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AbstractIn this paper we study the direct product decompositions of closure operations andlattices of closed sets. We characterize the direct product decompositions of lattices ofclosed sets in terms of closure operations, and �nd those decompositions of lattices whichcorrespond to the decompositions of closures. If a closure on a �nite set is represented byits implication base (i.e. a binary relation on the powerset), we construct a polynomialalgorithms to �nd its direct product decompositions. The main characterization theoremis also applied to de�ne direct product decompositions of relational database schemes andto �nd out what properties of relational databases and schemes are preserved under thedecompositions.1 IntroductionIn [DFK] Demetrovics, F�uredi and Katona introduced the concept of direct product decompo-sition of a closure operation. If C1 and C2 are two closures on disjoint sets U1; U2, then thedirect product C1 � C2 is a closure on U1 [ U2 de�ned byC1 � C2(X) = C1(X \ U1) [ C2(X \ U2), X � U1 [ U2.�Research partially supported by NSF Grants IRI-86-10617 and CCR-90-57570 and ONR Grant NOOO14-88-k0634. 1



If L1 and L2 stand for the lattices of closed sets of C1 and C2 respectively, then the latticeof closed sets of C1 � C2 is the direct product L1 � L2. However, it is unclear if every directproduct decomposition of a lattice of closed sets corresponds to a direct product decompositionof the underlying closure in the sense of the operation � de�ned above. In the other words, ifLC is the lattice of closed sets of C and LC is isomorphic to the direct product, LC ' L1�L2,does it mean that L1 ' LC1 and L2 ' LC2 , where C = C1 � C2?We are going to show in this paper that, generally speaking, the answer is \no". We do thatby �nding a characterization of the direct product decompositions of a lattice of closed sets interms of the closure operation in section 2. This characterization will emphasize the importanceof the operation �. We will show that every lattice of closed sets of a closure C is isomorphicto the lattice of closed sets of a closure C 0 such that the direct product decompositions of thislattice are in 1-to-1 correspondence with the direct product decompositions of C 0.In the �nite case, a closure on a set U can be represented by its implication bases [Wi] whichconsist of expressions of form X ! Y , X; Y � U . (E.g., we can represent a closure C byfX ! Y : Y � C(X)g). In section 3 we give some necessary facts about implication bases andthen construct an algorithm �nding the direct product decompositions of the closure representedby an implication base. This algorithm allows us to construct a direct product decompositionof a closure in polynomial time in the size of input, i.e. the implication base.In short section 4 we show that our main characterization can be applied to obtain resultsdescribing the direct decompositions of some known classes of lattices and closures.When speaking about relational databases, implication systems correspond exactly to relationschemes. A relation scheme is a pair hU; F i consisting of a set U and a family F of functionaldependencies, the last being a set of expressions of formX ! Y , X; Y � U . We study the directproduct decompositions of relation schemes in section 5. This is also of practical importance,because, as we will see, these direct product decompositions can describe decompositions ofa relation scheme into several relation schemes within one database scheme and some niceproperties, as being in a normal form, are preserved under decompositions. By the results ofsection 3, these direct product decompositions can be found in a polynomial time.Now we introduce some terminology.Throughout the paper, C (possibly, with indices) will denote a closure operation (or simplyclosure) on a set U , i.e. C is a map C : P(U)! P(U) such that(C1) 8X � U : X � C(X);(C2) 8X � Y � U : C(X) � C(Y );(C3) 8X � U : C(C(X)) = C(X).A set X � U is called closed (w.r.t. C) if C(X) = X. Denote the family of all closed sets byLC . Then LC equipped with the natural ordering is a lattice in which sup and inf operationsare de�ned by 8X; Y 2 LC : X ^ Y = X \ Y ;X _ Y = C(X [ Y ).2



LC thus constructed is a complete lattice [Bi].We will always suppose that a closure C satis�es(C4) C(;) = ;.Really, if C(;) = X 6= ;, de�ne C 0(Y ) = C(Y ) � X for Y � U � X. Then C 0 is a closure onU �X satisfying (C4), and the lattices LC and LC0 are isomorphic. Hence, (C4) will not leadus to the loss of generality.When speaking about an arbitrary lattice (not necessarily lattice of closed sets), we denote itby L and its elements by small letters.If L is a �nite lattice 1, there is a simple way to construct a closure C on a �nite set Usuch that L ' LC , where ' stands for the isomorphism. Let U be the set of join-irreducibleelements J(L), i.e. U = fa 2 L : (a = x _ y) ) (a = x or a = y)g. Given X � U , letC(X) = fx 2 U : x � WXg. Then C is a closure on U , and LC ' L.If L is a bounded lattice, i.e. it contains the greatest element 1 and the least element 0, then astands for a complement of a if it exists, that is, a ^ a = 0 and a _ a = 1.We will need the concept of a neutral element. An element a 2 L is called neutral [Bi],[Gr] i�for every x; y 2 L the following holds(a _ x) ^ (a _ y) ^ (x _ y) = (a ^ x) _ (a ^ y) _ (x ^ y):In sequel we will use a more convenient form of this de�nition. An element a 2 L is neutral i�for every x; y 2 L the sublattice ha; x; yi generated by a; x; y is distributive [Gr].If LC is the lattice of closed sets of a closure C, and A 2 LC , then (A] is the principal ideal ofLC generated by A, i.e. (A] = fX 2 LC : X � Ag. In an arbitrary lattice, (a] and [a) standfor the principal ideal and coideal (�lter) generated by a.2 Direct product decompositions of lattices and closuresIn this section we are going to answer two questions. The �rst one is: given a closure C on Usuch that LC is isomorphic to the direct product of two lattices, LC ' L1 � L2, what can besaid about C? In the other words, what are necessary and su�cient conditions that provideLC to be isomorphic to the direct product of two lattices? The second question is: what is therelationship between direct product decompositions of closures and of lattices of closed sets?We will see soon that if LC ' L1�L2 then both L1 and L2 are isomorphic to lattices of closedsets of closures de�ned on two disjoint subsets of U . This explains why we characterize onlydecompositions into products of two lattices.1It is enough to require that the dual lattice L� be Noetherian [Bi].3



Our �rst result describes the direct product decompositions of form LC ' L1 � L2.Theorem 1 Every direct product decomposition LC ' L1 � L2 has form LC ' (A]� (A] whereA;A 2 LC , A is a complement of A in LC and A is neutral.More precisely, L1 ' (A] and L2 ' (A], or L1 ' (A] and L2 ' (A]. However, in this case weprefer to speak of the direct product decomposition having form LC ' (A]� (A].Proof. First, notice that a neutral element a 2 L may not have two complements. Really, if ithas two complements, a and ~a, then the sublattice ha; a; ~ai = fa; a; ~a; 1;Og is not distributive.Since LC is a bounded lattice, the following lemma �nishes the proof.Lemma 1 If L is a bounded lattice, each direct product decomposition L ' L1 � L2 has formL ' (a]� (a], where a is a neutral element and a its complement.Proof of lemma. It is well-known that each direct product decomposition has form L ' (a]� [a)[Gr]. Hence, we only have to prove that if a is a neutral complemented element, then [a) ' (a].De�ne � : (a] ! [a) as follows: �(x) = x _ a. Let x � a. Then �(x ^ a) = (x ^ a) _ a = xsince the sublattice generated by a; a; x is distributive. Further, for x � a we have �(x) ^ a =(x _ a) ^ a = x, i.e. x1 6= x2 implies �(x1) 6= �(x2). Thus, � is a bijection. It followsfrom the de�nition that �(x _ y) = �(x) _ �(y), and from the distributivity of ha; x; yi that�(x ^ y) = (x ^ y) _ a = (x _ a) ^ (y _ a) = �(x) ^ �(y). Hence, � is an isomorphism. Lemmaand theorem 1 are proved. 2Since L ' (a] � [a) holds for every neutral element a 2 L, we obtain from theorem 1 and theproof of lemma 1Corollary 1 Given a closure C on U, there is a one-to-one correspondence between the directproduct decompositions LC ' L1 � L2 and pairs (A;A), where A is a neutral complementedelement of LC and A its complement. 2Corollary 2 If A is a neutral complemented element of LC , then so is its complement A. 2Now we can introduce our main de�nition to be studied in sequel.De�nition. Given a closure C on U , a pair (A;A) consisting of a neutral complementedelement of LC and its complement is called a decomposition pair (of C or of LC).We have shown so far that there is a one-to-one correspondence between the decomposition pairsand the direct product decompositions of LC having form LC ' L1 � L2. Our next theorem,which is the main result of this section, gives a characterization of the decomposition pairs of4



an arbitrary closure. However, before presenting this theorem, we mention that consideringonly direct product decompositions of form LC ' L1 � L2 does not cause the loss of generality.This is true in view of the followingCorollary 3 Let LC ' L1 � L2. Then both L1 and L2 are the lattices of closed sets.Proof of corollary. According to theorem 1 and corollary 2, L1 ' (A] and L2 ' (A] for adecomposition pair (A;A). Hence, L1 ' LCjA and L2 ' LCjA. 2Now we can give a characterization of the decomposition pairs of a closure.Theorem 2 A pair (A;A) of disjoint subsets of a set U is a decomposition pair of a closure Con U i� the following hold:(i) 8X � A [ A : C(X \ A) = C(X) \ A;(ii) 8X � A [ A : C(X \ A) = C(X) \ A;(iii) 8X � U : C(X) = C(C(X) \ (A [ A)).Proof. We start with a simple lemma.Lemma 2 A pair (A;A) of disjoint subsets of U is a decomposition pair of LC i� A _ A = Uand � : LC ! (A]� (A] given by �(X) = (X \ A;X \ A) is an isomorphism.Proof of lemma. Let � thus constructed be an isomorphism. Then �(A) = (A; ;), and by [Gr,Th.3.2.4] A is a neutral element of LC . Analogously, so is A. Hence, (A;A) is a decompositionpair. Conversely, if (A;A) is a decomposition pair, consider a mapping  : (A]�(A]! LC givenby  (X; Y ) = X _Y . According to the de�nition of a neutral element, (X \A)_ (X \A) = Xand for X � A, Y � A : (X_Y )\A = X; (X_Y )\A = Y , i.e.  = ��1. It shows immediatelythat � is a one-to-one correspondence. Obviously, � preserves the ordering, i.e. if X � Y then�(X) � �(Y ) in (A]� (A], and so does  . Hence, � is an isomorphism. Lemma is proved.Now we return to the proof of theorem 2. Let (A;A) be a decomposition pair of C. Considerarbitrary X � U and C(X). Since (C(X)^A)_ (C(X)^A) = C(X) according to the proof oflemma 2, we have C(X) = C((C(X)\A)[ (C(X)\A)) = C(C(X)\ (A[A)), i.e. (iii) holds.Let X � A[A, and Y = X \A;Z = X \A. Then X = Y [Z, and C(Y ) � A, C(Z) � A. Wehave C(X) = C(Y [Z) = C(C(Y )[C(Z)) = C(Y )_C(Z), and C(X)\A = (C(Y )_C(Z))^A =C(Y ) since � �  = id. Hence, C(X) \ A = C(X \ A), and (i) holds. Analogously we provethat (ii) holds.Let, conversely, (i) (ii) (iii) hold. Prove that A and A are complemented elements, and that �from lemma 2 is an isomorphism. 5



Since A and A are disjoint, A ^ A = ;. If X = U , we get from (iii) that C(A [ A) = U , i.e.A _ A = U . Hence, A is a complement of A.We prove now that � is a bijection. To do this, we need to prove two claims. Recall that (X; Y ) = X _ Y .Claim 1. � �  = id (more precisely, id(A]�(A]).Let C(Y ) 2 (A], C(Z) 2 (A], Y � A;Z � A. Then  (C(Y ); C(Z)) = C(Y )_C(Z) = C(Y [Z).The �rst component of � �  (C(Y ); C(Z)) is (C(X) _ C(Z)) ^ A = C(Y [ Z) \ A = (by (i))= C((Y [Z)\A) = C(Y ). Analogously, by (ii) the second component of � � (C(Y ); C(Z)) isC(Z). Hence, � �  = id.Claim 2.  � � = id (more precisely, idLC).Let C(X) be an arbitrary element of LC . Then we have  ��(C(X)) = (C(X)^A)_(C(X)^A) =C((C(X) \ A) [ (C(X) \ A)) = C(C(X) \ (A [ A)) = C(X) by (iii). Hence,  � � = id.It follows from two proved claims that � is a bijection. Hence, the following �nishes the proof.Claim 3. � is a homomorphism.Clearly, � is a ^-homomorphism. Hence, we must prove that for arbitrary C(X); C(Y ) 2 LCit holds : �(C(X) _ C(Y )) = �(C(X)) _ �(C(Y )). According to (iii) we may assume withoutloss of generality that Y; Z � A [ A. Further, (C(X) _ C(Y )) ^ A = C(C(X) [ C(Y )) \ A =C(X [Y )\A = (by (i)) = C((X [Y )\A) = C((X \A)[ (Y \A)) = C(C(X \A)[C(C(Y \A)) = (by (i)) = C((C(X) \ A) [ (C(Y ) \ A)) = (C(X) ^ A) _ (C(Y ) ^ A). Analogously,(C(X) _ C(Y )) ^ A = (C(X) ^ A) _ (C(Y ) ^ A). Hence, � is a _ - homomorphism too.Thus, � is a one-to-one homomorpism, i.e. an isomorphism. According to lemma 2, (A;A) is adecomposition pair. Theorem is completely proved. 2As a corollary of theorem 2 we obtain a characterization of the direct product decompositions ofclosures. Let us call a decomposition pair (A;A) strong if it is a partition of U , i.e. A[A = U .Corollary 4 A partition (A;A) of a set U is a strong decomposition pair of a closure C on Ui� 8X � U : C(X) = C(X \ A) [ C(X \ A). 2Therefore, there is a one-to-one correspondence between the direct product decompositionsof closures as they were introduced in [DFK], and the strong decomposition pairs of latticesof closed sets. In particular, not every direct product decomposition of lattice of closed setscorresponds to a direct product decomposition of a closure, because there exist decompositionpairs with A[A 6= U . However, in the �nite case for every closure there exists an \equivalent"one (i.e. having isomorphic lattice of closed sets) whose decomposition pairs are strong.Proposition 1 For every �nite lattice L there is a �nite set U and a closure C on U such thatL ' LC and all the decomposition pairs of C are strong.6



Proof. Consider the representation with U = J(L) and C(X) = J(L)\(WX], see introduction.LC ' L for this representation. Let (A;A) be a decomposition pair of C. Suppose for x 2 L: J(x) = fy 2 J(L) : y � xg. Then J(x) 2 LC if x 2 J(L). According to (iii) J(x) =C(J(x) \ (A [ A)), i.e. x � W(y : y � x; y 2 A [ A) � x. Hence, x = W(y : y � x; y 2 A [ A),and since x 2 J(L), x = y for some y, i.e. x 2 A [ A. Therefore, (A;A) is strong. 23 Implication bases of closures and direct product de-compositionsThe main aim of this section is to present an algorithm �nding a strong decomposition pair, i.e.a direct product decomposition of a closure. To construct such an algorithm, we must have arepresentation of closures. The most convenient way to represent a closure is to represent it byits implication base [Wi]. We introduce the de�nition of implication bases of �nite closures, andthen give a polynomial algorithm that, given an implication base of a closure, �nds a strongdecomposition pair of this closure, i.e. its direct product decomposition.Given a �nite set U , an implication system is a family F = fX ! Y : X; Y � Ug. If weare given an implication system F , construct a map CF : P(U) ! P(U) using the followingalgorithm.Algorithm CLOSUREInput: an implication system F over U and a set X � U .Output: CF (X)Method:result := X;WHILE there exists Z ! Y 2 F such thatZ � result AND Y 6� resultDO result := result [ Y END;RETURN(result).It is well-known (see [Ar],[DLM1],[DLM2],[Ma],[Wi]) that CF is a closure and for every closureover U there is an implication system on U generating this closure. We will call F an implicationbase of a closure C if C = CF .If X = fxg and Y = fyg, we will write x ! y instead of X ! Y . We �rst investigate aparticular case when all the implications from F have form x ! y. Later we will see that�nding strong decomposition pairs for such implication bases is the crucial step in the generalalgorithm.Implications x ! y were called unary in [MR2]. A characterization of implication systemsconsisting of unary implications was given in [DLM2].7



Proposition 2 [DLM2]. Given a closure C on a �nite set U, the following are equivalent:(i) C has an implication base consisting of unary implications;(ii) C is topological, i.e. C(X [ Y ) = C(X) [ C(Y );(iii) LC is a sublattice of hP(U);\;[i. 2Corollary 5 If C is a topological closure on a set U, then (A;A) is a strong decompositionpair i� both A and A are closed and (A;A) is a partition of U.Proof follows immediately from theorem 2 and corollary 4. 2Let F be an implication system over U consisting only of unary implications. De�ne a graphG0F = (U; V 0), where U is a set of vertices and V is a set of edges, V = f(x; y) : x ! y 2 For y ! x 2 Fg. Let GF = (U; V ) be an undirected graph which is the symmetric transitiveclosure of G0F .Proposition 3 Let F be an implication base of a closure C on a �nite set U, and let F consistof unary implications only. Then a partition (A;A) of U is a strong decomposition pair of CFi� A is a union of some connected components of GF .Proof. First, notice that if A is a union of some connected components of GF , then so is A.Let A be a union of some connected components of GF . Then obviously A is closed and so isA, i.e. (A;A) is a strong decomposition pair by corollary 5.Conversely, let (A;A) be a strong decomposition pair of CF . To �nish the proof, we must showthat if X is a connected component of GF and X \ A 6= ;, then X � A. Let x 2 A \X, andsuppose there is y 2 X \A. Let x0 = x; xn = y and (x0; x1) 2 V; (x1; x2) 2 V; : : : ; (xn�1; xn) bea path in X from x to y. Then there exists at least one i 2 [1; n] such that (xi; xi+1) 2 V andxi 2 A; xi+1 2 A. Since (xi; xi+1) 2 V , either xi ! xi+1 2 F or xi+1 ! xi 2 F . In the �rst caseby algorithm CLOSURE xi+1 2 CF (A) = A, i.e. A \ A 6= ;. In the second case xi 2 CF (A)and A \ A 6= ; again. This contradiction shows X � A. Thus A is a union of some connectedcomponents of GF . Proposition is proved. 2Consider the following algorithm UNARY DECOMPOSITION.Algorithm UNARY DECOMPOSITIONInput: an implication system F over U consisting of unary implications.Output: connected components (X1; : : : ; Xn) of GF and their number n.Method:Construct GF ;n := 0;U0 := U ;WHILE U0 6= ; 8



DOn := n+ 1;Xn := fxg for x 2 U0;WHILE there is y 2 U0, y 62 Xn such that (z; y) 2 V for some z 2 XnDO Xn := Xn [ fyg END;U0 := U0 �Xn;END;RETURN((X1; : : : ; Xn; n)).Notice that this algorithm is polynomial since constructing transitive closure requires polyno-mial time.Corollary 6 Let F be an implication base of a closure C on a �nite set U consisting of unaryimplications only. Then the strong decomposition pairs of C are exactly pairs (Si2I Xi;Sj 62I Xj); I �f1; :::; ng, where (X1; :::; Xn; n) is output of algorithm UNARY DECOMPOSITION when theinput is F. 2To construct a general algorithm for �nding strong decomposition pairs we need some newconcepts and two lemmas.If we are given an implication system F , then F 0 = fX ! a : X ! Y 2 F; a 2 X � Y gis an implication system satisfying CF = CF 0. If the right hand sides of all the implicationsof an implication system are one-element sets, we will call this implication system open [Go].The above remark shows that considering only open implication systems does not cause loss ofgenerality. An implication system F will be called nonredundant if for every f 2 F : CF 6= CF�f[Ma,Wi]. Let F be an arbitrary implication system. De�ne F+ = fX ! Y : Y � CF (X)g.Then F+ is an implication base of CF too (it follows immediately from algorithm CLOSURE).Lemma 3 Let F be an open nonredundant implication base of a closure C on U. Then apartition (A;A) is a strong decomposition pair of C i� the following hold:(i) 8X ! a 2 F : X � A, a 2 A;(ii) 8X ! a 2 F : X � A, a 2 A.Proof . Let (A;A) be a strong decomposition pair, prove that (i) and (ii) hold. Let X ! a 2 Fand a 2 A. Then a 2 CF (X), and a 2 CF (X \ A) because (A;A) is a strong decompositionpair. According to algorithm CLOSURE, X ! a can not be used to obtain a 2 CF (X \ A) ifX 6� A. Hence, CF = CF�fX!ag, and F is redundant. Thus, X � A. Obviously, if X � A andX ! a 2 F , then a 2 CF (X) � A. Therefore, (i) holds. Analogously, (ii) holds.Let, conversely, (i) and (ii) hold. Then A and A are closed. Suppose x 2 CF (X), and x 2 A. LetX1 ! x1; : : : ; Xk ! xk, xk = x be those implication which were used in algorithm CLOSURE9



to obtain x 2 CF (X), ordered as they appeared in the algorithm. That means, X1 � X,X2 � X1 [ fx1g; : : : ; Xk � Xk�1 [ fxk�1g � X [ fx1; : : : ; xk�1g. If for some i : xi�1 62 Xi,then we can eliminate implication Xi�1 ! xi�1 from derivation x 2 CF (X). Hence, we maysuppose that no implication can be eliminated, and in this case xi�1 2 Xi for i 2 [2; k]. Sincex = xk 2 A, by (i) Xk � A, and xk�1 2 A because xk�1 2 Xk. Then by induction we obtainthat X1 [ : : :[Xk [ fx1; : : : ; xkg � A, and according to algorithm CLOSURE x 2 CF (X \A).Analogously, if x 2 A then x 2 CF (X \ A). Thus, (A;A) is a strong decomposition pair bycorollary 4. Lemma is proved. 2Let F be an open implication system. Then FT will stand for fx! a : X ! a 2 F; x 2 Xg.Lemma 4 Let F be a nonredundant open implication system. Then (A;A) is a strong decom-position pair of CF i� it is strong decomposition pair of CFT .Proof of lemma. Let (A;A) be a strong decomposition pair of CF . Consider x ! a 2 FT .Let a 2 A. Since there is X ! a 2 F , then X � A and x 2 A. Therefore, (i) and (ii)hold for FT , and (A;A) is a strong decomposition pair of CFT . Let, conversely, (A;A) be astrong decomposition pair of CFT . Consider X ! a 2 F . Let a 2 A. Since for every x 2 X :x! a 2 FT and x 2 A, then X � A. Therefore, (i) and (ii) hold for F , and (A;A) is a strongdecomposition pair of CF . 2Consider the following algorithm DECOMPOSITION.Algorithm DECOMPOSITIONInput: an implication system F over U.Output: a partition (X1; : : : ; Xn) of Uand the number n of its elements.Uses algorithms: CLOSURE, UNARY DECOMPOSITION.Method:F 0 := fX ! a : X ! Y 2 F; a 2 Y �Xg;LOOP X ! a 2 F 0IF a 2 CLOSURE (F 0 � fX ! ag, X)THEN F 0 := F 0 � fX ! agEND LOOP;FT := fx! a : X ! a 2 F 0; x 2 Xg;(X1; : : : ; Xn; n) := UNARY DECOMPOSITION(FT );RETURN((X1; : : : ; Xn; n)).The next result follows immediately from the previous lemmas, the fact that F 0 constructed inthe LOOP in the above algorithm is an open nonredundant implication base of CF (cf. [Ma]),and corollary 6.Theorem 3 Let F be an implication base of a closure C on a �nite set U. Then the strong de-composition pairs of C are exactly the pairs (Si2I Xi;Sj 62I Xj), where I � [1; n] and (X1; : : : ; Xn; n)is the output of algorithm DECOMPOSITION when the input is F. 210



Corollary 7 Given an implication base F of a closure C on a �nite set U, it takes polynomialtime in the size of input to �nd a strong decomposition pair of C. 2In the rest of this section we present polynomial algorithm �nding a representation of a dis-tributive lattice as the direct product of directly indecomposable lattices.Every �nite distributive lattice L can be embedded in hP(U);\;[i for some �nite U (e.g.U = J(L)). Hence it is isomorphic to LC where an implication base F of C consists ofunary implications only. Therefore, each decomposition pair of C is strong, and for a strongdecomposition pair (A;A) the implication systems FA = fx ! y 2 F : x; y 2 Ag andFA = fx ! y 2 F : x; y 2 Ag are implication bases for C jA and C jA respectively. Hence,applying algorithm UNARY DECOMPOSITION to FA and FA we obtain the direct productdecompositions of (A] and (A] and so on. Thus, applying UNARY DECOMPOSITION whileit is possible we obtain a representation of L as the direct product of directly indecomposablelattices, if the input is F . Notice, that we also obtain a representation of closure CF as thedirect product of directly indecomposable closures.The above algorithm is polynomial because it makes use of polynomial algorithm UNARYDECOMPOSITION no more than j U j times.However, a �nite distributive lattice may not be represented by an implication base F consistingof unary implications. Now we consider three ways to represent a �nite distributive lattice, andshow how to construct an implication base consisting of unary implications in these cases.First, if L ' LC where C is given by its implication base F consisting of arbitrary implications,then for F 0 = fx! y : X ! Y 2 F; x 2 X; y 2 Y g we have CF = CF 0 (cf. [DLM2]).It was proved in [Ri] that sublattices of hP(U);\;[i containing f;g and fUg (we need theseconditions because if LC is a sublattice of hP(U);\;[i then fUg 2 LC and f;g 2 LC by (C4))and only they can be represented asL = P(U)� S(x;y)2PL[x; U � y],where PL � U � U . Therefore, a sublattice of hP(U);\;[i can be represented by a binaryrelation on U . Given PL � U � U , let FL = fx ! y : (x; y) 2 PLg. Then the lattice of closedsets of CFL is exactly L, see [DLM1], [DLM2].The most widely used way to represent a distributive lattice is that by a family of generatingsets. If X1; : : : ; Xn � U , let L[X1; : : : ; Xn] stand for the sublattice of hP(U);\;[i generatedby X1; : : : ; Xn. Clearly, L[X1; : : : ; Xn] is distributive, and every �nite distributive lattice isisomorphic to some L[X1; : : : ; Xn]. The following proposition shows how to construct thefamily F .Proposition 4 Let X1; : : : ; Xn � U . Suppose x ! y 2 F i� 8i 2 [1; n] : x 2 Xi ) y 2 Xi.Then LCF = L[X1; : : : ; Xn].Proof. Let X 2 L[X1; : : : ; Xn]. Then X = (X11 \ : : : \ X1k1) [ : : : [ (Xr1 \ : : :Xrkr) whereX ij 2 fX1; : : : ; Xng for all i 2 [1; r]; j 2 [1; ki]. Suppose x! y 2 F and x 2 X. Then for some11



i 2 [1; r] we have x 2 X i1 \ : : : \X iki whence y 2 X i1 \ : : :X iki and y 2 X. Hence, CF (X) = X,and X 2 LCF .Conversely, if X 62 L[X1; : : : ; Xn], then since L[X1; : : : ; Xn] is a sublattice of hP(U);\;[i thereare a; b 2 U such that X 2 [a; U � b] and [a; U � b]\L[X1; : : : ; Xn] = ; by [Ri]. Then if a 2 Xiand b 62 Xi, we have Xi 2 [a; U � b] and Xi 62 L[X1; : : : ; Xn]. Therefore, a ! b 2 F , andb 2 CF (X). Thus, X 62 LCF , and LCF = L[X1; : : : ; Xn]. Proposition is proved. 2Summing up, we obtainCorollary 8 If a �nite distributive lattice is represented by an implication base, or a binaryrelation, or a family of generating sets, there is an algorithm which is polynomial in the size ofinput and �nds a representation of the lattice as the direct product of directly indecomposablelattices. 2Notice that the results of this section dealing with the direct product decompositions of dis-tributive lattices are related to those of [Fu].We conclude this section by the remark showing that strong decomposition pairs can be obtainedas optima of a simple problem of cluster analysis. Usually in clustering problem we havea function on pairs of elements which expresses either similarity or unsimilarity, and then,�nding an optimum of some function we get clusters. Let p be a function that expressessimilarity between elements of U , i.e. p is a real-valued function on U �U , and we want to �nda two-element partition (A;A) of U . The typical criterion isF ((A;A)) = Px2APy2A p(x; y) �! min.(This criterion was used, for example, in [BH], but for the unsimilarities, i.e. maximum wasto be found). Let F be an implication system over F . Let F be open and nonredundant.Suppose p(x; y) = 1 if there is X ! y 2 F such that x 2 X, and p(x; y) = 0 otherwise.Then F ((A;A)) � 0, and F ((A;A)) = 0 i� (A;A) is a strong decomposition pair by lemma3. Therefore, strong decomposition pairs are exactly optimal solutions of the above clusteringproblem. More precisely, they are exactly global optima of F .4 Atomistic lattices and closuresIn this short and more \pure mathematical" section we are going to show that the character-ization of the direct product decompositions of lattices of closed sets does work. That means,we can successfully apply this characterization to describe the direct decompositions of somelattices. In this section we will investigate some classes of atomistic lattices. A complete latticeis called atomistic if every element is a join of atoms2. Clearly, a complete atomistic lattice isthe lattice of closed sets of a closure on the set of its atoms, and in turn this closure can becharacterized as satisfying condition C(x) = x for every element x.2These lattices are called atomic in [Bi]. In [Gr] atomic lattices are those in which every element containsan atom. In this paper we prefer to make use of Gr�atzer's terminology.12



Proposition 5 Every decomposition pair of an atomistic closure is strong.Proof. Let C be an atomistic closure on U and (A;A) its decomposition pair. Suppose thereis x 62 A [ A. Then by (iii) of theorem 2 x = C(x) = C(C(x) \ (A [ A)) = C(;) = ; by (C4).This contradiction shows A [ A = U . 2One form of this proposition is well-known in matroid theory. Usually the product of matroidsis introduced as the product of closures, and then it is proved that the products of matroidscorrespond exactly to the products of lattices of closed sets, see [Ai].Now we apply theorem 2 to obtain a characterization of the direct product decompositions oflattices of sublattices and subsemilattices.Let S be a semilattice, whose operation is denoted by �. We think of S as being a join-semilattice, i.e. x � y , x � y = y. Let SubS stand for the lattices of all subsemilattices ofS. Since SubS is an algebraic lattice, it is the lattice of closed sets of an (algebraic) closureon the set of its atoms, i.e. S. In fact, given a subset X � S, its closure C(X) is the leastsubsemilattice of S containing X. Let (A;A) be a strong decomposition pair of this C. Supposethere are such x 2 A and y 2 A that x and y are incomparable. Then z = x � y; x; y are distinctelements. If X = fx; yg, then z 2 C(X) and if we suppose without loss of generality z 2 A(because A[A = U) then z 2 C(X)\A and x = C(x) = C(X \A), i.e. (i) of theorem 2 fails.This contradiction shows that either x � y or y � x. Since A and A are subsemilattices of S,and (A] ' SubA, (A] ' SubA, we provedProposition 6 Every direct product decomposition of lattice SubS corresponds to an ordinalsum decomposition of S. 2More precisely, if SubS ' Qi2I Li, where all Li are directly indecomposable, then S is isomor-phic to the ordinal sum of semilattices Si such that SubSi ' Li for all i 2 I. In an arbitrarydirect product decomposition SubS ' Qj2JMj eachMj is the lattice of subsemilattices of Sj,where Sj is the ordinal sum of some Sis.This result was also announced in [DLM1], but the proof made use of distributive, standardand neutral element and some complex combinatorial structures. Here we obtained it almostimmediately from theorem 2.Notice, that if lattices are used instead of semilattices, all the above reasonings remain true ifwe forget about one operation. Thus, we getProposition 7 Every direct product decomposition of a lattice SubL of sublattices of L corre-sponds to an ordinal sum decomposition of L. 2This proposition was established in [Fi]. 13



5 Direct product decomposition of relation schemesImplication bases of closures are known under the name of relation schemes in the theory ofrelational databases. In this section we transfer the results of sections 2 and 3 to the relationschemes, with particular attention being paid to database problems such as a decomposition ofa relation scheme into two or more relation schemes within one database scheme, normaliza-tion, �nding mimimal keys and so on. We �rst introduce some terminology which is standardand can be found e.g. in [Ma]. Then we study the problem of decomposition and show thatthe most widely used normal forms are preserved under decomposition. We will also �nd therelationship between keys of a relation scheme and its subschemes determined by a decompo-sition. Finally, we investigate relationship between the decompositions of relation schemes andrelation instances, i.e. relational databases themselves.A relation scheme is a pair hU; F i, where U is a �nite set and F is an implication system.Elements of U are called attributes. They usually correspond to the attributes of a relationaldatabase, i.e. they are, e.g., name, date of birth, age, address an so on. Elements of F are calledfunctional dependencies (fds for short). For example, there could be a fd name ! address, ora fd date of birth ! age.With each a 2 U associate its domain dom(a). A relation over U is a subset R � Qa2U dom(a).We can think of R as being a set of mappings:R = ft1; : : : ; tmg, ti : U �! Sa2U dom(a) : ti(a) 2 dom(a); i 2 [1; m].We say that R obeys a fd X ! Y (or that this fd holds in R) if for every ti; tj 2 R the equalityti(X) = tj(X) implies ti(Y ) = tj(Y ) (by t(X) we mean ft(x) : x 2 Xg). A relation R is saidto be a relation instance of a relation scheme hU; F i if all the fds from F hold in R.Let FR stand for the set of all fds that hold in R. Then FR satis�es two following properties:(F1) X ! Y 2 FR for all Y � X (pseudore
exivity);(F2) X [ Z ! V 2 FR if X ! Y 2 FR and Y [ Z ! V 2 FR (pseudotransitivity).If we are given a set F of fds, let F+ stand for the set of all fds that can be derived from F byusing pseudore
exivity and pseudotransitivity. Then F+R = FR and F+ thus de�ned coincideswith F+ de�ned in section 3 [Ma,DLM1,Wi]. Moreover, for every relation scheme hU; F i thereis a relation R over U such that F+ = FR. This relation R is called an Armstrong relation ofF [BDFS,MR1].A set F of fds is called a cover of G if F+ = G+. A cover F is called nonredundant if for everyf 2 F we have f 62 (F � f)+. This concept of nonredundancy coincides with that de�ned insection 3. A cover is open [Go] if the right hand sides of its fds consist of one-element sets only.Every family F of fds has an open nonredundant cover. In fact, the �rst step of algorithmDECOMPOSITION from section 3 computes it.A set X is called a key if X ! U 2 F+. A key is called minimal if each Y � X is not a key.An attribute a 2 U is called prime if it belongs to a minimal key, and nonprime otherwise.A relation scheme hU; F i is in 14



� second normal form, or 2NF, if X ! a 62 F+ for a 62 X, a a nonprime attribute, and Xa proper subset of a minimal key;� third normal form, or 3NF, if X ! a 62 F+ for a 62 X, a a nonprime and X a nonkey;� Boyce-Codd normal form, or BCNF, if X ! a 62 F+ for a 62 X and X a nonkey.A database scheme is a family of relation schemes hU1; F1i; : : : ; hUk; Fki such that U1; : : : ; Ukare pairwise disjoint. An instance of a database scheme is a set fR1; : : : ; Rkg, each Ri being aninstance of hUi; Fii.Given a relation scheme hU; F i, there is the closure CF , and we can can consider its directproduct decompositions. A direct product decomposition of the closure CF will be also calleda direct product decomposition of the relation scheme. Each direct product decomposition ofCF corresponds to a strong decomposition pair which will be also called a strong decompositionpair of the relation scheme.Suppose (A;A) is a strong decomposition pair of a relation scheme hU; F i. Let F be open andnonredundant. Then for each X ! a 2 F either X [ a � A or X [ a � A. This meansthat attributes of A and A are \independent", i.e. no attribute of A functionally depends ona set of attributes of A and no attribute of A functionally depends on a set of attributes of A.Thus, we may suppose that actually we have two \independent" relation schemes hA; FAi andhA; FAi, where FA = fX ! a 2 F : X [ a � Ag and FA = fX ! a 2 F : X [ a � Ag. Clearly,FA [FA = F by lemma 3, i.e. we do not loose information decomposing a relation scheme intotwo relation schemes within one database scheme.We have shown that the decompositions of a relation scheme do not cause the loss of infor-mation. However, it is important to know if we may or may not loose a nice structure of adatabase scheme when we decompose some of its relation schemes.It is often required that a database scheme be in a normal form (second, third, or Boyce-Codd).We will show that the decompositions preserve these normal forms.In sequel hU; F i will be an arbitrary relation scheme, and FA, FA will be covers of fX ! Y 2F+ : X [Y � Ag and fX ! Y 2 F+ : X [Y � Ag respectively. If A is closed, then the latticeof closed sets of CFA is the ideal (A] of LCF . If F is open and nonredundant, and (A;A) is astrong decomposition pair then we may choose FA and FA as we did above. We will needLemma 5 Let (A;A) be a strong decomposition pair of a relation scheme hU; F i. Let K bea family of minimal keys of hU; F i, and KA, KA the families of minimal keys of hA; FAi andhA; FAi. Then K = fK1 [K2 : K1 2 KA; K2 2 KAg.Proof. If K1 2 KA and K2 2 KA, then obviously K = K1 [ K2 is a key. Let K 0 � K be akey, and let there be a 2 K �K 0. Suppose a 2 A. Since K1 is a minimal key of hA; FAi, thenCF (K1 � a) = Y 6= A. Hence, CF (K 0) � CF (K � a) = CF ((K1 � a) [ K2) = CF (Y [ A) =15



Y _ A 6= U since A is neutral. This contradiction shows that K is a minimal key. By theanalogous reasonings we show that if K 2 K, then K \ A 2 KA and K \ A 2 KA. Lemma isproved. 2Theorem 4 Let hU; F i be a relation scheme, and (A;A) a decomposition pair. Then1) If hU; F i is in 2NF, then so are hA; FAi and hA; FAi;2) If hU; F i is in 3NF, then so are hA; FAi and hA; FAi;3) If hU; F i is in BCNF, then so are hA; FAi and hA; FAi.Proof. Notice that if (A;A) is a decomposition pair, then according to the proof of lemma 5any union of elements of KA and KA is a minimal key of hU; F i, since we never used A[A = Uin the proof of lemma 5, but vice versa is not true in general.Lemma 6 Let hU; F i be a relation scheme, Up the set of prime attributes, (A;A) a decompo-sition pair, and Up(A); Up(A) the sets of prime attributes of hA; FAi and hA; FAi respectively.Then Up(A) = Up \ A and Up(A) = Up \ A.Proof of lemma. Let X be a coatom of (A], i.e. a maximal closed set in (A]�fAg. Then X _Ais a coatom in LCF (it follows immediately from lemma 2), and (X _ A) ^ A = X. If Y is acoatom of LCF , then Y \ A is a coatom of (A]. Since the intersection of all coatoms of LCFis the set Unp of nonprime attributes [DT], then Unp(A) = Unp \ A, whence Up(A) = Up \ A.Lemma is proved.1) Let hU; F i be in 2NF. We say that a closed set X is prime if X = CF (Y ) where Y isa subset of a minimal key. According to [DLM2] a relation scheme is in 2NF i� for everyprime set X 6= U : [X \ Up; X] � LCF . By lemma 6, it su�ces to prove that for every Xprime in hA; FAi, X 6= A, and every nonprime a 2 A; a 62 X the set X � a is closed, becauseX;X � a; a 2 Unp(A) generate the interval [X \ Up(A); X].Let X = CF (Y ) where Y � Y 0, and Y 0 2 KA. If Z 2 KA, then Y 0 [ Z 2 K, and X 0 = X _ Ais prime in hU; F i because X 0 = CF (Y [ Z). Since A is neutral, X 0 \ A = X. In particular,a 62 X 0, and since hU; F i is in 2NF X 0 � a 2 LCF . Hence, X � a = (X 0 � a) \ A 2 LCF , andhA; FAi is in 2NF. Analogously we prove that hA; FAi is in 2NF.2) Let hU; F i be in 3NF. According to [DLM2] a relation scheme is in 3NF i� for every closedX 6= U : [X \Up; X] � LCF . Again by lemma 6 it su�ces to prove that for every closed X � Aand a nonprime a 2 A; a 62 X the set X � a is closed. Let Y = X _ A = CF (X [ A). SinceA is neutral, Y \ A = X, and a 62 Y . Therefore, Y � a 2 LCF because hU; F i is in 3NF andY 6= U . Further, X � a = (Y � a) \ A 2 LCF . Since the lattice of closed sets of hA; FAi is theideal (A] of LCF , X � a is closed, and hA; FAi is in 3NF. Analogously, hA; FAi is in 3NF.3) Let hU; F i be in BCNF. According to [DLM2], a relation scheme is in BCNF i� for everyclosed X 6= U it holds: [;; X] � LCF . If X � A is a closed set, then so is X _A, and X_A 6= U16



because A is neutral. Hence, [;; X] � [;; X _ A] � LCF , and [;; X] � (A]. Thus, hA; FAi is inBCNF, and so is hA; FAi. Theorem is completely proved. 2The result about BCNF has the simplest form if only strong decomposition pairs are takeninto account. In fact, in this case nontrivial direct product decompositions do not exist. Wesay that a strong decomposition pair (A;A) is nontrivial if both sets are nonempty. A relationscheme hU; F i is trivial if it consists only of trivial fds X ! Y; Y � X. In other words, hU; F iis trivial i� F has an empty cover.Proposition 8 Let hU; F i be a relation scheme in BCNF, and let (A;A) be its nontrivial strongdecomposition pair. Then hU; F i is trivial.Proof. Let K1; : : : ; Kk be the minimal keys of nontrivial relation scheme hU; F i in BCNF andlet (A;A) be a nontrivial strong decomposition pair, i.e. A;A 6= ; (and A;A 6= U). Since (A;A)is a strong decomposition pair of CF , for every i we have CF (Ki\A) = CF (Ki)\A = A. SinceA is closed and hU; F i is in BCNF, Ki \ A is closed too because A 6= U , and A = Ki \ A, i.e.A � Ki. Analogously A � Ki for all i. Therefore, U = A [ A � Ki. Hence, hU; F i has uniquekey, namely, U , and F consists only of trivial fds. 2By decompositions of a database scheme we will mean the following operations. Given adatabase scheme S = fhU1; F1i; : : : ; hUk; Fkig, and a strong decomposition pair (A;A) of,say, hUi; Fii, a primitive decomposition of S is a database scheme fhU1; F1i, : : :, hUi�1; Fi�1i,hA; FiAi, hA; FiAi, : : : ; hUk; Fkig. A decomposition of S is the result of some operations ofprimitive decomposition. We obtain immediately from the previous theoremCorollary 9 The decompositions of database schemes preserve normalization. 2In the rest of the section we discuss the relationship between the decompositions of relationschemes and Armstrong relations. Two questions that arise here are the following. Given arelation scheme hU; F i, its strong decomposition pair (A;A) and Armstrong relations RA andRA of hA; FAi and hA; FAi, how can we construct an Armstrong relation R of hU; F i? And, ifwe are given an Armstrong relation R of hU; F i, how can we construct RA and RA?The �rst question has been answered completely in [DFK] where construction of R is given.Great attention was paid to the problem of complexity in [DFK]. It is important that anArmstrong relation be small [BDFS,MR2], but in general it may have exponential size in thenumber of attributes and fds. However, the size of Armstrong relation of R is linear in thesizes of RA and RA. In fact, let s(F ) be the size (the number of tuples, i.e. mappings ti) ofa minimal Armstrong relation of hU; F i, and s(FA); s(FA) be the sizes of minimal Armstrongrelations of hA; FAi and hA; FAi. If (A;A) is a strong decomposition pair of hU; F i, thens(F ) = s(FA) + s(FA)� 1 [DFK].In this paper we answer the question concerning Armstrong relations RA and RA. Let R =ft1; : : : ; tmg be a relation over U , and X � U . Then �(R;X) is the projection of R onto X,i.e. ft1 jX ; : : : ; tm jXg. 17



Theorem 5 Let hU; F i be a relation scheme and (A;A) its strong decomposition pair. If R isan Armstrong relation of hU; F i, then �(R;A) is an Armstrong relation of hA; FAi and �(R;A)is an Armstrong relation of hA; FAi.Proof. It su�ces to prove that �(R;A) is an Armstrong relation of hA; FAi. Introduce somede�nitions. Given a relation R = ft1; : : : ; tmg over U , let Eij = fa 2 U : ti(a) = tj(a)g andER = fEij : i; j 2 [1; m]g. Let LF = LCF and M(F ) be the set of meet-irreducible elements ofLF . Then R is an Armstrong relation of hU; F i i� M(F ) � ER � LF [DT], cf. also [BDFS].ER is usually called the equality set.Let R be an Armstrong relation of hU; F i. Let EAR be the equality set of �(R;A). To provethat �(R;A) is an Armstrong relation of hA; FAi we have to show that EAR � (A] and eachmeet-irreducible element of (A] is in EAR .Let X 2 EAR . Then for some i; j 2 [1; m] we have X = fa 2 A : ti(a) = tj(a)g = fa 2 U :ti(a) = tj(a)g = Eij \ A, where Eij 2 ER. Since ER � LF , X 2 LF and X 2 (A].Let X be a meet-irreducible element in (A]. Let Y = X _ A, i.e. Y = X [ A because(A;A) is strong. Suppose Y is not meet-irreducible in LF , i.e. Y = Y1 \ Y2, Y 6= Y1; Y2.Then X = (Y1 \ A) \ (Y2 \ A) because X = Y \ A. Since X is meet-irreducible in (A],either Y1 \ A = X or Y2 \ A = X. Suppose without loss of generality X = Y1 \ A. ThenfX; Y; Y1; A; Ug is a sublattice of LF generated by A; Y; Y1, and this sublattice is not distributive,which contradicts the neutrality of A. Hence, Y 2 M(F ), and for some i; j 2 [1; m] : Y = Eijbecause M(F ) � ER. Hence, X = Y \ A = Eij \ A = fa 2 A : ti(a) = tj(a)g 2 EAR .Thus, �(R;A) is an Armstrong relation of hA; FAi. Analogously, �(R;A) is an Armstrongrelation of hA; FAi. Theorem is proved. 26 ConclusionIn the paper we have studied the relationship between the direct product decompositions ofclosures and their lattices of closed sets. Every direct product decomposition of a closurecorresponds to the one of its lattice of closed sets, but the direct product decompositions oflattice of closed sets may fail to correspond to the direct product decompositions of the closure.Every direct product decomposition of a lattice of closed sets can be described by a pair ofdisjoint subsets of underlying set U on which the closure is de�ned, and the direct productdecompositions of a closure correspond exactly to those pairs which are partitions of U .If a closure is de�ned on a �nite set by its implication base, there is a polynomial algorithmwhich computes a decomposition of the closure. This algorithm is based on one the computingof the direct product decompositions of topological closures whose lattices of closed sets areexactly distributive lattices. 18



The main characterization of the direct product decompositions of lattices of closed sets canbe applied to �nd decompositions of some algebraic lattices, for example, lattices of sublatticesand subsemilattices.In the �nite case the direct product decompositions of closures correspond to the decompo-sitions of relational database schemes. Decomposing a scheme, we do not lose information.Decompositions of schemes can be described by projections of relations, and they preserve nor-malization, what is of practical importance, because it is often required that a database schemebe in a normal form.One relevant problem is still open: given a poset, what is a characterization of its directproduct decompositions? This problem is important, for example, in domain theory [GS] wherea characterization of direct product decompositions of domains would be useful. There arealso problems of �nding representations analogous to implication bases, and of constructingalgorithms to compute direct product decompositions. We plan to dedicate further research tothese problems.ACKNOWLEDGEMENT: The author is grateful to Peter Buneman for the useful discus-sions.
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