
The Finite Model Theory Toolbox of
a Database Theoretician

Leonid Libkin
University of Edinburgh

libkin@inf.ed.ac.uk

ABSTRACT

For many years, finite model theory was viewed as the back-
bone of database theory, and database theory in turn supplied
finite model theory with key motivations and problems. By
now, finite model theory has built a large arsenal of tools that
can easily be used by database theoreticians without going
to the basics such as combinatorial games. We survey such
tools here, focusing not on how they are proved, but rather
on how to apply them, as-is, in various questions that come
up in database theory.

Categories and Subject Descriptors. F.4.1
[Mathematical Logic and Formal Languages]:
Mathematical Logic; F.4.3 [Mathematical Logic
and Formal Languages]: Formal Languages; H.2.4
[Database Management]: Systems—Relational
databases

General Terms. Theory, Languages, Algorithms

Keywords. finite models, expressive power, complexity,
games, order, types, logics, query languages

1. Introduction

Since database query languages are logic-based (relational
calculusis first-order logic), answering relational queries
amounts to evaluating formulae over finite relational struc-
tures. Dealing with logical formulae over finite structures
is the subject of finite model theory. So not surprisingly,
finite model theory played a central role in the develop-
ment of database theory (it was even calledthe backbone of
database theory [44]), and database-related questions have
traditionally provided the main motivation for finite model
theory research. Even the first formal definition of a central
database concept – that of aquery – was given by Chandra
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and Harel in what is now viewed as one of the seminal finite
model theory papers [4].

Even a decade ago, PODS routinely published papers the
core of which could be classified as pure finite model the-
ory. But the subject of finite model theory has finally come
of age; several texts have appeared [7, 14, 24, 28], and a
database theoretician no longer needs to be playing compli-
cated combinatorial games to get the results he or she needs.
Finite model theory has developed a large arsenal of tools –
many of them motivated by database problems – that can be
routinely used to get the results we (database theoreticians)
need.

To become familiar with such tools, one needs to go over a
finite model theory text, and such texts concentrate on proofs
and underlying principles as much as on the applicability of
tools. So my goal is to present, in this short survey, the key
tools of finite model theory that can be used by a database
researcher. I shall not explain how they are proved, but
concentrate instead on the statements and examples of their
applicability. This is not supposed to be a comprehensive
survey of finite model theory, and thus the list of references
is not meant to be exhaustive; the reader is referred to the
above mentioned texts for additional information, historical
comments, and references.

After giving basic notations, we consider standard tools for
proving expressivity bounds on first-order query languages:
games, locality, zero-one laws. We then move away from
first-order, and look at counting and aggregate extensions
(that resemble the counting power of SQL) and at fixed-
point extensions. We then revisit first-order in a setting
where nontrivial conditions on values stored in the database
(e.g., arithmetic operations and comparisons) can be used in
queries. After that we look at different applications of finite
model theory tools: instead of proving that some queries are
inexpressible in a logic, the new set of tools will help us show
equivalence of languages. Such tools are based on computing
with types and the composition method, and they are often
used for languages over trees (e.g., XML documents). We
conclude by outlining the basics of descriptive complexity
(showing that the logic in which a query is expressed and
the number of variables used in a query tell us a lot about
the complexity of query evaluation), as well as satisfiability
properties of queries, which can be used in static analysis
questions and answering queries over incomplete data.



2. Notations

We shall use the terminology of logic rather than rela-
tional databases and shall refer tovocabularies instead of
relational schemas. A vocabularyσ is a set of relational
symbols with associated arities. A structure of vocabulary
σ is A = 〈A, (RA)R∈σ〉, whereA, called the universe ofA,
is a nonempty set (always assumed to be finite), and each
RA is an interpretation of a relation fromσ: if R is k-ary,
thenRA ⊆ Ak. We shall normally omit the superscriptA in
interpretations of relations.

Note that some elements ofA may not be present in any
of the relationsRA; this is normal for the definition of a
structure, but of course in databases the universe is assumed
to be the set of all atomic values present in the database (this
set of values is sometimes referred to as theactive domain
of a database). This little difference won’t affect any of the
results as we can always add a unary relation interpreted as
A; then the active domain and the universe coincide.

Sometimes we look at vocabularies that have constant sym-
bols in addition to relation symbols. A constant symbol is
interpreted inA as an element ofA. When we writea ∈ A,
we actually meana ∈ A whereA is the universe ofA.

We often deal with graphs for the simplicity of exposition;
in that case the vocabulary contains one binary relationE,
and structures areG = 〈A,E〉, whereA is the set of nodes
andE is the set of edges.

An m-ary query over σ-structures is a mappingQ that
associates with each structureA a subset ofAm so that
Q is closed under isomorphism: ifh is an isomorphism
betweenA = 〈A, (RA)R∈σ〉 andB = 〈B, (RB)R∈σ〉, then
h(Q(A)) = Q(B). A 0-ary query can return two possible
values and thus is naturally associated with aBoolean query,
i.e., a class ofσ-structures closed under isomorphism. An
example of a binary query is the transitive closure of a graph;
examples of Boolean queries are connectivity test for graphs,
and a queryeven testing if the cardinality ofA is even.

We mostly look atfirst-order logic (FO) overσ, which is
obtained by closing atomic formulaeR(x̄) under the Boolean
connectives∨,∧,¬ and quantification∀x, ∃x. We also look
at second-order extensions, in particular, monadic exten-
sions, that permit quantification over sets∀X, ∃X . A sen-
tence is a formula without free variables. We writeϕ(x̄) to
indicate that̄x is the tuple of free variables ofϕ.

By thequantifier rank of a formula,qr(ϕ), we mean the
depth of quantifier nesting inϕ; that is, qr(ϕ) = 0 if ϕ
is atomic;qr(ϕ ∨ ψ) = qr(ϕ ∧ ψ) = max(qr(ϕ), qr(ψ));
qr(¬ϕ) = qr(ϕ); andqr(∃xϕ) = qr(∀xϕ) = qr(ϕ) + 1.

3. Classics – FO definability

In the early days of database theory, people liked to prove
inexpressibility results. The basic query language – rela-
tional calculus – is rather limited, so it is natural to ask
whether some natural queries (e.g., the transitive closureof a

graph) can be expressed in it. Ever since the negative answer
to this question given by Fagin [8], database theory has seen
much activity in the development of tools to prove such re-
sults. And since relational calculus has precisely the power
of FO, it is natural to ask first what logicians had to offer.

3.1 Forget the standard tools

Logicians use tools such as compactness. Compactness
says that if we have a setΦ of sentences{ϕi|i ∈ I} of the
same vocabulary, and each finite subset ofΦ has a model,
thenΦ has a model. Now imagine a propertyP that we want
to prove inexpressible in FO. The usual argument goes as
follows. AssumeP is expressible by a sentenceϕ. Then
construct a set of sentencesΦ so that each model ofΦ does
not satisfyP and yet each finite subset ofΦ has a model
satisfyingP . By compactness the latter will tell us that
Φ ∪ {ϕ} has a model; this contradiction then implies that
P is not FO-expressible. In fact this is how one shows that
graph connectivity is not FO-expressible.

So why aren’t database theoreticians happy with it? Be-
cause compactness deals with infinite structures: in fact the
model satisfying the entire familyΦ in the statement of the
compactness theorem is (almost always) infinite. And as
database people, we want to deal with finite structures.

But maybe a finite version of compactness holds? That
is, if each finite subset ofΦ has afinite model, thenΦ
has afinite model. The problem is, it doesn’t. Just look
at the sentencesλn saying that a structure hasn distinct
elements:∃x1, . . . , xn

∧

i6=j ¬(xi = xj). Each finite set of
such sentences has a finite model, but the set{λn|n ∈ N}
doesn’t. So compactness is not our tool of choice.

That said, we’ll give one example when compactness
proves something aboutfinite models. Namely, we show
that over the empty vocabulary (i.e., just sets), the query
even (even cardinality) is not FO-expressible. Assume, to
the contrary, thatϕexpresseseven over finite structures, and
consider the setΦ0 = {λn|n ∈ N}∪{ϕ}. Each finite subset
of Φ0 has a model (just pick a large enough even number),
and hence by compactnessΦ0 has a model. Another well-
known result in logic implies that it has acountable model,
i.e., just a countable set. But we could have applied the same
argument toΦ1 = {λn|n ∈ N}∪{¬ϕ} to get a countable set
satisfying¬ϕ. Now we have two countable sets, which are
isomorphic as structures; one satisfiesϕ and the other¬ϕ.
This contradiction implies thatϕ cannot expresseven.

But such proofs are rare in database theory, and we now
move to different tools designed for finite structures.

3.2 Games

For much of the early history of applications of finite model
theory, games were the tool of choice. They are commonly
known asEhrenfeucht-Fräıssé games. Such a game is
played on two structuresA andB of the same vocabulary
by two players, called thespoiler and theduplicator (less



imaginative names such as player 1 and player 2 are also often
used). Think of the spoiler as someone trying to show thatA

andB differ, and of the duplicator as someone trying to show
that they are the same. Even ifA andB are not isomorphic,
the games goes only for a fixed number of rounds, and this
gives the duplicator a chance of winning.

The game goes as follows. In each roundi, the spoiler
picks a structure and an element of that structure. The dupli-
cator goes to the other structure and picks an element there.
So if the spoiler picksA and an elementai ∈ A, the duplica-
tor responds with an elementbi ∈ B; and if the spoiler picks
B andbi ∈ B, then the duplicator responds with an element
ai ∈ A. Aftern rounds, we have pointsa1, . . . , an played in
A andb1, . . . , bn played inB. The duplicator wins the game
if the mappingai 7→ bi is a partial isomorphism betweenA
andB. For example, if the structures are graphs, it means
thatai = aj iff bi = bj and thatE(ai, aj) iff E(bi, bj) for all
i, j ≤ n. We say that the duplicatorhas a winning strategy
in then-round game if he can win no matter how the spoiler
plays. In that case, we writeA ≡n B.

The reason this is important is due to the following:A ≡n

B iff A andB agree on allFO sentences of quantifier rank
up ton. So now we have a nice tool to prove that a property
P is notFO-expressible: come up with families of structures
An,Bn, n ∈ N, so that:

1. all An’s satisfyP ; noBn satisfiesP ; and

2. An ≡n Bn for all n.

Why does this work? AssumeP is expressible inFO by a
sentenceϕof quantifier rankn. ThenAn |= ϕandBn |= ¬ϕ
by 1), but 2) tells us thatAn andBn have to agree onϕ.

So why not just stop there? The method of games looks
nice, and it is in a certain sense complete: any inexpressibility
result – even relative to a class of structures – can in principle
be proved by games. The problem with the technique is that,
even if we find good classes of structuresAn andBn, it is
oftenhard to prove thatAn ≡n Bn.

To illustrate this, we start with a very simple example,
where playing the game is actually easy, and then show how
the complexity rises quickly as structures get a bit more
complicated. The easy example is again the queryeven on
sets, i.e. structures of the empty vocabulary. Note that in the
n-round game on any two sets with at leastn elements, the
duplicator has a very simple winning strategy: if the spoiler
plays an already played element, the duplicator does the same
in the other set, and if the spoiler plays a new element, so
does the duplicator: the sizes of the sets ensure that inn
rounds, the duplicator won’t run out of elements to play.

So to show thateven is not expressible, we can take, for
example,An to be a2n-element set andBn to be a(2n+1)-
element set; by what we just saw,An ≡n Bn. So far so good,
but what if we have something in the vocabulary? After all,
databases without relations aren’t very interesting!

Let’s try to look at a little extension: suppose we deal not
with sets, but with orders, i.e. graphs with one binary relation

interpreted as a linear order. We denote ann-element linear
ordering byLn. Can we prove thateven is not expressible
over linear orders?

A moment’s reflection shows that the previous proof does
not work. But the following was observed by several authors,
e.g., [37]:

Theorem 3.1. For every m, k ≥ 2n, we have Lm ≡n Lk.

In particular,even is not expressible over orders: we take
L2n asAn, andL2n+1 asBn.

But it is more important to observe that a small addition to
the structure leads to an “exponential” blowup in the com-
plexity of the proof. In fact one does not even need an order
relation: the successor relation would do. And what if we
have two successor relations? Or three? Game-based proofs
become very heavy combinatorially. In fact, [10] suggested
that we build alibrary of winning strategies for the dupli-
cator. We now start working towards such a library, first by
showing a few simple tricks, and then creating powerful tools
for proving inexpressibility results.

3.3 Inexpressibility results: tricks

We have shown very little so far – only thateven cannot
be expressed over sets and linear orders – but with that, we
can already derive surprisingly strong bounds on the expres-
siveness ofFO. We are about to show, with a simple trick,
that graph connectivity, acyclicity, and the transitive closure
query are notFO-definable.

For graph connectivity, we start with linear orders. The
following query is easily definable: for each element in the
order, put an edge to its 2nd successor;also put edges between
the last element of the order and the 2nd element, and the
penultimate element and the first element. This construction
is illustrated below for orders on 5 and 6 elements.

⇒

⇒

It is now easy to observe that: a) the construction we pre-
sented is expressible inFO; and b) the resulting graph is
connected for orders of odd size, and contains two connected
components for orders of even size. Hence, if we could ex-
press graph connectivity inFO, we would be able to express
even on linear orders, contradicting Theorem 3.1.

This trick, observed by [19], also gives an easy proof that
testing whether a graph is acyclic is notFO-definable. In this
case, simply put one back edge, from the last element to the
first. The resulting graph is acyclic for orders of even size,
and cyclic for orders of odd size. With the transitive closure
query one can check if a graph is connected: add an edge
(x, y) for each edge(y, x), compute the transitive closure,
and see if the resulting graph is complete. So we get:



Corollary 3.2. Connectivity, acyclicity, and transitive
closure queries are not FO-expressible.

While the reduction-to-even trick is nice, it is just a trick,
and not yet a tool that can be applied in many situations. We
shall now be looking at such tools, starting with those based
on the locality ofFO.

3.4 Inexpressibility tools: locality

As a warm-up, consider again the inexpressibility of transi-
tive closure. Suppose we now start with asuccessor relation,
i.e. a graph of the form{(a1, a2), (a2, a3), . . . , (an−1, an)},
where all theai’s are distinct. When we view it as a graph,
all the in- and out-degrees of nodes are either0 or 1: in fact,
the in-degree ofa1 and the out-degree ofan are0, and all
other in- and out-degrees are1. In the transitive closure, we
have all the edges(ai, aj) for i < j. In particular, for each
numberk from {0, . . . , n − 1} there is a node whose in- or
out-degree isk. Thus, the transitive closure query takes a
graph whose degrees are either0 and1 and produces a graph
which realizes a “large” number of degrees: large here means
depending on the input.

It turns out thatFO-definable queries cannot exhibit such
a behavior. For now, consider queriesQ on graphs; that is,
both the input and the output of a query are graphs. If such
a query were definable in a logic, it would be by a formula
ϕ(x, y) with two free variables. The first locality-based tool
is captured by the following definition.

Definition 3.3. A query Q has the bounded number of
degrees property (BNDP) if there is a function fQ :
N → N such that for each graph G whose in- and out-
degrees are bounded by a number k, the number of dif-
ferent in- and out-degrees in Q(G) is at most fQ(k).

Theorem 3.4. ([6]) Every FO-definable query has the
BNDP.

The result is not limited to graph queries: it holds for
all FO-definable queries under the appropriate notion of a
degree inm-ary relations.

The BNDP is a very simple tool to use to prove that fixed-
point queries cannot be defined inFO: indeed, it is often
easy to produce many different degrees in the output with
such queries (typically, each stage of the fixed-point com-
putation generates a new element of the degree-set). The
transitive closure is one example, as we just saw. As another
application, consider thesame-generation query expressed
by the Datalog program below:

sg(x, x) :–
sg(x, y) :– e(x′, x), e(y′, y), sg(x′, y′)

That is, ife(·, ·) is the parent-child relation, thenx andy are
in the same generation if so are their parents or ifx = y. Now
consider a full binary tree of depthn. In it, all nodes have
degrees0, 1, or 2, but in the output of the same-generation
query we would have all degrees1, 2, 4, . . . , 2n present –
hence it violates the BNDP and is notFO-expressible.

The BNDP itself is based on twolocality tools that have
found numerous applications. They originate from results
by Gaifman [12] and Fagin, Stockmeyer, Vardi [10] (which
adapted results of Hanf [20] to finite models). Again, we
present these notions for graphs to keep the notation simple,
but they extend to queries on arbitrary structures.

Given a graphG, the distanced(a, b) between two nodes
is the length of the shortest path between them, if we forget
about the orientation of edges (i.e., we can traverse an edge
(u, v) in the direction fromu to v, and fromv to u). The
distanced(ā, b) for ā = (a1, . . . , an) is the minimum of the
distancesd(ai, b).

If G = 〈A,E〉 is a graph and̄a = (a1, . . . , an) ∈ An,
then theradius r ball around ā is the setBG

r (ā) = {b ∈
A | d(ā, b) ≤ r}, and ther-neighborhood of ā in G is
the subgraph induced byBG

r (ā), with ā being distinguished
nodes. The latter means that if we consider an isomorphism
h : NG

r (a1, . . . , an) → NG′

r (b1, . . . , bn), then we must have
h(ai) = bi for all i.

Definition 3.5. An m-ary query Q, for m > 0, is called
Gaifman-local if there exists a number r ≥ 0 such that
for every graph G, two tuples ā, b̄ ∈ Am cannot be dis-
tinguished by Q whenever NG

r (ā) and NG
r (b̄) are iso-

morphic.

By “cannot be distinguished” we mean thatā ∈ Q(G) iff
b̄ ∈ Q(G). This notion applies to allFO-queries:

Theorem 3.6. ([12]) Every FO-definable query is
Gaifman-local.

The canonical example of using Gaifman-locality is prov-
ing that transitive closure is notFO-definable. Suppose it
were, by a queryQ; then chooser as in the definition and con-
sider a very long chain, as below, with two points at distances
bigger than2r from each other, and from the endpoints:

... ... ... ... ... ... ... ...

a b

2r 2r

Thenr-neighborhoods of(a, b) and(b, a) are isomorphic,
since each is a disjoint union of two chains of length2r.
We know that(a, b) belongs to the output ofQ; hence by
Gaifman-locality,(b, a) is in the output as well, which con-
tradicts the assumption thatQ defines transitive closure.

And yet another notion of locality is applicable toFO-
queries, and it is often useful in establishing expressivity
bounds for Boolean queries. It refers topairs of structures.
Again we deal with graphs for simplicity. IfG = 〈A,E〉 and
G′ = 〈A′, E′〉 are two graphs, we writeG ⇆r G

′ if there
exists a bijectionf : A→ A′ such that for everya ∈ A, the
neighborhoodsNG

r (a) andNG′

r (f(a)) are isomorphic. The
⇆r relation says, in a sense, that locally two graphs look the
same, with respect to a certain bijectionf ; that is,f sends
each nodea into f(a) that has the same neighborhood.

Definition 3.7. A Boolean query Q is Hanf-local if there
exists a number r ≥ 0 such that for every two graphs G
and G′ satisfying G⇆rG

′, we have Q(G) = Q(G′).



Theorem 3.8. ([10]) Every FO-definable Boolean query
is Hanf-local.

The notion can be extended to non-Boolean queries as
well [21] but since most of the time Hanf-locality is applied
to prove inexpressibility of sentences, we only present this
limited version here.

We now give the canonical example of using Hanf-locality,
and prove that graph connectivity is notFO-definable. As-
sume to the contrary that it is; then it is Hanf-local, so we
choose the numberr as in the definition of Hanf-locality.
Now consider two graphs below, form > 2r + 1.

. . .

. . .

one cycle of length 2m

G
2

two cycles of length m

G
1

. .

. .. .

. .

Let f be an arbitrary bijection between the graphs. The
d-neighborhood ofany nodea is the same: it is a chain
of length2r with a in the middle. Hence,G1

⇆rG
2, and

they must agree onQ, butG2 is connected, andG1 is not.
Thus, graph connectivity is notFO-definable. A similar
example shows that testing whether a graph is a tree is not
FO-definable. In that case, we takeG1 to be a chain of length
2m, andG2 the disjoint union of a chain of lengthm and a
cycle of lengthm; thenG1

⇆rG
2 as long asm > 2r + 1.

It is natural to ask how these notions are related. The
precise relationship is known (assuming the definition of
Hanf-locality that applies to arbitrarym-ary queries):

Theorem 3.9. ([21]) Each Hanf-local query is Gaifman-
local, and each Gaifman-local query has the BNDP.

3.5 Other uses of locality

Hanf-locality as defined here can be applied only when
example structures have the same cardinality (e.g., the graphs
G1 andG2 in the picture). Sometimes this is an inconvenient
restriction, and a more relaxed notion can be used for graphs
of bounded degree. Suppose we are looking at graphs whose
in- and out-degrees are bounded byk ∈ N. Then, for each
fixed r, we have finitely many possible isomorphism types
of neighborhoods of radiusr. We denote this set byN (k, r).
For each graphG and a nodea, we say thata realizesτ ∈
N (k, r) if the isomorphism type ofNG

r (a) is τ . Now we
writeG⇆

∗
m,rG

′ if for eachτ ∈ N (k, r), either

1. bothG andG′ have the same number of nodes realizing
τ ; or

2. bothG andG′ have at leastm nodes realizingτ .

Thus, the numbers of nodes realizingτ have to be the same
up to thresholdm; above the threshold they can be arbitrary.
Notice that if we remove the second condition, we get the
definition ofG⇆rG

′. The applicability of this notion toFO
queries is due to the following.

Theorem 3.10. ([10]) For each FO sentence ϕ and k ∈
N, one can find numbers m, r ∈ N so that for every
two graphs G,G′ with degrees bounded by k, we have
G |= ϕ⇔ G′ |= ϕ whenever G⇆

∗
m,rG

′.

This result has an algorithmic application. We say that a
class of graphs hasbounded degree if for somek ∈ N, all
degrees in graphs in that class are bounded byk.

Theorem 3.11. ([40]) Evaluation of FO queries over
classes of graphs of bounded degree can be done with
linear-time data complexity.

The idea is simple: take a queryϕ, and the boundk
on degrees; computem, r as in Theorem 3.10, and con-
structN (k, r). Then enumerate functionsf : N (k, r) →
{0, . . . ,m, ∗}, and for each such function decide if a graph
in which the number of nodes realizingτ is f(τ) (with ∗
meaning “above the threshold”) satisfiesϕ. Notice that so
far we haven’t used the input graph. Now go over the input
graphG, compute in linear time the number of nodes realiz-
ing eachτ , and use the result of the precomputation to see if
G satisfiesϕ.

This result is a starting point of a field called algorithmic
model theory, that uses properties of logical formulae on var-
ious classes of graphs and other structures to come up with
efficient algorithms; see [16] for a survey. We finish this
section by a key result on locality often used in such appli-
cations. It characterizes precisely what can be expressed in
FO. We say that a formulaϕ(x) is r-local if all quantification
in it is of the form∃y ∈ Br(x) or∀y ∈ Br(x), i.e., restricted
to the radius-r ball aroundx.

Theorem 3.12. ([12]) Every FO sentence is equivalent
to a Boolean combination of sentences of the form

∃x1 . . . ∃xn

(

n
∧

i=1

ϕ(x) ∧
∧

i6=j

d(xi, xj) > 2r
)

,

where ϕ(x) is r-local.

In other words, such a basic sentence asserts the existence
of a scattered sequencex1, . . . , xn so that the same formula
ϕ is true in ther-neighborhood of eachxi; and everyFO
sentence is a Boolean combination of such basic sentences.

3.6 Structures with order

In most database applications, we deal with domains that
are totally ordered (e.g., numbers by the usual< relation
or strings by the lexicographic ordering). The question is
then whether the bounds on the expressive power remain
valid. More precisely, we now talk about expressibility over
structures of the form(A, <), i.e.,σ-structuresA expanded



with a binary relation< interpreted as a linear ordering on
the universe. Locality tools, as defined above, don’t tell us
anything about ordered structures: indeed since for every
two elementsa, a′ we have eithera ≤ a′ or a′ ≤ a, radius-1
neighborhood of every point is the whole structure.

The ‘reduction-to-even’ trick from Section 3.3 actually
shows that many queries (e.g., the transitive closure, connec-
tivity, acyclicity) remain inexpressible in the presence of an
order. Indeed, in those reductions, we always started with
a linear ordering, and then used connectivity or acyclicity
of some constructed graphs to check whether the number of
elements in an order was even.

But remarkably, locality tools can be applied after all to
structures with an order. Notice that when we talk about
connectivity, acyclicity, etc., of structures(A, <), we don’t
actually mention the order: the query asks about the structure
A itself. Such queries are called invariant: more precisely,
a queryQ over ordered structures isinvariant if for every
structureA, every tuplēa, and every two linear orderings<1

and<2 onA, we havēa ∈ Q((A, <1)) iff ā ∈ Q((A, <2)).

For queries definable inFO over arbitrary (finite and in-
finite) structures, invariance is equivalent toFO-definability
without the ordering. But for queries over finite structures
this is not the case [7, 28]: sometimes invariant queries ex-
press more thanFO alone can express overA. But nonethe-
less, they remain locality. More precisely, ifQ is an invari-
ant query, it naturally defines a queryQinv onσ-structures:
Qinv(A) = Q((A, <)) for an arbitrarily chosen ordering<.
We call such queriesQinv invariant FO-queries.

Theorem 3.13. ([17]) Every invariant FO-query is
Gaifman-local.

In particular, by Theorem 3.9, every invariantFO-query
has the BNDP. Hence, the bounds shown in the previous
section apply to such queries. But it is still open whether
all such queries are Hanf-local. A partial result is known
for queries on directed trees [32] (it actually proves a much
stronger result that we shall see shortly).

3.7 Inexpressibility tools: 0-1 laws

How diverse are classes of structures definable inFO?
Not very, it turns out. Suppose we pick a structure at ran-
dom. What is the probability that it will satisfy a givenFO
sentence? Say, your property is∀x∀y E(x, y). Then it’s
clear that such graphs are rare among all graphs, and thus
the probability will tend to0. Or we can look at the property
∀x∀y∃z E(z, x) ∧ ¬E(z, y). Turns out that this property is
very common, and the probability tends to1. More gener-
ally, for eachFO sentence,exactly one of the two possibilities
holds: the probability tends to0, or to1.

Let us formalize this. Assume that the universe of ann-
element structureA is {0, . . . , n− 1}. LetStrσ

n be the set of
all n-element structures of vocabularyσ, whereσ contains

only relations. For each property (Boolean query)Q, let

µn(Q) =
|{A ∈ Strσ

n | Q(A) = true |

|Strσ
n |

.

Another way of looking at it is thatµn(Q) is the proba-
bility that a randomly chosen structure on the set of nodes
{0, . . . , n − 1} satisfiesQ. Randomly here means with re-
spect to the uniform distribution: each tuple is put in each
relation with probability1

2
. We then define theasymptotic

probability of Q as

µ(Q) = lim
n→∞

µn(Q),

if the limit exists.

Definition 3.14. A logic has the zero-one law if for every
Boolean query Q expressible in it, either µ(Q) = 0 or
µ(Q) = 1.

Theorem 3.15. ([9]) FO has the zero-one law.

Thus, in a sense,FO cannot say anything interesting, at
least asymptotically. If we have anFO sentence, we know,
with high probability, whether it’s true or false. But of course
in database querying we aren’t interested in asymptotic be-
havior; rather, we need to know the result of a query in each
concrete instance.

The zero-one law gives us easy proofs of inexpressibilityof
counting properties. Consider again the queryeven. Since
µn(even) alternates between0 and1 depending on whether
n is even or odd, the limitµ(even) doesn’t exist, and thus
even cannot be anFO query. Likewise, if we consider
a propertyDk which is true iff the size of the structure is
divisible byk, then the same argument shows thatDk is not
FO-definable for allk > 1 (of courseeven is justD2).

As a slightly different example consider structures with
one unary relationU , and a queryparity testing whether
the size of the setU is even. Thenµn(parity) =
(
∑

i is even

(

n
i

)

)/2n andµ(parity) = 1
2

– henceparity is
notFO-definable.

Applying the zero-one law, one has to be careful about
vocabularies and interpretations of relations. For instance,
with constants, the zero-one law fails (the probability of a
loop on a constant is1

2
). Likewise, it fails in the presence of

orders or successor relations (assuming, for example, graphs:
the probability that there is an edge between the largest and
the smallest element is again1

2
). Quite remarkably though,

the zero-law holds in the presence of a circular successor
relation, i.e. a relation(a0, a1), (a1, a2), . . . , (an, a0) [30].

4. Beyond FO

Locality tools tell us thatFO cannot do fixed-point com-
putations. The zero-one law easily shows thatFO cannot do
nontrivial counting. Both counting and fixed-point compu-
tations play a prominent role in database queries: the former
in standard SQL querying that involves grouping and ag-
gregation, the latter – initially in the study of Datalog, and



more recently in extensions of SQL with recursion. We now
consider counting and fixed-point extensions ofFO. A quick
summary of the section is this:

• locality tools continue to work for counting extensions;

• the zero-one law holds for fixed-point extensions;

• but these are only true if we don’t add ordering.

4.1 Counting and aggregation

Since SQL has both counting and aggregation, it is nat-
ural to study counting extensions ofFO to understand its
power. Such extensions are achieved by addingcounting
quantifiers or counting terms. Let us illustrate this by an
example. Suppose we want to express theparity query
(whether the cardinality of a setU is even). We do it like
this:

∃j∃i
(

(i+ i = j)∧∃≥jx U(x)∧∀k(∃≥kx U(x)) → k ≤ j
)

There are a couple of new things here. First: the quantifiers
∃≥jx meaning “exists at leastj elementsx such that...”.
Second: quantification over numbers (∃i, ∃j) and arithmetic
subformulaei + i = j. Now let us decipher this formula.
The subformula∃≥jx U(x) ∧ ∀k(∃≥kx U(x)) → k ≤ j
says that there are at leastj elements inU , and if there arek
elements inU , thenj ≥ k – that is,|U |= j. The formula
∃i (i+ i = j) says thatj is even. So the whole formula says
that |U | is even.

Technically speaking, this logic is interpreted overtwo-
sorted structures of the formA = 〈A, {0, . . . , n− 1},
(RA)R∈σ,Arith〉, where, forA of cardinality n, the set
{0, . . . , n−1} is the numerical sort, andArith refers to a set
of arithmetic operations over it. The two sorts are connected
by quantifiers∃≥jx that bindx but notj. One such logic,
FO+Cnt, is defined by takingArith to be+ and× [25]. It
was shown in [34] that queries definable inFO+Cnt (i.e.,
definable by formulae without numerical-sort variables) are
Hanf-local (and thus Gaifman-local, and have the BNDP).

So far, the counting abilities of the logic are very limited:
the numerical universe is limited ton, the size ofA; even
though ak-ary relation may have up tonk tuples, we cannot
count beyondn. So it is natural not to put any restrictions on
the numerical sort. In other words, we consider the numerical
sort to be all ofN, add arbitrary arithmetic predicates, and
introducecounting terms #x̄.ϕ(x̄, · · · ) which count the
number of tuples̄a (over A) satisfyingϕ. For instance,
theparity query is expressed byPeven(#x.U(x)), as we
assume that all predicates available onN. To check if the
number of edges in a graph is a prime number, we can write
Pprime(#x, y.E(x, y)).

We call this logicFO + AllCnt. It turns out that even such
a powerful counting does not destroy locality.

Theorem 4.1. ([27]) FO + AllCnt queries are Hanf-
local (and thus Gaifman-local, and have the BNDP).

But even this form of counting is not exactly the aggre-
gates used in SQL that operate over whole columns and

can produce rational numbers. To model aggregates, we
need to assume relations with columns of two sorts (one
sort is numerical), and the addition ofaggregate terms
t′(x̄) = AggrF ȳ. (ϕ(x̄, ȳ), t′(x̄, ȳ)). Let us explain how
it works. First,F is an aggregate function, i.e., a family of
functionsf0, f1, f2, . . . so that eachfn takes ann-element
bag of rational numbers and produces a rational number.
Given a tuplēa, construct a setB = {b̄ | ϕ(ā, b̄) holds}. If
B = {b̄1, . . . , b̄n}, compute then-element bag of numbers
t′(ā, b̄i), i ≤ n, and lett(ā) befn applied to that bag1.

The logic resulting from enhancingFO + AllCnt by
changing the domain fromN andQ and addingall aggregate
functions is denoted byFO + Aggr. This addition models
both the grouping feature of SQL, arbitrary arithmetic and
arbitrary aggregation. And yet we have

Theorem 4.2. ([22]) FO + Aggr queries are Hanf-local
(and thus Gaifman-local, and have the BNDP).

Hence, queries such as graph connectivity and transitive
closure remain inexpressible when aggregates are added. But
what if we also add ordering? Unfortunately, the situation
is no longer as nice as it was forFO: we lose locality [21].
What’s more, even the simple logicFO+Cnt captures, over
ordered structures, a complexity class that has not yet been
separated fromNP. Very little is known about counting
logics over ordered structures. For instance, [32] considers
invariant queries definable in a simple extension ofFO with
modulo quantifiersDkxϕ(x, ·) (meaning that the number of
elements satisfyingϕ is divisible byk). Then, over trees,
such queries are Hanf-local, as long as all numbersk are odd.

4.2 Fixed-points

SinceFO cannot do fixed-point computations, it is natural
to add them to query languages – to answer queries such as
reachability (transitive closure) or the same-generation. In
the theory community, one normally deals with various fla-
vors of Datalog. Some Datalog features (recursive queries)
have now been incorporated into SQL. To compute the tran-
sitive closure of a binary relationE, one would write in
Datalog

R(x, y) :– E(x, y)
R(x, y) :– E(x, z), R(z, y)

The computation is by a fixed-point construction. We start
with the emptyR, and keep applying the rules. After one
step,R becomes equal toE, after2 steps, it has bothE and
nodes connected by a path of length2, and so on. The seman-
tics is defined as the least fixed-point of this construction.

There are multiple extensions ofFO and other logics with
fixed-point operators. These are described in detail in finite
model theory texts and we won’t give a formal definition here.
But we present two important bounds on the expressiveness
of Datalog. An obvious bound is that Datalog-expressible
1Since the logic doesn’t use a range-restriction condition
that would be imposed by the syntax of SQL, it is possible
that the bag B is infinite. In such a case we just assume
that the value of t is 0.



queries are monotone (assuming no negation, of course). A
much less obvious one is:

Theorem 4.3. ([2]) Datalog has the zero-one law.

Hence, Datalog still cannot expresseven. But this quickly
changes in the presence of an order, or even a successor
relationS(x, y) with predicatesmin(x) andmax(x) for the
smallest and the largest element; indeed

odd(x) :– min(x)
odd(x) :– S(y, x), even(y)
even(x) :– S(y, x), odd(y)

even :– max(x), even(x)

computes the queryeven. In fact, on structures withS,min,
andmax, Datalog with negation (under inflationary seman-
tics) capturesPtime[36], so proving, for example, that an
NP-complete query is not expressible in such a flavor of
Datalog amounts to separatingPtime from NP.

5. Back to FO

So far, elements populating our structures had no life; we
could only compare them for equality, or sometimes for or-
dering. But imagine that they are, for example, real numbers.
If we have a graph, we could ask, for instance, whether its
edges(x, y), viewed as points inR2, lie on the same circle:
∃a∃b∃r∀x∀y (E(x, y) → (x− a)2 + (y − b)2 = r2).

This setting was brought to the fore in the context ofcon-
straint databases [26]. Those were motivated by geograph-
ical and temporal databases, in which potentially infinite sets
are described finitely byFO formulae over some structures:
e.g., a geographical region can be described by its boundary,
given as a piecewise polynomial function. Expressibility
questions that arose in that setting initially looked different
from those that we have considered; for example, a typi-
cal question is whether it is possible to express topological
connectivity of a region. But it was quickly noticed that
most such questions are easily answered if we can answer
the usual, finite, expressibility questions [18].

So the model consists of

• an infinite structure M (e.g., 〈N,+, ·〉 or
〈R,+, ·, 0, 1, <〉);

• a relational vocabularyσ; and

• finite σ-structures overM (e.g., graphs whose nodes
are numbers).

The logic is the usualFO but with one addition: we have
two kind of quantifiers. Quantifiers of the first kind range
over theactive domain (the set of elements of the finite
structure). We denote them by∃x∈adom and∀x∈adom .
The universal quantifiers in our “lies on a circle” example
are such. Quantifiers of the second kind range over the entire
universe ofM. The existential quantifiers in our example are
such, since the coordinates of the center of the circle and its
radius needn’t be in the active domain. We denote this logic

by FO(M, σ), and its fragment that only uses the quantifiers
ranging over the active domain byFOact(M, σ) (note that it
is indeed a fragment since quantification over active domain
is FO-expressible).

Now, how can we answer questions about the expres-
siveness ofFO(M, σ)? We have seen many results about
the power of what can be viewed in this terminology as
FOact(M<, σ), whereM< = 〈U,<〉 is a structure that only
has a linear order available. Indeed, the ‘reduction-to-even’
trick applies, and invariant queries over it are Gaifman-local.

To get fromFO(M, σ) to FOact(M<, σ) one needs to
replace an arbitrary structure by an ordering, and arbitrary
quantification by finitary quantification. It turns out that the
former is easy, but the latter is much harder.

Many queries we are interested in (e.g., is a graph con-
nected?) aregeneric, meaning that they talk about the iso-
morphism types of finiteσ-structures (on the other hand, the
“lies on a circle” query is not generic). It is fairly easy to
show that if we have an arbitrary structureM = 〈U,<, . . .〉,
then every generic query definable inFO(M, σ) is also de-
finable inFO(〈U,<〉, σ) (see [26, 14] for simple expositions
of the proof based on Ramsey Theorem).

But the equalityFO(M, σ) = FOact(M, σ) is not true
in all structures: for example,FO(〈N,+, ·〉, σ) expresses
all computable queries overσ-structures, by coding them in
Peano arithmetic. It turns out that whetherFO(M, σ) =
FOact(M, σ) holds, depends on model-theoretic properties
of M. There are many sufficient conditions, which are sur-
veyed in [14, Chap. 5]. Below, we list examples which are
important for spatial and temporal applications.

Theorem 5.1. FO(M, σ) = FOact(M, σ) holds if M is
one of the following:

• 〈Q,+,−, 0, 1, <〉 (rationals, linear arithmetic);

• 〈R,+,−, 0, 1, <〉 (reals, linear arithmetic);

• 〈R,+, ·, 0, 1, <〉 (reals, polynomial arithmetic);

• 〈N,+〉 (Presburger arithmetic).

Hence, for all the structures in Theorem 5.1, generic
queries over finite databases over them are already express-
ible in the usual finite model theory setting:FO over the
ordered finite structure alone.

6. Language equivalence

A different set of finite model theory tools was taking
a prominent place in database theory research due to the
shift from relational model to semi-structured data models,
most notably XML. These tools are based on thecompo-
sition method [31], which allows one to computetypes
of structures. The notion of types has a precise mean-
ing, to be defined shortly. These tools are often used in
proving equivalence of two languages. To illustrate the
need for such equivalence results, consider a simple case
of databases defining strings. The choice of strings is not ar-
bitrary: XML documents are modeled as unranked trees,



and strings can be viewed as the simplest possible case
of those. Suppose we have a finite alphabetΣ; a string
w = a0 . . . an−1 ∈ Σ∗ of lengthn can be represented as
a structureAw = 〈{0, . . . , n − 1}, <, (Pa)a∈Σ〉, where<
is the usual ordering, and eachPa is the set of positionsi
labeled witha, i.e.,Pa = {i < n | ai = a}.

We consider logics such asFO or MSO (an extension of
FO with quantification over sets) over such structures. It is
well-known that for each sentenceϕ, the set of stringsw such
that Aw |= ϕ is regular. So here is one way of evaluating
ϕ: convert it into an automatonAϕ and run this automa-
ton onw. The complexity, in terms ofw, isO(|w|), but the
problem is that converting fromϕ toAϕ requires nonelemen-
tary complexity. What is more remarkable is that (modulo
some complexity-theoretic assumptions), any algorithm for
checking whetherAw |= ϕ that runs in linear time in|w| will
necessarily be nonelementary in the size ofϕ [11].

Does it mean thatFO querying of strings or trees is im-
possible if we want to achieve linear data complexity? Not
really, but we have to change thesyntax of the logic. In fact,
it is well known how to query strings with linear data and
query complexity: one uses the linear-time temporal logic
LTL. Its syntax is given by

ϕ, ψ := a | ϕ ∨ ψ | ¬ϕ | Xϕ | ϕUψ for a ∈ Σ

Such a formula is evaluated in a positioni of a stringw =
a0 . . . an−1: we have(w, i) |= a iff ai = a; and(w, i) |=
Xϕ iff (w, i + 1) |= ϕ; and finally(w, i) |= ϕUψ iff for
somej ≥ i we have(w, j) |= ψ and(w, k) |= ϕ for all k
such thati ≤ k < j. Finally, we writew |= ϕ iff (w, 0) |= ϕ.

It is well known that LTL-definable properties of strings
are precisely their FO-definable properties. And yet checking
whetherw |= ϕ, for an LTL formulaϕ, can be done in time
O(|ϕ| · |w|). Of course it means that the translation fromFO
to LTL is necessarily nonelementary, but LTL happens to be
a convenient logic for specifying properties of strings.

We shall now outline techniques behind such equivalence
results, for strings and trees. Even though XML documents
are modeled asunranked trees (in which different nodes can
have different number of children), here we concentrate on
binary trees for the simplicity of exposition, and refer the
reader to [29, 39] for surveys about logics and automata over
unranked trees.

6.1 Computing with types

The key advantage of well-structured databases (e.g.,
trees) is that the truth value of a formula on a structure
can be computed from truth-values of other formulae on
simpler substructures. This is the main idea of the com-
position method, and the main concept that we need is
that of types. For a structureA, its (FO) rank-k type is
tpk(A) = {ϕ |A |= ϕ and qr(ϕ) = k}. If formulaeϕ
range overMSO, then we talk about the MSO-rank-k type
mso-tp(A). (The notion of quantifier rank forMSO counts
the nesting depth of all – first- and second-order – quan-
tifiers.) We can also add free variables, by talking about

tpk(A, ā) as the set of all formulaeϕ(x̄) of quantifier rank
at mostk so thatA |= ϕ(ā).

It might appear initially that types are infinite objects, but
they aren’t. In fact, up to logical equivalence, there are only
finitely many differentFO (or MSO) sentences of quantifier
rankk. So if these sentences areϕ1, . . . , ϕM , then typesτ are
uniquely identified by formulaeϕτ =

∧

i∈I ϕi ∧
∧

j 6∈I ¬ϕj ,
specifying completely whichϕi’s hold and which don’t.
Note thatqr(ϕτ ) = τ . Also, each sentence of quantifier
rank k is a disjunction of sentences defining rank-k types,
andA ≡k B iff tpk(A) = tpk(B).

The latter observation allows us to compute types of struc-
tures from types of their substructures using games. As a
simple example, consider a structureAw representing a string
w and a structureAw·a representingw with letter a added
at the end. We claim thattpk(Aw) uniquely determines
tpk(Aw·a). Indeed, ifAw ≡k Aw′ , thenAw·a ≡k Aw′·a:
the strategy of the duplicator is to mimic the winning strat-
egy guaranteeingAw ≡k Aw′ if the play happens in(w,w′),
and respond with the last letter to such a move by the spoiler.
Thus, the duplicator combines the game onAw andAw′ with
a trivial game on two copies ofAa to come up with a game
onAw·a andAw′·a – hence the name ‘composition method’.

The same argument works forMSO as well (which has a
slightly more complicated game allowing set-moves [7, 28]).
This gives us the simplest proof that everyMSO sentenceϕ
on strings can be converted into an equivalent automaton
Aϕ. Let qr(ϕ) = k and letT = {τ0, . . . , τN} enumerate
rank-k MSO types. Letδ : T × Σ → T be a function
such that for each stringw with mso-tpk(Aw) = τ , we have
mso-tpk(Aw·a) = δ(τ, a); by what we have shown above,
the function is well-defined. Assume thatτ0 is the type of
the empty string, and thatϕ is equivalent to

∨

i∈I ϕτi
.

Then the automatonAϕ hasT as the set of states,τ0 as
the initial state,δ as the transition function, andτi, i ∈ I, as
final states. This automaton is deterministic, and it actually
computes types as it runs on a stringw: the state it is in after
readingw is preciselymso-tpk(Aw).

6.2 An example: monadic Datalog

We now use the ideas of the previous section and show how
to produce a linear-complexity language equivalent toMSO
formulaeϕ(x) on both strings and binary trees. Suchunary
queriesϕ(x) select a set of positions in a string or in a tree.
If we view trees as XML documents, such queries amount
to information extraction: i.e., choosing certain nodes from
trees. The technique of this section is from [13, 33].

We start with the easier case of strings. An easy observa-
tion – again by composition – is thatmso-tpk(Aa0...an−1

, i)
is uniquely determined bymso-tpk(Aa0...ai−1

), the letterai,
and mso-tpk(Aai+1...an−1

). Also mso-tpk(Aw) uniquely
determinesmso-tpk(Aw−1), i.e.,w read backwards (again
by games; the duplicator doesn’t in fact need to change
his strategy). Hence, we have a functionη that takes
a triple (τ, τ ′, a) and computes themso-tpk(Aa0...an−1

, i)



under the assumptions thatmso-tpk(Aa0...ai−1
) = τ ,

mso-tpk(Aan−1...ai+1
) = τ ′ andai = a.

We now use this to come up with a Datalog program that
expressesϕ(x). The extensional predicates are the successor
relationS(·, ·), labelingPa(·), andFirst(·) andLast(·) for
the first and the last element. For each typeτ , we shall have
two intensional unary predicatesU τ (true in i if the rank-k
type ofa0 . . . ai is τ ) andVτ (true in i if the rank-k type of
an−1 . . . ai is τ ). They are computed by:

Uτa
(x) :– First(x), Pa(x); a ∈ Σ

Uτ ′(x) :– S(y, x), Pa(x), Uτ (y); a ∈ Σ, δ(τ, a) = τ ′

Vτa
(x) :– Last(x), Pa(x); a ∈ Σ

Uτ ′(x) :– S(x, y), Pa(x), Vτ (y); a ∈ Σ, δ(τ, a) = τ ′,

where τa is the type of the stringa. Next, if the type
η(τ, τ ′, a) is consistent withϕ, we add a rule

Answer(x) :– Uτ (y), S(y, x), Pa(x), S(x, z), Vτ ′(z)

to the program. We also need the “bound-
ary” cases when one of the types isτ0, e.g.,
Answer(x) :– First(x), S(x, z), Pa(x), Vτ ′ (z) if
η(τ0, a, τ

′) impliesϕ.

In the resulting program, every intensional predicate is
monadic, i.e., we are dealing withmonadic Datalog. Thus,
over strings, everyMSO formulaϕ(x) can be expressed by a
monadic Datalog program; the converse is true as well (and
in fact is much easier). Hence, monadic Datalogcaptures
MSO. Furthermore, monadic Datalog can be evaluated in
time linear in both the size of the program and the size of the
string [13].

This technique can be extended to unranked trees; in fact,
due to its expressivity and low complexity, monadic Datalog
has been successfully used for information extraction from
XML documents [13]. For simplicity, we present it here for
binary trees. A binary tree is viewed as a structureT =
〈D,S0, S1, (Pa)a∈Σ〉, whereD ⊆ {0, 1}∗ is the domain, i.e.
a prefix-closed finite set of strings over{0, 1} so that for
eachs ∈ D, either boths · 0 ands · 1 are inD, or none
is inD. In the vocabulary, we have two successor relations
S0 = {(s, s · 0)} andS1 = {(s, s · 1)}, and the labeling
predicatesPa’s, as for strings.

Given a treeT and a nodes in its domain, byTs we mean
the subtree rooted ats, i.e., the subtree generated by all the
nodes that contains as a prefix. Anenvelope env(T, s) is
obtained by removingTs from T , except the nodes itself,
which is viewed as a distinguished node (technically, an en-
velope is a structure of a vocabulary expandedwith a constant
symbol, interpreted ass).

Fix k > 0. Let T = {τ0, . . . , τN} be the rank-k MSO
types of trees, andΘ = {θ0, . . . , θM} be the rank-k MSO
types of trees with an extra element (e.g., types of envelopes
will come from from this set). The three composition results
we need now are as follows:

1. There is a functionδ : T × T × Σ → T so that if
mso-tpk(T ) = τ andmso-tpk(T ′) = τ ′, then for the

treeT ′′ whose root is labeleda, the left subtree isT
and the right subtree isT ′, mso-tpk(T ′′) = δ(τ, τ ′, a).

2. There are functionsγi : T × Θ → Θ, for i = 0, 1,
so that for a treeT and a nodes whose last letter isi,
with mso-tpk(Ts) = τ andmso-tpk(env(T, s)) = θ,
we havemso-tpk(env(T, s · i)) = γi(τ, θ).

3. There is a functionβ : T × Θ → Θ so that if
mso-tpk(Ts) = τ andmso-tpk(env(T, s)) = θ, then
mso-tpk(T, s) = β(τ, θ).

Again, these are proved by simple game composition argu-
ments. So now we can start building a monadic Datalog
program that evaluates anMSO formulaϕ(x) of quantifier
rank k. We assume that the extensional predicates areS0,
S1, the labeling predicates, as well as unary predicatesLeaf
andRoot. First, we compute types of subtrees usingδ:

Uτa
(x) :– Leaf(x), Pa(x)

Uτ (x) :– S0(x, x
′), S1(x, x

′′), Pa(x), Uτ ′(x′), Uτ ′′(x′′)

for all δ(τ ′, τ ′′, a) = τ . Hereτa is the type of the singleton-
tree labeleda. Then we handle envelope predicatesVθ(·)’s:

Vθa
(x) :– Root(x), Pa(x)

Vθ(x) :– S0(y, x), S1(y, z), Vθ′(y), Uτ (z)

whereθa is the type of a single-node tree labeleda, and
whereγ0(θ

′, τ) = θ (of course we add symmetric rules for
γ1). Finally, for each pair of typesτ, θ such thatβ(τ, θ) is
consistent withϕ, we include the rule

Answer(x) :– Uτ (x), Vθ(x)

Thus, again, the composition technique and computing with
types naturally suggested a language that capturesMSO, and
has good query evaluation properties (both data and query
complexity remain linear over trees). In fact most languages
with good query evaluation properties over unranked trees
have been obtained with the help of the composition method
([29] surveys several of them).

7. Know the complexity

Expressibility – or inexpressibility – of queries in logical
formalisms can tell us a lot about their complexity. This is
mainly due to the achievements of a field called descriptive
complexity, that provides machine-independent characteri-
zations of complexity classes. Also, knowing the number
of variables needed to express a query can give us some ad-
ditional insights, not in terms of the complexity class, but
rather the actual big-O complexity of query evaluation.

7.1 Descriptive complexity

The field of descriptive complexity started with a classical
result by Fagin that existential second-order logic captures
the classNP [8]. It was followed by the characterization of
Ptime on ordered structures as the set of properties defined
in least-fixed-point logic [23, 42], and then logical charac-
terizations appeared for many more complexity classes (see



[24] for a comprehensive survey). We list below some of the
most relevant classes used in database theory research, and
their corresponding logics. Note that in all the results be-
low, exceptNP, coNP, andPH, logics capture complexity
classes only over ordered structures.

• AC0 – the complexity of the relational calculus. This
class can be described as constant parallel time (with
polynomial many processors). In factAC0 is a bit
larger than the class ofFO-definable properties, as it
assumes an ordered universe and basic arithmetic pred-
icates (+, ·) over it. Even then,AC0 is one of very
few complexity classes for which nontrivial bounds
have been proved: for example, we know thatparity,
graph connectivity, and many other queries are not ex-
pressible in it [1].

• TC0 – constant parallel time with additional, majority,
gates (checking whether the number of1s is more than
the number of0s). The relevance of this class is due to
the fact that it is captured, over ordered structures, by
FO+Cnt (the first counting approximation of SQL).
The class is not yet separated fromNP, although it is
widely believed to be a small subset ofPtime.

• DLog,NLog – deterministic and nondeterministic
logspace. These classes are captured by extensions
of FO with transitive closure operators. ForDLog,
the transitive closure has to be deterministic, meaning
that on a path, every node has to have outdegree1.

• Ptime – captured by the extension ofFO with a least-
fixed-point operator (like in Datalog). This can be seen
as capturing the complexity of the extension of SQL
with recursion.

• NP,coNP,PH (polynomial hierarchy) – these
classes appear mostly in static analysis of queries and
constraints (queries with such complexity would be
prohibitively expensive). They are captured by exis-
tential, universal, and full second-order logic respec-
tively. And while we cannot yet separate those, in the
monadic case (when second-ordervariables range over
sets), we know that all these logics are different [10].

• Pspace – again this class typically comes up in static
analysis problems; it can be characterized via anFO
extension with apartial fixed-point (i.e., a fixed-point
operator that may or may not converge; if it diverges,
the result is assumed to be empty).

We have a chain of inclusionsAC0 ( TC0 ⊆ DLog ⊆
NLog ⊆ Ptime ⊆ {NP,coNP} ⊆ PH ⊆ Pspace. All
results talk aboutdata complexity, i.e., complexity in terms
of the size of the structure, and not the formula. One can
also gain a lot of additional insight by incorporating the size
of the formula as a parameter; we refer to [15] for a survey
of the field of parameterized complexity.

7.2 Count the variables

Often, when we writeFO formulae, we use variables as
we please. But they turn out to be a useful measure of

complexity, and it pays off to use them carefully. Let us
consider a simple property: a linear ordering has at least
3 elements. A naive way to write this as anFO sentence
is ∃x∃y∃z (x < y < z). But we can also do it like this:
∃x∃y (x < y ∧∃x (x = y ∧ ∃y (x < y))). So we expressed
the same property with just2 variables. In fact, the same
trick can show that every cardinality of a linear ordering can
be expressed by a sentence using just two variables.

We refer to a fragment ofFO that uses a fixed set of
variablesx1, . . . , xk by FOk. One of the key reasons this
restriction is important is the following:

Theorem 7.1. ([43]) An FOk-definable query can be
evaluated in time O(nk).

Another reason has to do with fixed-point logics. It can be
shown that for each fixed-point formula (whether it is least-,
or partial-, or some other fixed-point) withk variables can be
expressed as a countable disjunction ofFO2k formulae. The
logic obtained by closingFOn’s by countable disjunctions
and conjunctions is well-studied in finite model theory, as
it has good properties and provides a uniform treatment of
fixed-point logics (for example, it has the zero-one law; it can
be used to relate questions about separation of complexity
classes to questions about distinguishing logics; and it can be
used to show that least-fixed-point logic capturesPtime on
some classes of unordered structures; see [5, 7, 28] for more
details). It is also known that over arbitrary finite structures,
theFOk hierarchy is strict, and in a remarkable recent paper
[38] a long-standing open question about the strictness of
the FOk hierarchy overordered structures was answered
positively.

8. Satisfiability questions

These questions often appear in the study of static analysis
questions (for example, is a given specification consistent?)
or in the study of incompleteness of information (can we
answer a query with certainty?)

The general satisfiability question is this: given anFO
formulaϕ, does it have a model (i.e., isϕ satisfiable)? In
database theory, we are interested primarily infinite satisfi-
ability: givenϕ, does it have a finite model?

In a paper that is often associated with the birth of finite
model theory, Trakhtenbrot [41] proved that finite satisfi-
ability is undecidable (even more, it is not co-r.e., unlike
arbitrary satisfiability, which is co-r.e.). This result can be
used to show that some problems related to answering queries
with certainty (say, over incomplete databases, or in data in-
tegration scenarios) are undecidable. For example, assume
that we have a viewV of an unknown databaseD, and we
know thatV is obtained fromD by losing tuples, and re-
placing some values with nulls. Now ifQ is anFO query,
can we find tuples that are guaranteed to belong toQ(D),
assuming that we only have access toV ? The answer is that
this problem is undecidable. Indeed ifV is empty, andQ is
a Boolean query (a sentence), finding such certain answers



means thatϕ is valid in all finite structures, i.e.,¬ϕ is not
satisfiable. Hence, this is undecidable (not even r.e., in fact).

But for some classes ofFO sentences, satisfiability and
finite satisfiability coincide, and can be established by means
of a finite model property: if ϕ has a model, then it has a
model of sizef(|ϕ|), for some computable functionf .

Two such cases keep coming up in database research. One
is the Bernays-Scḧonfinkel class that consists of formulae
∃x1 . . . ∃xm∀y1 . . . ∀yk α, whereα is quantifier-free. It turns
out that if such a sentence is satisfiable, then it is satisfiable
in a structure whose universe has at mostm elements. This
can also be used to show that satisfiability for this class
is NExpTime-complete in general, andPspace-complete
when arities of relations are fixed.

The second important class isFO2, i.e., FO with two
variables. Each satisfiable sentence is again satisfiable ina
finite structure, of a larger size, but still giving the overall
NExpTime-completeness bound. Moreover, this result is
rather robust as the finite model property can be extended
to classes of structures which are themselves not definable
in FO2, for example, for structures with an extra order, or
an extra equivalence relation, or even unranked trees with an
extra equivalence relation [3, 35].
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