
OR-SML: A Functional Database ProgrammingLanguage for Disjunctive Informationand Its ApplicationsElsa Gunter and Leonid Libkin?AT&T Bell Laboratories600 Mountain Ave., Murray Hill, NJ 07974, USAemail: felsa,libking@research.att.comAbstract. We describe a functional database language OR-SML forhandling disjunctive information in database queries, and its implemen-tation on top of Standard ML [12]. The core language has the power ofthe nested relational algebra, augmented by or-sets which are used todeal with disjunctive information. Sets, or-sets and tuples can be freelycombined to create objects, which gives the language a greater
exibility.It is con�gurable by user-de�ned base types, and can be used indepen-dently or interfaced to other systems built in ML. We give examples ofqueries which require disjunctive information (such as querying incom-plete or independent databases) and show how to use the language toanswer these queries.1 IntroductionDisjunctive information in databases. There are many reasons why disjunctiveinformation may be present in databases. One arises in the areas of design,planning, and scheduling, as was shown in [8]. For example, consider a designtemplate used by an engineer, see �gure 1. The template may indicate that thewhole part being built consists of two subparts, A and B, but the component Acan be built by either module A1 or module A2. Such a template is structurallya complex object whose component A is the collection containing A1 and A2;however, its meaning is not A1 and A2 as in the usual database interpretationof sets, but rather A1 or A2. Moreover, B, A1 and A2 can in turn have a similarstructure. In �gure 1, vertical lines indicate subparts that must be included, andthe slopping lines indicate possible choices. For example, B consists of B1 andB2. Further down the tree, B1 is either w or k and B2 is either l or m. Eachsmallest subpart (a leaf of the tree) may have some parameters like cost andreliability, which a�ect the properties of a completed design.A designer employing such a template should be allowed to query the struc-ture of the template, for example, by asking what are the choices for componentA, or what is the most reliable choice for component B2. We call such queries? Partial support was provided by NSF Grant IRI-90-04137 and AT&T Doctoral Fel-lowship, while this author was a graduate student at the University of Pennsylvania.

��� BBB ��� BBB��� BBB ��� BBB ��� BBB ��� BBB ��� BBB
��� HHHA2 B1 B2X Y Z V W K L MQ S TA1.2 A2.1 A2.2 A2.3A1.1 A1 A B

P R U
DESIGN

Fig. 1. An incomplete designstructural. They ask about the structure of the object, and they can be easilyanswered in most of the languages for complex objects.On the other hand, the designer should also be allowed to query about possi-ble completed designs. Such queries are called conceptual, as they ask questionsabout objects which are not stored in the database, but only represented bythose that are. A query that asks to compute the number of completed designsis an example of a conceptual query. For each particular incomplete design thisnumber can be calculated just by looking at the structure and multiplying thenumbers of possibilities each disjunctive set contributes.However, there are problems with this approach. In particular, it is not ro-bust. In existing languages for complex objects a modest change to the structureof the incomplete design will require creating a new query to answer the samequestion. This query is relatively simple, but it is conceivable that a designerwould want to ask if it is possible to complete design using $n and achievingreliability of at least r%. Writing such a query seems to be a formidable problemthat may take hours of programming, and it is even less robust: if the designobject is changed slightly, there is no way to reuse the old query to answer thenew questions.Disjunctive information may also show up in the form of interpretation ofalready existing objects with respect to queries being asked. Assume that wehave two relations in a university databases. One is the relation of employees,and the other is the relation of teachers of a basic course CS1, that can be taughtonly by teaching assistants (TAs). Suppose we want to �nd the set of TAs (oran approximation thereof) assuming that all TAs are employees. In this case weknow that all teachers of CS1 are TAs, and each TA is one of the employees.Interpreting the relation of employees as a disjunctive set helps answer queriesabout various groups of employees, like TAs, as will be demonstrated later.There are various other forms in which disjunctive information appears indatabase applications. For example, when combining a number of databases,

there may be two records from di�erent databases with the same values of thekeys (like SS#) and con
icting values of other attributes (like Age). In thiscase in the combined database we must store the fact that the value of theAge attribute is one of the values from the di�erent databases. Another kind ofexamples arises in the problem of proof planning in automated theorem provers.We refer the reader to the full paper [7] in which we discuss these problems.Goals of the paper. We describe a functional language, OR-SML, for queryingdatabases with incomplete and disjunctive information. It is capable of solvinga number of problems that typically accompany disjunctive information; in par-ticular, the problems we discussed above. To handle disjunctive information, weallow a new type constructor of or-sets (hence the name { OR-SML). Or-setshave been studied in [8, 10, 14]. Or-sets are in essence disjunctive information,but they are distinguished from the latter by having two distinct interpretations.The structural level concerns the precise way in which an or-set is constructed.The conceptual level sees an or-set as representing an object which is equal tosome member of the or-set. For example, the or-set h1; 2; 3i is structurally a col-lection of numbers; however, conceptually it is either 1, 2, or 3. (Angle bracketshi are used for or-sets and fg for the usual sets.) The language OR-SML supportsboth views of or-sets and therefore can answer conceptual queries.The language design. Our language is based on the functional paradigm. De-sign of functional database query languages has been studied extensively in thepast few years and proved very useful. (See, for example [1, 2, 10, 11, 13, 16].)Functional languages have certain advantages over logical languages for complexobjects. They have clear syntax, they can be typechecked, their semantics isgenerally easy to de�ne and they allow a limited form of polymorphism.Since entries in databases are allowed to be or-sets possibly containing othersets, the databases are no longer in the �rst normal form. Therefore, we have todeal with nested relations, or complex objects. The language we describe containsthe nested relational algebra as a sublanguage. The standard presentations ofthe nested relational algebra (cf. [15]) have a cumbersome syntax. Therefore, wehave decided to follow the approach of [2], which gives a very clean and simplelanguage that has precisely the expressive power of the nested relational algebra.The language obtained from the nested relational algebra by adding appropriateprimitives dealing with or-sets was called or-NRA in [10].One of the problems that should be addressed during the language design isa mechanism for incorporating both structural and conceptual queries into thesame language. It was shown in [10] that conceptually equivalent objects canbe reduced to the same object by repeated applications of just three or-NRAoperators which will be described later. The induced normal form is independentof the sequence of applications of these operators. Therefore, one can take theconceptual meaning of any object to be its normal form under the rewritinginduced by the those operators. Consequently, a conceptual query language canbe built by extending a structural language with a single operator normal which

takes the input object to its normal form. A query at the conceptual level is thensimply a query performed on normal forms.The system OR-SML includes much more than just or-NRA. Normalizationis present as a primitive. Some arithmetic is added to elevate the language to theexpressive power of the bag language BQL of [11]. This allows correct evaluationof aggregate functions. OR-SML is extensible with user-de�ned base types. Itprovides a mechanism for converting any user-de�ned functions on base typesinto functions that �t into the type system of OR-SML. It also gives a way\out of complex objects" into SML values. This is necessary, for example, ifOR-SML is a part of a larger system and the OR-SML query is part of a largercomputation that needs to analyze the result of the query to proceed. OR-SMLcomes equipped with libraries of derived functions that are helpful in writingprograms or advanced applications such as querying independent databases.We chose Standard ML (SML) as the basis for our implementation in or-der to combine the simplicity of or-NRA queries with features of a functionalprogramming language [12]. OR-SML bene�ts from it in a number of ways:1. OR-SML queries may involve and become involved in arbitrary SML proce-dures. The presence of higher-order functions in SML allows SML functionsto be arguments to queries and queries to be arguments to SML functions.2. OR-SML is implemented as a library of modules in SML. This allows theuser to build just the database language as an independent system, or tointerface it to other systems built in SML. Using this feature, we were ableto connect OR-SML to an existing interactive theorem prover.3. One interacts with OR-SML by entering declarations and expressions to beevaluated into the top-level read-evaluate-print loop of SML. The results arethen bound to SML identi�ers for future use.4. The SML module system makes the implementation of di�erent parts of thelanguage virtually independent and easily modi�able.In the next section we give a quick overview of OR-SML. In section 3 we showhow OR-SML can be used to answer some of the problems we mentioned above.All examples in this paper are obtained from a working version of OR-SML.2 An overview of OR-SMLThe core language. The theoretical language upon which OR-SML is based wasdeveloped by Libkin and Wong in [10]. We describe this core language, calledor-NRA, and show how it is built on top of Standard ML. We have changed thenames of all constructs of or-NRA to the names that are used in OR-SML.The object types are given by the following grammar:t ::= b j unit j bool j t� t j ftg j htiHere b is one of base types (which in OR-SML include int, string, and a user-supplied SML type), unit is a special type whose domain has a unique element

denoted by (), bool is the type of booleans, t � s is the product type, whoseobjects are pairs of objects of types t and s. The set type ftg denotes �nite setsof elements of t and the or-set type hti denotes �nite or-sets of elements of t.The speci�c types of the or-NRA operators are given by the rules in thetable in Fig. 1. All occurrences of s, t and u in that table are object types. LetGeneral operatorsp1 : s� t ! s p2 : s � t ! t bang : t ! unit eq : t � t ! bool id : t ! tg : u ! s f : s ! tcomp(f; g) : u ! t c : bool f : s ! t g : s ! tcond(c; f; g) : s ! t f : u ! s g : u ! tpair(f; g) : u ! s� tOperators on setsemptyset : unit ! ftg sng : t ! ftg union : ftg � ftg ! ftgf : s ! tsmapf : fsg ! ftg pairwith : s� ftg ! fs � tg flat : fftgg ! ftgOperators on or-setsemptyorset : unit ! hti orsng : t ! hti orunion : hti � hti ! htif : s ! torsmap f : hsi ! hti orpairwith : s � hti ! hs� ti orflat : hhtii ! htiInteraction of sets and or-setsalpha : fhtig ! hftgiFig. 2. or-NRA Type Inference of OR-SML Termsus brie
y recall the semantics of these operators. comp(f; g) is composition offunctions f and g. First and second projections are called p1 and p2. pair(f; g)is pair formation: pair(f; g)(x) = (f(x); g(x)). id is the identity function. bangalways returns the unique element of type unit. cond(c; f; g)(x) evaluates to f(x)if condition c is satis�ed and to g(x) otherwise.The semantics of the set constructs is the following. emptyset() is the emptyset. This constant also has name empty. sng(x) returns the singleton set fxg.union(x; y) is x [y. smap(f) maps f over a set, that is, smap(f)fx1; : : : ; xng =ff(x1); : : : ; f(xn)g. pairwith pairs the �rst component of its argumentwith every item in the second component: pairwith(y; fx1; : : : ; xng) =f(y; x1); : : : ; (y; xn)g. Finally, flat is
attenning: flatfX1; : : : ; Xng = X1 [: : : [Xn. The semantics of the or-set constructs is similar.The operator alpha provides interaction between sets and or-sets. Given aset A = fA1; : : : ; Ang, where each Ai is an or-set Ai = hai1; : : : ; ainii, let F denotethe set of all functions f : f1; : : : ; ng ! N such that f(i) � ni for all i. Thenalpha(A) = hfaif(i) j i = 1; : : : ; ng j f 2 Fi.We shall need some of the SML syntax. In SML, val binds an identi�er and- is the prompt, so - val x = 2; binds x to 2 and val x = 2 : int is theSML response saying that x is now bound to 2 of type int. fun is for function

declaration. Functions can also be created without being named by using theconstruct (fn x => body(x)). If a function is applied to its argument and theresult is not bound to any variable, then SML assigns it a special identi�er itwhich lives until it is overridden by the next such application. For example, theSML response to - factorial 4; is val it = 24 : int. let : : : in : : : end isused for local binding. The [: : :] brackets denote lists; "" is used for strings.Let us now describe how OR-SML constructs are represented over SML.Every complex object has type co. We refer to the type of an object or a functionin or-NRA as its true type. True types of objects can be inferred using thefunction typeof. They are SML values having type co type. When OR-SMLprints a complex objects together with its type, it uses :: for the true type, as: co is used to show that the SML type of the object is co. Values can be inputby functions create : string -> co (or make : unit -> co for interactivecreation, if the input needs to be broken over several lines). For example:- val a = create "{ <1,2,3>, <4,5,6>, <7,8> }";val a = {<1, 2, 3>, <7, 8>, <4, 5, 6>} :: {<int>} : coThe order in which elements appear in a set (or-set) is irrelevant. The orderof elements of a was changed as the result of the duplicate elimination algorithm.Typechecking is done in two steps. Static typechecking is simply SML type-checking; for example, union(a,a,a) causes an SML type error. However,since all objects have type co, the SML typechecking algorithm can not de-tect all type errors statically. For example, SML will see nothing wrong withunion(a,(create "5")) even though the true types of its arguments are fhintigand int . Hence, this kind of type errors is detected dynamically by OR-SMLand an appropriate exception is raised. In our example, OR-SML responds byuncaught exception Badtypeunion.The language can express many functions commonly found in query lan-guages. Among them are boolean connectives, membership and subset tests, dif-ference, selection, cartesian product and their counterparts for or-sets, see [2, 10].These functions are included in OR-SML in the form of a structure called Set.Some examples are given below.- alpha (create "{<1,2>,<2,3>}");val it = <{2}, {1, 2}, {1, 3}, {2, 3}> :: <{int}> : co- val x1 = create "{1,2}";val x1 = {1, 2} :: {int} : co- smap (pair(id,id)) x1;val it = {(1, 1), (2, 2)} :: {int * int} : co- Set.cartprod(x1,x1);val it = {(1, 1), (1, 2), (2, 1), (2, 2)} :: {int * int} : coOR-SML allows a limited access to user-de�ned base types. Values of thesetypes have type base in OR-SML. The user is required to supply a structurecontaining basic information about the base type when a particular version ofOR-SML is built. Objects of base type are printed in parentheses and preceded

by the symbol @. They also must be input accordingly, so that the parser wouldrecognize them.There are a number of functions that make complex objects out of SML ob-jects. For example, mkintco: int -> co and mksetco : co list -> co makean integer complex object, or a set whose elements come from a list of com-plex objects. These functions can be used as an alternative to create and make.OR-SML has a variety of printing styles which can be changed at will.Normalization. Assume that an object x of type t contains some or-sets. Whatis x conceptually? Since we want to list all possibilities explicitly, it must be anobject x0 : ht0i where t0 does not contain any or-set brackets. Intuitively, for anygiven object x we can �nd the corresponding x0 but the question is whether wecan do it in a coherent manner.Such a way was found in [10]. De�ne the following rewrite system on types:t� hsi ! hs� ti hsi � t! hs� ti hhsii ! hsi fhsig ! hfsgiIntuitively, we are trying to push the or-set brackets outside and then cancelthem. With each rewrite rule we associate a basic OR-SML function as follows:orpairwith : t� hsi ! hs� ti orpairwith1 : hsi � t! hs� tiorflat : hhsii ! hsi alpha : fhsig ! hfsgiwhere orpairwith1 is \pair-with" with changed arguments. This function isde�nable in OR-SML.If s1 ! : : : ! sn, n � 1 by rewrites in the above rewrite system, then wewrite s1 �!�! sn. We associate with each sequence s1 ! : : : ! sn a rewritestrategy r = [r1; : : : ; rn�1] : s1 �!�! sn, where each ri is the basic OR-SMLfunction associated with si ! si+1. It is possible to \apply" a rewrite strategyr : s1 �!�! sn to any object x : s1, getting an object of type sn which is denotedby app(r)(x). It can be obtained by using functions from the core language, see[10]. Moreover, the following result was proved in [10]:Theorem (Coherence) The rewrite system above is Church-Rosser andterminating. In particular, every type t has a unique normal form denoted nf(t).Moreover, for any two rewrite strategies r1; r2 : t �!�! nf(t) and any x : t,app(r1)(x) = app(r2)(x). 2This theorem tell us that a new primitive normal : co -> co can be addedto OR-SML to give it adequate power to work with conceptual representationsof objects. The true type of normal is t ! nf(t) and its semantics is app(r)where r : t �!�! nf(t). Normalization of types is represented by the functionnormalize of type co type -> co type. For example:- val x = create "{(1,<2,3>),(4,<5,6>)}";val x = {(1, <2, 3>), (4, <5, 6>)} :: {int * <int>} : co- normalize (typeof x);val it = <{int * int}> : co_type- val y = normal x;val y = <{(1,2),(4,5)}, {(1,3),(4,5)}, {(1,2),(4,6)}, {(1,3),(4,6)}> : co

Additional features. OR-SML has integers as a base type with a number ofsupported operations. Among them are two summation constructs. sum takesa function f of true type s ! int and a set fx1; : : : ; xng of true type fsg andreturns f(x1) + : : : + f(xn). orsum acts similarly on or-sets. These operationsendow a set language with the power of languages for nested bags as in [5, 11].Equivalently, they allow us to de�ne and correctly evaluate a number of aggregatefunctions. For example, sum p2 is \add up all elements in the second column".The system provides a way of making functions on user-de�ned base typesinto functions that �t into its type system. For example, if the user-de�ned basetype is real, the function apply unary will take a function fn x => x + 1.0 ofSML type real -> real and return the function addone co of type co -> cowhose semantics is �x:x+1:0. OR-SML also provides a way of converting binaryfunctions and functions with arbitrary number of arguments into functions oncomplex objects. Predicates on base types can also be converted by means ofapply test to be used later with cond or select.Structural recursion [1] is a very powerful programming tool for query lan-guages. Even though it is not guaranteed to be well-de�ned, it is often helpfulin writing programs or changing types of big databases (rather than reinputtingthem). It is available in OR-SML as two constructs SR.sr and SR.orsr that takean object e of type t and a function f of type s � t ! t and return a functionSR.sr(e; f) of type fsg ! t (or SR.orsr(e; f) of type hsi ! t.) Their semanticsis as follows: SR.sr(e; f)fx1; : : : ; xng = f(x1; f(x2; f(x3; : : : f(xn; e) : : :))) andsimilarly for SR.orsr. For example, to �nd the product of elements of a set, onemay use structural recursion by �rst producing a function set mult: co -> coas val set mult = SR.sr((create "1"),mult) and then applying it to a set,say f1,2,3,4,5g, obtaining 120.To support a form of persistence for databases, OR-SML provides means forwriting lists of complex objects to �les and reading them back in later. Thereare two modules for �le I/O: one for binary �les and one for ASCII �les.To enable the user to write programs to deal with the results of queries, OR-SML provides a way out of complex objects to the usual SML types. See thesystem manual [7] for details.3 Applications of OR-SMLQuerying incomplete design databases. Recall the example of an incomplete de-sign from �gure 1. Assuming that each smallest subpart has two parameters {its cost (of type int) and its reliability (of type real) { we can use or-sets torepresent the incomplete design as an object in OR-SML as follows:val design =(<{<('z', (13, @(0.95))), ('v', (14, @(0.955)))>,<('y', (20, @(0.98))), ('x', (21, @(0.999)))>},{<('p', (12, @(0.95))), ('q', (13, @(0.96)))>,<('s', (17, @(0.96))), ('r', (18, @(0.97)))>,<('t', (19, @(0.98))), ('l', (20, @(0.99)))>}>,

(<('k', (11, @(0.93))), ('w', (17, @(0.96)))>,<('l', (12, @(0.94))), ('m', (14, @(0.95)))>)) : coAssume that we want to answer the following conceptual queries. How manycompleted designs are there? Is it possible to complete the design using $62?What is the most reliable design that costs under $n?To answer these queries, we �rst infer the type of the normalized database.val ndt = <({(string * (int * real))} *((string * (int * real)) * (string * (int * real))))> : co_typeGuided by this type, we can write the cost and reliability functions for thecompleted designs. The function cost adds up all occurrences of integers in ndt.The function reliability can also be written straightforwardly in OR-SML forany type of connection of subparts. Assume parallel connection of B1 and B2and series connection of A and B. Now to answer the �rst query, we write- val nd = normal design; (* output omitted *)- val num_choices = orsum (fn z => mkintco(1)) nd;val num_choices = 48 : co- orsmap (fn x => mkprodco ((cost x), (reliability x))) nd; (* output omitted *)Thus, we have 48 completed designs. Notice that the query for num choicesis independent of the internal structure of the incomplete design. The output ofthe last query shows that the price range is from $56 to $82. Hence, the designcan be completed with $62.To �nd the design that has the best reliability for a given cost, we �rst writea query is best that selects the design with the best reliability from a givencollection (this can be done using just the structural component of the language.)Then bestunder selects the most reliable design with a given cost limit.- fun bestunder n = let val des_under_n = (Set.orselect(fn y => eq(mkintco(0), monus(cost(y),mkintco(n)))) nd)in Set.orselect (fn y => is_best(y,des_under_n)) des_under_n end;val bestunder = fn : int -> coApplying this function yields some intersting results. The most reliable design(obtained by writing bestunder 82) costs only $66. The most reliable designthat costs less than $62 has an actual cost of $60. So, as it often happens, onedoes not have to buy the most expensive thing to get the best quality.Summing up, we see that normalization is a very powerful tool for answeringconceptual queries. Many queries that would be practically impossible to answerin just the structural language, now can be programmed in a matter of minutesin OR-SML.

Querying independent databases. Let us see how OR-SML can be used to solvea simple problem of querying independent databases. Consider the problem de-scribed in the introduction. The university database has two relations, Employeesand CS1 (for teaching the course CS1) and we would like to compute the setof TAs. We know that only TAs can teach CS1 and every TA is a universityemployee. In this paper, we also assume that the Name �eld is a key.Employees : Name SalaryJohn 15KMary 12KSally 17K CS1 : Name RoomJohn 076Jim 320Sally 120Note that the databases are inconsistent: Jim teaches CS1 and hence he is aTA and an employee, but there is no record for Jim in Employees. If we believethe Employees relation, then, to get rid of this anomaly, we must remove Jimfrom CS1. After that, we �nd an approximation of the set of TAs; that is, we�nd people who certainly are TAs and those who could be.We always assume that all records have the same �elds. It can be achievedby putting ? (null) into the missing �elds or, in OR-SML representation, byusing empty sets to represent nulls. This also allows us to take joins andmeets of records. For example, John 15K ? _ John ? 076 = John 15K 076 andJohn 15K ? ^ John ? 076 = John ? ? . Notice that the join of two records isnot necessarily de�ned.In our solution we rely on the theory of partial information conveyed bymeans of partial orders which was worked out in [3, 4, 9, 10]. In particular, weuse the fact that orders can be de�ned at arbitrary types, and consequently wehave an OR-SML library of orderings and functions meet; join : s � s ! hsi(the empty or-set indicates a non-existent join or meet; otherwise a singletonor-set is produced). Using these functions, it is easy to write a function (calledcompatible) to test whether two records have a join.We treat Employees as a relation of possible upper bounds for TAs, so wemake it an or-set. All entries in CS1 are TAs, so CS1 is a set. We represent thedata as below, and remove the anomaly (Jim) using the test for a join compatas a parameter:val emp = <('Mary', ({@(12.0)}, {})), ('John', ({@(15.0)}, {})),('Sally', ({@(17.0)}, {}))> : coval cs1 = {('John', ({},{76})), ('Sally', ({},{120})), ('Jim', ({},{320}))} : co- fun remove_anomaly compat (R,S) = let fun compat_to_X (X,x) =Set.ormember(mkboolco(true),(orsmap (fn z => compat(z,x)) X));in Set.select (fn z => compat_to_X (R,z)) S end;- val new_cs1 = remove_anomaly compatible (emp,cs1);val new_cs1 = {('John', ({}, {76})), ('Sally', ({}, {120}))} : coNow consider the solution proposed in [3] (see also [6]). Given an elementx 2 CS1, let y1; : : : ; yn be those elements in Employees that can be joined withx. Then x0 = Vi(x _ yi) is called a promotion of x. (Intuitively, it adds all

information about x from Employees.) The solution to the TA query is to takeall promotions of elements in CS1 as \sure TAs" and elements of Employeesnot consistent with those promotions as \possible TAs". (We use the functionbig meet that calculates the meet of a family.)- fun promote compat (R,S) =let fun compat_to_x (X,x) = Set.orselect (fn z => compat(z,x)) Xin alpha (smap (fn z => big_meet (orflat(orsmap (fn v => join(z,v))(compat_to_x (R,z))))) S) end;- val promoted_cs1 = promote compatible (emp,new_cs1);val promoted_cs1 = <{('John', ({@(15.0)}, {76})),('Sally', ({@(17.0)}, {120}))}> : coThus, John from o�ce 76 and Sally from o�ce 120 are certainly TAs (andwe know their salaries) and Mary could be a TA.If the name �eld is not a key, this solution will not work: if there are severalJohns in Employees, all will be joined with John from CS1, and when the meetis taken, the salary �eld is lost. But this is not what the information in thedatabase tells us. We know that one John from Employees teaches CS1, but wedo not know which John. Since either could be, the solution is to use an or-setto represent this situation. See [7] for details.Acknowledgements: We would like to thank Peter Buneman and LimsoonWong for many helpful discussions.References1. V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion as a querylanguage. In Proc. of DBPL-91, pages 9{19.2. V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded query lan-guages. In LNCS 646: Proc. ICDT-92, pages 140{154. Springer, October 92.3. P. Buneman, S. Davidson, A. Watters, A semantics for complex objects and ap-proximate answers, JCSS 43:170{218, 1991.4. P. Buneman, A. Jung, A. Ohori, Using powerdomains to generalize relationaldatabases, Theoret. Comp. Sci. 91:23{55, 1991.5. S. Grumbach, T. Milo, Towards tractable algebras for bags, Proceedings of the12th PODS, Washington DC, 1993, pages 49{58.6. C. Gunter, The mixed powerdomain, Theoret. Comp. Sci. 103:311{334, 1992.7. E. Gunter and L. Libkin. A functional database programming language with sup-port for disjunctive information, AT&T Technical Memo, 1993.8. T. Imielinski, S. Naqvi, and K. Vadaparty. Incomplete objects | a data model fordesign and planning applications. In Proc. of SIGMOD, Denver CO, May 1991.9. L. Libkin, A relational algebra for complex objects based on partial information,In LNCS 495: Proc. of MFDBS-91, Springer-Verlag, 1991, pages 36{41.10. L. Libkin and L. Wong, Semantic representations and query languages for or-sets,Proceedings of the 12th PODS, Washington DC, 1993, pages 37{48.11. L. Libkin and L. Wong, Some properties of query languages for bags, In Proc. ofDBPL-93, Springer Verlag, 1994, pages 97{114.

12. R. Milner, M. Tofte, R. Harper, \The De�nition of Standard ML", The MIT Press,Cambridge, Mass, 1990.13. A. Ohori, V. Breazu-Tannen and P. Buneman, Database programming in Machi-avelli: a polymorphic language with static type inference, In SIGMOD 89.14. B. Rounds, Situation-theoretic aspects of databases, In Proc. Conf. on SituationTheory and Applications, CSLI vol. 26, 1991, pages 229{256.15. H.-J. Schek and M. Scholl, The relational model with relation-valued attributes,Inform. Systems 11 (1986), 137{147.16. P.W. Trinder and P.L. Wadler, List comprehensions and the relational calculus, InProceedings of the Glasgow Workshop on Functional Programming, pages 187{202.

This article was processed using the LATEX macro package with LLNCS style

