
Query Language Primitives for Programming with Incomplete DatabasesSumming up, we believe that using techniques of this paper can provide good practical algorithms for dealingwith large applications involving databases with disjunctive information.Acknowledgements: I thank Peter Buneman for his comments on [11] that inuenced this paper, JonRiecke for a careful reading of an earlier draft, Lal George for the ML code for the random number generator,and anonymous referee for many helpful suggestions.References[1] S. Abiteboul and G. Hillebrand. Space usage in functional query languages. In Proceedings InternationalConference on Database Theory, 1995, Springer LNCS 893, pages 437{454.[2] V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion as a query language. In Proceedings ofDatabase Programming Languages 1991, Morgan Kaufmann, 1991, pages 9{19.[3] V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded query languages. In Proceedings Interna-tional Conference on Database Theory, 1992, Springer LNCS 646, pages 140{154.[4] P. Buneman, A. Jung, A. Ohori, Using powerdomains to generalize relational databases, Theoretical ComputerScience 91(1991), 23{55.[5] S. Grumbach and T. Milo. Towards tractable algebras for bags. In Symp. Principles of Database Systems, ACMPress, 1993, pages 49{58.[6] S. Grumbach, T. Milo and Y.Kornatzky. Calculi for bags and their complexity. In Proceedings of DatabaseProgramming Languages 1993, Springer Verlag, 1994, pages 65{79.[7] E. Gunter and L. Libkin. OR-SML: A functional database programming language for disjunctive informationand its applications. Proc. Database and Expert Systems Applications, 1994, Springer LNCS 856, pages 641-650.[8] R. Harper, R. Milner, and M. Tofte. \The De�nition of Standard ML", The MIT Press, 1990.[9] T. Imielinski, S. Naqvi, and K. Vadaparty. Incomplete objects | a data model for design and planning appli-cations. In Proc. Int. Conf. on Management of Data (SIGMOD-91), pages 288{297.[10] T. Imielinski, R. van der Meyden and K. Vadaparty. Complexity tailored design: A new design methodology fordatabases with incomplete information. Journal of Computer and System Sciences, 51(1995), 405{432.[11] L. Libkin. Normalizing incomplete databases. In Symp. Principles of Database Systems 1995, ACM Press, pages219{230.[12] L. Libkin and L. Wong. Semantic representations and query languages for or-sets. Journal of Computer andSystem Sciences, 52(1996), 125{142.[13] L. Libkin and L. Wong. Some properties of query languages for bags. In Proceedings of Database ProgrammingLanguages 1993, Springer Verlag, 1994, pages 97{114.[14] L. Libkin and L. Wong. New techniques for studying set languages, bag languages and aggregate functions. InSymp. Principles of Database Systems 1994, ACM Press, pages 155{166.[15] B. Rounds, Situation-theoretic aspects of databases, In Proc. Conf. on Situation Theory and Applications, CSLIvol. 26, 1991, pages 229-256.[16] K. Vadaparty and S. Naqvi. Using constraints for e�cient query processing in non-deterministic databases.IEEE Trans. Knowledge and Data Eng., 7(1995), 850{864.
Database Programming Languages, 1995 14

Query Language Primitives for Programming with Incomplete DatabasesThe �rst one produces a random annotation of type A(t; s). The second, select best , selects the best elementfrom a bag of type fjsjg with respect to the criterion F . It is unde�ned on empty bags, and, if more thanone element of a bag have nondominated F -values, selects one nondeterministically. The semantics of genis given by gen(n) = fj1; : : : ; njg (this function plays an important role in establishing equivalences betweenset and bag languages with structural recursion and power operators [13, 14]).Now opt pnormrand is de�ned in two steps. First, we de�ne one iteration stepiter opt pnormrands (P)(o; T) = opt apnorm times (P)(randoms(o); T)and thenopt pnormrands (P)(o; T; n) =if n � 1 then iter opt pnormrands (P)(o; T)else select best(�2;�F)(b map(�x:iter opt pnormrands (P)(o; T))(gen(n)))Summing up, to obtain the list of desirable normalization primitives, we do not have to add them all to thelanguage. Instead, it is enough to have one general iteration scheme apnormcont and a limited number ofauxiliary functions. In this way it is easy to add new variations of normalization primitives.5 Implementation projectThe collection of normalization primitives discussed in this paper has been implemented as a library in thesystem OR-SML [7], which itself is a database programming language on top of Standard ML of New Jersey[8]. In OR-SML, complex objects are SML-values, and one can take advantage of combining the features ofa query language with the features of a fully-edged programming language. For example, we can use SMLlibrary that provides objects of type timer and functions on them to express time-constrained normalizationprimitives in the same way as it is done in section 4.For the extended abstract, we mention just one experimental result. If a normal form is very big, optimizinga criterion over it may take weeks. Using a time limit, we may not reach a good result. In the exampleof [11], a criterion was optimized for 30 minutes, and the result within 4% of the optimal was produced.However, using the function opt pnormrand , we can see entries in di�erent \areas" of the normal form. Infact, in the example from [11], using 10 iterations, each running 30 seconds (for the total of only 5 minutes),we consistently obtained results within 0:5% of the optimal.6 ConclusionIn this paper we have studied various techniques for normalizing databases with disjunctive informationrepresented by or-sets. This problem is particularly important in the areas of application such as design andplanning. Most of previous work provided foundations for asking queries against such databases. However,proposed solutions were impractical, mostly because of their complexity.In this paper we took advantage of the polynomial-space normalization iterator, proposed in [11], andextended the idea behind it. As the result, we came up with a number of query language primitives thatcan help answer a variety of conceptual queries. In fact, all that must be added to the language is onegeneral iterator and a small number of auxiliary functions. The resulting variants of normalization aresuitable for various kinds of conceptual queries. In addition, they provide mechanism for answering queriesapproximately, which is very helpful when one has to optimize some criteria over extremely large number ofencoded objects. In order to obtain such approximate solution, we often have to settle for nondeterministicoperations, which limits our ability to reason about the resulting language. This is the price to pay formaking the language applicable in practice.Database Programming Languages, 1995 13

Query Language Primitives for Programming with Incomplete DatabasesThe semantics is the following: starting with a given annotation, look at all annotations that can be obtainedfrom it by applying next , and return the one with the maximal value of F , together with that F -value:opt apnorm(P) ao= apnorm(P[�x:false=condition ;(pick ao; F (pick ao))=initial acc;�x:�y:if �F (F (y); �2(x)) then x else (y; F (y))=update ;�2=out]) aoWe can also de�ne opt pnorms(P) : t ! s � v that optimizes F for all elements of the partial normal formof type hsi (as opt pnorms(P) = opt apnorm � inits), and opt norm(P) : t ! sk (t) � v which optimizes Fover the normal form (as opt pnormsk(t)(P)).Optimization with time constraintsWe present two functions that evaluate optimization queries under time constraints. The �rst one starts withan annotated object, and uses next to produce new annotations for the time speci�ed by a time limit. Whenthe time has run out, it returns the best partial normal form entry found so far and the last annotation.	(s; v) pnf(t; hsi)opt apnorm time(P) : A(t; s) � real ! (s � v)� A(t; s)opt apnorm(P) (ao; T) =let tm = start timer()in apnormcont(P[�x:get timer(tm) > T=condition;(pick ao; F (pick ao))=initial acc;�x:�y:if �F (F (y); �2(x)) then x else (y; F (y))=update ;�2=out]) aoendOptimizing criteria with time constraints and random annotations. There is a more interstingapproach to optimizing criteria on very large normal forms, when it is not feasible to calculate the value ofF for each normal form entry. Indeed, the simple time limit approach may not be su�cient, because optimalvalues may be \very far" from a given annotation in terms of the number of times next must be applied.Then, we believe (and experimental results con�rm this), the right approach is to generate randomly anumber of annotations and run the optimizing version of normalization from each of them for a given time.At the end, the best entry that was found is returned. This solution is given by the function	(s; v) pnf(t; hsi)opt pnormrands (P) : t � real � int ! s� vThe semantics is as follows. On the argument (o : t; T : real; n : int), the following operation is performed ntimes: a random annotation for o is generated, such that applying pick to it produces an object of type s.Then, from this annotation, we generate new ones (repeatedly using next), until the last one is produced,or the time limit T is reached, returning the best one with respect to F . Having done this, we have n pairsof type s � v of objects of type s and values of F on them. The result of opt pnormrand(P) is the best onewith respect to F .The function opt pnormrands is implementable using the basic iteration mechanism and three auxiliary func-tions: pnf(t; hsi)randoms : t! A(t; s) 	(s; v)select best(P) : fjsjg ! s gen : int ! fjint jgDatabase Programming Languages, 1995 12

Query Language Primitives for Programming with Incomplete Databasesand de�ned as follows: �(s; u; v) pnf(t; hsi)apnorm(P) : A(t; s)! v apnorm = �1 � apnormcontPartial normalization, parameterized by types. The idea is the same as above, but no annotatedobjects are involved. Instead, these primitives are parameterized by types of partial normal forms.�(s; u; v) pnf(t; hsi)pnorms(P) : t! v pnorm(P) = apnorm(P) � initsStandard normalization. Given an object, iterate over its normal form, checking for condition andaccumulating the result. This is the norm primitive of [11]. It is simply pnormsk(t)(P).Normalization with time constraintsLarge sizes of normal forms can make iterating over them impractical. Then it is reasonable to set up a timelimit for the normalization process to run, and return the result obtained so far, and an annotated object,so that the process of normalization can be resumed. To allow this, we use primitives of Standard ML ofNew Jersey [8] and de�ne a new type timer and two functions: start timer : unit ! timer starts a newtimer, and get time : timer ! real gives the time that passed since the timer was initiated. We also use thelet: : :in: : :end construct for local declarations, see [8].Partial normalization with time constraints. The normalization process starts from an annotatedobject and runs for a given time, returning the result formed by out , and the last annotation processed. Thetyping and a de�nition based on apnormcont are as follows:�(s; u; v) pnf(t; hsi)apnormtime(P) : A(t; s) � real ! v � A(t; s)apnorm time(P)(ao; T) = let tm = start timer()in apnormcont (P[�x:condition(x) _ (get time(tm) > T)=condition]) aoendPartial normalization with time constraints, parameterized by types. Instead of an arbitraryannotation, we start with the initial one. Such a family of functions pnorm times (P) : t � real ! v � A(t; s)is de�ned by pnorm times (P)(o; T) = apnorm time(P)(inits(o); T). The full normalization with time limitnormtime(P) : t � real ! v � A(t) is then simply pnormtimesk(t)(P).Optimization primitivesOften one has to �nd a (partial) normal from entry which is best according to some criteria (e.g., the mostreliable design). For this we need the optimizing version of normalization primitives. Now by P we denotethe pair (F;�F), and 	(s; v) is the abbreviation for	(s; v) F : s! v �F : v � v ! boolHere F is the criterion to be maximized with respect to the comparison function �F . The main operatorwe use for this purpose is opt apnorm: 	(s; v) pnf(t; hsi)opt apnorm(P) : A(t; s)! s � vDatabase Programming Languages, 1995 11

Query Language Primitives for Programming with Incomplete Databaseswhich is our basic normalization iterator.�(s; u; v) pnf(t; hsi)apnormcont(P) : A(t; s)! v � A(t; s)The algorithm for calculating apnormcont(P)(ao) is shown below.acc := initial acc; last := end ao;while :(condition(pick ao) _ last)do acc := update(pick ao,acc);ao := next ao;last := end aoendreturn (out((pick ao,last),acc), ao)Intuitively, during the course of iteration over the partial normal form, the output value is accumulatedin acc, condition breaks the loop when it becomes true, last indicates if all possibilities have been lookedat, and out forms the output. The output also includes the last annotation that was processed (either theone on which condition was satis�ed, or the last one produced by next); hence \cont" (continuation) in thesuperscript.Before we show how a number of desirable primitives can be added to the language if apnormcont is present,let us explain how we view the problem of adding this primitive to the language. The annotated types donot belong to the type system of NBOA. We propose to extend the language with annotated types. However,the programmer is only allowed to use a very limited number of operations that deal with annotated objects,nand (s)he is not allowed to \see" them. Annotated objects can be produced from the usual or-objectsusing init , pick can be applied to them to obtain usual complex objects, and they can be used as inputsand outputs of primitives such as apnormcont . Since types themselves can not be manipulated with in ourlanguage, the family of functions inits is implemented as one function of type t � s ! A(t; s), where anadditional object is needed only to supply the correct type (the size of this object can be made linear inthe size of the type). It is expected that in a more user-friendly implementation of the language than thecurrent one, the user will be allowed to supply the type instead of an object of that type to specify partialnormal forms.4 Extending the languageIn this section we show how a number of desirable normalization primitives mentioned in the Introductioncan be obtained if apnormcont is present in the language. We divide these primitives into four groups.It is known that there exists a calculus version of NBOA, see [3, 12], in which expressions denote objects andnot functions. This equally expressive version of the language allows the standard if -then-else construct,as well as using �-abstraction to specify the function argument of b map and or map. In this section, weshall use both if -then-else construct and �-abstraction. However, this does not enrich expressiveness of thelanguage.General normalization primitivesPartial normalization, starting with an annotation. For operations in this group, we requirepresence of init. For our �rst operation, the idea is the same as for the general partial normalization: westart with an annotation and iterate over all partial normal form entries, producing the result. It is typedDatabase Programming Languages, 1995 10

Query Language Primitives for Programming with Incomplete DatabasesThe solution proposed in [11] can be readily adapted here. Moreover, the iteration mechanism remainsunchanged for partial normalization. We need three functions. The �rst, inits : t ! A(t; s), produces theinitial annotation of an object, provided A(t; s) is de�ned. It is given by the following rules:� inits x = (I; x) if x is of type s.� inits1�s2 (x; y) = (P; true; (inits1 x; inits2 y)).� initfjsjg fjx1; : : : ; xnjg = (B; true; [inits x1; : : : ; inits xn]).� inits hx1; : : : ; xni = (O; true; [(inits x1; v1); : : : ; (inits xn; vn)]),where v1 = false and v2 = : : := vn = true.The function pick : A(t; s)! s produces an element of the partial normal form given by an annotation. Inthe de�nition below, void indicates the end of traversing an annotated object, i.e., all possibilities have beenlooked at.� pick (I; x) = x.� pick (P; c; (x; y)) = if c then (pick x; pick y) else void .� pick (B; c; [x1; : : : ; xn]) = if c then fjpick x1; : : : ; pick xnjg else void .� pick (O; c; [x1; : : : ; xn]) = if c then pick �1(xi) else void if �2(xi) = true.Finally, end : A(t; s) ! bool returns true i� all possibilities encoded by its argument have been exhausted:end (I; x) = true, and on any annotated object x = (k; c; v), end x = :c.The key part of the normalization algorithm is the iterator next : A(t; s)! A(t; s) which provides the depth�rst search on the and-or trees, obtaining all possible annotations (given by the positions of the booleancomponents in lists encoding or-sets). The version of [11] has type A(t; hsk(t)i) ! A(t; hsk(t)i) but it canbe easily modi�ed to produce the one of type A(t; s)! A(t; s). Also, next can be implemented in a purelyfunctional language.Now we can show that starting with inits (o : t) and repeatedly applying next to it, we obtain annotationsfor all elements in pnf (o; s).Theorem 7 Let o be an or-object of type t and hsi be a partial normal form of t. Let ao = inits(o). Considerthe following algorithm:repeatprint(pick(ao));ao := next aountil(end (ao))Then this algorithm prints precisely all elements of pnf (o; s). Moreover, the algorithm has linear spacecomplexity. 2To produce annotated objects, bags and or-sets are translated into lists assuming some order on theirelements. Theorem 7 says that this order is irrelevant: all entries in partial normal forms are produced.However, the order in which they are produced depends on the way bags and or-sets are translated into lists.Based on theorem 7, we propose the following general iterator, called apnormcont . First, we need someabbreviations. By �(s; u; v) we mean the following collection of assertions:initial acc : ucondition : s! boolupdate : s � u! uout : (s � bool)� u! vBy P we shall mean the quadruple (initial acc; condition; update; out). Then we introduce a new primitive,Database Programming Languages, 1995 9

Query Language Primitives for Programming with Incomplete DatabasesTheorem 4 (Partial Normalization) For any or-object x of type t, any type hsi which is a partial normalform of t and any rewrite strategy r : t ��! hsi, the following holds: app(r)(x) = pnf (x; s).Corollary 5 (Normalization [11]) For any or-object x of type t and any rewrite strategy r : t ��! hsk (t)i,the following holds: app(r)(x) = nf (x).3 Annotations and polynomial-space normalizationIn this section we extend the polynomial-space normalization of [11] to partial normal forms. The idea ofthe polynomial-space normalization is similar in the spirit to that of the \pipeline" evaluation of queries inthe powerset algebra of Abiteboul and Beeri, see [1]. Note that combining polynomial-space normalizationprimitives and partial normalization was an open problem mentioned in [11].As the �rst step, we introduce annotated types � . An annotated type denotes an and-or tree underlying anor-object, and it indicates a choice of element for certain or-sets. Using these choices in places of or-sets,we obtain elements of partial normal forms, or, if the choice is speci�ed for all or-sets, elements of normalforms.Annotated types are given by the grammar� := K � t j K � bool � � � � j K � bool � [�] j K � bool � [� � bool]Here K is a type that has four possible values: I (Initial case), P (Pair), B (Bag) and O (Or-set); t is anobject type, and [�] is the type of lists of type � .For each pair of types t and s, for which pnf(t; hsi) holds, we produce an annotated type A(t; s) as explainedbelow. First though, we treat the simpli�ed case in which s is the skeleton of t (i.e. hsi is the normal formof t). Then we use the notation A(t). The translation is given by the following inductive rules:� A(b) = K � b � A(t1 � t2) = K � bool � A(t1)�A(t2)� A(fjtjg) = K � bool � [A(t)] � A(hti) = K � bool � [A(t)� bool]The boolean value is true if not all entries encoded by the object have been looked at. For or-sets, theboolean component inside lists is used for indicating the element that is currently used as the choice givenby that or-set.For any or-type t, A(t; s) is de�ned if and only if hsi is a partial normal form of t. The idea of annotation isthe same as above, except that some subtypes (maybe involving or-sets) are treated as base types and arenot annotated. The positions of those subtypes in t are determined by s; they are precisely the subtypeswhose disjunctions are not to be unfolded in the process of normalization. The annotated types A(t; s) arede�ned by the following rules, which are applied in the order in which they are given below.� A(t; t) = K � t� A(t1 � t2; s1 � s2) = K � bool �A(t1; s1)� A(t2; s2)� A(fjtjg; fjsjg) = K � bool � [A(t; s)]� A(hti; s) = K � bool � [A(t; s)� bool]Proposition 6 If t is an or-type, t 6= s, and A(t; s) is de�ned, then hsi is a partial normal form of t. 2Objects of type A(t; s) can be seen as and-or trees underlying or-objects, such that selection of possibilities forall or-nodes gives us a complex object in the partial normal form. Hence, for evaluation of conceptual queries,we need mechanisms for a) translating or-objects into annotated objects, b) obtaining (partial) normal formentries encoded by an annotation, and, most importantly, c) iterating over all possible annotations.Database Programming Languages, 1995 8

Query Language Primitives for Programming with Incomplete DatabasesGeneral operatorsg : u! s f : s! tf � g : u! t f : u! s g : u! t(f; g) : u! s� t ! : t! unit�1 : s � t! s �2 : s � t! t eq : t� t! boolid : t! t c : s! bool f : s! t g : s! tcond (c; f; g) : s! tOperators on bagsb empty : unit! fjtjg b pair2 : s� fjtjg ! fjs � tjg] : fjtjg � fjtjg ! fjtjg b sng : t! fjtjgf : s! tb map f : fjsjg ! fjtjg b at : fjfjtjgjg ! fjtjgOperators on or-setsor empty : unit! hti or pair2 : s � hti ! hs � tior [: hti � hti ! hti or sng : t! htif : s! tor map f : hsi ! hti or at : hhtii ! htiInteraction combin : fjhtijg ! hfjtjgiFigure 4: Operators of NBOAoperators on bags except that the pre�x or is used, and duplicates are eliminated.Finally, combin provides interaction between bags and or-sets. Let X = fjX1; : : : ; Xnjg where Xi =hxi1; : : : ; xinii. Let F be the family of \choice" functions from f1; : : : ; ng to N such that 1 � f(i) � nifor all i. Then combin(X) = hfjxif(i) j i = 1; : : : ; njg j f 2 FiFor example, combin(fjh1; 2i; h2; 3ijg) = hfj1; 2jg; fj1; 3jg; fj2; 2jg; fj2; 3jgi.It was suggested in [12] to assign functions in the language to the rewrite rules so that for every rewritingfrom t to s there would be an associated de�nable function of type t! s. The goal of this assignment is toobtain a function of type t! hsk(t)i that produces the normal forms for or-objects of type t.We associate the following functions with the rewrite rules:or pair2 : s� hti ! hs � tior pair1 : hsi � t! hs � tior at : hhtii ! hticombin : fjhsijg ! hfjsjgiHere or pair1 = or map((�2; �1)) � or pair2 � (�2; �1) is pair-with over the �rst argument. It is possibleto de�ne the function app(r) that applies rewrite rules to objects using the above functions. For example,applying the rewriting r = fjfjhsijgjg ! fjhfjsjgijg yields the function b map(combin). This function can beextended to rewrite strategies by composition. (Technical details of the de�nitions can be found in [11, 12].)The following result is new. The normalization theorems of [11, 12] can be seen as its corollaries.Database Programming Languages, 1995 7

Query Language Primitives for Programming with Incomplete DatabasesBase x l x x of base typePair x1 l y1 x2 l y2(x1; x2) l (y1; y2)Bag xi l y�(i); i = 1; : : : ; nfjx1; : : : ; xnjg l fjy1; : : : ; ynjg � 2 �nOr-Set x l yx l h: : : ; y; : : :iBase x l [[[[x : t; t]]]] for x : tPair x1 l [[[[y1 : t1; s1]]]] x2 l [[[[y2 : t2; s2]]]](x1; x2) l [[[[(y1; y2) : t1 � t2; s1 � s2]]]]Bag xi l [[[[y�(i) : t; s]]]]; i = 1; : : : ; nfjx1; : : : ; xnjg l [[[[fjy1; : : : ; ynjg : fjtjg; fjsjg]]]] � 2 �nOr-Set x l [[[[y : t; s]]]]x l [[[[h: : : ; y; : : :i : hti; s]]]]Figure 3: Rules for linto an object of type hsi. It can also be viewed as an incomplete possible world for y. The formal de�nitionof both versions of l is given in �gure 3. �n denotes the group of permutations on f1; : : : ; ng.Proposition 3 1) Suppose that for an object y of type t and an object x there is a derivation, according tothe rules of �gure 3, for x l [[[[y : t; s]]]]. Then x is of type s. Moreover, either s = t, or hsi is a partial normalform of t.2) Suppose that for some object y of type t there is a derivation for x l y. Then x is of type sk (t). 2De�nition. 1) For any object X, its normal form nf (X) is de�ned as the or-set hx1; : : : ; xni of all objectsxi such that xi l X.2) For any object X of type t, its partial normal form over type hsi, pnf (X; s) is de�ned as the or-set of allx of type s such that x l [[[[X : t; s]]]].Note that nf (X) and pnf (X; s) are always �nite. Furthermore, nf (X) can be alternatively de�ned aspnf (X; sk (t)) if the or-object X is of type t.Ambient language and normalization theorems. Normalization theorems provide us with a list ofoperations that can be applied to an object until the normal form is produced. We need a language thatcontains these operations. We adopt the framework of [12] based on [2, 3]. The operators and their mostgeneral types are given in �gure 4.Semantics. For general operations: f � g is function composition; (f; g) is pair formation; �1 and �2 are the�rst and the second projections; ! always returns the unique element of type unit ; eq is equality test; id is theidentity and cond is conditional. For bag operations: b empty is the function that represents the constantfjjg; b sng forms singletons: b sng(x) = fjxjg;] takes additive union of two bags; b at attens bags of bags,adding up multiplicities: b at(fjfj1; 2jg; fj2; 3jgjg) = fj1; 2; 2; 3jg; b map(f) applies f to all elements of a bag;and b pair2 is pair-with: b pair2(1; fj2; 3jg) = fj(1; 2); (1; 3)jg. Operators on or-sets are exactly the same asDatabase Programming Languages, 1995 6

Query Language Primitives for Programming with Incomplete Databasest . t t . sfjtjg . fjsjg t1 . s1 t2 . s2t1 � t2 . s1 � s2 t . shti . spnf(t; t) s = hui u 6= t t . upnf(t; s)Figure 2: Rules for . and pnfbe unfolded in order to answer the query { that would be a redundant computation. Since the normalizationprocess is very expensive, redundant computations may be too costly and may disallow some queries thatare in fact answerable. To provide a mechanism for partial unfolding, we de�ne the concept of partialnormalization.The intuition behind partial normalization is the following. We treat certain subtypes (perhaps involvingor-sets) as base types and perform the usual normalization. This way those subtypes are not a�ected andconsequently some of the disjunctions are not unfolded. To state this precisely, let s[t=p] be s in which thesubtype at position p is replaced by t, and let s[t=t0] be s in which every occurrence of the subtype t0 isreplaced by t. Let sp denote the subtype of s at position p and let b1; b2 : : : be uninterpreted base types.De�nition. Let s and t be two types, not involving b1; b2; : : :. Then s is called a partial normal form of t ifthere exist n � 0 positions p1; : : : ; pn in type t, no pi dominating pj, i 6= j, and two types s0 and t0 such that1) t0 = t[b1=p1; : : : ; bn=pn];2) s0 is the normal form of t0;3) s = s0[tp1=b1; : : : ; tpn=bn].The following diagram provides an illustration for this de�nition. We �rst replace subtypes at pi's with bi's,then normalize the type and then restore the subtypes at pi's in place of bi's. Note that a type may havemore than one partial normal form, but only one normal form.t partial normal form- s = s0[tp1=b1; : : : ; tpn=bn]t0 = t[b1=p1; : : : ; bn=pn]? normalize - s06Proposition 2 Let a binary relation pnf(�; �) on types be de�ned by means of the rules in �gure 2. Thenpnf(t; s) holds i� s is a partial normal form of t. Consequently, every normal form is a partial normal form;and partial normal forms are recognizable in linear time. 2Our next goal is to de�ne the concepts of normal form and partial normal form on objects. Intuitively, anobject x, not involving disjunctions, is in the normal form of an or-object y, written as x l y, i� it is inthe conceptual representation of y. For partial normal forms we de�ne the relation x l [[[[y : t; s]]]] meaningthat x is in the conceptual representation of y of type t at type hsi. That is, x of type s can be viewed asa representation of y under unfolding of those disjunctions that are to be unfolded in order to transform yDatabase Programming Languages, 1995 5

Query Language Primitives for Programming with Incomplete Databasesdenote them. In the design example, A1 can be represented as a set or multiset fB1; B2; B3g, while B1is an or-set ha; b; ci. Or-sets have two distinct representations. With respect to structural queries, or-setsbehave like sets, but with respect to conceptual queries, an or-set denotes one of its elements. For example,h1; 2i is structurally a two-element set, but conceptually it is an integer that equals either 1 or 2.A language for sets and or-sets was designed in [12] and re�ned in [11]. We use it here as an ambientlanguage. Note that we use the version based on bags (multisets) rather than sets. This is necessary becausekeeping duplicates is very important for the normalization process [11]. Our ambient language containsstandard languages for nested bags, such as BALG [5, 6] and BQL [13, 14], as its sublanguages. To obtainthe corresponding results for sets, one can use the techniques of [11] in a straightforward way, so here weonly present results for bags.Organization. We de�ne normal forms, partial normal forms, the ambient language, and prove the gen-eralized normalization theorem for partial normal forms in section 2. Annotated objects, space-e�cientnormalization algorithm and a general programming primitive for iterating over partial normal forms arepresented in section 3. Extending the language with a variety of normalization primitives based on thegeneral iterating schema is described in section 4. A brief description of the implementation project is givenin section 5. Concluding remarks are given in section 6.2 Normalization revisitedIn this section we de�ne our ambient language, the Nested Bag{OrSet AlgebraNBOA, and explain the conceptof normalization. We also give a new de�nition of partial normalization that is suitable for being used in aquery language, and is more intuitive than the one given in [11].Types and Objects. Types of objects are given by the following grammar:t := b j unit j t� t j fjtjg j htiHere b ranges over a collection of base types such as integers (type int), booleans (type bool) and reals (typereal). Type unit has one value denoted by (). Values of the product type t� t0 are pairs (x; y) where x hastype t and y has type t0. Values of the bag type fjtjg (or-set type hti) are �nite bags (or-sets) of values oftype t.Any object containing or-sets is also called an or-object. Any type that uses the hi constructor is called anor-type. Empty or-sets hi mean inconsistency. Handling empty or-sets was discussed in [12], and we do nottouch it here, assuming throughout the paper that no object contains an empty or-set subobject hi.Normal forms and partial normal forms. First, following [12], we de�ne the rewrite system (TRS) ontypes: s � hti ! hs � ti hsi � t! hs � ti hhtii ! hti fjhsijg ! hfjsjgiWe use the notation s ��! t if s rewrites to t in zero or more steps. A normal form (type) is a type thatcan not be rewritten any further. The skeleton sk(t) is de�ned as t from which all or-set brackets have beenremoved. That is, sk (b) = b, sk (t� t0) = sk(t) � sk (t0), sk (fjtjg) = fjsk(t)jg and sk (hti) = sk(t).Lemma 1 ([12]) The rewrite system (TRS) is Church-Rosser and terminating; hence, every type has aunique normal form. For every or-type t, hsk (t)i is its normal form. 2Intuitively, objects of type sk (t) are those encoded by objects of type t. For example, if an incomplete designis stored as an object of type t, then the completed designs represented by it have type sk(t). One canalso assume that certain disjunctions may still be allowed in the conceptual representation for the followingreason. If a conceptual query asks only for possibilities encoded by certain disjunctions, others should notDatabase Programming Languages, 1995 4

Query Language Primitives for Programming with Incomplete Databases
AAA��� ��� AAA ��� AAA. ���� BBBB

 JJJJDA1 A2B1 B2 B3 C1 C2a b c d e f g h i j k l AAA��� ��� AAA ��� AAA. ���� BBBB

 JJJJ(O,F)6 66

DA1 A2B1 B2 B3 C1 C2a b c d e f g h i j k l(P,T)(B,T) (I,F)(O,T) (O,F)Figure 1: An incomplete database and its annotation3. The normalization mechanism we present in this paper is suitable for extending the language with anumber of primitives that are useful in various kinds of conceptual queries; moreover, as we shall show,it is easy to construct new primitives for new applications in a uniform way. For some applications,such as optimizing criteria over very large sets of possible worlds, we have to settle for operations withnondeterministic semantics. This is the price to pay for making the language more practical.4. We briey discuss the implementation of the operations presented in this paper. It is done as a libraryin OR-SML [7], the system for querying databases with disjunctive information.Let us give a simple example to explain the gist of our approach. With each object, we associate an annotatedobject that indicates the choices made for each instance of disjunctive information that is relevant to thequery. The idea of annotation is illustrated by the second picture in �gure 1, where an arrow indicates thechoice that was made. In this example we assume that a query only concerns A1 (for instance, what is themost reliable con�guration of A1?). Hence, the subobject corresponding to A2 is not annotated.Note that simply picking an element from each disjunctive collection is not enough to list all possible worlds,as we must also know which ones have been looked at. For this, we translate collections (bags, or multisetsin this paper) into lists, and mark each subobject with a label, indicating its type and whether all possiblesubworlds it encodes have been looked at.In the example in �gure 1, we assume the order of elements in collections to be \from left to right". The Dnode receives the (P; T) label. Here P stands for \pair", and T is true { there are still possible worlds tolook at. The label of the A2 node is (I; F). Here I is \initial" { we do not consider possible worlds encodedby this subobject. Hence, F (false) means that there are no additional objects that A2 may encode. Thearrows point at the elements of disjunctive collections that are to be chosen. Since two arrows point to thelast elements (in the lists), they are labeled by F . The key to the polynomial-space normalization is thealgorithm that takes an annotation and produces the \next" one. In our example, the next annotation isproduced by shifting the �rst arrow one position right (to point at b), and resetting two other arrows bymaking them point at d and f . Also, they will be labeled by T because they will no longer be pointing atthe last element.To formalize this intuitive notion of annotation, we need a formal way of distinguishing instances of dis-junctive information. Our approach to representation of disjunctive information is based on [9, 12, 15]: todistinguish ordinary sets from collections of disjunctive possibilities, we call the latter or-sets and use hi toDatabase Programming Languages, 1995 3

Query Language Primitives for Programming with Incomplete Databasesobtained from the database. Conceptual queries ask questions about possible completed designs. Mosttypically, these are existential queries (is there a completed design that costs less than $m?) or optimizationqueries (�nd the most reliable design).Complexity of conceptual queries was studied in [9, 10] and a coNP-completeness result was proved. Thentight upper bounds on the number of possible worlds encoded by databases with disjunctions were obtainedin [12]. Roughly, if a database has size n, the size of the collection of possible worlds encoded by it is boundedabove by n � 1:45n. Thus, answering conceptual queries is generally very expensive; nevertheless, they doarise in practice and one needs mechanisms for answering them.A collection of tools for answering conceptual queries was developed in [12] and further investigated in [11].These tools have come to be known under the name of normalization, and the collection of all possibleworlds as normal forms. A normalized database is a collection of all possible worlds encoded by a database;a conceptual query is simply a structural query on a normalized database. In [12], a simple algorithm tocompute normalized databases was given. However, it required exponential space.That solution was re�ned in [11], where a polynomial-space normalization mechanism was presented. It wasachieved by reusing space for possible worlds, and processing them one at a time. This requires keeping aspecial structure, called an annotated object, to indicate choices for all instances of disjunctive informationin a database. A new primitive called norm, based on this idea, was suggested in [11]. It allows more controlover the process of normalization. For example, it can stop iterating if a condition is satis�ed. This has apotential of speeding up existential queries. However, the solution of [11] is still far from what we need inpractical problems. There are at least two reasons for this.� Most importantly, a programmer may want a larger collection of primitives suitable for various kinds ofqueries. For example, if a normal form is so large that producing all its elements in infeasible, one maywant to set a time limit and attempt to �nd an entry either satisfying a given condition, or optimizinga criterion for a given time. Moreover, one may want a mechanism for resuming this process from thepoint where it was stopped. In the case of optimizing criteria over extremely large normal form, onemay want to randomize this process, trying possible worlds from di�erent \areas".� Some of the disjunctions may not be involved in conceptual queries. For instance, in the design exampleabove, the designer may decide that the reliability of part A2 is irrelevant, and try to optimize thereliability of part A1. In current query evaluation methods, this would involve normalizing the wholeobject. So if part A2 has a complex structure, a lot of redundant computation will be done. Thus, weneed tools for partial normalization that avoid such unnecessary computations. The solution of [11]was based on the concept of �-rewriting, which is rather hard to grasp, and therefore very hard toincorporate into a query language.The main goal of this paper is to use the theoretical results of [11, 12] to come up with a collection ofquery language primitives suitable for a variety of conceptual queries against databases with disjunctiveinformation; in particular, we want to address the shortcoming mentioned above. The main contributionsare summarized below.1. We de�ne the concept of a partial normal form which represents incomplete possible worlds. That is,some of the disjunctions are still allowed in possible worlds. Our concept of partial normal form is lessgeneral but much more intuitive than that of [11] and can be easily incorporated into a query language.2. We generalize the normalization mechanism in two aspects. First, we make it work with both nor-mal forms and partial normal forms. Second, its output includes a special data structure, called anannotated object, that allows us to resume the normalization process from the point where it wasstopped.Database Programming Languages, 1995 2

Query Language Primitives for Programming withIncomplete DatabasesLeonid LibkinBell Laboratories600 Mountain Avenue, Murray Hill, NJ 07974 USAE-mail: libkin@bell-labs.comAbstractWe study the problem of choosing a suitable collection of primitives for querying databases withdisjunctive information. Theoretical foundations for querying such databases have been developed in[11, 12]. The main tool for querying disjunctive information has come to be known under the name ofnormalization.In this paper we show how these theoretical results can lead to practical languages for queryingdatabases with disjunctive information. We discuss a collection of primitives that one may want to addto a language in order to be able to ask a variety of queries over incomplete databases (including existentialand optimization queries). We describe a new practical and easily implementable technique for partialnormalization, and show how to combine it with the known technique for space-e�cient normalization.As the result, we demonstrate that with very little extra added to the language, one can express a varietyof primitives using just one general polynomial-space iterator. We discuss some practical implications,including nondeterminism of the resulting language, and the implementation project.1 IntroductionWe study querying databases in which incomplete information is represented via disjunctions. Such databasesoften arise in the design and planning areas, as was �rst noticed in [9]. For certain objects whose valuesare not known at present, a database may contain a number of possible values. Choosing one possibilityfor each instance of disjunctive information gives us a possible world described by an incomplete database.In practical applications, most queries the user would like to ask are queries against collections of possibleworlds, rather than the representation of those possible worlds by means of disjunctive information. Thatis, additional transformation of the data stored in a database is needed in order to answer such queries.The need for distinguishing two classes of queries against databases with disjunctive information is knownin the literature, cf. [9, 10, 12, 16]. Queries that ask questions about the representation of possible worldsare called structural, whereas conceptual queries ask questions about the data encoded by the informationin a database.For example, consider a template used by a designer (shown in �gure 1). It may indicate that part D consistsof two subparts, A1 and A2, and A1 is built from B1 and B2 and B3, while B1 is a or b or c, B2 is dor e, and B3 is f or g. The subpart A2 has a similar structure. In �gure 1, vertical and horizontal linesrepresent parts that must be included, while the sloping lines represent possible choices. It must be stressedthat the smallest subparts shown in �gure 1 may in turn have very complex structure and involve incompleteinformation.With the example in �gure 1 we can illustrate the di�erence between structural and conceptual queries. Astructural query may ask about the number of possible choices for B1 { this information can be directlyDatabase Programming Languages, 1995 1

