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Finite Model Theory (FMT)

• The main object of study: logics over finite structures

• Foundational role in the study of the theory of relational databases:
• relational database = finite relational structure
• query languages are logic based

• Finite model theory was described as the “backbone of database
theory” (Vianu, 1995)

• Connections work both ways: much of the motivation for finite
model theory research came from databases.

• Many other applications in CS: verification, AI, constraint
satisfaction, algorithms, complexity ...
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Finite Model Theory (FMT)

• Mature field; 4 textbooks:

1. Ebbinghaus-Flum “Finite Model Theory”, 1994
2. Immerman “Descriptive Complexity”, 1999
3. Libkin “Elements of ‘Finite Model Theory”, 2004
4. Grädel-Kolatis-Libkin-Marx-Spencer-Vardi-Venema-Weinstein “Finite

Model Theory and its Applications”, 2007

• Several ‘personal perspective’ surveys:

1. Fagin (ICDT 1990, LICS 2000)
2. Kolaitis (LICS 2007)

• Well-developed subfields:

1. Combinatorial games (Kolaitis PODS 1995)
2. Logic for PTIME (Kolaitis ICDT 1995, Grohe LICS 2008)
3. Descriptive complexity, algorithmic model theory, embedded finite

models, etc etc

• Surveys they tell you how to prove results, what the main open
problems are, etc.
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FMT for a database theoretician: Key problems

1. Expressiveness of query languages
• Limited expressiveness (e.g., relational calculus = first-order logic)
• What is not expressible? When to add new language constructs?
• Adding new constructs is not free — optimizations!

2. Complexity of query languages
• Do we know the complexity of query evaluation from the logical

formalism?

3. Equivalence of query languages
• Can we lower the complexity by changing the syntax?
• Important in the study of languages for XML.

4. Satisfiability (usually, finite satisfiability)
• Used in: static analysis, incomplete information.
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FMT for a database theoretician cont’d

• Many database results involving FMT techniques were shown by
people actively working in FMT.

• This was perhaps necessary in the early days of FMT.

• Now the field has built a large arsenal of tools.

• These tools can be used without knowing how they are proved!

• Most of them are actually quite easy to apply.

• They should be a part of the toolbox of every database theoretician.

• Our goal: present finite-model theory as such a toolbox.
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Plan

• Expressiveness: Tools for first-order logic

• Expressiveness: Tools that work beyond first-order logic

• Language equivalence (better query evaluation via the composition
method)

• Descriptive Complexity

• Satisfiability
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First-Order (FO)

• The most fundamental query language — first-order logic (FO)

• Database people often refer to it as relational calculus.

• The core of SQL (minus aggregation – we’ll address it later).

• A basic question: what are the limitations of FO?

• Intuition: FO cannot express:

1. nontrivial counting properties, and
2. queries requiring recursion

• We’ll now see some “canonical” examples of inexpressible queries.
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Even cardinality

• Active domain = set of all elements stored in a database

• A Boolean query

Even(D) = true ⇔ |ActiveDomain(D)| = 0 (mod2)
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Transitive closure

...............
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Transitive closure

...............

trcl(x , y) :– e(x , y)
trcl(x , y) :– e(x , z), trcl(z , y)
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Same Generation
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Same Generation

sg(x , x) :–
sg(x , y) :– e(x ′, x), e(y ′, y), sg(x ′, y ′)
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A bit of history

• How to prove that these queries are not expressible in FO?

• Classical model theory offers us powerful tools, like compactness.

• They can be used to prove that Even is not FO-definable (also
shown in the paper).

• They can also be used to prove that graph connectivity (and hence
transitive closure) are not definable over arbitrary graphs.

• But the proof does not work for finite graphs: compactness fails in
the finite.

• However, databases are finite!
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A bit of history cont’d

• Fagin 1975: Transitive closure is not FO-expressible over finite
graphs. Technique: games.

• Afterwards (1970s, 1980s): more and more advanced game proofs.

• Require nontrivial combinatorial arguments.

• A notable exception: 0-1 laws (Fagin 1976) – an easily applicable
tool.

• 1990s: proper tools are being developed. They do not require
complicated combinatorial proofs.
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First-Order Logic (FO)

• Assumption: databases are graphs – one binary relation E (·, ·).
Just to make things simple for the talk.

• Syntax of FO:
• Atomic formulae: E (x , y), x = y
• Boolean combinations: ϕ ∨ ψ, ϕ ∧ ψ, ¬ϕ
• Quantification: ∃x ϕ, ∀x ϕ
• ϕ(x̄) means that x̄ is the tuple of free variables of ϕ

• Quantifier rank qr(ϕ):
• The depth of quantifier nesting in ϕ.
• Example: the quantifier rank of ∃x

(

∀y E (x , y) ∨ ∀z ¬E (x , z)
)

is 2 and not 3.
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First-Order Logic – Examples

• There are at least k elements

∃x1 . . . ∃xk

∧

i ,j≤k, i 6=j

¬(xi = xj)

• There is a path of length k from x0 to xk

∃x1 . . . ∃xk−1

∧

0≤i<k

E (xi , xi+1)

• There is no cycle of length k

¬∃x1 . . . ∃xk E (xk , x1) ∧
∧

i<k

E (xi , xi+1)
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First-Order Logic – Examples

• There are at least k elements

The number of elements is even – inexpressible.

• There is a path of length k from x0 to xk

There is a path from x0 to xk – inexpressible.

• There is no cycle of length k

There is no cycle – inexpressible.
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Ehrenfeucht-Fräı ssé games

• The tool of choice for the neolithic period of FMT.

• Played on two databases (graphs) A and B.

• Two players:
• Spoiler (the bad guy): tries to show that A and B are different.
• Duplicator (the good guy): tries to show that A and B are the same.

• Play for k rounds.

• In each round:
• the spoiler moves first: selects a database and an element there.
• the duplicator responds by an element in the other database.

• The duplicator wins if at the end, the played elements form a partial
isomorphism between A and B.
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Ehrenfeucht-Fräı ssé game - example 1

A

B

Spoiler and Duplicator play for 3 rounds.
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Ehrenfeucht-Fräı ssé game - example 1

A

B

Spoiler and Duplicator play for 3 rounds.

The duplicator wins in 3 rounds.
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Ehrenfeucht-Fräı ssé game - example 2

A

B
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Ehrenfeucht-Fräı ssé game - example 2

A

B

Leonid Libkin FMT toolbox 17/72



Intro FO Extending FO Composition Complexity Satisfiability

Ehrenfeucht-Fräı ssé game - example 2
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Ehrenfeucht-Fräı ssé games and FO

The duplicator has a winning strategy in the k-round Ehrenfeucht-Fräı
ssé game if he can win in k rounds no matter how the spoiler plays.

Theorem

The duplicator has a winning strategy in the k-round
Ehrenfeucht-Fräı ssé game on A and B

⇔
A and B cannot be distinguished by FO sentences of quantifier
rank up to k.
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How to prove that a property P is not expressible in FO?

Find families of graphs Ak and Bk , for k ∈ N so that:

1. All Ak have property P;

2. None of Bk has property P;

3. The duplicator has a winning strategy in the k-round
Ehrenfeucht-Fräı ssé game on Ak and Bk

If P were expressible by a sentence ϕ of quantifier rank k,

• Ak and Bk must agree on ϕ — by 3,

• but by 1 and 2 they disagree on ϕ.
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A surprisingly powerful example

Let Ln be a linear ordering of length n.

Theorem

If m, n ≥ 2k , then the duplicator has a winning strategy in the
k-round Ehrenfeucht-Fräı ssé game on Ln and Lm.
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A surprisingly powerful example

Let Ln be a linear ordering of length n.

Theorem

If m, n ≥ 2k , then the duplicator has a winning strategy in the
k-round Ehrenfeucht-Fräı ssé game on Ln and Lm.

Corollary

Query Even is not expressible over linear orderings.

Because: take Ak to be L2k+1 and Bk to be L2k .
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The early 1980s: the era of tricks

The result about Even shows that none of the following is definable in
FO: Graph connectivity; graph acyclicity; transitive closure.
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FO: Graph connectivity; graph acyclicity; transitive closure.

Edges: to the 2nd successor, modulo the length of the chain.
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The early 1980s: the era of tricks

The result about Even shows that none of the following is definable in
FO: Graph connectivity; graph acyclicity; transitive closure.

⇒

⇒

Edges: to the 2nd successor, modulo the length of the chain.

Leonid Libkin FMT toolbox 21/72



Intro FO Extending FO Composition Complexity Satisfiability

The early 1980s: the era of tricks

The result about Even shows that none of the following is definable in
FO: Graph connectivity; graph acyclicity; transitive closure.

⇒

⇒

Connected if Even is false; disconnected if Even is true.
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The era of tricks cont’d

Acyclicity is not FO-expressible:

• a similar trick – with one backedge instead of two.

Transitive closure is not FO-expressible:

• the symmetric-transitive closure of G is a complete graph iff G is
connected.
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The 1990s: the era of tools

• The iron age of FMT.

• For more complicated problems, stone (pebble) tools – games –
become very hard to use.

• More and more complicated winning conditions are used:
• Fagin, Ajtai, Vardi, Stockmeyer, Schwentick, Kolaitis, Väänänen, etc

• Fagin, Stockmeyer, Vardi, 1993: Let’s build a library of winning
strategies for the duplicator.

• Key idea: locality.
• Already present in earlier work by Gaifman 1980 and Hanf 1965.
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Transitive closure revisited

...............

Degrees of nodes: 0, 1
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Transitive closure revisited

...............

Degrees of nodes: 0, 1, . . . , n – depends on the input.

This cannot happen for FO queries!
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A useful property: BNDP

• A query Q from graphs to graphs has the Bounded Number of
Degrees Property if there is a function fQ : N → N such that:

all degrees in G are bounded by k
⇓

the number of different degrees in Q(G ) is at most fQ(k)

• We’ve just seen that transitive closure violates the BNDP.
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A useful property: BNDP

• A query Q from graphs to graphs has the Bounded Number of
Degrees Property if there is a function fQ : N → N such that:

all degrees in G are bounded by k
⇓

the number of different degrees in Q(G ) is at most fQ(k)

• We’ve just seen that transitive closure violates the BNDP.

Theorem (Dong, L., Wong’95, L. ’97)

Every FO query has the BNDP.

• Corollary: transitive closure is not FO-definable.
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Another application of BNDP – Same Generation

Degrees: 0, 1, 2
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Another application of BNDP – Same Generation
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Another application of BNDP – Same Generation

Degrees: 1, 2, 4, 8, . . . , 2depth(G)−1 Number of degrees: depth(G )
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Another application of BNDP – Same Generation

Violates the BNDP — Hence same-generation is not FO-definable

Leonid Libkin FMT toolbox 26/72



Intro FO Extending FO Composition Complexity Satisfiability

What makes the BNDP work?

• Locality of FO.

• There are two tools based on locality:

1. Gaifman-locality (Gaifman 1982)
2. Hanf-locality (Hanf 1965, Fagin-Stockmeyer-Vardi 1993)

• Key concept: neighborhood.

• A neighborhood of radius r of ā in a graph G is denoted by NG
r (ā).

• It is the subgraph induced by all the nodes of distance ≤ r from one
of the nodes in ā.

• Nodes ā are distinguished:
• if we have an isomorphism h : NG

r (a1, . . . , an) → NG ′

r (b1, . . . , bn)
then h(a1) = b1, . . . , h(an) = bn.
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Gaifman-locality

Theorem (Gaifman 1982, bound from L., ’98)

For every FO formula ϕ(x̄) of quantifier rank k and for every graph
G:

NG
2k (ā) and NG

2k (b̄) are isomorphic ⇒ G |= ϕ(ā) ↔ ϕ(b̄)
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a b

2r 2r
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Gaifman-locality

Theorem (Gaifman 1982, bound from L., ’98)

For every FO formula ϕ(x̄) of quantifier rank k and for every graph
G:

NG
2k (ā) and NG

2k (b̄) are isomorphic ⇒ G |= ϕ(ā) ↔ ϕ(b̄)

Application: Transitive closure is not definable in FO.

... ... ... ... ... ... ... ...
a b

2r 2r

If ϕ(x , y) is of quantifier rank k and r = 2k then both ϕ(a, b) and
ϕ(b, a) are true, or both are false.
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Hanf-locality

• Write G ⇆r G ′ if there exists a bijection f : G → G ′ such that
NG

r (a) and NG ′

r (f (a)) are isomorphic for every node a.

• Locally two graphs look the same, up to a bijection f .
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Hanf-locality

• Write G ⇆r G ′ if there exists a bijection f : G → G ′ such that
NG

r (a) and NG ′

r (f (a)) are isomorphic for every node a.

• Locally two graphs look the same, up to a bijection f .

Theorem (Fagin, Stockmeyer, Vardi, ’93, bound from L.’98)

For every FO sentence ϕ of quantifier rank k,

if G ⇆2k G ′ then G |= ϕ ⇔ G ′ |= ϕ

• Can be extended to arbitrary queries, but most often this notion is
used for Boolean queries.
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Hanf-locality: application

. . .

. . .

. .

. .. .

. .

one cycle of length 2m

G
′

two cycles of length m

G

• If m > 2r + 1 then G⇆rG
′ (all r -neighborhoods are the same).

• Hence no FO sentence ϕ defines connectivity: as long as
m > 2qr(ϕ)+1 + 1, graphs G and G ′ cannot be distinguished by ϕ.
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Summary: locality notions

A query Q is:

• Hanf-local if there is r ≥ 0 so that G⇆rG
′ implies Q(G ) = Q(G ′).

• for Boolean queries; a natural extension to non-Boolean queries exists.

• Gaifman-local if there is r ≥ 0 such that if NG
r (ā) and NG

r (b̄) are
isomorphic, then ā ∈ Q(G ) ⇔ b̄ ∈ Q(G ).

• has the BNDP if there is function fQ : N → N so that for G with all
degrees ≤ k, the number of different degrees in Q(G ) is ≤ fQ(k).

Theorem (L. ’97)

Hanf-local ⇒ Gaifman-local ⇒ BNDP.

Corollary

FO queries are Hanf-local, Gaifman-local, and have the BNDP.
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Counting: towards 0-1 laws

• How to prove that nontrivial counting properties are not expressible?

• Even: roughly half of databases have the property, and half don’t.

• FO cannot exhibit such a behavior.
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Counting: towards 0-1 laws

• How to prove that nontrivial counting properties are not expressible?

• Even: roughly half of databases have the property, and half don’t.

• FO cannot exhibit such a behavior.

• Pick a database “at random”.

• Check if it satisfies a property P.

• What’s the probability of that?

• If P is FO-definable, it is 0 or 1: 0-1 law.

• Need to formalize: ‘pick a database at random”.
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Towards 0-1 laws

• For each n look at graphs with nodes 1, . . . , n.

• For a property P, let

µn(P) =
|{graphs on 1, . . . , n that satisfy P}|

|{graphs on 1, . . . , n}|

• Proportion of graphs on 1, . . . , n satisfy P, or

• Probability that a randomly picked graph on 1, . . . , n — with
respect to the uniform distribution — satisfies P.

• Asymptotic probabilities:

µ(P) = lim
n→∞

µn(P)
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Asymptotic probabilities: examples

• µ(Even) – does not exist: µn(Even) =

{

1, if n is even

0, if n is odd

• µ(exists isolated node) = 0. ∃x∀y ¬E (x , y)

• µ(diameter ≤ 2) = 1. ∀x∀y∃z E (x , z) ∧ E (y , z)

• µ(graph is connected) = 1.

• Two sets A and B with B ⊆ A.
Parity is true iff |B | is even.
µ(Parity) = 1

2 .
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0-1 law

Theorem (Fagin 1976)

If P is FO-definable, then µ(P) exists and equals 0 or 1.
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0-1 law

Theorem (Fagin 1976)

If P is FO-definable, then µ(P) exists and equals 0 or 1.

• If you like truly beautiful proofs, this is the one for you!

• Immediate corollaries: Even and Parity are not FO-definable.

• Warning: the result does not hold when we consider specific classes
of structures.

• For example, 0-1 law fails over ordered graphs:

• µ(there is an edge between the first and the last element) = 1
2 .
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Plan

• Expressiveness: Tools for first-order logic

• Expressiveness: Tools that work beyond first-order logic

• Language equivalence (better query evaluation via the composition
method)

• Descriptive Complexity

• Satisfiability
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FO extensions

• Ordering: elements stored in a database are typically ordered, and
order comparisons can be used in queries.

• Counting and aggregation: we all know it from SQL; a very common
feature in database queries.

• Fixed points: for many years a popular topic in database research
(Datalog). Now also part of SQL-3.

• Interpreted operations: e.g., arithmetic operations such as
x2 + y ≤ x · z in queries.
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Ordering on the domain

• Can transitive closure be expressed over ordered graphs? What
about connectivity? acyclicity? etc.

• We know that Even is not expressible.

• Queries such as transitive closure do not refer to ordering.

• Order-invariant queries: can use an ordering, but it does not matter
which ordering is used.

• Order-invariant formulae over graphs: ϕ(x̄) over E (·, ·), < so that

(G , <1) |= ϕ(ā) ⇔ (G , <2) |= ϕ(ā)

for every two orderings <1 and <2 on the nodes.

• Defines an order-invariant query Qϕ:

ā ∈ Qϕ(G ) ⇔ (G , <) |= ϕ(ā) for some ordering <

Leonid Libkin FMT toolbox 38/72



Intro FO Extending FO Composition Complexity Satisfiability

Order-invariant queries

• A mysterious class:
• only makes sense in the finite;
• a non-r.e. class of queries;
• locality techniques do not seem to help: with < everything is a

neighborhood of radius 1.

• But quite remarkably:

Theorem (Grohe, Schwentick, 2000)

Order-invariant queries are Gaifman-local and have the BNDP.

• Corollary: Transitive closure, connectivity, etc are not expressible
even with order.

• Hanf-locality for order-invariance: open (partial results by Niemistö).
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Adding counting and aggregation to the language

• Standard SQL feature.

• Assume domain of 2 sorts:
• usual database entries (graph nodes);
• numbers (for examples, Q).

• Add counting terms and operations:
• #x̄ .ϕ – how many x̄ satisfy ϕ.
• Pproperty(·) testing the property of numbers.

• Examples:
• ∃x Peven(#y .E (x , y)) – there is a node of even degree.

• Degree of x is (degree of y)2:
Pn=m2(#z.E (x , y),#z.E (y , z))
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Adding counting and aggregation to the language

• aggregates and grouping by example: sum up all even degrees in a
graph

• in SQL: SELECT SUM(R.C)

FROM (SELECT E.A, COUNT(E.B) AS C

FROM E

GROUPBY E.A

HAVING MOD(COUNT(E.B),2) = 0) R

• in logic: AggrSUM x
(

Peven(#y .E (x , y)), #y .E (x , y)
)
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Adding counting and aggregation to the language

• aggregates and grouping by example: sum up all even degrees in a
graph

• in SQL: SELECT SUM(R.C)

FROM (SELECT E.A, COUNT(E.B) AS C

FROM E

GROUPBY E.A

HAVING MOD(COUNT(E.B),2) = 0) R

• in logic: AggrSUM x
(

Peven(#y .E (x , y)), #y .E (x , y)
)

• Formally: F is an aggregate (e.g., SUM, COUNT...)

• aggr term(x̄) = AggrF ȳ
(

ϕ(x̄ , ȳ), t(x̄ , ȳ)
)

• Semantics:
• Find all ȳ1, . . . , ȳk so that ϕ(x̄ , ȳi ) holds
• Calculate vi = t(x̄ , ȳi )
• aggr term(x̄) is F({|v1, . . . , vk |})
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Expressiveness of aggregation

• Question: which arithmetic predicates and which aggregate
functions to add?

• Let’s be generous: add them all.

• But still look at queries over graph nodes (e.g., transitive closure).

Theorem (Hella, L., Nurmonen, Wong’99, improved L.’01)

Queries expressed in the aggregate language with arbitrary
arithmetic and aggregates are local:
i.e., Hanf-local, Gaifman-local, and have the BNDP.

• In particular, the usual SQL (select-from-where-groupby-having)
cannot express transitive closure.
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Aggregation and order

• What if we have an order on graph nodes? Can we recover locality?

• No, even in a minimalistic setting:
• Arithmetic: <,+,×
• Aggregation: SUM

• If such an aggregate language cannot express transitive closure over
ordered graphs, then some complexity classes are separated:

• TC0 and NLOGSPACE
• big open problem in complexity theory
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Recursion and Datalog

• Have seen it already:
• transitive closure:

trcl(x , y) :– e(x , y)
trcl(x , y) :– e(x , z), trcl(z, y)

• same-generation:

sg(x , x) :–
sg(x , y) :– e(x ′, x), e(y ′, y), sg(x ′, y ′)

• Now available in the latest SQL standard: WITH RECURSIVE.
• But without negation.
• With negation, several semantics exist.
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Datalog: expressive power

• Without negation, queries are monotone.

• Even with negation and inflationary semantics:

Theorem (Blass, Kozen, Gurevich, 1985)

Datalog has the 0-1 law.

• This is without order. What if order is added?

• Then Datalog (with negation) captures PTIME.

• To prove bounds, one needs to separate complexity classes again.

• But without order, it can be separated from NP: 3-colorability is not
expressible in Datalog with negation (Dawar, ’98).

• A useful result (recent application in the work on schema mappings)

Leonid Libkin FMT toolbox 45/72



Intro FO Extending FO Composition Complexity Satisfiability

Extensions: summary

First-Order:

• cannot do recursive (fixed-point) queries;

• cannot count; this continues to hold with the order on the domain.

Extensions:

• with Counting/aggregation:
• cannot do fixed-point queries

• with fixed-points:
• cannot count

• But only without ordering on the domain:
• with ordering, bounds on the as hard as separating complexity classes
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Complex constraints

• Graph nodes: numbers. Query “does a graph lie on a circle?”:

∃r∃a∃b ∀x∀y E (x , y) → (x − a)2 + (y − b)2 = r2

• What is the power of such extensions? Can graph connectivity be
expressed?

• Look at queries that talk about proper graph properties (formally,
isomorphism types of graphs). Known as generic queries.

• The answer depends on the class of numbers and arithmetic
operations.

• Graph connectivity is expressible over N with arithmetic 0, 1,+,×, <
(easy) but is not expressible over R with arithmetic (much harder;
Benedikt, L., ’98).

• Results come from the field of embedded FMT: finite structures
(graphs) living inside infinite ones (e.g., the real ordered field).

• Survey: Chap. 5 of “Finite Model Theory and its Applications”.
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Plan

• Expressiveness: Tools for first-order logic

• Expressiveness: Tools that work beyond first-order logic

• Language equivalence (better query evaluation via the composition
method)

• Descriptive Complexity

• Satisfiability
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Language equivalence: games come back

• The focus of FMT applications in databases switches in the 21st
century from inexpressibility results to proving language equivalence.

• Goal: start with a benchmark of expressiveness, and find a language
with good complexity of query evaluation.

• Usually in the context of data that comes with a nice structure.

• XML: labeled trees with some nodes carrying data values.

For the talk, use words:

• to keep pictures and notations simple;

• the paper deals with trees as well.
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Language equivalence: games come back

For words/trees, benchmark expressiveness is typically MSO.

• Monadic Second Order Logic — adds quantification over sets to FO:
∃X1∀X2 . . . ϕ(X1,X2, . . .) where ϕ is FO.

• Same expressiveness as automata.

• But problematic complexity of query evaluation.

Question: is it possible to achieve better complexity simply by syntactic
manipulations?
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Language equivalence: games come back

For words/trees, benchmark expressiveness is typically MSO.

• Monadic Second Order Logic — adds quantification over sets to FO:
∃X1∀X2 . . . ϕ(X1,X2, . . .) where ϕ is FO.

• Same expressiveness as automata.

• But problematic complexity of query evaluation.

Question: is it possible to achieve better complexity simply by syntactic
manipulations?

Yes! Key technique: composing Ehrenfeucht-Fräı ssé games.

Such composition tells us how queries on substructures combine for
evaluating queries on the whole structure.

Leonid Libkin FMT toolbox 50/72



Intro FO Extending FO Composition Complexity Satisfiability

Changing syntax to lower complexity: LTL

Syntax: ϕ := a (∈ Σ) | ϕ ∨ ϕ′ | ¬ϕ | Xϕ | ϕUϕ′
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Changing syntax to lower complexity: LTL

Syntax: ϕ := a (∈ Σ) | ϕ ∨ ϕ′ | ¬ϕ | Xϕ | ϕUϕ′

Semantics:

a

a, a ∈ Σ
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Changing syntax to lower complexity: LTL

Syntax: ϕ := a (∈ Σ) | ϕ ∨ ϕ′ | ¬ϕ | Xϕ | ϕUϕ′

Semantics:

ϕ

Xϕ

Leonid Libkin FMT toolbox 51/72



Intro FO Extending FO Composition Complexity Satisfiability

Changing syntax to lower complexity: LTL

Syntax: ϕ := a (∈ Σ) | ϕ ∨ ϕ′ | ¬ϕ | Xϕ | ϕUϕ′

Semantics:

ϕ ϕ ϕ ϕ ψ

ϕUψ
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Changing syntax to lower complexity

FO or MSO evaluation over trees and words with linear data complexity
implies non-elementary query complexity.

Need another – but equivalent – logic!

Over words, LTL=FO (Kamp, 1969)

What is the query complexity of evaluating FO and LTL over words?
With linear data complexity, it is:

• non-elementary for FO (a stack of exponentials, Frick, Grohe, ’03)

• linear for LTL
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Words as databases

A word w over Σ = {a1, . . . , am} is a database with relations
E (·, ·), L1(·), . . . ,Lm(·):

• E is the ordering of positions;

• Li ’s define labelings.

w = a1a2a1a2:

positions 0, 1, 2, 3; positions 0,2,3 labeled a1; position 1 labeled a2

E =

0 1

1 2

2 3

0 2

1 3

0 3

L1 =

0

2

3

L2 = 1
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MSO over words

Each MSO sentence ϕ defines a language

L(ϕ) = {w ∈ Σ∗ | w |= ϕ}

Theorem (Büchi, Elgot, Trakhtenbrot 1960)

MSO-definability = Regular languages

A similar result holds for trees as well – both binary and unranked.

We now show how to go from MSO to automata.
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Types

Each FO sentence is a disjunction of types.

• Rank-k type tpk(D): set of all sentences of quantifier rank k true in
a database D.

• Types are finite objects, definable in the logic: finitely many distinct
FO sentences of quantifier rank k, up to logical equivalence.

Another way of looking at Ehrenfeucht-Fräı ssé games:

tpk(D) = tpk(D ′)
m

Duplicator has a winning strategy in the k-round game on D and D ′.

For MSO, the same is true, but the game is slightly more complex:
players can play both points and sets.
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From MSO to automata via composition

Rank-k type of w uniquely determines rank-k type of w · a.

If tpk(w) = tpk(w ′), then tpk(w · a) = tpk(w ′ · a): compose games!
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From MSO to automata via composition

Rank-k type of w uniquely determines rank-k type of w · a.

If tpk(w) = tpk(w ′), then tpk(w · a) = tpk(w ′ · a): compose games!

w

w ′

duplicator wins

in k rounds
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From MSO to automata via composition

Rank-k type of w uniquely determines rank-k type of w · a.

If tpk(w) = tpk(w ′), then tpk(w · a) = tpk(w ′ · a): compose games!

w

w ′ a

a
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From MSO to automata via composition

Rank-k type of w uniquely determines rank-k type of w · a.

If tpk(w) = tpk(w ′), then tpk(w · a) = tpk(w ′ · a): compose games!

w

w ′ a

a

duplicator still wins

in k rounds
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From MSO to automata: automata compute types

The rank-k type of w uniquely determines the rank-k type of w · a.

Deterministic Automaton for sentence ϕ:

• States are rank-k types;

• Initial state: the type of the empty word;

• Final states: those types whose disjunction forms ϕ.

• Transition δ(τ, a): the type of w · a if the type of w is τ .

After reading w , the state of the automaton is tpk(w).
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Language for extracting positions in words?

We need a language for extracting positions in trees:

• Information extraction from XML document;

• Work by Gottlob, Koch, and colleagues; Lixto system

We demonstrate the idea on words; it works for trees as well.
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Language for extracting positions in words?

We need a language for extracting positions in trees:

• Information extraction from XML document;

• Work by Gottlob, Koch, and colleagues; Lixto system

We demonstrate the idea on words; it works for trees as well.

Use the composition method:

1)
tpk(w) = tpk(w ′)
tpk(u) = tpk(u′)

⇒ tpk(w · a · u) = tpk(w ′ · a · u′)

2) tpk(u) = tpk(w) ⇒ tpk(w−1) = tpk(u
−1)
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Language for extracting positions in words

How to express MSO (or FO) ϕ(x) over words?

Idea: for w ·a·u, compute

1. tpk(w) going forward from the first position;

2. tpk(u−1) going backwards from the last position;

3. These types tell us whether the a position is selected.

Express this in Datalog. Compute tpk(w) going forward – use predicates
Uτ for types:

Uτa(x) :– First(x),La(x); a ∈ Σ
Uτ ′(x) :– Succ(y , x),La(x),Uτ (y); a ∈ Σ, δ(τ, a) = τ ′
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Datalog program cont’d

• Types going forward:

Uτa(x) :– First(x),La(x); a ∈ Σ
Uτ ′(x) :– Succ(y , x),La(x),Uτ (y); a ∈ Σ, δ(τ, a) = τ ′

• Types going backwards Vτ : symmetric.
• Answer – for all triples (τ, a, τ ′) saying that a is selected, add:

Answer(x) :– Uτ (y),Succ(y , x),Pa(x),Succ(x , z),Vτ ′(z)

• We used Monadic Datalog: all idb predicates are monadic.
• Edb predicates: successor, labelings, First and Last.

• It captures MSO over words.
• Complexity of evaluating program P on w :

O(‖P‖ · |w |)
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Review of the journey

Composition technique suggested using monadic datalog:

• captures MSO;

• has very good complexity bounds.

The approach works for trees and yields many XML languages:

• Monadic datalog captures MSO for trees, with the same complexity
– one needs to add predicates for the root, leaves, first and last
children of nodes (Gottlob, Koch, ’01)

• Other approaches:
• ETL – Efficient tree logic (Neven, Schwentick, ’00)
• Temporal logics with good query evaluation properties (Schlingloff

’92, Marx ’04, Barceló, L., ’05)
• Dialects of XPath (Marx ’04)
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Plan

• Expressiveness: Tools for first-order logic

• Expressiveness: Tools that work beyond first-order logic

• Language equivalence (better query evaluation via the composition
method)

• Descriptive Complexity

• Satisfiability
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Descriptive complexity

• Machine-independent characterization of complexity classes.

• A query language tells you a lot about the complexity.

• If your logic captures a complexity class, you have even more
information:

• complexity cannot be lowered.

• First result:

Theorem (Fagin 1974)

NP = Existential Second-Order Logic (ESO)

• ESO = ∃R1 . . . ∃Rk ϕ(R1, . . . ,Rk ,E )

• 3-colorability: ∃R∃G∃B ϕ

• ϕ says that R ,G ,B partition the set of nodes and endpoints of an
edge cannot be in the same set.
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Descriptive complexity – other classes

• FO is contained in AC0

• AC0 – constant parallel time: constant time with polynomially many
processors. Suggests very efficient parallel algorithms.

• Complexity of the relational calculus.
• Uniform version of AC0 is captured by FO with <,+,× on the finite

universe.

• Basic SQL (FO+simple arithmetic+aggregation) is contained in
TC0

• TC0 – constant parallel time with more complex gates (including
majority gates). Probably a small subset of DLOGSPACE but not yet
separated from NP!

• FO+transitive closure is contained in NLOGSPACE.

• FO+fixed-points (including Datalog) is contained in PTIME
• Over ordered databases, captures PTIME.
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Descriptive complexity – other classes

• NP = ESO.

• Second-order logic = Polynomial hierarchy (between PTIME and
PSPACE)

• FO+partial fixed-point (need not converge: if it does not converge,
the result is empty) – contained in PSPACE

• Captures PSPACE over ordered databases

• These classes typically appear when deals with schemas, queries, etc
• small objects compared to databases
• e.g., conjunctive query containment is NP-complete;
• e.g., composing schema mappings in data exchange is NP-complete;
• e.g., equivalence of DTDs is PSPACE-complete
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Plan

• Expressiveness: Tools for first-order logic

• Expressiveness: Tools that work beyond first-order logic

• Language equivalence (better query evaluation via the composition
method)

• Descriptive Complexity

• Satisfiability
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Satisfiability

• Satisfiability problem:

Input: FO sentence ϕ
Question: does it it have a model (A |= ϕ)?

• Undecidable, but the complement is r.e. (recursively enumerable):
• The complement is validity: Given ϕ, is it true in every model A?
• Because ϕ is satisfiable iff ¬ϕ is not valid
• Validity is r.e. due to the completeness of FO.
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Satisfiability

• Satisfiability problem:

Input: FO sentence ϕ
Question: does it it have a model (A |= ϕ)?

• Undecidable, but the complement is r.e. (recursively enumerable):
• The complement is validity: Given ϕ, is it true in every model A?
• Because ϕ is satisfiable iff ¬ϕ is not valid
• Validity is r.e. due to the completeness of FO.

• Finite satisfiability: Given ϕ, does it have a finite model?

• Finite validity: Given ϕ, is it true in all finite models?

• Completeness fails in the finite, so we cannot get r.e. as before.

Theorem (Trakhtenbrot 1950)

Finite validity is not r.e.
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Satisfiability: application

• Static analysis problems (schemas, queries, etc)

• certain answers: key concept for
• incomplete information;
• query answering using views;
• data integration and exchange

• Databases with incomplete information:

student course grade

Jones x A

y x B

y CS1 A-

Jones CS2 z
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Satisfiability: application

• Static analysis problems (schemas, queries, etc)

• certain answers: key concept for
• incomplete information;
• query answering using views;
• data integration and exchange

• Databases with incomplete information:

student course grade

Jones x A

y x B

y CS1 A-

Jones CS2 z

⇒

student course grade

Jones CS4 A

Smith CS4 B

Smith CS1 A-

Jones CS2 B+

Jones CS3 B-

• All such databases representing a table T : Rep(T )
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Certain answers

• Answers to a query that do not depend on the interpretation of
missing information:

certain(Q,T ) =
⋂

R∈Rep(T )

Q(R)

• What if Q is an FO sentence and T = ∅?

• certain(Q,T )=true iff Q is valid! Hence:

Corollary

For FO queries, computing certain answers is undecidable.

• Hence we (database people) are interested in classes with decidable
satisfiability.
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Decidable classes

• Conjunctive queries and their unions
• finding certain answers - PTIME
• plays very important in data integration/exchange

• Other classes go via finite model property: if there is a model, there
must be a finite one.

• Two important classes:
• Bernays-Schönfinkel class: ∃x1 . . .∃xm∀y1 . . . ∀yk α
• FO2 – formulae with 2 variables x and y .

• In both cases, satisfiability is NEXPTIME-complete.

• Both results have been used in database theory (e.g. recently in the
XML context).
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Conclusion

• Quite likely, if you need to use FMT in database research, you need
one of the techniques described in this tutorial (paper).

• No need to read textbooks/proofs – just use the toolbox!
• Unless you want to work in FMT.
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Conclusion

• Quite likely, if you need to use FMT in database research, you need
one of the techniques described in this tutorial (paper).

• No need to read textbooks/proofs – just use the toolbox!
• Unless you want to work in FMT.

• But if you want to read an FMT book, ask me after the talk and I’ll
tell you which one to buy.
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The future of FMT

• We’ve learned how to work with both stone and iron age tools.

• It’s time to go back to games and start putting stones together.

• Middle Ages tools: actively developed by Ben Rossman (the rest of
the world is trying to catch up). Solved 3 long-standing open
problems:

1. successor-invariance
2. preservation under homomorphisms in the finite
3. strictness of the FOk hierarchy over ordered structures.

• Next step, N years away: modern era tools.
• Main application: separating complexity classes.

Good news – most of the database theory tasks are easily doable with
stone and iron age tools.
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