitsplein 1,
B-2610 Antwerp, Belgium, September 1992.

Stephane Grumbach and Victor Vianu. Playing games with objects. In
LNCS 470: 3rd International Conference on Database Theory, Paris,
France, December 1990, pages 25—-39. Springer-Verlag, 1990.

Richard Hull and Jianwen Su. On the expressive power of database
queries with intermediate types. Journal of Computer and System Sci-
ences, 43:219-267, 1991.

Neil Immerman. Relational queries computable in polynomial time. In-
formation and Control, 68:86-104, 1986.

G. Jaeschke and H. J. Schek. Remarks on the algebra of nonfirst normal
form relations. In Proceedings ACM Symposium on Principles of Database
Systems, pages 124-138, Los Angeles, California, March 1982.

L. A. Jategaonkar and J. C. Mitchell. ML with extended pattern matching
and subtypes. In Proceedings of ACM Conference on LISP and Functional
Programming, pages 198-211, Snowbird, Utah, July 1988.

Aviel Klausner and Nathan Goodman. Multirelations: Semantics and
languages. In Proceedings of 11th International Conference on Very Large
Databases, Stockholm, August 1985, pages 251-258, Los Altos, CA, August
1985. Morgan Kaufmann.

Anthony Klug. Equivalence of relational algebra and relational calcu-
lus query languages having aggregate functions. Journal of the ACM,
29(3):699-717, July 1982.

J. B. Kruskal. The theory of well-quasi-ordering: A frequently discovered
concept. Journal of Combinatorial Theory Series A, 13:297-305, 1972.

K. Kupert, G. Saake, and L. Wegner. Duplicate detection and deletion
in the extended NF? data model. In LNCS 3867: Foundation of Data
Organization and Algorithms, pages 83-101. Springer-Verlag, June 1989.

Leonid Libkin and Limsoon Wong. Query languages for bags. Technical
Report MS-CIS-93-36/L&C 59, University of Pennsylvania, Philadelphia,
PA 19104, March 1993.

Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93:55-92, 1991.

[17]

[19]

[20]

[21]

[22]

[27]

A. Ohori, P. Buneman, and V. Breazu-Tannen. Database programming
in Machiavelli: A polymorphic language with static type inference. In
Proceedings of ACM International Conference on Management of Data,
pages 46-57, Portland, Oregon, June 1989.

G. Ozsoyoglu, Z. M. Ozsoyoglu, and V. Matos. Extending relational alge-
bra and relational calculus with set-valued attributes and aggregate func-
tions. ACM Transactions on Database Systems, 12(4):566-592, December
1987.

Jan Paredaens and Dirk Van Gucht. Converting nested relational algebra
expressions into flat algebra expressions. ACM Transaction on Database
Systems, 17(1):65-93, March 1992.

H.-J. Schek and M. H. Scholl. The relational model with relation-valued
attributes. Information Systems, 11(2):137-147, 1986.

Dan Suciu. Fixpoints and bounded fixpoints for complex objects. Technical
Report MS-CIS-93-32/L&C 58, University of Pennsylvania, Philadelphia,
PA 19104, March 1993.

S. J. Thomas and P. C. Fischer. Nested relational structures. In Advances
in Computing Research: Theory of Databases, pages 269-307. JAT Press,
1986.

M. Y. Vardi. The complexity of relational query languages. In Proceedings
of 14th ACM Symposium on Theory of Computing, pages 137-146, 1982.

Philip Wadler. Comprehending monads. In Proceedings of ACM Confer-
ence on Lisp and Functional Programming, Nice, June 1990.

W. Wechler. Universal Algebra for Computer Scientists, volume 25 of
EATCS Monograph on Theoretical Computer Science. Springer-Verlag,
Berlin, 1992.

Limsoon Wong. Normal forms and conservative properties for query lan-
guages over collection types. In Proceedings of 12th ACM Symposium on
Principles of Database Systems, pages 26-36, Washington, D. C., May
1993.

Limsoon Wong. Query languages over collection types. Manuscript avail-
able from Limsoon@Saul.CIS.UPenn.EDU, June 1993.

