
Incremental Recomputation of Recursive Querieswith Nested Sets and Aggregate Functions?Leonid Libkin1 Limsoon Wong21 Bell Laboratories/Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ07974, USA, Email: libkin@research.bell-labs.com2 BioInformatics Center & Institute of Systems Science, Singapore 119597, Email:limsoon@iss.nus.sgAbstract. We examine the power of incremental evaluation systemsthat use an SQL-like language for maintaining recursively-de�ned views.We show that recursive queries such as transitive closure, and \alter-nating paths" can be incrementally maintained in a nested relationallanguage, when some auxiliary relations are allowed. In the presence ofaggregate functions, even more queries can be maintained, for exam-ple, the \same generation" query. In contrast, it is still an open problemwhether such queries are maintainable in relational calculus. We then re-strict the language so that no nested relations are involved (but we keepthe aggregate functions). Such a language captures the capability of mostpractical relational database systems. We prove that this restriction doesnot reduce the incremental computational power; that is, any query thatcan be maintained in a nested language with aggregates, is still main-tainable using only at relations. We also show that one does not needauxiliary relations of arity more than 2. In particular, this implies thatthe recursive queries maintainable in the nested language with aggre-gates, can be also maintained in a practical relational database systemsusing auxiliary tables of arity at most 2. This is again in sharp contrastto maintenance in relational calculus, which admits a strict arity-basedhierarchy.1 IntroductionIt is common knowledge that the expressiveness of relational calculus is limited.For example, recursive queries such as the transitive closure cannot be de�ned[3]. However, in a real database system, one can try to overcome this problemby storing both the relation and its transitive closure and updating the latterwhenever edges are added to or removed from the former. In other words, therecursive queries are evaluated and maintained incrementally. One can think ofthe result of such a recursive query as a view of the database and the incrementalevaluation of the query as view maintenance.? Part of this work was done when Wong was visiting Bell Labs and when Libkin wasvisiting Institute of Systems Science.

The above leads us to the concept of an incremental evaluation system, or IES.An IES(L) is a system consisting of a �nite set of \update" functions expressiblein the language L, where each of these functions takes as input the old database,the old answer, the old auxiliary database, and the update. We require theupdate to be permissible according to certain criteria speci�ed for the IES(L).In this report, the criteria for permissible update is restricted to insertion anddeletion of a single tuple. For each permissible update that is coming in, thesystem uses its update functions to compute the new answer to the query andthe new auxiliary database. A restriction is also imposed so that the constantsthat appear in auxiliary database must also appear in the database or in theanswer or in some �xed set. In this report, this �xed set is Q , the set of rationalnumbers.We use the �rst-order incremental evaluation system, IES(FO)(called FOIESin [10]), to illustrate the concept. IES(FO) uses �rst-order logic to express updatefunctions [9, 12]. The permissible updates are tuples to be inserted or deletedfrom the input relations. For each relation symbol R, we use Ro to refer to theinstance of R before an update, and Rn the instance of R after the update (here'o' stands for old and 'n' for new). Consider the view EVEN that is de�ned tobe f1g if the relation R has even cardinality and fg if R has odd cardinality.While EVEN is well known to be inexpressible in �rst-order logic [1], it can beexpressed in IES(FO). The update function when a tuple o is deleted from R isgiven byEVEN n(1) i� (R(o) ^ :EVEN o(1)) _ (:R(o) ^ EVEN o(1)):The update function when a tuple o is inserted into R is given byEVEN n(1) i� (R(o) ^ EVEN o(1)) _ (:R(o) ^ :EVEN o(1)):The IES(FO) that we used to maintain EVEN as above is also called aspace-free IES(FO), because it does not make use of any auxiliary relations.The transitive closure of acyclic graphs is another view that can be maintainedby a space-free IES(FO) [9]. However, the transitive closure of general graphscannot be maintained using space-free IES(FO)[10, 7]. Thus, it is sometimesnecessary to use auxiliary relations. We write IES(FO)k to mean the subclass ofIES(FO) where auxiliary relations of arities up to k can be used. Observe that,with maximal arity k, the auxiliary relations can hold at most O(nk) tuples,where n is the number of constants in the input database.There are some interesting queries that can be maintained by IES(FO) withsome auxiliary relations. For the transitive closure of undirected graphs, it canbe maintained in IES(FO)3 [20] and even in IES(FO)2 [10]. But it is open if thereis a IES(FO) for transitive closure of general directed graphs. Also, Dong and Su[10] showed that the IES(FO)k hierarchy is strict for k � 2. More recently, usinga result of Cai [6], Dong and Su showed in the journal version of their paper[10] that the IES(FO)k hierarchy is strict for every k. However, their examplequery that proved the strict inclusion of IES(FO)k in IES(FO)k+1 had input

arity much greater than k. It is open whether the IES(FO)k hierarchy remainsstrict if we restrict to queries having �xed input arity.The two open questions above render IES(FO) a little unsatisfactory.IES(FO) uses �rst-order logic as its ambient language. First-order logic or re-lational algebra does not properly reect the power of practical relational sys-tems. One wonders if transitive closure can be maintained in a real relationaldatabase. Such databases use SQL as their query language. May be transitiveclosure can be maintained using SQL after all? One also wonders if strictness ofthe IES(FO)k hierarchy is natural. Maybe such a hierarchy will collapse if theambient language is SQL?So we study the incremental evaluation system whose ambient language isNRCaggr, our reconstruction of SQL based on a nested relational calculus. Weuse the notation IES(NRCaggr) to denote the incremental evaluation systemwhere both the input database and answer are at relations, but the auxiliarydatabase can be nested relations. We use the notation IES(SQL) when the auxil-iary database is restricted to at relations. The rationale for the IES(SQL) is thatit more closely approximates what could be done in a relational database, whichcan store only at tables. With features such as nesting of intermediate data (asin GROUPBY) and aggregates, the ambient language has essentially the powerof SQL, hence the notation. AsNRCaggr is more expressive than �rst-order logic,both IES(NRCaggr) and IES(SQL) are more powerful than IES(FO). So we willconcentrate on queries that are not known to be expressible in IES(FO).Our results are organized as follows. In Section 2, we describe NRCaggr,our reconstruction of SQL. In Section 3, we give a formal de�nition of IES(L).In Section 4, we show that transitive closure of arbitrary graphs, \alternatingpaths" of arbitrary (and-or) graphs, and \same generation" of acyclic graphscan be maintained in IES(NRCaggr) using some auxiliary space. In addition, wealso show that any query that can be implemented using a single application ofstructural recursion [5] can be maintained in IES(NRCaggr) using some auxiliaryspace. In fact, some of these do not even require the power of counting.In Section 5, we consider IES(NRCaggr) where the auxiliary relations arerestricted to be at; that is, we consider IES(SQL). We show that a linear orderon data can be generated in the context of IES(SQL). We then use this orderto encode IES(NRCaggr) into IES(SQL), demonstrating that storing at tablesis su�cient. This result says in essence that queries that can be maintained byIES(NRCaggr) are precisely those that can be maintained by a practical relationalsystem.In Section 6, we consider the e�ect that restriction on the arity of auxiliaryrelations can have on IES(SQL). We prove that a hierarchy does not form underthe arity restriction on auxiliary relations. In fact, it does not form even whenan arity restriction is imposed on input data as well. This result points out thata hierarchy based on arity restriction (such as the IES(FO)k hierarchy) is notrobust.In Section 7, we discuss the physical costs of maintaining queries inIES(SQL). The total overall cost may be unacceptably high, but each incre-

mental step is always guaranteed to be tractable.Complete proofs are given in the full report[18].2 Nested Relational Calculus with AggregatesLet us start by describing our ambient query language. We want this languageto be more powerful than the relational calculus in two ways: it will deal withnested relations, and will use aggregate functions. There are many choices forsuch a language. We use the language similar to those considered in [5, 15, 17, 8].These languages have been extensively studied and they are easier to work withthan most other nested formalisms. However, we would like to emphasize the thechoice of a particular language is not central to our problems. In particular, ourresults extend to any language with the same power as the language NRCaggrpresented below.The language NRCaggr is obtained by extending the nested relational calcu-lus NRC(=) of [5, 23] by arithmetics and aggregate functions. The motivationfor considering NRCaggr is that it is a much more realistic query language thanrelational algebra. Indeed, as explained later, one can consider NRCaggr to be atheoretical reconstruction of SQL, the de facto relational query language of thecommercial world.We present the language incrementally. We start from NRC(=), which isequivalent to the usual nested relational algebra [2, 5]. The data types that canbe manipulated are: s ::= b j s1 � � � � � sn j fsgThe symbol b ranges over base types like Booleans B , rational numbers Q , etc.The type s1 � � � � � sn contains n-ary tuples whose components have types s1,..., sn respectively. The objects of type fsg are sets of �nite cardinality whoseelements are objects of type s.As can be seen from the data types, NRC(=) is a language for arbitrarilynested relations. The syntax and typing rules of NRC are given below.xs : s c : b e : s1 � � � � � sn�i e : si e1 : s1 � � � en : sn(e1; : : : ; en) : s1 � � � � � snfgs : fsg e : sfeg : fsg e1 : fsg e2 : fsge1 [e2 : fsg e1 : ftg e2 : fsgSfe1 j xs 2 e2g : ftge1 : s e2 : se1 = e2 : B true : B false : B e1 : B e2 : s e3 : sif e1 then e2 else e3 : sWe often omit the type superscripts as they can be inferred. An expression ehaving free variables ~x is interpreted as a function f(~x) = e, which given input~O, of the same arity as ~x, produces e[~O=~x] as its output. Here [~O=~x] is thesubstitution replacing the ith component of ~x by the ith component of ~O. Anexpression e with no free variable can be regarded as a constant function f � e.Let us briey recall the semantics; see also [5]. Variables xs are available foreach type s. Every constant c of base type b is available. The operations for

tuples are standard. Namely, (e1; : : : ; en) forms an n-tuple whose i componentis ei and �i e returns the i component of the n-tuple e.fg forms the empty set. feg forms the singleton set containing e. e1 [e2unions the two sets e1 and e2. Sfe1 j x 2 e2g maps the function f(x) = e1 overall elements in e2 and then returns their union; thus if e2 is the set fo1; : : : ; ong,the result of this operation would be f(o1)[� � �[f(on). For example,Sff(x; x)g jx 2 f1; 2gg evaluates to f(1; 1); (2; 2)g.The operations for Booleans are also quite typical, with true and false denot-ing the two Boolean values. e1 = e2 returns true if e1 and e2 have the same valueand returns false otherwise. Finally, if e1 then e2 else e3 evaluates to e2 if e1 istrue and evaluates to e3 if e1 is false . We provided equality test on every types. However, this is equivalent to having equality test restricted to base typestogether with emptiness test for set of base types [22].NRC possesses the so-called conservative extension property [23]: if a func-tion f : s1 ! s2 is expressible in NRC, then it can be expressed using anexpression of height no more than that of s1 and s2. The height of a type isde�ned as its depth of nesting of set brackets. The height of an expression isde�ned as the maximum height of all types that appear in its typing deriva-tion. More speci�cally, if f : s1 ! s2 takes at relations to at relations andis expressible in NRC, then it is also expressible in the standard at relationalalgebra [19, 5].It is a common misconception that the relational algebra is the same as SQL.The truth is that all versions of SQL come with three features that have noequivalence in relational algebra: SQL extends the relational calculus by havingarithmetic operations, a group-by operation, and various aggregate functionssuch as AVG, COUNT, SUM, MIN, and MAX.It is known [5] that the group-by operator can already be simulated inNRC(=). The others need to be added. The arithmetic operators are the stan-dard ones: +, �, �, and � of type Q � Q ! Q . We also add the order on therationals: �Q : Q �Q ! B . As to aggregate functions, we add just the followingconstruct e1 : Q e2 : fsgPfje1 j xs 2 e2jg : QThe semantics is this: map the function f(x) = e1 over all elements of e2 and thenadd up the results. Thus, if e2 is the set fo1; : : : ; ong, it returns f(o1)+� � �+f(on).For example, Pfj1 j x 2 X jg returns the cardinality of X . Note that this isdi�erent from adding up the values in ff(o1); : : : ; f(on)g; in the example above,doing so yields 1 as no duplicates are kept. To emphasize that duplicate valuesof f are being added up, we use bag (multiset) brackets fj jg in this construct.We denote this theoretical reconstruction of SQL by NRCaggr. That is,NRCaggr has all the constructs of NRC(=), the arithmetic operations +;�; �and �, the summation construct P and the linear order on the rationals. Itwas shown in [15, 17] that all SQL aggregate functions mentioned above canbe implemented in NRCaggr. It is also known [15, 17] that NRCaggr has theconservative extension property and thus its expressive power depends only on

the height of input and output and is independent of the height of intermediatedata. So to conform to SQL, it su�ces to restrict our input and output to heightat most one, that is, to the usual at relational databases.Before we begin studyingNRCaggr in the setting of an incremental evaluationsystem, let us briey introduce a nice shorthand, based on the comprehensionnotation [21, 4], for writing NRCaggr queries. Recall from [4, 5, 23] that thecomprehension fe j A1; : : : ; Ang, where each Ai either has the form xi 2 ei or isan expression ei of type B , has a direct correspondent in NRC that is given byrecursively applying the following equations:{ fe j xi 2 ei; : : :g = Sffe j : : :g j xi 2 eig{ fe j ei; : : :g = if ei then fe j : : :g else fgThe comprehension notation is more user-friendly than the syntax of NRCaggr.For example, it allows us to write f(x; y) j x 2 e1; y 2 e2g for the cartesianproduct of e1 and e2 instead of the clumsier SfSff(x; y)g j y 2 e2g j x 2 e1g.In addition to comprehension, we also �nd it convenient to use a little bit ofpattern matching, which can be removed in a straightforward manner. For exam-ple, we write f(x; z) j (x; y) 2 e1; (y0; z) 2 e2; y = y0g for relational compositioninstead of the more o�cial f(�1 X; �2 Y) j X 2 e1; Y 2 e2; �2 X = �1 Y gor the much clumsier SfSfif �2 X = �1 Y then f(�1 X; �2 Y)g else fg j Y 2e2g j X 2 e1g. Here X and Y denote edges ((x; y) and (y; z) respectively), whosecomponents, x, y and z, are obtained by applying projections �1 and �2.3 Formal De�nition of IES(L)The de�nition of IES(L) is very similar to the de�nitions of Dong-Su's FOIES[10] and Immerman-Patnaik's Dyn-C [20]. The idea is that, in order to incre-mentally maintain a query Q, we do the following. At the �rst step, we initializeauxiliary data and compute Q assuming that the input is empty. Then we pro-vide functions that, upon each insertion or deletion, correctly update both theanswer to Q and the auxiliary data. If the initializing and the updating functionsare de�nable in L, we say that Q is expressible in IES(L). If all auxiliary data areat relations of arity not exceeding k, we say that Q is expressible in IES(L)k .While this informal de�nition is su�cient for understanding the results ofthe paper, we give a formal de�nition of IES(L) for the sake of completeness.Suppose we are given a type S = fs1g� : : :�fsmg, where s1; : : : ; sm are recordtypes. We consider elementary updates of the form ins i(x) and del i(x), wherex is of type si. Given an object X of type S, applying such an update resultsin inserting x into or deleting x from the ith set in X , that is, the set of typefsig. Given a sequence U of updates, U(X) denotes the result of applying thesequence U to an object X of type S.Given a query Q of type S ! T , and a type Taux (of auxiliary data), consider

a collection of FQ functions:finit : S ! T fauxinit : S ! Tauxf idel : si � S � T � Taux ! T fauxdel : si � S � T � Taux ! Tauxf iins : si � S � T � Taux ! T fauxins : si � S � T � Taux ! TauxGiven an elementary update u, we associate two functions with it. The functionfu : S�T�Taux ! T is de�ned as �(X;Y; Z):f idel(a;X; Y; Z) if u is del i(a), and as�(X;Y; Z):f iins(a;X; Y; Z) if u is ins i(a). We similarly de�ne fauxu : S�T�Taux !Taux.Given a sequence of updates U = fu1; : : : ; ulg, de�ne inductively the collec-tion of objects: X0 = ; : S;RES0 = finit(X0); AUX 0 = fauxinit (X0) (where ; oftype S is a product of m empty sets), andXi+1 = ui+1(Xi)RES i+1 = fui+1(Xi;RES i;AUX i)AUX i+1 = fauxui+1(Xi;RES i;AUX i)Finally, we de�ne FQ(U) as RES l.We now say that there exists an incremental evaluation system for Q in L ifthere is a type Taux and a collection FQ of functions, typed as above, such that,for any sequence U of updates, FQ(U) = Q(U(;)). We also say then that Q isexpressible in IES(L). If Taux is a product of at relational types, none of aritymore than k, we say that Q is in IES(L)k .Since every expression in NRC or NRCaggr has a well-typed function asso-ciated with it, the de�nition above applies to these languages.4 Power of IES(NRC) and IES(NRCaggr)It is known [7] that recursive queries such as transitive closure cannot be ex-pressed in space-free IES(NRC) and space-free IES(NRCaggr). In this section,we focus on the power of IES(NRC) and IES(NRCaggr) in the presence of aux-iliary data. We prove four expressibility results. We �rst show that transitiveclosure and the \alternating path" query are expressible in IES(NRC) (andhence in IES(NRCaggr)). Furthermore, any query expressed using one applica-tion of structural recursion (with parameter functions de�ned in NRC) can beexpressed in IES(NRC). If the parameter functions are de�ned in NRCaggr, thensuch a query is expressible in IES(NRCaggr). Finally, we show that the \same-generation" query is expressible in IES(NRCaggr), although it is not expressiblein space-free IES(NRCaggr).Proposition 1. Transitive closure of arbitrary graphs is expressible inIES(NRC). 2The idea of the proof is to use an auxiliary nested relation R : fb�b�fb�bggsuch that (x; y; P) 2 R i� P represents a path from x to y. (This basic idea isused in most of our results in this section.) The transitive closure of a graph can

be straightforwardly generated from this auxiliary nested relation. It is also quitestraightforward to maintain this auxiliary relation when edges are added to ordeleted from the graph. Its ability to store every paths appears to be vital fortransitive closure to be maintained when edges are deleted. In IES(NRC) we areable to use a set of edges to represent a path and a nested set of sets to representall the paths. Such a representation is not possible in IES(FO) which allowsonly at auxiliary relations. Later, we shall see how IES(SQL) gets around thisproblem by using the summation operation to create new identi�ers|essentiallyeach path Pi is assigned an identi�er i and each edge (x; y) in Pi can be recordedin the auxiliary at relation of all paths as (i; x; y).We also consider a generalization of the transitive closure query, namelythe \alternating paths" query, cf. [14]. This query is complete with respectto �rst-order reductions for PTIME. Since transitive closure is complete forNLOGSPACE, it is likely that the \alternating paths" is harder than the tran-sitive closure.Suppose we are given a graph G and a subset U of the nodes in G (U is for\universal"). Nodes not in the set U are \existential." Intuitively, an alternatingpath between two nodes must go through every descendant of a universal node,and through just one descendant of an existential node; thus, one can think of thetransitive closure query as a special case of this one when U = ;. More formally,we de�ne apath(x; y) to be the smallest relation such that: (1) apath(x; x) holdsfor each node x, and (2) if x 2 U and there is an edge leaving x, and for alledges (x; z) it is the case that apath(z; y), then apath(x; y), and (3) if x 62 U ,and for some edge (x; z), apath(z; y) holds, then apath(x; y). The \alternatingpaths" query is simply this: given a graph, compute the apath relation.Proposition2. \Alternating paths" of arbitrary graphs can be expressed inIES(NRC). 2Corollary 3. Transitive closure and \alternating path" are expressible inIES(NRCaggr). 2The \same generation" query is another recursive query that often serves asone of canonical examples of queries de�nable in datalog but not in relationalcalculus. Two nodes x and y of a graph G are in the same generation if andonly if there is a node z in G such that there is a walk (an edge sequence,possibly repeated) that goes from z to x and a walk of the same length thatgoes from z to y. It is known from [7] that this query cannot be maintained inIES(NRCaggr) without using auxiliary space. It turns out that it can be main-tained in IES(NRCaggr) with some auxiliary space, if the graph is acyclic. Notethat we do need the counting power of NRCaggr. However, the case of arbitrarygraphs remains open.Proposition4. \Same generation" of acyclic graphs can be expressed inIES(NRCaggr). 2In general, IES(NRC) can express queries speci�ed by a single applicationof the structural recursion operator of [5]. Let us �rst de�ne this operator. Let

f : s�t! t be a function expressible inNRC. Let i : t be an object expressible inNRC (that is, the constant function returning this object is de�nable). Further-more, we assume that f(x; f(x; y)) = f(x; y) and f(x; f(y; z)) = f(y; f(x; z))hold. Then the structural recursion operator sri(f; i) : fsg ! t is given by theequations: sri(f; i)(fg) = i, sri(f; i)(fxg [Y) = f(x; sri(f; i)(Y)). This oper-ator is very powerful. It can generate powersets. It can also produce all threeexample queries considered above: transitive closure, \alternating paths," and\same generation." Thus these previous results are really corollaries of the nexttheorem. However, it is possible to �nd more intuitive incremental evaluationsystems for the queries from Propositions 1, 2 and 4. Those are given in the fullreport [18].Theorem5. Any query expressible as sri(f; i) : fsg ! ftg, where fsg and ftgare at relation types, and f and i are de�nable in NRC, can be maintained inIES(NRC).Proof sketch: We set up the IES(NRCaggr) corresponding to sri(f; i) as follows.Let the input relation be I : fsg. Let the answer relation be A : ftg. That is, wewant to maintain A = sri(f; i)(I). We use an auxiliary relation R : fftg� fsgg.We arrange it so that (X;O) 2 R i� O � I and X = sri(f; i)(O). We initializeR to fi; fgg. We show how to maintain A and R when elements are added to orremoved from I .Let the update be the insertion of an object x into I . Then the update toR is Rn = Ro [f(f(x;X); O [fxg) j (X;O) 2 Rog. Then the update to A issimple: An = fu j (X;O) 2 Rn; O = In; u 2 Xg.Let the update be the deletion of an object x from I . Then the update toR is Rn = f(X;O) j (X;O) 2 Ro; x 62 Og. Then the update to A is again:An = fu j (X;O) 2 Rn; O = In; u 2 Xg. 2The same argument applies to NRCaggr:Corollary 6. Any query expressible as sri(f; i) : fsg ! ftg, where fsg and ftgare at relation types, and f and i are de�nable in NRCaggr, can be maintainedin IES(NRCaggr). 2An IES(NRCaggr) or IES(NRC) having input relations ~I , answer relation A,and auxiliary relations ~R is said to be deterministic if there is a function f suchthat f(~I) = (~R;A). (Note that f needs not be expressible within NRCaggr.)That is, the values of the auxiliary relations in a deterministic IES(NRCaggr)do not depend on the history of updates. Deterministic incremental evaluationsystems are interesting in their own right [11]. While we do not examine themfurther in this paper, it is worth pointing out the following result, follows fromthe proofs of other results in this section.Corollary 7. Transitive closure of arbitrary graphs, \alternating paths" of arbi-trary graphs, \same generation" of acyclic graphs, as well as any query express-ible as sri(f; i) : fsg ! ftg, where fsg and ftg are at relation types, can beexpressed in deterministic IES(NRCaggr). 2

5 Power of IES(SQL)We now focus on the power of IES(SQL), the restriction of IES(NRCaggr) touse only at auxiliary relations. We �rst show that IES(SQL) can generate alinear order on all its data. This result is then used to encode IES(NRCaggr)into IES(SQL), showing that the two systems are equivalent. Thus the powerof IES(NRCaggr) is undiminished even when it is restricted to at auxiliaryrelations. Of course this also means that IES(NRCaggr) can be fully implementedusing any real relational database.5.1 Ordering in IES(SQL)Recall that NRCaggr is only equipped with a linear order on Q . Linear orders onany other in�nite base types are not expressible in NRCaggr[15]. In this section,we show that in the context of IES(SQL), a linear order on any base type bcan be expressed, when restricted to its \active domain." By active domain, wemean those constants that currently appear in the input database.Proposition8. For any base type b, IES(SQL) is always able to maintain anauxiliary relation that de�nes a linear ordering on all the objects of type b in theactive domain of a database. 2Thus, for each type b, a linear order <b: b� b! B can always be simulatedin IES(SQL). It is known [15, 16] that if a linear order is available on eachbase types, then there is enough power in NRCaggr to compute a linear order<: s � s ! B on every type s. Thus from now on, we assume < is availablewhenever we are talking about IES(SQL) when auxiliary relations of arity atleast 2 are allowed.Thus within an IES(SQL), we can implement a ranking function rank : fsg !fs�Qg on any setO built up from the active domain of the IES(SQL): rank(O) =f(x;Pfjif y < x then 1 else 0 j y 2 Ojg) j x 2 Og. Then we can de�ne rankof :fsg�s! Q to be a function that given any set O built up from the active domainof the IES(SQL) and an o in O, produces the rank of o in O: rankof (O; o) =Pfjif x = o then r else 0 j (x; r) 2 rank(O)jg. This result is used in the nextsection to encode nested relations into at relations.5.2 IES(SQL) Equals IES(NRCaggr)Let us begin by comparing the power of IES(SQL) and IES(NRCaggr). It is clearthat IES(SQL) � IES(NRCaggr). We prove that the converse holds and hencethe two incremental evaluation systems are equivalent.Theorem9. IES(NRCaggr) = IES(SQL).The idea of the proof is that, using rank , objects of any type can be encodedwith natural numbers. Using this, we manage to encode any auxiliary database

in IES(NRCaggr) into a product of at relations, so that it can be used byIES(SQL). Using rankof , we can decode the result, and simulate IES(NRCaggr)in IES(SQL). All the details can be found at the end of this section.Corollary 10. IES(NRC) � IES(SQL). 2We can conclude that IES(SQL) can maintain transitive closure of arbitrarygraphs and can maintain queries expressed using a single application of sri . Inthe rest of this report, we concentrate on IES(SQL), because it precisely modelsreal relational databases. However, for convenience and clarity, we give proofsusing IES(NRCaggr).It is worth pointing out that previous results on the conservative extensionof NRC[19, 23] and NRCaggr[22, 15] do not imply the collapse of IES(NRCaggr)to IES(SQL). The conservative extension property[23] implies that if the inputand output of a (update) function are at, then the function can be implementedusing only at intermediate data. In an IES(NRCaggr) having a non-at auxiliaryrelation of nesting depth k, its update functions necessarily have non-at input ofnesting depth k. Thus the conservative extension result on NRC only guaranteesthat these update functions will not use intermediate data of nesting depthexceeding k. In other words, in order to guarantee that update functions usesonly at data, it is necessary to guarantee that their input auxiliary relations arealso at. This must be accomplished using means other than the conservativeextension property of NRC. This is the signi�cance of the equivalence resultabove.Proof Sketch of Theorem 9The �rst thing we need to do is to encode the auxiliary database in anIES(NRCaggr) into at relations so that they can be stored in an IES(SQL).Let us �rst de�ne s0, the type of height 1 to which the type s is encoded.{ b0 = fbg{ (s1 � � � � � sn)0 = ft1 � � � � � tng, where s0i = ftig.{ fsg0 = fQ � Q � tg, where s0 = ftg.We assume that for each base type b, there is a default value. For example, wecan take the default value for B to be true, that for Q to be 0, and so on. Then inwhat follows, we write ~0 to stand for a tuple of default values of the appropriatetypes. For example, the ~0 for the type Q � Q � B would be (0; 0; true).Then the encoding function ps : s ! s0 is de�ned by induction on s. A setis coded by tagging each element by 1 and by a unique identi�er if the set isnonempty and is coded by ~0 if it is empty. More precisely,{ pb(o) = fog{ ps1�:::�sn((o1; : : : ; on)) = f(x1; : : : ; xn) j x1 2 ps1(o1); : : : ; xn 2 psn(on)g{ pfsg(O) = f(0; 0;~0)g, if O is empty. Otherwise, pfsg(O) =f(1; rankof (o;O); x) j o 2 O; x 2 ps(o)g.

It is clear that ps is expressible in NRCaggr as long as the base types can belinearly ordered. Since we will be building an IES(SQL), we conclude that ps isexpressible.Now we provide the decoding function qs : s0 ! s, which strips tags andidenti�ers introduced by ps.{ qb(O) = o, if O = fog.{ qs1�����sn(O) = (o1; : : : ; on), if oi = qsi(fxi j (x1; : : : ; xn) 2 Og).{ qfsg(O) = fqs(fy j (1; j; y) 2 O; i = jg) j (1; i; x) 2 OgWe note that qb is not expressible in NRCaggr for every base type b. Nevertheless,it is expressible when b is B and Q because qB (O) = (O = ftrueg) and qQ (O) =Pfjx j x 2 Ojg. However, for any type s of the form ftg, qs is always expressiblein NRCaggr. The formal proof can be found in [22]. We give an example toillustrate how this can be done. Let s = ffb � bg � b � bg. Let O : s andO0 : s0, with O0 = ps(O). We temporarily replace qb by the identity functionand this induces a new de�nition of qs. To avoid confusion, we call this newversion rs. Then rs(O0) will have type fffbg � fbgg � fbg � fbgg. Moreover,those subobjects in rs(O0) having type fbg are always singleton sets. Then it isclear that qs(O0) = f(f(u; v) j (U; V) 2 X; u 2 U; v 2 V g; y; z) j (X;Y; Z) 2rs(O0); y 2 Y; z 2 Zg.Thus when s is a set type, both ps and qs can be expressed in NRCaggr.In addition, using the fact that ps(O) is never empty and by induction on thestructure of s, we can show that qs is inverse of psProposition11. Suppose s is a set type. Then qs � ps = id. 2We are now ready to embed any IES(NRCaggr) into an IES(SQL). To simplifynotations, we drop the type subscripts from ps and qs.Let a family of functions forming an IES(NRCaggr) be given. Let its atinput relations be ~I . Let its at answer relation be A. Let its auxiliary data be~R, which we assume all of these are sets of height at least 1. Let ~f be its updatefunctions.We de�ne the corresponding IES(SQL) as follows. The input relation is ~I ,as before. The answer relation is A as before. The auxiliary relations are ~R0,where R0i is the encoded version of the corresponding Ri; that is, R0i = p(Ri).The update functions are ~f 0 de�ned according to cases below. We need somenotations. Let p(~R) be the tuple obtained by applying the appropriate p to eachcomponent of ~R. Let q(~R0) be the tuple obtained by applying the appropriate qto each component of ~R0. Let u denote the update made to the input relations~I . There are two cases. If fi(u; ~I; A; ~R) updates the answer relation A, we needan f 0i so that An = f 0i(u; ~I; A; p(~R)) = fi(u; ~I; A; ~R). If fi(u; ~I; A; ~R) updates theauxiliary data Rj , we need an f 0i so that q(f 0i(u; ~I; A; p(~R))) = fi(u; ~I; A; ~R) =Rnj .For the case when fi(u; ~I; A; ~R) updates the answer relation A, we setf 0i(u; ~I; A; ~R0) = fi(u; ~I; A; q(~R0)). Now we argue that this is correct. By de�-

nition, we have f 0i(u; ~I; A; p(~R)) = fi(u; ~I; A; q(p(~R))). Since q � p = id, we havefi(u; ~I; A; ~R) = f 0i(u; ~I; A; p(~R)) as desired.For the case when fi(u; ~I; A; ~R) updates the auxiliary data Rj , we setf 0i(u; ~I; A; ~R0) = p(fi(u; ~I; A; q(~R0)). Now we argue that this is correct. Byde�nition, f 0i(u; ~I; A; p(~R)) = p(fi(u; ~I; A; q(p(~R))). Since q � p = id, wehave p(fi(u; ~I; A; ~R)) = f 0i(u; ~I; A; p(~R)). Applying q to both sides, we haveq(p(fi(u; ~I; A; ~R)) = q(f 0i(u; ~I; A; p(~R))). Since q�p = id, we have fi(u; ~I; A; ~R) =q(f 0i(u; ~I; A; p(~R))) as desired. Finally, the functions f 0i can be implemented sothat no nested intermediate data is used { this follows from the conservativityof NRCaggr [15]. This completes the proof. 26 Arity in IES(SQL)We write IES(SQL)k to mean the subclass of IES(SQL) that uses auxiliaryrelations up to arity k. As mentioned earlier, IES(FO)k � IES(FO)k+1 for allk > 1, forming a noncollapsing hierarchy for IES(FO) based on arity of auxiliaryrelations. We consider the analogous question on IES(SQL)k and show that thehierarchy collapses for k > 1. The proof uses a coding method that could alsobe used to prove that it is possible to maintain the equi-cardinality view of twok-ary relations in IES(FO)2 [13]. After that, we prove that the two levels belowIES(SQL)2 are strict; thus the IES(SQL)k hierarchy has only three levels.Proposition 12. IES(SQL)2 = IES(SQL)k for all k > 1.Proof sketch: We show how a k-ary auxiliary relation R : fs1 � � � � � skg canbe coded using binary auxiliary relations B1 : fQ � s1g, ..., Bk : fQ � skg.Recall that in IES(SQL)2 every base type can be assigned a linear order andthat these linear orders can be used to de�ne a lexicographic linear order ons1 � � � � � sk. Thus each tuple in R can be assigned a rank r based on thelinear order. Then ~B can be de�ned so that (r; o1) 2 B1, ..., and (r; ok) 2 Bki� ((o1; : : : ; ok); r) 2 rank(R). This encoding is straightforward to express inNRCaggr. 2Proposition 13. IES(SQL)1 is strictly less powerful than IES(SQL)2.Proof sketch: We show that IES(SQL)1 cannot maintain transitive closure ofarbitrary graphs. Suppose otherwise. Let the unary auxiliary relations used beR1, ..., Rn. Let the input graph be I . Let the answer be A. Let u be the deletionto be performed on I . We assume there is an update function f in NRCaggr fordeleting an edge u from I so that An = f(Ao; Io; u; ~Ro). Suppose Io, the currentstate of I , is a single cycle and we want to delete an edge u from it. Since Io is asingle cycle, we know that Ao is a complete graph. Therefore Ao can be generatedon-the-y in NRCaggr given Io. In particular, there is a function g in NRCaggr sothat An = g(Io; u; ~Ro) = f(f(x; y) j (x; u) 2 Io; (y; v) 2 Iog; Io; u; ~Ro). Noticethat Ao does not appear in the input to g. Now it can be shown that this functiong is not de�nable in NRCaggr { this follows from the bounded degree property of

NRCaggr [8] which says that on inputs of small degree, any NRCaggr query canonly produce outputs that realize a small (not depending on the input) number ofdistinct degrees, provided those outputs do not contain numbers. Consequently,f cannot be de�ned in NRCaggr, and thus IES(SQL)1 cannot maintain transitiveclosure of arbitrary graphs. Hence, IES(SQL)1 � IES(SQL)2. 2Proposition14. Space-free IES(SQL) is strictly less powerful than IES(SQL)1.Proof sketch: Let b be a in�nite base type that is unordered. Consider the functionf : fb � bg ! fQg such that f(X) = f1g if the number of nodes in the graphX having the maximum out-degree is odd, and f(X) = fg otherwise. We showthat f is not in space-free IES(SQL) but is in IES(SQL)1.To prove that f cannot be maintained by any space-free IES(SQL), we recallfrom [16, 17] that NRCaggr cannot test if the cardinality of a chain graph isodd. Now suppose f can be maintained in a space-free IES(SQL). Consider theinput I to be a chain graph f(a0; a1); : : : ; (an�1; an)g with all ais distinct. Thenf(I) = f1g i� n is odd. Since f is maintainable in space-free IES(SQL), let gbe the update function of this IES(SQL) so that g(Ao; Io; u) = An; that is gmaintains A when an edge u is deleted from I .If I is a chain, the graph I 0 = I [f(a0; an)g, as well as the singleton x =f(a0; an)g, are de�nable in NRCaggr. Note that f(I 0) = f1g, because exactlyone node has out-degree 2. Thus, fg(f1g; I 0; u) j u 2 xg evaluates to ff1gg if nis odd, and to ffgg otherwise, giving us an NRCaggr-de�nable test for parityof the cardinality of a chain, which is impossible. Thus, f is not expressible inspace-free IES(SQL).It remains to show that f can be maintained in IES(SQL)1. Observe thatthe out-degree of a node is de�nable in NRCaggr; we denote it by outdeg(x; I).Observe also that the maximum out-degree of a graph I , maxout(I), is alsoexpressible in NRCaggr.We can now construct the IES(SQL) as follows. Let I : fb� bg be the inputrelation. Let A : fQg be the output relation. Let R : fbg be the auxiliary relationso that o 2 R i� the number of nodes having the same out-degree as o in I isodd. We show how to maintain A and R under updates to I .Let the update be the insertion of a new edge (x; y) into I . Let LESS =fu j (u; v) 2 Io; outdeg(u; Io) < outdeg(x; Io)g, which are those nodes currentlyhaving out-degree less than that of x. The membership of these nodes in Rtherefore does not change. Let MORE = fu j (u; v) 2 Io; outdeg(u; Io) >outdeg(x; In)g, which are those nodes currently having out-degree at least 2more than that of x. The membership of these nodes in R therefore does notchange. Let SAMEBEFORE = fu j (u; v) 2 Io; outdeg(u; Io) = outdeg(x; Io)g,which are those nodes currently having the same out-degree as x. The mem-bership of these nodes in R is toggled by the update. Let SAMEAFTER =fu j (u; v) 2 Io; outdeg(u; Io) = outdeg(x; In)g, which are those nodes cur-rently having out-degree one more than that of x. The membership of thesenodes in R is toggled by the update. We can now de�ne the update to Ras Rn = (Ro \ LESS) [(Ro \ MORE) [(if SAMEBEFORE 6=fg ^ SAMEBEFORE � Ro then fg else SAMEBEFORE � fxg) [

(if SAMEAFTER 6= fg ^ SAMEAFTER � Ro then fg else (SAMEAFTER [fxg)). Then An = if fu j (u; v) 2 In; outdeg(u; In) = maxout(In)g 6=fg ^ fu j (u; v) 2 In; outdeg(u; In) = maxout(In)g � Rn then f1g else fg.The case when the update is the deletion of an existing edge (x; y) from I issimilar, and can be found in the full report [18]. 2Putting all three propositions above together, we conclude thatTheorem15. Space-free IES(SQL) � IES(SQL)1 � IES(SQL)2 =IES(SQL)k>2. 2This result contrasts sharply with the situation of IES(FO)k, which is a stricthierarchy. The strictness of the IES(FO)k hierarchy were obtained using a resultof Cai [6]; it uses queries with input relations of greater and greater arities toseparate higher and higher layers of the IES(FO)k hierarchy. It is not known ifIES(FO)k remains strict if we further impose a restriction on arities of inputrelations. Since the arity hierarchy collapses in the presence of simple extensionssuch as aggregate functions as in IES(SQL)k, we feel that a hierarchy based onarities is not robust and not natural for incremental evaluation systems. However,it is still an interesting problem to work out a general hierarchy for incrementalevaluation systems.7 ConclusionWe focused on incremental evaluation systems that use the SQL-like languageNRCaggr. In particular, we examined their power in the presence of auxiliary(nested) relations. With respect to IES(NRCaggr), we proved that they can main-tain transitive closure, \alternating paths," and \same generation." These resultsare in contrast to earlier ones [9, etc.] on IES(FO), where expressibility of thesequeries remains unsolved (and the negative results are conjectured). They arealso in contrast to earlier results [7] on space-free IES(NRCaggr), where thesequeries were shown to be inexpressible.Then we considered the restriction of IES(NRCaggr) to IES(SQL), whichare allowed to use only at auxiliary relations. IES(SQL) is an interesting andimportant subclass because it naturally reects the capability of commercialrelational database systems which use SQL and store at tables. We showed thatIES(NRCaggr) and IES(SQL) have the same power. Thus all queries that can beexpressed in IES(NRCaggr) can also be maintained using a standard relationaldatabase system. We further proved that every IES(SQL) can be replaced byone that uses auxiliary relations of arity at most 2. That means arity restrictionon auxiliary relations does not lead to a hierarchy in IES(SQL). This contrastswith [10] showing that arity restriction on auxiliary relations leads to a stricthierarchy in IES(FO).In some of our proofs, it can be observed that the amount of auxiliary datainvolved could be exponential with respect to the size of the history of updates.(The size of the history of updates to an IES(NRCaggr) is de�ned as the sum of

the size of all the tuples that were inserted to or deleted from the IES(NRCaggr)up to that point in time.) However, at each update, the size of auxiliary data ischanged only a polynomial amount from its current size. Nevertheless, we do notknow of a method for maintaining recursive views such as transitive closure ofarbitrary graphs in IES(NRCaggr) that uses only a polynomial amount of space.We leave the search for such a method or the disprove of its existence for futurework.Acknowledgements.We thank Michael Benedikt, Ke Wang, and especiallyGuozhu Dong for numerous discussions and valuable inputs, and anonymousreferees for their helpful comments on an earlier draft.References1. S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison Wesley,1995.2. S. Abiteboul and P. Kanellakis. Query languages for complex object databases.SIGACT News, 21(3):9{18, 1990.3. A. Aho and J. Ullman. Universality of data retrieval languages. In Proceedings 6thSymposium on Principles of Programming Languages, Texas, January 1979, pages110{120, 1979.4. P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension syn-tax. SIGMOD Record, 23(1):87{96, March 1994.5. P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of programming withcomplex objects and collection types. Theoretical Computer Science, 149(1):3{48,September 1995.6. J.-Y. Cai. Lower bound for constant-depth circuits in the presence of help bits.Information Processing Letters, 36:79{83, 1990.7. G. Dong, L. Libkin, and L. Wong. On impossibility of decremental recompu-tation of recursive queries in relational calculus and SQL. In Proceedings of5th International Workshop on Database Programming Languages, Gubbio, Italy,September 1995, Springer Electronic Workshops in Computing, 1996. Available athttp://www.springer.co.uk/eWiC/Workshops/DBPL5.html.8. G. Dong, L. Libkin, and L. Wong. Local properties of query languages. In Proceed-ings of 6th International Conference on Database Theory, pages 140{154, Delphi,Greece, January 1997.9. G. Dong and J. Su. Incremental and decremental evaluation of transitive closureby �rst-order queries. Information and Computation, 120(1):101{106, July 1995.10. G. Dong and J. Su. Space-bounded FOIES. In Proceedings of 14th ACM Sym-posium on Principles of Database Systems, San Jose, California, pages 139{150,May 1995.11. G. Dong and J. Su. Deterministic FOIES are strictly weaker. Annals of Mathe-matics and Arti�cial Intelligence 19(1):127{146, 1997.12. G. Dong, J. Su, and R. Topor. Nonrecursive incremental evaluation of Datalogqueries. Annals of Mathematics and Arti�cial Intelligence, 14:187{223, 1995.13. G. Dong and L. Wong. Some relationships between FOIES and �11 arity hierar-chies. Bulletin of EATCS, 61:72{79, 1997.14. N. Immerman. Languages that capture complexity classes. SIAM Journal of Com-puting, 16:760{778, 1987.

15. L. Libkin and L. Wong. Aggregate functions, conservative extension, and linearorders. In C. Beeri, A. Ohori, and D. Shasha, editors, Proceedings of 4th Interna-tional Workshop on Database Programming Languages, New York, August 1993,pages 282{294. Springer-Verlag, January 1994.16. L. Libkin and L. Wong. Conservativity of nested relational calculi with internalgeneric functions. Information Processing Letters, 49(6):273{280, March 1994.17. L. Libkin and L. Wong. New techniques for studying set languages, bag languages,and aggregate functions. In Proceedings of 13th ACM Symposium on Principles ofDatabase Systems, pages 155{166, Minneapolis, Minnesota, May 1994. Full versionto appear in JCSS, 55 (1997).18. L. Libkin and L. Wong. Incremental recomputation of recursive queries with nestedsets and aggregate functions. Technical Report 97-224-0, Institute of SystemsScience, Heng Mui Keng Terrace, Singapore 119597, April 1997.19. J. Paredaens and D. Van Gucht. Converting nested relational algebra expressionsinto at algebra expressions. ACM Transaction on Database Systems, 17(1):65{93,March 1992.20. S. Patnaik and N. Immerman. Dyn-FO: A parallel dynamic complexity class. InProceedings of 13th ACM Symposium on Principles of Database Systems, pages210{221, Minneapolis, Minnesota, May 1994.21. P. Wadler. Comprehending monads. Mathematical Structures in Computer Sci-ence, 2:461{493, 1992.22. L. Wong. Querying Nested Collections. PhD thesis, Department of Computer andInformation Science, University of Pennsylvania, Philadelphia, PA 19104, August1994. Available as University of Pennsylvania IRCS Report 94-09.23. L. Wong. Normal forms and conservative extension properties for query languagesover collection types. Journal of Computer and System Sciences, 52(3):495{505,June 1996.

This article was processed using the LATEX macro package with LLNCS style

