Query Language Primitives for Programming with Incomplete Databases

Summing up, we believe that using techniques of this paper can provide good practical algorithms for dealing
with large applications involving databases with disjunctive information.

Acknowledgements: I thank Peter Buneman for his comments on [11] that influenced this paper, Jon
Riecke for a careful reading of an earlier draft, Lal George for the ML code for the random number generator,
and anonymous referee for many helpful suggestions.

References

(1]

S. Abiteboul and G. Hillebrand. Space usage in functional query languages. In Proceedings International
Conference on Database Theory, 1995, Springer LNCS 893, pages 437-454.

V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion as a query language. In Proceedings of
Database Programming Languages 1991, Morgan Kaufmann, 1991, pages 9-19.

V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded query languages. In Proceedings Interna-
tional Conference on Database Theory, 1992, Springer LNCS 646, pages 140—154.

P. Buneman, A. Jung, A. Ohori, Using powerdomains to generalize relational databases, Theoretical Computer
Science 91(1991), 23-55.

S. Grumbach and T. Milo. Towards tractable algebras for bags. In Symp. Principles of Database Systems, ACM
Press, 1993, pages 49-58.

S. Grumbach, T. Milo and Y.Kornatzky. Calculi for bags and their complexity. In Proceedings of Database
Programming Languages 1993, Springer Verlag, 1994, pages 65-79.

E. Gunter and L. Libkin. OR-SML: A functional database programming language for disjunctive information
and its applications. Proc. Database and Ezpert Systems Applications, 1994, Springer LNCS 856, pages 641-650.

R. Harper, R. Milner, and M. Tofte. “The Definition of Standard ML”, The MIT Press, 1990.

T. Imielinski, S. Naqvi, and K. Vadaparty. Incomplete objects — a data model for design and planning appli-
cations. In Proc. Int. Conf. on Management of Data (SIGMOD-91), pages 288—-297.

T. Imielinski, R. van der Meyden and K. Vadaparty. Complexity tailored design: A new design methodology for
databases with incomplete information. Journal of Computer and System Sciences, 51(1995), 405-432.

L. Libkin. Normalizing incomplete databases. In Symp. Principles of Database Systems 1995, ACM Press, pages
219-230.

L. Libkin and L. Wong. Semantic representations and query languages for or-sets. Journal of Computer and
System Sciences, 52(1996), 125-142.

L. Libkin and L. Wong. Some properties of query languages for bags. In Proceedings of Database Programming
Languages 1993, Springer Verlag, 1994, pages 97-114.

L. Libkin and L. Wong. New techniques for studying set languages, bag languages and aggregate functions. In
Symp. Principles of Database Systems 1994, ACM Press, pages 155-166.

B. Rounds, Situation-theoretic aspects of databases, In Proc. Conf. on Situation Theory and Applications, CSLI
vol. 26, 1991, pages 229-256.

K. Vadaparty and S. Naqvi. Using constraints for efficient query processing in non-deterministic databases.
IEEE Trans. Knowledge and Data Eng., 7(1995), 850-864.

Database Programming Languages, 1995 14

Query Language Primitives for Programming with Incomplete Databases

The first one produces a random annotation of type A(¢, s). The second, select_best, selects the best element
from a bag of type {|s[} with respect to the criterion F'. Tt is undefined on empty bags, and, if more than
one element of a bag have nondominated F-values, selects one nondeterministically. The semantics of gen
is given by gen(n) = {|1,..., n|} (this function plays an important role in establishing equivalences between
set and bag languages with structural recursion and power operators [13, 14]).

rand

Now opt_pnorm is defined in two steps. First, we define one iteration step

iter_opt_pnorm "4 (P)(o, T) = opt_apnorm ™ (P)(random(0),T)

5

and then
opt_pnorm’®"4(P)(o, T, n) =

5

if n <1 then iter_opt_pnorm’®4(P)(o,T)

5

else select_best(ma, <p)(b-map(Az.iter_opt_pnorm 4 (P)(o,T))(gen(n)))

5

Summing up, to obtain the list of desirable normalization primitives, we do not have to add them all to the
language. Instead, it is enough to have one general iteration scheme apnorm®™ and a limited number of
auxiliary functions. In this way it is easy to add new variations of normalization primitives.

5 Implementation project

The collection of normalization primitives discussed in this paper has been implemented as a library in the
system OR-SML [7], which itself is a database programming language on top of Standard ML of New Jersey
[8]. In OR-SML, complex objects are SML-values, and one can take advantage of combining the features of
a query language with the features of a fully-fledged programming language. For example, we can use SML
library that provides objects of type timer and functions on them to express time-constrained normalization
primitives in the same way as it is done in section 4.

For the extended abstract, we mention just one experimental result. If a normal form is very big, optimizing
a criterion over it may take weeks. Using a time limit, we may not reach a good result. In the example
of [11], a criterion was optimized for 30 minutes, and the result within 4% of the optimal was produced.
However, using the function opt_pnorm’@™? we can see entries in different “areas” of the normal form. In
fact, in the example from [11], using 10 iterations, each running 30 seconds (for the total of only 5 minutes),
we consistently obtained results within 0.5% of the optimal.

6 Conclusion

In this paper we have studied various techniques for normalizing databases with disjunctive information
represented by or-sets. This problem is particularly important in the areas of application such as design and
planning. Most of previous work provided foundations for asking queries against such databases. However,
proposed solutions were impractical, mostly because of their complexity.

In this paper we took advantage of the polynomial-space normalization iterator, proposed in [11], and
extended the idea behind it. As the result, we came up with a number of query language primitives that
can help answer a variety of conceptual queries. In fact, all that must be added to the language is one
general iterator and a small number of auxiliary functions. The resulting variants of normalization are
suitable for various kinds of conceptual queries. In addition, they provide mechanism for answering queries
approximately, which is very helpful when one has to optimize some criteria over extremely large number of
encoded objects. In order to obtain such approximate solution, we often have to settle for nondeterministic
operations, which limits our ability to reason about the resulting language. This is the price to pay for
making the language applicable in practice.

Database Programming Languages, 1995 13

Query Language Primitives for Programming with Incomplete Databases

The semantics is the following: starting with a given annotation, look at all annotations that can be obtained
from it by applying nezt, and return the one with the maximal value of F', together with that F'-value:

opt_apnorm(P) ao
= apnorm(P[Ax.false/condition,
(pick ao, F'(pick ao))/initial_acc,
Az Ay if <p (F(y),m2(z)) then x else (y, F(y))/update,
7o/ oul) ao

We can also define opt_pnorm (P) :t — s x v that optimizes F for all elements of the partial normal form
of type (s) (as opt_pnorm (P) = opt_apnorm o init,), and opt_norm(P) : t — sk(¢) x v which optimizes F’
over the normal form (as opt_pnorm ;) (P)).

Optimization with teme constraints

We present two functions that evaluate optimization queries under time constraints. The first one starts with
an annotated object, and uses nezt to produce new annotations for the time specified by a time limit. When
the time has run out, it returns the best partial normal form entry found so far and the last annotation.

U(s,v) pnf(t, (s))
opt_apnorm®™™¢(P) : A(t,s) x real — (s x v) X A(t, s)

opt_apnorm(P) (a0, T) =
let tm = start_timer()
in apnorm " (P[Ax.get_timer(tm) > T/ condition,
(pick ao, F(pick ao))/initial_ace,
Az Ay df <p (F(y),ma(x)) then x else (y, F(y))/update,
7o/ out) ao
end

OPTIMIZING CRITERIA WITH TIME CONSTRAINTS AND RANDOM ANNOTATIONS. There is a more intersting
approach to optimizing criteria on very large normal forms, when it i1s not feasible to calculate the value of
I for each normal form entry. Indeed, the simple time limit approach may not be sufficient, because optimal
values may be “very far” from a given annotation in terms of the number of times next must be applied.
Then, we believe (and experimental results confirm this), the right approach is to generate randomly a
number of annotations and run the optimizing version of normalization from each of them for a given time.
At the end, the best entry that was found is returned. This solution is given by the function

U(s,v) pnf(t, (s))

opt_pnorm”®4(P) 1 t x real x int — 5 x v

The semantics is as follows. On the argument (o : ¢, 7T : real, n : int), the following operation is performed n
times: a random annotation for o is generated, such that applying pick to it produces an object of type s.
Then, from this annotation, we generate new ones (repeatedly using next), until the last one is produced,
or the time limit 7 is reached, returning the best one with respect to /. Having done this, we have n pairs
of type s x v of objects of type s and values of F' on them. The result of opt_pnorm”@"¢(P) is the best one
with respect to F'.

The function opt_pnorm7*% is implementable using the basic iteration mechanism and three auxiliary func-
tions:
pnf(t, (s)) U(s,v)
random; 1t — A(t,s) select_best(P) : {|s[} — s gen : int — {Jint[}

Database Programming Languages, 1995 12

Query Language Primitives for Programming with Incomplete Databases

and defined as follows:

O(s, u,v) pnf(t, (s)) B .
apnorm(P) : A(t,s) — v apnorm = @ O apnrorm

PARTIAL NORMALIZATION, PARAMETERIZED BY TYPES. The idea is the same as above, but no annotated
objects are involved. Instead, these primitives are parameterized by types of partial normal forms.

O(s,u,v) pnf(Z, (s))
prorm (P):t — v

prorm(P) = apnorm(P) o inil,

STANDARD NORMALIZATION. Given an object, iterate over its normal form, checking for condition and
accumulating the result. This is the norm primitive of [11]. Tt is simply pnormsk(t)(P).

Normalization with time constraints

Large sizes of normal forms can make iterating over them impractical. Then it is reasonable to set up a time
limit for the normalization process to run, and return the result obtained so far, and an annotated object,
so that the process of normalization can be resumed. To allow this, we use primitives of Standard ML of
New Jersey [8] and define a new type timer and two functions: stari_timer : unil — {imer starts a new
timer, and get_time : timer — real gives the time that passed since the timer was initiated. We also use the
let. . .in...end construct for local declarations, see [8].

PARTIAL NORMALIZATION WITH TIME CONSTRAINTS. The normalization process starts from an annotated
object and runs for a given time, returning the result formed by out, and the last annotation processed. The

typing and a definition based on apnorm "' are as follows:

D(s,u,v) pnf(t, (s))
apnorm™™e(P) 1 A(t, s) x real — v x A(t, s)
apnorm™¢(P)(ao, T) = let tm = start_timer()
in apnorm " (P[Azx.condition(x) V (get_-time(tm) > T)/condition]) ao
n

PARTIAL NORMALIZATION WITH TIME CONSTRAINTS, PARAMETERIZED BY TYPES. Instead of an arbitrary
annotation, we start with the initial one. Such a family of functions pnorm®™¢(P) : ¢ x real — v x A(t, s)

is defined by pnorm?™¢(P)(o,T) = apnorm”me(P)(inits(o),T). The full normalization with time limit

5

norm™me(P) 1t x real — v x A(t) is then simply pnormi%ﬁ(?).

Optimization primitives

Often one has to find a (partial) normal from entry which is best according to some criteria (e.g., the most
reliable design). For this we need the optimizing version of normalization primitives. Now by P we denote
the pair (F, <p), and ¥(s,v) is the abbreviation for

U(s,v) F:s—w <p:v X v— bool

Here F'is the criterion to be maximized with respect to the comparison function <p. The main operator
we use for this purpose is opt_apnorm:

U(s,v) pnf(t, (s))
opt_apnorm(P) : A(t,s) — s x v

Database Programming Languages, 1995 11

Query Language Primitives for Programming with Incomplete Databases

which is our basic normalization iterator.

D(s,u,v) pnf(t, (s))
apnorm ™ (P) : A(t,s) — v x A(t, s)

The algorithm for calculating apnorm “°"*(P)(ao) is shown below.

acc := wnitial_acc; last := end ao;
while —(condition(pick ao) V last)
do
ace := update(pick ao,acc);
ao := next ao;
last := end ao

end
return (out ((pick ao,last),acc), ao)

Intuitively, during the course of iteration over the partial normal form, the output value is accumulated
in acc, condition breaks the loop when it becomes true, last indicates if all possibilities have been looked
at, and out forms the output. The output also includes the last annotation that was processed (either the
one on which condition was satisfied, or the last one produced by next); hence “cont” (continuation) in the
superscript.

Before we show how a number of desirable primitives can be added to the language if apnorm ™ is present,

let us explain how we view the problem of adding this primitive to the language. The annotated types do
not belong to the type system of NB2A. We propose to extend the language with annotated types. However,
the programmer is only allowed to use a very limited number of operations that deal with annotated objects,
nand (s)he is not allowed to “see” them. Anmnotated objects can be produced from the usual or-objects
using nit, pick can be applied to them to obtain usual complex objects, and they can be used as inputs
and outputs of primitives such as apnorm ™. Since types themselves can not be manipulated with in our
language, the family of functions init, is implemented as one function of type ¢t x s — A(t,s), where an
additional object is needed only to supply the correct type (the size of this object can be made linear in
the size of the type). Tt is expected that in a more user-friendly implementation of the language than the
current one, the user will be allowed to supply the type instead of an object of that type to specify partial
normal forms.

4 Extending the language

In this section we show how a number of desirable normalization primitives mentioned in the Introduction
can be obtained if apnorm©°™ is present in the language. We divide these primitives into four groups.

It is known that there exists a calculus version of NBOA, see [3, 12], in which expressions denote objects and
not functions. This equally expressive version of the language allows the standard if-then-else construct,
as well as using A-abstraction to specify the function argument of b_map and or_map. In this section, we
shall use both if-then-else construct and A-abstraction. However, this does not enrich expressiveness of the
language.

General normalization primitives
PARTIAL NORMALIZATION, STARTING WITH AN ANNOTATION. For operations in this group, we require

presence of init. For our first operation, the idea is the same as for the general partial normalization: we
start with an annotation and iterate over all partial normal form entries, producing the result. It is typed

Database Programming Languages, 1995 10

Query Language Primitives for Programming with Incomplete Databases

The solution proposed in [11] can be readily adapted here. Moreover, the iteration mechanism remains
unchanged for partial normalization. We need three functions. The first, init;, : t — A(t, s), produces the
initial annotation of an object, provided A(t,s) is defined. It is given by the following rules:

o inity x = (I, x) if x is of type s.
o inits x5, (x,y) = (P, true, (inits, x,inits, y)).

o inilyey {|xy, .. xall = (B, true, [indts x1, ..., init, 2,]).
o anity (x1,...,xn) = (O, true, [(inits x1,v1), ..., (inits; x4, vp)]),
where vy = false and vy = ... = v, = true.

The function pick : A(t,s) — s produces an element of the partial normal form given by an annotation. In
the definition below, void indicates the end of traversing an annotated object, i.e., all possibilities have been
looked at.

o pick (I,x) = x.

o pick (Pye,(x,y)) = if ¢ then (pick x, pick y) else void.

o pick (B,c,[x1,...,2n]) = if ¢ then {pick xq,..., pick x,[} else void.

o pick (O,c,[x1,...,25)) = if ¢ then pick w1 (x;) else void if ma(x;) = true.

Finally, end : A(t,s) — bool returns true iff all possibilities encoded by its argument have been exhausted:
end (I,x) = true, and on any annotated object © = (k, ¢, v), end & = —c.

The key part of the normalization algorithm is the iterator next : A(t,s) — A(Z, s) which provides the depth
first search on the and-or trees, obtaining all possible annotations (given by the positions of the boolean
components in lists encoding or-sets). The version of [11] has type A(¢, (sk(?))) — A(t, (sk(?)}) but it can
be easily modified to produce the one of type A(t,s) — A(?,s). Also, next can be implemented in a purely
functional language.

Now we can show that starting with init; (o :¢) and repeatedly applying next to it, we obtain annotations
for all elements in pnf(o, s).

Theorem 7 Let o be an or-object of typet and (s) be a partial normal form oft. Let ao = inits(0). Consider
the following algorithm:

repeat

print(pick(ao));
ao = next ao

until(end(ao))

Then this algorithm prints precisely all elements of pnf(o,s). Moreover, the algorithm has linear space
complexity. a

To produce annotated objects, bags and or-sets are translated into lists assuming some order on their
elements. Theorem 7 says that this order is irrelevant: all entries in partial normal forms are produced.
However, the order in which they are produced depends on the way bags and or-sets are translated into lists.

cont

Based on theorem 7, we propose the following general iterator, called apnorm First, we need some

abbreviations. By ®(s, u,v) we mean the following collection of assertions:

metial_ace © u
condition : s — bool
update : sXu—u
out 1 (sxbool) xu—v

By P we shall mean the quadruple (initial_acc, condition, update, out). Then we introduce a new primitive,

Database Programming Languages, 1995 9

Query Language Primitives for Programming with Incomplete Databases

Theorem 4 (Partial Normalization) For any or-object © of type t, any type {(s) which is a partial normal
form of t and any rewrite strategy r : t —— (s}, the following holds: app(r)(z) = pnf(z,s).

Corollary 5 (Normalization [11]) For any or-object x of type t and any rewrite strategy v : t —— (sk(1)),
the following holds: app(r)(x) = nf(x).

3 Annotations and polynomial-space normalization

In this section we extend the polynomial-space normalization of [11] to partial normal forms. The idea of
the polynomial-space normalization is similar in the spirit to that of the “pipeline” evaluation of queries in
the powerset algebra of Abiteboul and Beeri, see [1]. Note that combining polynomial-space normalization
primitives and partial normalization was an open problem mentioned in [11].

As the first step, we introduce annotated types 7. An annotated type denotes an and-or tree underlying an
or-object, and it indicates a choice of element for certain or-sets. Using these choices in places of or-sets,
we obtain elements of partial normal forms, or, if the choice is specified for all or-sets, elements of normal
forms.

Annotated types are given by the grammar
7= Kxt | Kxboolxrxr | Kxboolx][r] | Kx boolx[rx bool

Here K is a type that has four possible values: I (Initial case), P (Pair), B (Bag) and O (Or-set); ¢ is an
object type, and [7] is the type of lists of type 7.

For each pair of types ¢ and s, for which pnf(Z, (s)) holds, we produce an annotated type A(%, s) as explained
below. First though, we treat the simplified case in which s is the skeleton of ¢ (i.e. (s) is the normal form
of t). Then we use the notation A(t). The translation is given by the following inductive rules:

o AB)=K xb o A(ty xt2) = K X bool x A(t1) x A(ta)
o A{t}}) = K x bool x [A(t)] e A({t)) = K x bool x [A(t) x bool]

The boolean value is #rue if not all entries encoded by the object have been looked at. For or-sets, the
boolean component inside lists is used for indicating the element that is currently used as the choice given
by that or-set.

For any or-type t, A(t, s) is defined if and only if (s} is a partial normal form of ¢. The idea of annotation is
the same as above, except that some subtypes (maybe involving or-sets) are treated as base types and are
not annotated. The positions of those subtypes in t are determined by s; they are precisely the subtypes
whose disjunctions are not to be unfolded in the process of normalization. The annotated types A(t, s) are
defined by the following rules, which are applied in the order in which they are given below.

At t) = K x t

(tl X t2,51 X 52) = K x bool x A(tl,sl) X A(tz,Sz)
({1t} fsh) = K x bool x [A(t, 5)]
({t),s) = K x bool x [A(t, s) x bool]

A
A
A
Proposition 6 Ift is an or-type, t # s, and A(t, s) is defined, then (s} is a partial normal form of t. O

Objects of type A(t, s) can be seen as and-or trees underlying or-objects, such that selection of possibilities for
all or-nodes gives us a complex object in the partial normal form. Hence, for evaluation of conceptual queries,
we need mechanisms for a) translating or-objects into annotated objects, b) obtaining (partial) normal form
entries encoded by an annotation, and, most importantly, ¢) iterating over all possible annotations.

Database Programming Languages, 1995 8

Query Language Primitives for Programming with Incomplete Databases

General operators
fiu—s
(fig):u—sxt

fis—1t
fog:u—t

g:u—s g:u—t

it — unit

wo s Xt —1 eq 1t x t — bool
c:s—bool f:s—1t g:s—1t

m S Xt—s

id:t—t cond(e, f,9):s —1

Operators on bags

b_empty : unit — {t[} b_pairy : s x {t[} — {s x t[}

W el flel — {el

fis—1t

bomap [:{sl} —{tl} b flat : {[{{t}} — {1}

Operators on or-sets

b_sng 1t — {Jt|}

or_empty : unit — (1) or_pairy : s X {t) — (s x t)

or U {t) x {t) — (1)
fis—1t
or-map [:{s) — ()

or_sng 1t — (t)

orflat - {{t)) — (t)

combin - {|(t)[} — ({It]})
Figure 4: Operators of NBOA

Interaction

operators on bags except that the prefix oris used, and duplicates are eliminated.

Finally, combin provides interaction between bags and or-sets. Let X' = {Xi,...,X,[} where X; =
(%, ..,xﬁ“). Let F be the family of “choice” functions from {1,...,n} to N such that 1 < f(#) < n;
for all ¢. Then '

combin(X) = ({{z};y |i=1,....nf} | f€F)

For example, combin({(1,2), (2,3)[}) = ({11, 2]}, {I1, 3[}, {12, 2}, {12, 3[}).

It was suggested in [12] to assign functions in the language to the rewrite rules so that for every rewriting
from ¢ to s there would be an associated definable function of type t — s. The goal of this assignment is to
obtain a function of type ¢ — (sk(¢)) that produces the normal forms for or-objects of type ¢.

We associate the following functions with the rewrite rules:

0T_pair, sxX () — (s x1)

or_pair, (s} xt — (s x 1)
orfiat (1) — (1)
combin = {(s)[t — ({ls[})

Here or_pair, = or_map((w2,71)) o or_pair, o (wa, m1) is pair-with over the first argument. It is possible
to define the function app(r) that applies rewrite rules to objects using the above functions. For example,
applying the rewriting » = {{{(s)[}[} — {{{s[}}[} vields the function b_map(combin). This function can be
extended to rewrite strategies by composition. (Technical details of the definitions can be found in [11, 12].)

The following result is new. The normalization theorems of [11, 12] can be seen as its corollaries.

Database Programming Languages, 1995 7

Query Language Primitives for Programming with Incomplete Databases

BAsE <z ¢ of base type
PAIR 1 <Y1 T2 < Y2
(21, 29) < (y1,92)
Ti <Yy, t=1,...,m
Bac ! cEY
{|1‘1,...,xn|}<{|y1,...,yn|} "
OR-SET <Y
r<{..,y,..)
Bask m forz:t
PAIR 1 <[y ity s1] ro < [ya i ta, s3]
(z1,22) < [(y1,y2) 1 t1 X ta, 51 X s3]
i <[you) it s],i=1,...,n
Bac ! cEY
o, zalh < Wy, - oynlh {1 IsB] "
OR-SET z<ly:ts]
e<[{..,y,.. 0 (), 8]

Figure 3: Rules for <

into an object of type (s). It can also be viewed as an incomplete possible world for y. The formal definition
of both versions of < is given in figure 3. X, denotes the group of permutations on {1,...,n}.

Proposition 3 1) Suppose that for an object y of type t and an object x there is a derivation, according to
the rules of figure 3, for x < [y :t,s]. Then x is of type s. Moreover, either s =t, or (s) is a partial normal
form of t.

2) Suppose that for some object y of type t there is a derivation for x < y. Then x is of type sk(t). a

Definition. 1) For any object X, its normal form nf(X) is defined as the or-set {x1,...,2,) of all objects
x; such that x; < X.

2) For any object X of type t, its partial normal form over type (s}, pnf(X,s) is defined as the or-set of all
x of type s such that x < [X : t,3].

Note that nf(X) and pnf(X,s) are always finite. Furthermore, nf(X) can be alternatively defined as
puf (X, sk(t)) if the or-object X is of type ¢.

Ambient language and normalization theorems. Normalization theorems provide us with a list of
operations that can be applied to an object until the normal form is produced. We need a language that
contains these operations. We adopt the framework of [12] based on [2, 3]. The operators and their most
general types are given in figure 4.

Semantics. For general operations: f o g is function composition; (f, ¢) is pair formation; 7, and 75 are the
first and the second projections; ! always returns the unique element of type unit; eq is equality test; id is the
identity and cond is conditional. For bag operations: b_empty is the function that represents the constant
{Il}; b_sng forms singletons: b_sng(z) = {z[}; W takes additive union of two bags; b_flat flattens bags of bags,
adding up multiplicities: b_flat({{|1, 2[}, {12, 3[}[}) = {1, 2,2, 3[}; b-map(f) applies f to all elements of a bag;
and b_pair, is pair-with: b_pair,(1,{2,3[}) = {(1,2),(1,3)[}. Operators on or-sets are exactly the same as

Database Programming Languages, 1995 6

Query Language Primitives for Programming with Incomplete Databases

t<s 1 Ss1 1 Sso i3
tst el < Alslk t Xty $s1 X 59 {t)$s

s={u u#t t<u
pnf(t,1) pnf(t, s)

Figure 2: Rules for < and pnf

be unfolded in order to answer the query — that would be a redundant computation. Since the normalization
process is very expensive, redundant computations may be too costly and may disallow some queries that
are in fact answerable. To provide a mechanism for partial unfolding, we define the concept of partial
normalization.

The intuition behind partial normalization is the following. We treat certain subtypes (perhaps involving
or-sets) as base types and perform the usual normalization. This way those subtypes are not affected and
consequently some of the disjunctions are not unfolded. To state this precisely, let s[t/p] be s in which the
subtype at position p is replaced by ¢, and let s[t/t'] be s in which every occurrence of the subtype ¢’ is
replaced by t. Let s, denote the subtype of s at position p and let b1,05 ... be uninterpreted base types.

Definition. Let s and t be two types, not involving by, bs,.... Then s is called a partial normal form of ¢t if
there exist n > 0 positions py, ..., p, in type t, no p; dominating p;, 1 # j, and two types s’ and t' such that

]) t/ :t[bl/plaabn/pn]7
2) s’ is the normal form of t';
3) s =5ty [b1,.... 1, /bs).

The following diagram provides an illustration for this definition. We first replace subtypes at p;’s with b;’s,
then normalize the type and then restore the subtypes at p;’s in place of b;’s. Note that a type may have
more than one partial normal form, but only one normal form.

[EERREE TR s =5t /b1, 1, /ba]
partial normal form

normalize
t'=t[b1/p1,...,bn/pn] s

Proposition 2 Let a binary relation pnf(-,-) on types be defined by means of the rules in figure 2. Then
pnf(t, s) holds iff s is a partial normal form of t. Consequently, every normal form is a partial normal form;
and partial normal forms are recognizable in linear time. a

Our next goal is to define the concepts of normal form and partial normal form on objects. Intuitively, an
object z, not involving disjunctions, is in the normal form of an or-object y, written as z < y, iff it is in
the conceptual representation of y. For partial normal forms we define the relation ¢ < [y : ¢, s] meaning
that x is in the conceptual representation of y of type ¢ at type (s). That is, z of type s can be viewed as
a representation of y under unfolding of those disjunctions that are to be unfolded in order to transform y

Database Programming Languages, 1995 5

Query Language Primitives for Programming with Incomplete Databases

denote them. In the design example, Al can be represented as a set or multiset {B1, B2, B3}, while Bl
is an or-set {a,b,¢). Or-sets have two distinct representations. With respect to structural queries, or-sets
behave like sets, but with respect to conceptual queries, an or-set denotes one of its elements. For example,
(1,2) is structurally a two-element set, but conceptually it is an integer that equals either 1 or 2.

A language for sets and or-sets was designed in [12] and refined in [11]. We use it here as an ambient
language. Note that we use the version based on bags (multisets) rather than sets. This is necessary because
keeping duplicates is very important for the normalization process [11]. Our ambient language contains
standard languages for nested bags, such as BALG [5, 6] and BQL [13, 14], as its sublanguages. To obtain
the corresponding results for sets, one can use the techniques of [11] in a straightforward way, so here we
only present results for bags.

Organization. We define normal forms, partial normal forms, the ambient language, and prove the gen-
eralized normalization theorem for partial normal forms in section 2. Annotated objects, space-efficient
normalization algorithm and a general programming primitive for iterating over partial normal forms are
presented in section 3. Extending the language with a variety of normalization primitives based on the
general iterating schema is described in section 4. A brief description of the implementation project is given
in section 5. Concluding remarks are given in section 6.

2 Normalization revisited

In this section we define our ambient language, the Nested Bag—OrSet Algebra NBOA, and explain the concept
of normalization. We also give a new definition of partial normalization that is suitable for being used in a
query language, and is more intuitive than the one given in [11].

Types and Objects. Types of objects are given by the following grammar:
ti=0b | unit | txt | {tf} | &

Here b ranges over a collection of base types such as integers (type int), booleans (type bool) and reals (type
real). Type unit has one value denoted by (). Values of the product type ¢t x ¢’ are pairs (x,y) where # has
type ¢t and y has type t'. Values of the bag type {Jt[} (or-set type (t)) are finite bags (or-sets) of values of

type t.
Any object containing or-sets is also called an or-object. Any type that uses the () constructor is called an

or-type. Empty or-sets () mean inconsistency. Handling empty or-sets was discussed in [12], and we do not
touch it here, assuming throughout the paper that no object contains an empty or-set subobject {}.

Normal forms and partial normal forms. First, following [12], we define the rewrite system (TRS) on

types:
s X (t) — (s x1) {s) xt— (s x1) () — () {() — (sl

We use the notation s — ¢ if s rewrites to ¢ in zero or more steps. A normal form (type) is a type that
can not be rewritten any further. The skeleton sk(?) is defined as ¢ from which all or-set brackets have been

removed. That is, sk(b) = b, sk(t x t') = sk(t) x sk(t'), sk({t]}) = {sk(®)[} and sk({t)) = sk(t).

Lemma 1 ([12]) The rewrite system (TRS) is Church-Rosser and terminating; hence, every type has a
unique normal form. For every or-type t, (sk(t)) is its normal form. a

Intuitively, objects of type sk(t) are those encoded by objects of type t. For example, if an incomplete design
is stored as an object of type t, then the completed designs represented by it have type sk(t). One can
also assume that certain disjunctions may still be allowed in the conceptual representation for the following
reason. If a conceptual query asks only for possibilities encoded by certain disjunctions, others should not

Database Programming Languages, 1995 4

Query Language Primitives for Programming with Incomplete Databases

Al (B,T) [A1 (LF)

(0,T) (OF) (OF)

Figure 1: An incomplete database and its annotation

3. The normalization mechanism we present in this paper is suitable for extending the language with a
number of primitives that are useful in various kinds of conceptual queries; moreover, as we shall show,
it is easy to construct new primitives for new applications in a uniform way. For some applications,
such as optimizing criteria over very large sets of possible worlds, we have to settle for operations with
nondeterministic semantics. This is the price to pay for making the language more practical.

4. We briefly discuss the implementation of the operations presented in this paper. It is done as a library
in OR-SML [7], the system for querying databases with disjunctive information.

Let us give a simple example to explain the gist of our approach. With each object, we associate an annotated
object that indicates the choices made for each instance of disjunctive information that is relevant to the
query. The idea of annotation is illustrated by the second picture in figure 1, where an arrow indicates the
choice that was made. In this example we assume that a query only concerns Al (for instance, what is the
most reliable configuration of A17). Hence, the subobject corresponding to A2 is not annotated.

Note that simply picking an element from each disjunctive collection is not enough to list all possible worlds,
as we must also know which ones have been looked at. For this, we translate collections (bags, or multisets
in this paper) into lists, and mark each subobject with a label, indicating its type and whether all possible
subworlds it encodes have been looked at.

In the example in figure 1, we assume the order of elements in collections to be “from left to right”. The D
node receives the (P, T') label. Here P stands for “pair”, and T is true — there are still possible worlds to
look at. The label of the A2 node is (I, F'). Here I is “initial” — we do not consider possible worlds encoded
by this subobject. Hence, F' (false) means that there are no additional objects that A2 may encode. The
arrows point at the elements of disjunctive collections that are to be chosen. Since two arrows point to the
last elements (in the lists), they are labeled by F. The key to the polynomial-space normalization is the
algorithm that takes an annotation and produces the “next” one. In our example, the next annotation is
produced by shifting the first arrow one position right (to point at b), and resetting two other arrows by
making them point at d and f. Also, they will be labeled by T' because they will no longer be pointing at
the last element.

To formalize this intuitive notion of annotation, we need a formal way of distinguishing instances of dis-
junctive information. Our approach to representation of disjunctive information is based on [9, 12, 15]: to
distinguish ordinary sets from collections of digjunctive possibilities, we call the latter or-sets and use {} to

Database Programming Languages, 1995 3

Query Language Primitives for Programming with Incomplete Databases

obtained from the database. Conceptual queries ask questions about possible completed designs. Most
typically, these are existential queries (is there a completed design that costs less than $m?) or optimization
queries (find the most reliable design).

Complexity of conceptual queries was studied in [9, 10] and a coNP-completeness result was proved. Then
tight upper bounds on the number of possible worlds encoded by databases with disjunctions were obtained
in [12]. Roughly, if a database has size n, the size of the collection of possible worlds encoded by it is bounded
above by n - 1.45". Thus, answering conceptual queries is generally very expensive; nevertheless, they do
arise in practice and one needs mechanisms for answering them.

A collection of tools for answering conceptual queries was developed in [12] and further investigated in [11].
These tools have come to be known under the name of normalization, and the collection of all possible
worlds as normal forms. A normalized database is a collection of all possible worlds encoded by a database;
a conceptual query is simply a structural query on a normalized database. In [12], a simple algorithm to
compute normalized databases was given. However, it required exponential space.

That solution was refined in [11], where a polynomial-space normalization mechanism was presented. It was
achieved by reusing space for possible worlds, and processing them one at a time. This requires keeping a
special structure, called an annotated object, to indicate choices for all instances of disjunctive information
in a database. A new primitive called norm, based on this idea, was suggested in [11]. Tt allows more control
over the process of normalization. For example, it can stop iterating if a condition is satisfied. This has a
potential of speeding up existential queries. However, the solution of [11] is still far from what we need in
practical problems. There are at least two reasons for this.

e Most importantly, a programmer may want a larger collection of primitives suitable for various kinds of
queries. For example, if a normal form is so large that producing all its elements in infeasible, one may
want to set a time limit and attempt to find an entry either satisfying a given condition, or optimizing
a criterion for a given time. Moreover, one may want a mechanism for resuming this process from the
point where it was stopped. In the case of optimizing criteria over extremely large normal form, one
may want to randomize this process, trying possible worlds from different “areas”.

e Some of the disjunctions may not be involved in conceptual queries. For instance, in the design example
above, the designer may decide that the reliability of part A2 is irrelevant, and try to optimize the
reliability of part Al. In current query evaluation methods, this would involve normalizing the whole
object. So if part A2 has a complex structure, a lot of redundant computation will be done. Thus, we
need tools for partial normalization that avoid such unnecessary computations. The solution of [11]
was based on the concept of p-rewriting, which is rather hard to grasp, and therefore very hard to
incorporate into a query language.

The main goal of this paper is to use the theoretical results of [11, 12] to come up with a collection of
query language primitives suitable for a variety of conceptual queries against databases with disjunctive
information; in particular, we want to address the shortcoming mentioned above. The main contributions
are summarized below.

1. We define the concept of a partial normal form which represents incomplete possible worlds. That is,
some of the disjunctions are still allowed in possible worlds. Our concept of partial normal form is less
general but much more intuitive than that of [11] and can be easily incorporated into a query language.

2. We generalize the normalization mechanism in two aspects. First, we make it work with both nor-
mal forms and partial normal forms. Second, its output includes a special data structure, called an
annotated object, that allows us to resume the normalization process from the point where it was
stopped.

Database Programming Languages, 1995 2

Query Language Primitives for Programming with
Incomplete Databases

Leonid Libkin
Bell Laboratories
600 Mountain Avenue, Murray Hill, NJ 07974 USA
E-mail: libkin@bell-labs.com

Abstract

We study the problem of choosing a suitable collection of primitives for querying databases with
disjunctive information. Theoretical foundations for querying such databases have been developed in
[11, 12]. The main tool for querying disjunctive information has come to be known under the name of
normalization.

In this paper we show how these theoretical results can lead to practical languages for querying
databases with disjunctive information. We discuss a collection of primitives that one may want to add
to alanguage in order to be able to ask a variety of queries over incomplete databases (including existential
and optimization queries). We describe a new practical and easily implementable technique for partial
normalization, and show how to combine it with the known technique for space-efficient normalization.
As the result, we demonstrate that with very little extra added to the language, one can express a variety
of primitives using just one general polynomial-space iterator. We discuss some practical implications,
including nondeterminism of the resulting language, and the implementation project.

1 Introduction

We study querying databases in which incomplete information is represented via disjunctions. Such databases
often arise in the design and planning areas, as was first noticed in [9]. For certain objects whose values
are not known at present, a database may contain a number of possible values. Choosing one possibility
for each instance of disjunctive information gives us a possible world described by an incomplete database.
In practical applications, most queries the user would like to ask are queries against collections of possible
worlds, rather than the representation of those possible worlds by means of disjunctive information. That
1s, additional transformation of the data stored in a database is needed in order to answer such queries.
The need for distinguishing two classes of queries against databases with disjunctive information is known
in the literature, cf. [9, 10, 12, 16]. Queries that ask questions about the representation of possible worlds
are called structural, whereas conceptual queries ask questions about the data encoded by the information
in a database.

For example, consider a template used by a designer (shown in figure 1). Tt may indicate that part D consists
of two subparts, Al and A2, and Al is built from Bl and B2 and B3, while Bl is a or b or ¢, B2 is d
or e, and B3 is f or g. The subpart A2 has a similar structure. In figure 1, vertical and horizontal lines
represent parts that must be included, while the sloping lines represent possible choices. It must be stressed
that the smallest subparts shown in figure 1 may in turn have very complex structure and involve incomplete
information.

With the example in figure 1 we can illustrate the difference between structural and conceptual queries. A
structural query may ask about the number of possible choices for B1 — this information can be directly

Database Programming Languages, 1995 1

