The Finite Model Theory Toolbox of a Database Theoretician

Leonid Libkin
University of Edinburgh

PODS 2009
Finite Model Theory (FMT)

- The main object of study: logics over finite structures
- Foundational role in the study of the theory of relational databases:
 - relational database = finite relational structure
 - query languages are logic based
- Finite model theory was described as the "backbone of database theory" (Vianu, 1995)
- Connections work both ways: much of the motivation for finite model theory research came from databases.
- Many other applications in CS: verification, AI, constraint satisfaction, algorithms, complexity ...
Finite Model Theory (FMT)

• Mature field; 4 textbooks:
 1. Ebbinghaus-Flum “Finite Model Theory”, 1994
 2. Immerman “Descriptive Complexity”, 1999

• Several surveys, ‘personal perspectives’, etc:
 • Fagin (ICDT 1990, LICS 2000), Kolaitis (PODS 1995, ICDT 1995, LICS 2007), Grohe (LICS 2008), etc

• Surveys they tell you how to prove results, what the main open problems are, etc. – but don’t concentrate on applying FMT techniques.
FMT for a database theoretician: Key problems

1. **Expressiveness** of query languages
 - Query languages have limited expressiveness (e.g., relational calculus = first-order logic)
 - So we need to know what is not expressible in them to add new language constructs
 - Adding language constructs is not free — optimizations!

2. **Complexity** of query languages
 - Can we say something about the complexity of query evaluation by knowing the logical formalism?

3. **Equivalence** of query languages
 - Can we lower the complexity by changing the syntax?
 - Often used in the study of languages for semistructured data.

4. **Satisfiability** (usually, finite satisfiability)
 - Used in static analysis, also when dealing with incomplete information

 - All in the paper; the talk is mostly about Expressiveness and Equivalence.
FMT for a database theoretician cont’d

• Early results: if they involve FMT techniques, there are shown by people actively working in FMT.
• But now the field has built a large arsenal of tools.
• These tools can be used without knowing how they are proved!
• They should be a part of the toolbox of every database theoretician.
• Our goal: present finite-model theory as such a toolbox.
Plan

- **Expressiveness: Tools for first-order logic**
 - Neolithic (stone age) tools – games and tricks.
 - Iron age tools: growing up (locality, 0-1 law).
- **Expressiveness: Tools that work beyond first-order logic**
 - The same arsenal of tools
- **Language equivalence: better query evaluation via the composition method**
 - still growing up: learning how to put stones together
Plan

- **Expressiveness: Tools for first-order logic**
 - Neolithic (stone age) tools – games and tricks.
 - Iron age tools: growing up (locality, 0-1 law).

- **Expressiveness: Tools that work beyond first-order logic**
 - The same arsenal of tools

- **Language equivalence: better query evaluation via the composition method**
 - still growing up: learning how to put stones together
First-Order (FO)

• The most fundamental query language — first-order logic (FO)
• Database people often refer to it as relational calculus.
• The core of SQL (minus aggregation – we’ll address it later).
• A basic question: what are the limitations of FO?
• Intuition: FO cannot express:
 1. nontrivial counting properties, and
 2. queries requiring recursion
• We’ll now see some “canonical” examples of inexpressible queries.
Even cardinality

- **Active domain** = set of all elements stored in a database
- A Boolean query

\[\text{EVEN}(D) = \text{true} \iff |\text{ActiveDomain}(D)| = 0 \pmod{2} \]
Transitive closure
Transitive closure

\[\text{trcl}(x, y) \quad :\quad e(x, y) \]
\[\text{trcl}(x, y) \quad :\quad e(x, z), \text{trcl}(z, y) \]
Same Generation
Same Generation

\[
\begin{align*}
sg(x, x) & : \leftarrow \\
sg(x, y) & : \leftarrow e(x', x), e(y', y), sg(x', y')
\end{align*}
\]
Same Generation

\[sg(x, x) \] :=
\[sg(x, y) \] := \(e(x', x), e(y', y), sg(x', y') \)
A bit of history

• Classical model theory offers us powerful tools, like compactness.
• But they do not work over finite databases!
 • Exception: compactness argument shows that EVEN is not FO-definable.
• Fagin 1975: Transitive closure is not FO-expressible over finite graphs. Technique: games.
• Afterwards (1970s, 1980s): more and more advanced game proofs.
• Require nontrivial combinatorial arguments.
• 1990s: proper tools are being developed. They do not require complicated combinatorial proofs.
First-Order Logic (FO)

- Make things simple (for the talk): databases are graphs – they have one binary relation $E(\cdot, \cdot)$.

- **Syntax of FO:**
 - Atomic formulae: $E(x, y)$, $x = y$
 - Boolean combinations: $\varphi \lor \psi$, $\varphi \land \psi$, $\neg \varphi$
 - Quantification: $\exists x \varphi$, $\forall x \varphi$
 - $\varphi(\bar{x})$ means that \bar{x} is the tuple of free variables of φ

- **Quantifier rank $qr(\varphi)$:**
 - The depth of quantifier nesting in φ.
 - For example, $qr(\exists x (\forall y E(x, y) \lor \forall z \neg E(x, z)))$ is 2 and not 3.
First-Order Logic – Examples

• There are at least k elements

$$\exists x_1 \ldots \exists x_k \bigwedge_{i,j \leq k, \ i \neq j} \neg (x_i = x_j)$$

• There is a path of length k from x_0 to x_k

$$\exists x_1 \ldots \exists x_{k-1} \bigwedge_{0 \leq i < k} E(x_i, x_{i+1})$$

• There is no cycle of length k

$$\neg \exists x_1 \ldots \exists x_k \ E(x_k, x_1) \land \bigwedge_{i < k} E(x_i, x_{i+1})$$
Ehrenfeucht-Fraïssé games

• The tool of choice for the neolithic period of FMT.
• Played on two databases (graphs) \mathcal{A} and \mathcal{B}.
• Two players:
 • The spoiler (the bad guy) tries to show that \mathcal{A} and \mathcal{B} are different.
 • The duplicator (the good guy) tries to show that \mathcal{A} and \mathcal{B} are the same.
• Play for k rounds.
• In each round:
 • the spoiler moves first: selects a database and an element there.
 • the duplicator responds by an element in the other database.
• The duplicator wins if at the end, the played elements form a partial isomorphism between \mathcal{A} and \mathcal{B}.
Ehrenfeucht-Fraïssé game - example 1

A

B
Ehrenfeucht-Fraïssé game - example 1
Ehrenfeucht-Fraïssé game - example 1

A

B
Ehrenfeucht-Fraïssé game - example 1

A

B
Ehrenfeucht-Fraïssé game - example 1

The duplicator wins in 3 rounds.
Ehrenfeucht-Fraïssé game - example 2

\[\mathcal{A} \quad \mathcal{B} \]
Ehrenfeucht-Fraïssé game - example 2

\[\mathcal{A} \]

\[\mathcal{B} \]
Ehrenfeucht-Fraïssé game - example 2

A

B
Ehrenfeucht-Fraïssé game - example 2
Ehrenfeucht-Fraïssé game - example 2

\[\text{A} \quad \text{B} \]
Ehrenfeucht-Fraïssé game - example 2

A

B

Leonid Libkin

FMT toolbox

16/57
Ehrenfeucht-Fraïssé game - example 2

\[\mathcal{A} \]

\[\mathcal{B} \]
Ehrenfeucht-Fraïssé game - example 2

\[\mathcal{A}\]

\[\mathcal{B}\]
Ehrenfeucht-Fraïssé game - example 2

The spoiler wins in 3 rounds.
Ehrenfeucht-Fraïssé games and FO

The duplicator has a winning strategy in the k-round Ehrenfeucht-Fraïssé game if he can win in k rounds no matter how the spoiler plays.

Theorem

The duplicator has a winning strategy in the k-round Ehrenfeucht-Fraïssé game on \mathfrak{A} and \mathfrak{B}

$$\iff$$

\mathfrak{A} and \mathfrak{B} cannot be distinguished by FO sentences of quantifier rank up to k.

How to prove that a property \mathcal{P} is not expressible in FO

Find families of graphs \mathcal{A}_k and \mathcal{B}_k, for $k \in \mathbb{N}$ so that:

1. All \mathcal{A}_k have property \mathcal{P};
2. None of \mathcal{B}_k has property \mathcal{P};
3. The duplicator has a winning strategy in the k-round Ehrenfeucht-Fraïssé game on \mathcal{A}_k and \mathcal{B}_k

Because: if \mathcal{P} were expressible by a sentence φ of quantifier rank k, by 3. we would have that \mathcal{A}_k and \mathcal{B}_k must agree on φ, but 1. and 2. say that they do not.
A surprisingly powerful example

Let L_n be a linear ordering of length n.

Theorem

If $m, n \geq 2^k$, then the duplicator has a winning strategy in the k-round Ehrenfeucht-Fraïssé game on L_n and L_m.
A surprisingly powerful example

Let L_n be a linear ordering of length n.

Theorem

If $m, n \geq 2^k$, then the duplicator has a winning strategy in the k-round Ehrenfeucht-Fraïssé game on L_n and L_m.

Corollary

Query \textsc{Even} is not expressible over linear orderings.

Because: take \mathcal{A}_k to be L_{2^k} and \mathcal{B}_k to be L_{2^k+1}.
The early 1980s: the era of tricks

The result about EVEN shows that none of the following is definable in FO: Graph connectivity; graph acyclicity; transitive closure.
The early 1980s: the era of tricks

The result about EVEN shows that none of the following is definable in FO: Graph connectivity; graph acyclicity; transitive closure.

Edges: to the 2nd successor;
The early 1980s: the era of tricks

The result about EVEN shows that none of the following is definable in FO: Graph connectivity; graph acyclicity; transitive closure.

Edges: to the 2nd successor;
The early 1980s: the era of tricks

The result about \textsc{Even} shows that none of the following is definable in FO: Graph connectivity; graph acyclicity; transitive closure.

Edges: to the 2nd successor;
The early 1980s: the era of tricks

The result about \texttt{EVEN} shows that none of the following is definable in FO: Graph connectivity; graph acyclicity; transitive closure.

Edges: to the 2nd successor; from the last to the 2nd element;
The early 1980s: the era of tricks

The result about **EVEN** shows that none of the following is definable in FO: Graph connectivity; graph acyclicity; transitive closure.

Edges: to the 2nd successor; from the last to the 2nd element; from the penultimate to the 1st.
The early 1980s: the era of tricks

The result about \textbf{EVEN} shows that none of the following is definable in FO: Graph connectivity; graph acyclicity; transitive closure.

Edges: to the 2nd successor; from the last to the 2nd element; from the penultimate to the 1st.
The early 1980s: the era of tricks

The result about \textbf{EVEN} shows that none of the following is definable in FO: Graph connectivity; graph acyclicity; transitive closure.

Edges: to the 2nd successor; from the last to the 2nd element; from the penultimate to the 1st.
The early 1980s: the era of tricks

The result about \texttt{EVEN} shows that none of the following is definable in FO: Graph connectivity; graph acyclicity; transitive closure.

Connected if \texttt{EVEN} is false; disconnected if \texttt{EVEN} is true.
The era of tricks cont’d

- A similar trick (with one backedge instead of two) shows that acyclicity is not FO-expressible.
- Since connectivity is not FO-expressible, neither is the transitive closure query:
 - the symmetric-transitive closure of G is a complete graph iff G is connected.
The 1990s: the era of tools

• The iron age of FMT.
• For more complicated problems, stone (pebble) tools – games – become very hard to use.
• More and more complicated winning conditions are used:
 • Fagin, Ajtai, Vardi, Stockmeyer, Schwentick, Kolaitis, Väänänen, etc
• Fagin, Stockmeyer, Vardi, 1993: Let’s build a library of winning strategies for the duplicator.
• Key idea: locality.
 • Already present in earlier work by Gaifman 1980 and Hanf 1965.
Transitive closure revisited

Degrees of nodes: 0, 1
Transitive closure revisited

Degrees of nodes: $0, 1, \ldots, n$ – depends on the input.
Transitive closure revisited

Degrees of nodes: $0, 1, \ldots, n$ – depends on the input.

This cannot happen for FO queries!
A useful property

- A query Q from graphs to graphs has the **bounded number of degrees property (BNDP)** if there is a function $f_Q : \mathbb{N} \to \mathbb{N}$ such that:

 \[
 \text{all degrees in } G \text{ are bounded by } k \\
 \downarrow \\
 \text{the number of different degrees in } Q(G) \text{ is at most } f_Q(k)
 \]

- We’ve just seen that transitive closure violates the BNDP.
A useful property

• A query Q from graphs to graphs has the bounded number of degrees property (BNDP) if there is a function $f_Q : \mathbb{N} \rightarrow \mathbb{N}$ such that:

\[
\begin{align*}
\text{all degrees in } G \text{ are bounded by } k \\
\downarrow \\
\text{the number of different degrees in } Q(G) \text{ is at most } f_Q(k)
\end{align*}
\]

• We’ve just seen that transitive closure violates the BNDP.

Theorem (Dong, L., Wong’95, L. ’97)

Every FO query has the BNDP.

• Corollary: transitive closure is not FO-definable.
Another application of BNDP – Same Generation

Degrees: 0, 1, 2
Another application of BNDP – Same Generation
Another application of BNDP – Same Generation

Degrees: \(1, 2, 4, 8, \ldots, 2^{\text{depth}(G) - 1}\)
Number of degrees: \(\text{depth}(G)\)
Another application of BNDP – Same Generation

Violates the BNDP — Hence same-generation is not FO-definable
What makes the BNDP work?

- Locality of FO.
- There are two tools based on locality:
 1. Gaifman-locality (Gaifman 1982)
- Key concept: neighborhood.
- A neighborhood of radius r of \bar{a} in a graph G is denoted by $N^G_r(\bar{a})$.
- It is the subgraph induced by all the nodes of distance $\leq r$ from one of the nodes in \bar{a}.
- Nodes \bar{a} are distinguished:
 - if we have an isomorphism $h : N^G_r(a_1, \ldots, a_n) \rightarrow N^{G'}_r(b_1, \ldots, b_n)$ then $h(a_1) = b_1$, \ldots, $h(a_n) = b_n$.
Gaifman-locality

Theorem (Gaifman 1982, bound from L., ’98)

For every FO formula \(\varphi(\bar{x}) \) of quantifier rank \(k \) and for every graph \(G \):

\[N_{2k}^G(\bar{a}) \text{ and } N_{2k}^G(\bar{b}) \text{ are isomorphic} \implies G \models \varphi(\bar{a}) \iff \varphi(\bar{b}) \]
Theorem (Gaifman 1982, bound from L., ’98)

For every FO formula $\varphi(\bar{x})$ of quantifier rank k and for every graph G:

$$N^G_{2k}(\bar{a}) \text{ and } N^G_{2k}(\bar{b}) \text{ are isomorphic} \Rightarrow G \models \varphi(\bar{a}) \iff \varphi(\bar{b})$$

Application: Transitive closure is not definable in FO.
Gaifman-locality

Theorem (Gaifman 1982, bound from L., '98)

For every FO formula $\varphi(\bar{x})$ of quantifier rank k and for every graph G:

$N^G_{2k}(\bar{a})$ and $N^G_{2k}(\bar{b})$ are isomorphic $\Rightarrow G \models \varphi(\bar{a}) \leftrightarrow \varphi(\bar{b})$

Application: Transitive closure is not definable in FO.

If $\varphi(x, y)$ is of quantifier rank k and $r = 2^k$ then both $\varphi(a, b)$ and $\varphi(b, a)$ are true, or both are false.
Hanf-locality

- Write $G \iff_r G'$ if there exists a bijection $f : G \to G'$ such that $N^G_r(a)$ and $N^{G'}_r(f(a))$ are isomorphic for every node a.
- Locally two graphs look the same, up to a bijection f.
Hanf-locality

- Write $G \xleftrightarrow{r} G'$ if there exists a bijection $f : G \to G'$ such that $N_r^G(a)$ and $N_r^{G'}(f(a))$ are isomorphic for every node a.
- Locally two graphs look the same, up to a bijection f.

Theorem (Fagin, Stockmeyer, Vardi, ’93, bound from L.’98)

For every FO sentence φ of quantifier rank k,

$$if \ G \xleftrightarrow{2k} G' \ then \ G \models \varphi \iff \ G' \models \varphi$$

- Can be extended to arbitrary queries, but most often this notion is used for Boolean queries.
Hanf-locality: application

- If $m > 2r + 1$ then $G \Leftrightarrow_r G'$ (all r-neighborhoods are the same).
- Hence no FO sentence φ defines connectivity: as long as $m > 2^{qr(\varphi)} + 1 + 1$, graphs G and G' cannot be distinguished by φ.
Counting: towards 0-1 laws

- How to prove that nontrivial counting properties are not expressible?
- **Even**: roughly half of databases have the property, and half don’t.
- FO cannot exhibit such a behavior.
Counting: towards 0-1 laws

- How to prove that nontrivial counting properties are not expressible?
- **Even**: roughly half of databases have the property, and half don’t.
- FO cannot exhibit such a behavior.

- Pick a database “at random”.
- Check if it satisfies a property \mathcal{P}.
- What’s the probability of that?
- If \mathcal{P} is FO-definable, it is 0 or 1: **0-1 law**.
- Need to formalize: ‘pick a database at random’.
Towards 0-1 laws

- For each n look at graphs with nodes $1, \ldots, n$.
- For a property \mathcal{P}, let

$$\mu_n(\mathcal{P}) = \frac{|\{\text{graphs on } 1, \ldots, n \text{ that satisfy } \mathcal{P}\}|}{|\{\text{graphs on } 1, \ldots, n\}|}$$

- Proportion of graphs on $1, \ldots, n$ satisfy \mathcal{P}, or
- Probability that a randomly picked graph on $1, \ldots, n$ — with respect to the uniform distribution — satisfies \mathcal{P}.
- Asymptotic probabilities:

$$\mu(\mathcal{P}) = \lim_{n \to \infty} \mu_n(\mathcal{P})$$
Asymptotic probabilities: examples

• $\mu(\text{EVEN})$ – does not exist: $\mu_n(\text{EVEN}) = \begin{cases} 1, & \text{if } n \text{ is even} \\ 0, & \text{if } n \text{ is odd} \end{cases}$

• $\mu(\text{exists isolated node}) = 0.$

• $\mu(\text{diameter} \leq 2) = 1.$

• $\mu(\text{graph is connected}) = 1.$

• Two sets A and B with $B \subseteq A$.

 Parity is true iff $|B|$ is even.

 $\mu(\text{Parity}) = \frac{1}{2}.$
0-1 law

Theorem (Fagin 1976)

If \mathcal{P} is FO-definable, then $\mu(\mathcal{P})$ exists and equals 0 or 1.
0-1 law

Theorem (Fagin 1976)

If \mathcal{P} is FO-definable, then $\mu(\mathcal{P})$ exists and equals 0 or 1.

- If you like truly beautiful proofs, this is the one for you!
- Immediate corollaries: **EVEN** and **Parity** are not FO-definable.
- **Warning**: the result does not hold when we consider specific classes of structures.
- For example, 0-1 law fails over **ordered graphs**:
- $\mu(\text{there is an edge between the first and the last element}) = \frac{1}{2}$.
Plan

- **Expressiveness:** Tools for first-order logic
 - Neolithic (stone age) tools – games and tricks.
 - Iron age tools: growing up (locality, 0-1 law).

- **Expressiveness:** Tools that work beyond first-order logic
 - The same arsenal of tools

- **Language equivalence:** better query evaluation via the composition method
 - still growing up: learning how to put stones together
FO extensions

- **Ordering**: elements stored in a database are typically ordered, and order comparisons can be used in queries.

- **Counting and aggregation**: we all know it from SQL; a very common feature in database queries.

- **Fixed points**: for many years a popular topic in database research (Datalog). Now also part of SQL-3.

- **Interpreted operations**: e.g., arithmetic operations such as $x^2 + y \leq x \cdot z$ in queries.
Ordering on the domain

- Can transitive closure be expressed over ordered graphs? What about connectivity? acyclicity? etc.
- We know that **EVEN** is not expressible.
- Queries such as transitive closure do not refer to ordering.
- **Order-invariant queries**: can use an ordering, but it does not matter which ordering is used.
- **Order-invariant formulae over graphs**: $\varphi(\bar{x})$ over $E(\cdot, \cdot), <$ so that

$$
(G, <_1) \models \varphi(\bar{a}) \iff (G, <_2) \models \varphi(\bar{a})
$$

for every two orderings $<_1$ and $<_2$ on the nodes.
- Defines an order-invariant query Q_φ:

$$
\bar{a} \in Q_\varphi(G) \iff (G, <) \models \varphi(\bar{a}) \text{ for some ordering } <
$$
Order-invariant queries

• A mysterious class:
 • only makes sense in the finite;
 • a non-r.e. class of queries;
 • locality techniques do not seem to help: with $<$ everything is a neighborhood of radius 1.

• But quite remarkably:

\[\textbf{Theorem (Grohe, Schwentick, 2000)}\]

Order-invariant queries are Gaifman-local and have the BNDP.

• Corollary: Transitive closure, connectivity, etc are not expressible even with order.
Adding counting and aggregation to the language

- Standard SQL feature.
- Assume domain of 2 sorts:
 - usual database entries (graph nodes);
 - numbers (for examples, \mathbb{Q}).
- Add counting terms and operations:
 - $\#\bar{x} . \varphi$ – how many \bar{x} satisfy φ.
 - $P_{\text{property}}(\cdot)$ testing the property of numbers.
- Examples:
 - $\exists x \ P_{\text{even}}(\#y . E(x, y))$ – there is a node of even degree.
Adding counting and aggregation to the language

- aggregates and grouping by example: sum up all even degrees in a graph
 - in SQL: \[\text{SELECT} \ \text{SUM}(R.C) \ \text{FROM} \ \text{(SELECT} \ E.A, \ \text{COUNT}(E.B) \ \text{AS C} \ \text{FROM} \ E \ \text{GROUPBY} \ E.A \ \text{HAVING} \ \text{MOD(COUNT}(E.B),2) = 0) \ \text{R}\]
 - in logic: \(\text{Aggr}_{\text{SUM}} \times (P_{\text{even}}(\#y.E(x,y)), \ #y.E(x,y))\)
Adding counting and aggregation to the language

- aggregates and grouping by example: sum up all even degrees in a graph
 - in SQL:
    ```
    SELECT SUM(R.C)
    FROM (SELECT E.A, COUNT(E.B) AS C
           FROM E
           GROUP BY E.A
           HAVING MOD(COUNT(E.B),2) = 0) R
    ```
 - in logic:
    ```
    Aggr_{SUM} \times (P_{even}(\#y.E(x,y)), \#y.E(x,y))
    ```
 - Formally: \(\mathcal{F} \) is an aggregate (e.g., SUM, COUNT...)

- aggr_term(\(\bar{x} \)) = Aggr_{\mathcal{F}}\bar{y} (\varphi(\bar{x},\bar{y}), t(\bar{x},\bar{y}))

- Semantics:
 - Find all \(\bar{y}_1, \ldots, \bar{y}_k \) so that \(\varphi(\bar{x},\bar{y}_i) \) holds
 - Calculate \(v_i = t(\bar{x},\bar{y}_i) \)
 - aggr_term(\(\bar{x} \)) is \(\mathcal{F}(\{v_1, \ldots, v_k\}) \)
Expressiveness of aggregation

- Which arithmetic predicates and aggregate functions to add?
- Let’s be generous: add them all.
- But still look at queries over graph nodes (e.g., transitive closure).

Theorem (Hella, L., Nurmonen, Wong’99, improved L.’01)

Queries expressed in the aggregate language with arbitrary arithmetic and aggregates are local:
i.e., Hanf-local, Gaifman-local, and have the BNDP.

- In particular, the usual SQL (select-from-where-groupby-having) cannot express transitive closure.
Aggregation and order

- What if we have an order on graph nodes? Can we recover locality?
- **No**, even in a minimalistic setting:
 - Arithmetic: $<, +, \times$
 - Aggregation: \text{SUM}
- If such an aggregate language cannot express transitive closure over ordered graphs, then some complexity classes are separated:
 - \text{TC}^0 \text{ and NLOGSPACE}
 - big open problem in complexity theory
Recursion and Datalog

- Have seen it already:
 - transitive closure:

 \[
 \text{trcl}(x, y) \quad :\quad e(x, y) \\
 \text{trcl}(x, y) \quad :\quad e(x, z), \text{trcl}(z, y)
 \]

 - same-generation:

 \[
 \text{sg}(x, x) \quad :\quad \\
 \text{sg}(x, y) \quad :\quad e(x', x), e(y', y), \text{sg}(x', y')
 \]

- Now available in the latest SQL standard: WITH RECURSIVE.
 - But without negation.
 - With negation, several semantics exist.
Datalog: expressive power

- Without negation, queries are monotone.
- Even with negation and inflationary semantics:

 \[\text{Theorem (Blass, Kozen, Gurevich, 1985)} \]

 \[\text{Datalog has the 0-1 law.} \]

- This is without order. What if order is added?
- Then Datalog (with negation) captures PTIME.
- To prove bounds, one needs to separate complexity classes again.
- But without order, it can be separated from NP: 3-colorability is not expressible in Datalog with negation (Dawar, ’98).
 - A useful result (recent application in the work on schema mappings)
Plan

- Expressiveness: Tools for first-order logic
 - Neolithic (stone age) tools – games and tricks.
 - Iron age tools: growing up (locality, 0-1 law).

- Expressiveness: Tools that work beyond first-order logic
 - The same arsenal of tools

- Language equivalence: better query evaluation via the composition method
 - still growing up: learning how to put stones together
Language equivalence: games come back

• The focus of FMT applications in databases switches in the 21st century from inexpressibility results to proving language equivalence.

• Goal: start with a benchmark of expressiveness, and find a language with good complexity of query evaluation.

• Usually in the context of data that comes with a nice structure.

• XML data model – labeled trees with some nodes carrying data values.

• For the talk, use words – to keep pictures and notations simple – but the paper deals with trees as well.
Language equivalence: games come back

- Key technique: composing Ehrenfeucht-Fraïssé games.
- Such composition tells us how queries on substructures combine for evaluating queries on the whole structure.
- For words/trees, benchmark expressiveness is typically **MSO**:
 - Monadic Second Order Logic, adds quantification over sets.
 - \(\exists X_1 \forall X_2 \ldots \alpha(X_1, X_2, \ldots) \) where \(\alpha \) is FO.
 - Has the power of **automata** on words and trees.
 - But **problematic** complexity of query evaluation.
- Question: is it possible to achieve better complexity simply by syntactic manipulations?
Changing syntax to lower complexity

There are known examples, e.g., **FO** and **LTL** (linear temporal logic):

- Have the same power over words (Kamp, 1969)
- Checking whether $w \models \varphi$ with **linear data complexity** (i.e., $O(|w|)$) requires the following **query complexity**:
 - **non-elementary** for **FO** (a stack of exponentials, Frick, Grohe, '03)
 - **linear** for **LTL**
- **FO** or **MSO** evaluation over trees and words with **linear data complexity** implies **non-elementary query complexity**.
- Need another – but equivalent – logic!
Words as databases

A word w over $\Sigma = \{a_1, \ldots, a_m\}$ is a database with relations $E(\cdot, \cdot), L_1(\cdot), \ldots, L_m(\cdot)$:

- E is the ordering of positions;
- L_i's define labelings.

$w = a_1a_2a_1a_2$:

positions 0, 1, 2, 3; positions 0,2,3 labeled a_1; position 1 labeled a_2

$$E = \begin{array}{c|c}
0 & 1 \\
1 & 2 \\
2 & 3 \\
0 & 2 \\
1 & 3 \\
0 & 3 \\
\end{array}$$

$$L_1 = \begin{array}{c}
0 \\
2 \\
3 \\
\end{array}$$

$$L_2 = \begin{array}{c}
1 \\
\end{array}$$
MSO over words

Each MSO sentence φ defines a language

$$\mathcal{L}(\varphi) = \{ w \in \Sigma^* | w \models \varphi \}$$

Theorem (Büchi, Elgot, Trakhtenbrot 1960)

$\text{MSO-definability} = \text{Regular languages}$

A similar result holds for trees as well – both binary and unranked.

We now show how to go from MSO to automata.
Types

• Look at FO (or MSO) sentences of quantifier rank \(k \)
• Only finitely many distinct ones – up to logical equivalence
• **Rank-\(k \) type**: set of all sentences of quantifier rank \(k \) true in a database. Notation: \(tp_k(D) \)
• Types are finite objects, definable in the logic.
• Each sentence is a disjunction of types.
• Another way of looking at Ehrenfeucht-Fraïssé games:
 \[
 tp_k(D) = tp_k(D') \iff \text{the duplicator has a winning strategy in the \(k \)-round game.}
 \]
• For MSO, the game is slightly more complex:
 • both players can play sets and points
 • but all the results remain true.
From MSO to automata: automata compute types

If $tp_k(w) = tp_k(w')$, then $tp_k(w \cdot a) = tp_k(w' \cdot a)$: compose games!
From MSO to automata: automata compute types

If $tp_k(w) = tp_k(w')$, then $tp_k(w \cdot a) = tp_k(w' \cdot a)$: compose games!

w

duplicator wins

in k rounds

w'
From MSO to automata: automata compute types

If $tp_k(w) = tp_k(w')$, then $tp_k(w \cdot a) = tp_k(w' \cdot a)$: compose games!
If \(tp_k(w) = tp_k(w') \), then \(tp_k(w \cdot a) = tp_k(w' \cdot a) \): compose games!

 duplicator still wins in \(k \) rounds
From MSO to automata: automata compute types

If $tp_k(w) = tp_k(w')$, then $tp_k(w \cdot a) = tp_k(w' \cdot a)$

Deterministic Automaton for sentence φ:

- **States** are rank-k types;
- **Initial state**: the type of the empty word;
- **Final states**: those types whose disjunction forms φ.
- **Transition** $\delta(\tau, a)$: the uniquely determined type of $w \cdot a$ if the type of w is τ.

After reading w, the state of the automaton is $tp_k(w)$.
Language for extracting positions in words?

- Why? We really need a language for extracting positions in trees:
 - Information extraction from XML document;
 - Work by Gottlob, Koch, and colleagues; Lixto system
- We demonstrate the idea on words; it works perfectly well for trees as well.
Language for extracting positions in words?

- Why? We really need a language for extracting positions in trees:
 - Information extraction from XML document;
 - Work by Gottlob, Koch, and colleagues; Lixto system
- We demonstrate the idea on words; it works perfectly well for trees as well.
- Key composition ideas:

 1) \(tp_k(w) = tp_k(w') \)
 \(tp_k(u) = tp_k(u') \) \(\Rightarrow \) \(tp_k(w \cdot a \cdot u) = tp_k(w' \cdot a \cdot u') \)

 2) \(tp_k(u) = tp_k(w) \) \(\Rightarrow \) \(tp_k(w^{-1}) = tp_k(u^{-1}) \)
Language for extracting positions in words

- How to express MSO (or FO) $\varphi(x)$ over words?
- **Idea:** for $w \cdot a \cdot u$, compute
 1. $tp_k(w)$ going forward from the first position;
 2. $tp_k(u^{-1})$ going backwards from the last position;
 3. These types tell us whether the a position is selected.

- Express this in **Datalog**.
- Compute $tp_k(w)$ going forward – use predicates U_τ for types:

 \[
 U_{\tau_a}(x) \; : = \; \text{First}(x), L_a(x); \quad a \in \Sigma \\
 U_{\tau'}(x) \; : = \; \text{Succ}(y, x), L_a(x), U_\tau(y); \quad a \in \Sigma, \; \delta(\tau, a) = \tau'
 \]
Datalog program cont’d

- Types going backwards V_{τ}: symmetric.
- Answer – for all triples (τ, a, τ') saying that a is selected, add:

 $$\text{Answer}(x) :– U_{\tau}(y), \text{Succ}(y, x), P_{a}(x), \text{Succ}(x, z), V_{\tau'}(z)$$

- We used **Monadic Datalog**: all idb predicates are monadic.
 - Edb predicates: successor, labelings, First and Last.
- It captures MSO over words.
- Complexity of evaluating program P on w: $O(||P|| \cdot |w|)$.
Review of the journey

- Composition technique suggested expressing MSO and FO properties in monadic datalog.
- Monadic datalog captures MSO and has very good complexity bounds.
- The approach works for trees and yields many XML languages:
 - Monadic datalog captures MSO for trees, with the same complexity – one needs to add predicates for the root, leaves, first and last children of nodes (Gottlob, Koch, '01)
 - ETL – Efficient tree logic (Neven, Schwentick, '00)
 - Temporal logics with good query evaluation properties (Schlingloff '92, Marx '04, Barceló, L., '05)
 - Dialects of XPath (Marx '04)
Conclusion

• Quite likely, if you need to use FMT in database research, you need one of the techniques described in this tutorial (paper).
• No need to read textbooks/proofs – just use the toolbox!
 • Unless you want to work in FMT.
Conclusion

- Quite likely, if you need to use FMT in database research, you need one of the techniques described in this tutorial (paper).
- No need to read textbooks/proofs – just use the toolbox!
 - Unless you want to work in FMT.
- But if you want to read an FMT book, ask me after the talk and I’ll tell you which one to buy.
The future of FMT

- We’ve learned how to work with both stone and iron age tools.
- Now it’s time to go back to games and start putting stones together.
- Middle Ages tools: actively developed by Ben Rossman (the rest of the world is trying to catch up). Solved 3 long-standing open problems recently:
 1. successor-invariance
 2. preservation under homomorphisms in the finite
 3. strictness of the FO^k hierarchy over ordered structures.
- Next step, N years away: modern era tools.
 - Main application: separating complexity classes.
- Good news – most of the database theory tasks are easily doable with stone and iron age tools.