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ABSTRACT and Harel in what is now viewed as one of the seminal finite
model theory papers [4].

For many years, finite model theory was viewed as the back- . )

bone of database theory, and database theory in turn sdpplie  EVven a decade ago, PODS routinely published papers the

finite model theory with key motivations and problems. By core of which could be classified as pure finite model the-

now, finite model theory has built a large arsenal of tools tha ©Ory- But the subject of finite model theory has finally come

can easily be used by database theoreticians without going®f 29€; several texts have appeared [7, 14, 24, 28], and a

to the basics such as combinatorial games. We survey suctflatabase theoretician no longer needs to be playing compli-

tools here, focusing not on how they are proved, but rather cated combinatorial games to get the results he or she needs.

on how to apply them, as-is, in various questions that come Finite model theory has developed a large arsenal of tools —

up in database theory. many of them motivated by database problems — that can be
routinely used to get the results we (database theoresician
Categories and Subject Descriptors. F.4.1 need.

[Mathematical Logic and Formal Languages]:
Mathematical Logic; F.4.3 NMathematical Logic
and Formal Languages]: Formal Languages; H.2.4
[Database Management]: Systems—Relational
databases

To become familiar with such tools, one needs to go over a
finite model theory text, and such texts concentrate on groof
and underlying principles as much as on the applicability of
tools. So my goal is to present, in this short survey, the key
tools of finite model theory that can be used by a database
researcher. | shall not explain how they are proved, but
concentrate instead on the statements and examples of their
Keywords. finite models, expressive power, complexity, applicability. This is not supposed to be a comprehensive
games, order, types, logics, query languages survey of finite model theory, and thus the list of references

is not meant to be exhaustive; the reader is referred to the
] above mentioned texts for additional information, histati
1. Introduction comments, and references.

General Terms. Theory, Languages, Algorithms

) ] ] After giving basic notations, we consider standard toals fo
Since database query languages are logic-based (relationgyroving expressivity bounds on first-order query languages
calculusis first-order logic), answering relational queries games, locality, zero-one laws. We then move away from
amounts to evaluating formulae over finite relational struc first-order, and look at counting and aggregate extensions
tures. Dealing with logical formulae over finite structures (that resemble the counting power of SQL) and at fixed-
is the subject of finite model theory. So not surprisingly, point extensions. We then revisit first-order in a setting
finite model theory played a central role in the develop- \here nontrivial conditions on values stored in the databas
ment of database theory (it was even called backbone of (e g., arithmetic operations and comparisons) can be nsed i
database theory [44]), and database-related questions have qyeries. After that we look at different applications oftini
theory research. Even the first formal definition of a central jnhexpressible in a logic, the new set of tools will help ussho
database concept — that ofjacry — was given by Chandra  equivalence of languages. Such tools are based on computing
with types and the composition method, and they are often
used for languages over trees (e.g., XML documents). We
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2. Notations graph) can be expressed in it. Ever since the negative answer
to this question given by Fagin [8], database theory has seen
much activity in the development of tools to prove such re-
sults. And since relational calculus has precisely the powe
of FO, it is natural to ask first what logicians had to offer.

We shall use the terminology of logic rather than rela-
tional databases and shall referdecabularies instead of
relational schemas. A vocabulasyis a set of relational
symbols with associated arities. A structure of vocabulary
oisA = (A, (R*)re,), WhereA, called the universe i, 3.1 Forget the standard tools
is a nonempty set (always assumed to be finite), and each
R* is an interpretation of a relation froet if R is k-ary,
thenR* C A*F. We shall normally omit the superscrijitin
interpretations of relations.

Logicians use tools such as compactness. Compactness
says that if we have a sét of sentenceg;|i € I} of the
same vocabulary, and each finite subsetdiias a model,

Note that some elements df may not be present in any then® has a model. Now imagine a propefthat we want
of the relationsR*; this is normal for the definition of a  to prove inexpressible in FO. The usual argument goes as
structure, but of course in databases the universe is assumefollows. AssumeP is expressible by a sentenge Then
to be the set of all atomic values present in the database (thi construct a set of sentencésso that each model @b does
set of values is sometimes referred to asdh@ve domain not satisfy’? and yet each finite subset @f has a model
of a database). This little difference won't affect any afth ~ satisfying?. By compactness the latter will tell us that
results as we can always add a unary relation interpreted asP U {¢} has a model; this contradiction then implies that
A; then the active domain and the universe coincide. P is not FO-expressible. In fact this is how one shows that

_ ] graph connectivity is not FO-expressible.
Sometimes we look at vocabularies that have constant sym-

bols in addition to relation symbols. A constant symbolis  So why aren’t database theoreticians happy with it? Be-

interpreted irkl as an element al. When we writen € 2, cause compactness deals with infinite structures: in fact th

we actually meam € A whereA is the universe o¥{. model satisfying the entire famil§ in the statement of the
compactness theorem is (almost always) infinite. And as

~ We often deal with graphs for the simplicity of exposition;  gatabase people, we want to deal with finite structures.
in that case the vocabulary contains one binary relafipn

and structures ar€ = (A, E), whereA is the set of nodes But maybe a finite version of compactness holds? That
andE is the set of edges. is, if each finite subset o has afinite model, thend
. . has afinite model. The problem is, it doesn’t. Just look
AN m-ary query over o-structures is a mapping that at the sentences, saying that a structure has distinct
associates with each structu?ea subset ofA™ so that elements3z;, ..., 2, A, ~(z; = x;). Each finite set of

Q@ is closed under isomorphism: K is an isomorphism
betweerRl = (A, (R¥)gre,) and®B = (B, (R?)ge, ), then
h(Q()) = Q(B). A 0-ary query can return two possible
values and thus is naturally associated wifbvalean query, That said, we’'ll give one example when compactness
i.e., a class ot-structures closed under isomorphism. An proves something aboifinite models. Namely, we show
example of a binary query is the transitive closure of a graph that over the empty vocabulary (i.e., just sets), the query
examples of Boolean queries are connectivity test for ggaph EVEN (even cardinality) is not FO-expressible. Assume, to
and a quergVveN testing if the cardinality ofd is even. the contrary, thap expressesvEen over finite structures, and
consider the seby = {\,,|n € N} U{p}. Each finite subset

of &, has a model (just pick a large enough even number),
and hence by compactneds has a model. Another well-
known result in logic implies that it has@untable model,

i.e., just a countable set. But we could have applied the same
argumenttad; = {\,|n € N}U{—p} to geta countable set
satisfying—y. Now we have two countable sets, which are
isomorphic as structures; one satisfiegnd the other.

By the quantifier rank of a formula,qr(¢), we meanthe ~ This contradiction implies that cannot expressvEN.

depth of quantifier nesting ip; that is, ar(¢) = 0 if But such proofs are rare in database theory, and we now

is atomiciqr( V ¢) = ar(p A ) = max(qr(e), ar()); move to different tools designed for finite structures.
ar(=p) = ar(e); andar(3ze) = qr(Vee) = qr(p) + 1.

such sentences has a finite model, but the{8gtn € N}
doesn’t. So compactness is not our tool of choice.

We mostly look atfirst-order logic (FO) overo, which is
obtained by closing atomic formuld&z) under the Boolean
connectives/, A, — and quantificatiowz, 3z. We also look
at second-order extensions, in particular, monadic exten-
sions, that permit quantification over s&t&’, 3X. A sen-
tence is a formula without free variables. We writér) to
indicate thatz is the tuple of free variables of.

3.2 Games

3. Classics — FO definability

For much of the early history of applications of finite model
In the early days of database theory, people liked to prove theory, games were the tool of choice. They are commonly
inexpressibility results. The basic query language — rela- known as Ehrenfeucht-Fraissé games. Such a game is
tional calculus — is rather limited, so it is natural to ask played on two structure® and‘B of the same vocabulary
whether some natural queries (e.g., the transitive clasfiae by two players, called thepoiler and theduplicator (less



imaginative names such as player 1 and player 2 are also ofterinterpreted as a linear order. We denoteraglement linear

used). Think of the spoiler as someone trying to show2hat
andB differ, and of the duplicator as someone trying to show
that they are the same. Everifands are not isomorphic,

the games goes only for a fixed number of rounds, and this

gives the duplicator a chance of winning.

The game goes as follows. In each roundhe spoiler
picks a structure and an element of that structure. The-dupli

ordering byL,,. Can we prove thatvEN is not expressible
over linear orders?

A moment’s reflection shows that the previous proof does
notwork. Butthe following was observed by several authors,
e.g., [37]:

Theorem 3.1 For every m,k > 2", we have L, =, L.

cator goes to the other structure and picks an element there,, particular,EVEN is not expressible over orders: we take

So if the spoiler pick€l and an element; € 2L, the duplica-
tor responds with an elemefte 9B; and if the spoiler picks

B andb; € B, then the duplicator responds with an element
a; € 2. After n rounds, we have points, . . ., a,, playedin

A andby, . .., b, playedin®. The duplicator wins the game

if the mappinga; — b; is a partial isomorphism betweé&h

Lon as?,,, andLon 11 aSB,,.

But it is more important to observe that a small addition to
the structure leads to an “exponential” blowup in the com-
plexity of the proof. In fact one does not even need an order
relation: the successor relation would do. And what if we

and®B. For example, if the structures are graphs, it means have two successor relations? Or three? Game-based proofs

thatai = aj iff b; = bj and thatE(ai, aj) iff E(bi, bj) for all

1,j < n. We say that the duplicat@us a winning strategy

in then-round game if he can win no matter how the spoiler
plays. In that case, we writ#$ =,, 8.

The reason this is important is due to the followifg=,,
B iff A andB agree on alFO sentences of quantifier rank
up ton. So now we have a nice tool to prove that a property
P is notFO-expressible: come up with families of structures
A, B, n €N, sothat:

1. all2(,,’s satisfyP; noB,, satisfiesP; and
2. AU, =, B, foralln.

Why does this work? Assum@ is expressible ifO by a
sentence of quantifier ranke. Then2(,, = pand®,, = —¢
by 1), but 2) tells us thal,, andB,, have to agree op.

become very heavy combinatorially. In fact, [10] suggested
that we build alibrary of winning strategies for the dupli-
cator. We now start working towards such a library, first by
showing a few simple tricks, and then creating powerfulgool
for proving inexpressibility results.

3.3 Inexpressibility results: tricks

We have shown very little so far — only thateEn cannot
be expressed over sets and linear orders — but with that, we
can already derive surprisingly strong bounds on the expres
siveness of'O. We are about to show, with a simple trick,
that graph connectivity, acyclicity, and the transitivestire
query are not'O-definable.

For graph connectivity, we start with linear orders. The
following query is easily definable: for each element in the
order, putan edge to its 2nd successor; also put edges lretwee

So why not just stop there? The method of games looks the last element of the order and the 2nd element, and the

nice, anditisin a certain sense complete: any inexpreigibi
result —even relative to a class of structures —can in laci

be proved by games. The problem with the technique is that,

even if we find good classes of structulés and®5,,, it is
often hard to prove tha®l,, =,, B,,.

To illustrate this, we start with a very simple example,

where playing the game is actually easy, and then show how
the complexity rises quickly as structures get a bit more

complicated. The easy example is again the quemyN on
sets, i.e. structures of the empty vocabulary. Note thdten t
n-round game on any two sets with at leastlements, the
duplicator has a very simple winning strategy: if the spoile

plays an already played element, the duplicator does the sam
in the other set, and if the spoiler plays a new element, so

does the duplicator: the sizes of the sets ensure that in
rounds, the duplicator won't run out of elements to play.

So to show thakvEN is not expressible, we can take, for
examplegl,, to be &2n-element set an®,, to be a(2n+1)-
element set; by what we just séy, =,, B,,. Sofarso good,
but what if we have something in the vocabulary? After all,
databases without relations aren’t very interesting!

Let’s try to look at a little extension: suppose we deal not
with sets, butwith orders, i.e. graphs with one binary retat

penultimate element and the first element. This constmctio
is illustrated below for orders on 5 and 6 elements.

=

e
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It is now easy to observe that: a) the construction we pre-
sented is expressible iRO; and b) the resulting graph is
connected for orders of odd size, and contains two connected
components for orders of even size. Hence, if we could ex-
press graph connectivity IRO, we would be able to express
EVEN on linear orders, contradicting Theorem 3.1.

This trick, observed by [19], also gives an easy proof that
testing whether a graphis acyclic is itid-definable. In this
case, simply put one back edge, from the last element to the
first. The resulting graph is acyclic for orders of even size,
and cyclic for orders of odd size. With the transitive clesur
qguery one can check if a graph is connected: add an edge
(z,y) for each edgdy, =), compute the transitive closure,
and see if the resulting graph is complete. So we get:



Corollary 3.2. Connectivity, acyclicity, and transitive The BNDP itself is based on twicality tools that have
closure queries are not FO-expressible. found numerous applications. They originate from results
by Gaifman [12] and Fagin, Stockmeyer, Vardi [10] (which
While the reduction-tasvEN trick is nice, itis justatrick, ~ adapted results of Hanf [20] to finite models). Again, we
and not yet a tool that can be applied in many situations. We present these notions for graphs to keep the notation sjimple
shall now be looking at such tools, starting with those based but they extend to queries on arbitrary structures.

on the locality ofF0. Given a graph, the distancel(a, b) between two nodes

is the length of the shortest path between them, if we forget

3.4 Inexpressibility tools: locality about the orientation of edges (i.e., we can traverse an edge
(u,v) in the direction fromu to v, and fromv to u). The
As awarm-up, consider again the inexpressibility of transi  distanced(a, b) fora = (a1, . .., a,) is the minimum of the
tive closure. Suppose we now start witkwaecessor relation, distancesi(a;, b).
i.e. agraph of the formi(as, az), (a2, as), ..., (an-1,an)}, If G = (A, E) is a graph andi = (a1, ...,a,) € A",
where all thez;'s are distinct. When we view it as a graph, e themdz'@;s r ball around @ is the Setéc(é) = {be
all the in- and out-degrees of nodes are either 1: in fact, A | da,b) < r}, and ther-nez‘qhborhoo& of a in G is

the in-degree ofi; and the out-degree af,, are0, and all
other in- and out-degrees areIn the transitive closure, we
have all the edge&:;, a;) for i < j. In particular, for each

the subgraph induced by (@), with @ being distinguished
nodes. The latter means that if we consider an isomorphism

. G el

numberk from {0, ..., n — 1} there is a node whose in- or Z('a].\)fr_(%% ’fb.r.élcll?) = N2 (b, - bn), then we must have
out-degree is. Thus, the transitive closure query takes a v '
graph whose degrees are eith@nd1 and produces a graph  Definition 3.5. An m-ary query Q, for m >0, is called
which realizes a “large” number of degrees: large here meansGaifman-local if there exists a number r > 0 such that
depending on the input. for every graph G, two tuples a,b € A™ cannot be dis-

] ] o tinguished by Q whenever N&(a) and N (b) are iso-

It turns out that’O-definable queries cannot exhibit such 5y pic.

a behavior. For now, consider queri@on graphs; that is,
both the input and the output of a query are graphs. If suich By “cannot be distinguished” we mean that Q(G) iff
a query were definable in a logic, it would be by a formula 3, ¢ (). This notion applies to alFO-queries:

o(x,y) with two free variables. The first locality-based tool .
is(cap'zured by the following definition. Theorem 3.6 ([12])  Bvery FO-definable query is
Gaifman-local.

Definition 3.3. A query @ has the bounded number of

degrees property (BNDP) if there is a function fq : The canonical example of using Gaifman-locality is prov-
N — N such that for each graph G whose in- and out- ing that transitive closure is n@O-definable. Suppose it
degrees are bounded by a number k, the number of dif- were, by aquerg; then choose as in the definition and con-
ferent in- and out-degrees in Q(G) is at most fo(k). sider a very long chain, as below, with two points at distance
Theorem 3.4 ([6]) Every FO-definable query has the bigger tharr from each other, and from the endpoints:
BNDP. 2r 2r

The result is not limited to graph queries: it holds for 9

all FO-definable queries under the appropriate notion of a

degree inm-ary relations. Thenr-neighborhoods ofa, b) and(b, a) are isomorphic,

since each is a disjoint union of two chains of length
The BNDP is a very simple tool to use to prove that fixed- We know that(a, b) belongs to the output aof); hence by
point queries cannot be defined KO: indeed, it is often Gaifman-locality,(b, ) is in the output as well, which con-
easy to produce many different degrees in the output with tradicts the assumption th@ defines transitive closure.
such queries (typically, each stage of the fixed-point com- . L .
putatign gene(rgtzs a¥1ew eleme%lt of the degreg-set). The An.d yet an(_)ther notion of quahty IS allpp.hcable RO'. .
transitive closure is one example, as we just saw. As anotherdueries, and it is often useful in establishing expressivit

At ; - bounds for Boolean queries. It refersgairs of structures.
application, consider theame-generation query expressed . . T
b)%he Datalog program beIO\z: query exp Again we deal with graphs for simplicity. f = (A, E') and

G' = (A’ E’) are two graphs, we writ& =, G’ if there
sg(x,x) exists a bijectiory : A — A’ such that for every, € A, the
sg(x,y) = e(@,z)e(y,y) sg(a’,y) neighborhoodsV % (a) and NS (f(a)) are isomorphic. The

Thatis, ife(-, -) is the parent-child relation, thenandy are - 'elationsays, in a sense, that locally two graphs look the

inthe same generation if so are their parentserf y. Now same, with respect to a certain bijectignthat is, f sends

consider a full binary tree of depth In it, all nodes have ~ €ach node into f(a) that has the same neighborhood.
degreed), 1, or 2, but in the output of the same-generation Definition 3.7. A Boolean query @ is Hanf-local if there

query we would have all degreés2,4,...,2" present — exists a number r > 0 such that for every two graphs G

hence it violates the BNDP and is ie0-expressible. and G’ satisfying GS, G, we have Q(G) = Q(G').



Theorem 3.8 ([10]) Every FO-definable Boolean query Thus, the numbers of nodes realizingave to be the same
is Hanjf-local. up to thresholdn; above the threshold they can be arbitrary.
Notice that if we remove the second condition, we get the
The notion can be extended to non-Boolean queries asdefinition of G, G’. The applicability of this notion t&'O
well [21] but since most of the time Hanf-locality is applied queries is due to the following.

to prove inexpressibility of sentences, we only preserst thi Theorem 3.10 ([10]) For cach FO sentence  and k €
limited version here. N, one can find numbers m,r € N so that for every

We now give the canonical example of using Hanf-locality, two graphs G,G" with degrees bounded by k, we have
and prove that graph connectivity is noD-definable. As- G E ¢ < G| ¢ whenever G55, G
sume to the contrary that it is; then it is Hanf-local, so we
choose the number as in the definition of Hanf-locality. This result has an algorithmic application. We say that a
Now consider two graphs below, for > 2r + 1. class of graphs halmunded degree if for somek € N, all
degrees in graphs in that class are boundekl.by

Theorem 3.11 ([40]) Ewaluation of FO queries over
classes of graphs of bounded degree can be done with
linear-time data complexity.

‘ The idea is simple: take a query, and the boundk
on degrees; compute, » as in Theorem 3.10, and con-
G? struct V' (k,r). Then enumerate functions: N (k,r) —

Gl
two cycles of length m

one cycle of length 2m {0,...,m, x}, and for each such function decide if a graph
in which the number of nodes realizingis f(7) (with x
meaning “above the threshold”) satisfies Notice that so
far we haven't used the input graph. Now go over the input
graphG, compute in linear time the number of nodes realiz-
ing eachr, and use the result of the precomputation to see if
G satisfiesp.

Let f be an arbitrary bijection between the graphs. The
d-neighborhood ofany nodea is the same: it is a chain
of length2r with a in the middle. HenceG'<, G2, and
they must agree o, but G2 is connected, and" is not. This result is a starting point of a field called algorithmic
Thus, graph connectivity is ndO-definable. A similar model theory, that uses properties of logical formulae aon va
example shows that testing whether a graph is a tree is notious classes of graphs and other structures to come up with
FO-definable. Inthat case, we takk to be a chain oflength  efficient algorithms; see [16] for a survey. We finish this
2m, andG? the disjoint union of a chain of lengti and a section by a key result on locality often used in such appli-
cycle of lengthm; thenG' =, G? as long asn > 2r + 1. cations. It characterizes precisely what can be expressed i
FO. We say that a formula(z) is r-local if all quantification
initis ofthe form3y € B,.(z) orVy € B,(x), i.e., restricted
to the radiuse ball aroundz.

It is natural to ask how these notions are related. The
precise relationship is known (assuming the definition of
Hanf-locality that applies to arbitramy-ary queries):

Theorem 3.9 ([21]) Fach Hanf-local query is Gaifman-
local, and each Gaifman-local query has the BNDP.

Theorem 3.12 ([12]) Every FO sentence is equivalent
to a Boolean combination of sentences of the form

Jzq ... 3z, () @(z) A /\d(a:i,xj) > 2r),

1 i#j

=.

3.5 Other uses of locality

(3

Hanf-locality as defined here can be applied only when where p(x) is r-local.
example structures have the same cardinality (e.qg., thehgra
G' andG? in the picture). Sometimes this is an inconvenient In other words, such a basic sentence asserts the existence
restriction, and a more relaxed notion can be used for graphsof a scattered sequencg, . .., z,, so that the same formula
of bounded degree. Suppose we are looking at graphs whose is true in ther-neighborhood of each;; and everyFO
in- and out-degrees are bounded/y N. Then, for each sentence is a Boolean combination of such basic sentences.
fixed r, we have finitely many possible isomorphism types
of neighborhoods of radius We denote this setby'(k, 7). 3.6 Structures with order
For each grapliz and a node:, we say that realizesr €
N (k,r) if the isomorphism type ofN&(a) is 7. Now we

write G%, G if for eachr € A/(k, 1), either In most database applications, we deal with domains that

are totally ordered (e.g., numbers by the usuatelation

, .. or strings by the lexicographic ordering). The question is

1. bothGGandG” have the same number of nodesrealizing then whether the bounds on the expressive power remain
T, or valid. More precisely, we now talk about expressibility ove

2. bothG andG’ have at leastn nodes realizing-. structures of the fornf2(, <), i.e., o-structureA expanded



with a binary relation< interpreted as a linear ordering on
the universe. Locality tools, as defined above, don't tell us

anything about ordered structures: indeed since for every

two elements:, a’ we have eithetx < o’ ora’ < a, radiusd
neighborhood of every point is the whole structure.

The ‘reduction-toEvEN’ trick from Section 3.3 actually
shows that many queries (e.g., the transitive closure,@onn
tivity, acyclicity) remain inexpressible in the presendean
order. Indeed, in those reductions, we always started with
a linear ordering, and then used connectivity or acyclicity

of some constructed graphs to check whether the number of

elements in an order was even.

But remarkably, locality tools can be applied after all to
structures with an order. Notice that when we talk about
connectivity, acyclicity, etc., of structurgs(, <), we don't
actually mention the order: the query asks about the streictu
2 itself. Such queries are called invariant: more precisely,
a query@ over ordered structures igvariant if for every
structurell, every tuplez, and every two linear orderings,
and<, on2, we haver € Q((2, <1)) iff a € Q((, <2)).

For queries definable iRO over arbitrary (finite and in-
finite) structures, invariance is equivalentt@-definability
without the ordering. But for queries over finite structures

this is not the case [7, 28]: sometimes invariant queries ex-

press more thaRO alone can express oveélr. But nonethe-
less, they remain locality. More precisely(fis an invari-
ant query, it naturally defines a quef},, on o-structures:
Qinv () = Q((, <)) for an arbitrarily chosen ordering.
We call such querie®;,, invariant FO-queries.

Theorem 3.13 ([17])
Gaifman-local.

Every invariant FO-query is

In particular, by Theorem 3.9, every invaridn®-query

has the BNDP. Hence, the bounds shown in the previousthe size of the sef/ is even.

section apply to such queries. But it is still open whether
all such queries are Hanf-local. A partial result is known
for queries on directed trees [32] (it actually proves a much
stronger result that we shall see shortly).

3.7 Inexpressibility tools: 0-1 laws

How diverse are classes of structures definabl& @
Not very, it turns out. Suppose we pick a structure at ran-
dom. What is the probability that it will satisfy a givétO
sentence? Say, your propertyvisVy E(z,y). Then it's

only relations. For each property (Boolean quepy)et

[{A € Stry | Q) = true]

[Stry | |
Another way of looking at it is thaf,,(Q) is the proba-
bility that a randomly chosen structure on the set of nodes

0,...,n— 1} satisfies). Randomly here means with re-

spect to the uniform distribution: each tuple is put in each
relation with probability%. We then define thesymptotic
probability of Q as

wmQ)

if the limit exists.

Mn(Q) =

lim 1, (Q),

n—oo

Definition 3.14. A logic has the zero-one law if for every
Boolean query @ expressible in it, either u(Q) = 0 or

Q) = 1.
Theorem 3.15 ([9]) FO has the zero-one law.

Thus, in a sensefO cannot say anything interesting, at
least asymptotically. If we have &0 sentence, we know,
with high probability, whether it's true or false. But of ase
in database querying we aren'’t interested in asymptotic be-
havior; rather, we need to know the result of a query in each
concrete instance.

The zero-one law gives us easy proofs of inexpressibility of
counting properties. Consider again the quevgn. Since
un(EVEN) alternates betwedhandl depending on whether
n is even or odd, the limik(EVEN) doesn’t exist, and thus
EVEN cannot be arFO query. Likewise, if we consider
a propertyD;, which is true iff the size of the structure is
divisible by k, then the same argument shows thatis not
FO-definable for all > 1 (of courseEVEN is just D).

As a slightly different example consider structures with
one unary relatio/, and a queryARrITY testing whether
Thenp, (PARITY)
(X is even (1))/2™ andp(PARITY) = 1 —hencerArITY is
not FO-definable.

Applying the zero-one law, one has to be careful about
vocabularies and interpretations of relations. For instan
with constants, the zero-one law fails (the probability of a
loop on a constant ig). Likewise, it fails in the presence of
orders or successor relations (assuming, for examplehgrap
the probability that there is an edge between the largest and
the smallest element is agai). Quite remarkably though,
the zero-law holds in the presence of a circular successor
relation, i.e. arelatiofiag, a1), (a1,az2),. .., (an,ao) [30].

clear that such graphs are rare among all graphs, and thus

the probability will tend t@). Or we can look at the property
VaVy3z E(z,x) A ~E(z,y). Turns out that this property is
very common, and the probability tendsio More gener-
ally, for each"O sentence, exactly one of the two possibilities
holds: the probability tends 1@ or to1.

Let us formalize this. Assume that the universe ofran
element structur@ is {0, ...,n — 1}. LetStr? be the set of
all n-element structures of vocabulasy whereos contains

4. Beyond FO

Locality tools tell us that'O cannot do fixed-point com-
putations. The zero-one law easily shows th@tcannot do
nontrivial counting. Both counting and fixed-point compu-
tations play a prominent role in database queries: the forme
in standard SQL querying that involves grouping and ag-
gregation, the latter — initially in the study of Datalog,dan



more recently in extensions of SQL with recursion. We now
consider counting and fixed-point extension$'of. A quick
summary of the section is this:

e locality tools continue to work for counting extensions;
e the zero-one law holds for fixed-point extensions;
e but these are only true if we don’t add ordering.

4.1 Counting and aggregation

Since SQL has both counting and aggregation, it is nat-
ural to study counting extensions 8D to understand its
power. Such extensions are achieved by addingiting
quantifiers or counting terms. Let us illustrate this by an
example. Suppose we want to express theiTy query
(whether the cardinality of a séf is even). We do it like
this:

3j3i ((i+i=j)AF 2 U(x) \VE(EZF2 U(z)) — k < j)

can produce rational numbers. To model aggregates, we
need to assume relations with columns of two sorts (one
sort is numerical), and the addition afygregate terms
t'(z) = Aggrry. (¢(Z,9),t'(Z,7)). Let us explain how

it works. First,F is an aggregate function, i.e., a family of
functions fy, f1, f2, ... so that eacly,, takes am-element
bag of rational numbers and produces a rational number.
Given a tuplei, construct a seB = {b | ¢(a, b) holds}. If

B = {b1,...,b,}, compute the:-element bag of numbers
t'(a,b;), i < n, and lett(a) be f,, applied to that balg

The logic resulting from enhancingO + AllCnt by
changing the domain frofd andQ and adding:/l aggregate
functions is denoted byO + Aggr. This addition models
both the grouping feature of SQL, arbitrary arithmetic and
arbitrary aggregation. And yet we have

Theorem 4.2 ([22]) FO + Aggr queries are Hanf-local
(and thus Gaifman-local, and have the BNDP).

Hence, queries such as graph connectivity and transitive

There are a couple of new things here. First: the quantifiers closure remain inexpressible when aggregates are addéd. Bu

3272 meaning “exists at least elementsz such that...”.
Second: quantification over numbet,(35) and arithmetic
subformulag + i = j. Now let us decipher this formula.
The subformuladiz U(z) A Vk(3ZF2 U(z)) — k < j
says that there are at legstlements irU, and if there aré:
elements i, thenj > k —thatis,| U |= j. The formula
i (i+14 = j) says thay is even. So the whole formula says
that| U | is even.

Technically speaking, this logic is interpreted overn-
sorted structures of the form2 = (A,{0,...,n— 1},
(R*)reo, Arith), where, for A of cardinality n, the set
{0,...,n—1}isthe numerical sort, andirith refers to a set
of arithmetic operations over it. The two sorts are conreecte
by quantifiers3=7z that bindz but notj. One such logic,
FO+Cnt, is defined by takingirith to be+ andx [25]. It
was shown in [34] that queries definableH@ + Cnt (i.e.,
definable by formulae without numerical-sort variable€) ar
Hanf-local (and thus Gaifman-local, and have the BNDP).

So far, the counting abilities of the logic are very limited:
the numerical universe is limited to, the size ofA; even
though ak-ary relation may have up t@" tuples, we cannot
countbeyondh. Soitis natural not to put any restrictions on
the numerical sort. In other words, we consider the numkrica
sort to be all ofN, add arbitrary arithmetic predicates, and
introduce counting terms #z.o(Z,---) which count the
number of tuples: (over A) satisfyingy. For instance,
the PARITY query is expressed bieyen (#2.U(z)), as we
assume that all predicates availableMn To check if the

number of edges in a graph is a prime number, we can write

Pprimc(#xv yE(Ia U))

We call this logicFO 4 AllCnt. Itturns outthat even such
a powerful counting does not destroy locality.

Theorem 4.1 ([27]) FO + AllCnt queries are Hanf-
local (and thus Gaifman-local, and have the BNDP).

But even this form of counting is not exactly the aggre-

what if we also add ordering? Unfortunately, the situation
is no longer as nice as it was f&): we lose locality [21].
What's more, even the simple logitO+ Cnt captures, over
ordered structures, a complexity class that has not yet been
separated fromNP. Very little is known about counting
logics over ordered structures. For instance, [32] comside
invariant queries definable in a simple extensiol'Ofwith
modulo quantifierdxzp(x, -) (meaning that the number of
elements satisfying is divisible by k). Then, over trees,
such queries are Hanf-local, as long as all numbeare odd.

4.2 Fixed-points

SinceFO cannot do fixed-point computations, it is natural
to add them to query languages — to answer queries such as
reachability (transitive closure) or the same-generation
the theory community, one normally deals with various fla-
vors of Datalog. Some Datalog features (recursive queries)
have now been incorporated into SQL. To compute the tran-
sitive closure of a binary relatioy, one would write in
Datalog

R(z,y) E(z,y)
R(z,y) E(x,2), R(z,y)

The computation is by a fixed-point construction. We start
with the emptyR, and keep applying the rules. After one
step,R becomes equal t&, after2 steps, it has bott’ and
nodes connected by a path of lengffand so on. The seman-
tics is defined as the least fixed-point of this construction.

There are multiple extensions BO and other logics with
fixed-point operators. These are described in detail irefinit
model theory texts and we won't give a formal definition here.
But we present two important bounds on the expressiveness
of Datalog. An obvious bound is that Datalog-expressible

'Since the logic doesn’t use a range-restriction condition
that would be imposed by the syntax of SQL, it is possible
that the bag B is infinite. In such a case we just assume

gates used in SQL that operate over whole columns andthat the value of ¢ is 0.



queries are monotone (assuming no negation, of course). Aby FO(9)t, ), and its fragment that only uses the quantifiers

much less obvious one is: ranging over the active domain B0, (91, o) (note that it

is indeed a fragment since quantification over active domain

Theorem 4.3 ([2]) Datalog has the zero-one law. is FO-expressible).
Hence, Datalog still cannot expresseN. But this quickly ‘Now, how can we answer questions about the expres-

changes in the presence of an order, or even a successot¥iveness of*O(M,0)? We have seen many results about

relationS(z, y) with predicatesnin(z) andmax(z) forthe ~ the power of what can be viewed in this terminology as

smallest and the largest element; indeed FOact(M<, o), wheredl. = (U, <) is a structure that only
) has alinear order available. Indeed, the ‘reductiomseN’
odd(z) - min(z) trick applies, and invariant queries over it are Gaifmaralo
odd(z) — S(y,x),even(y)
even(z) — S(y,z),odd(y) To get fromFO(M, o) t0 FO,+(M., o) one needs to
EVEN :— max(z),even(x) replace an arbitrary structure by an ordering, and arlyitrar
) ) guantification by finitary quantification. It turns out thhet
computes the quemyvEN. Infact, on structures with, min, former is easy, but the latter is much harder.
andmax, Datalog with negation (under inflationary seman- '
tics) capture TIME[36], SO proving, for example, that an Many queries we are interested in (e.g., is a graph con-
NP-complete query is not expressible in such a flavor of nected?) argeneric, meaning that they talk about the iso-
Datalog amounts to separatiifgiME from NP. morphism types of finite-structures (on the other hand, the

“lies on a circle” query is not generic). It is fairly easy to
show that if we have an arbitrary struct@e = (U, <, ...),

5. Backto FO then every generic query definableF® (971, o) is also de-
finable INFO((U, <), o) (see [26, 14] for simple expositions

So far, elements populating our structures had no life; we ©f the proof based on Ramsey Theorem).

could only compare them for equality, or sometimes for or- gt the equalityFO (M, ¢) = FOuet (M, o) is not true

dering. Butimagine thatthey are, for example, real numbers j, oy structures: for examplefO((N, +, -}, o) expresses

If we have a graph, we could .aSQk' for instance, whether its 4| computable queries overstructures, by coding them in

edges(z, y), viewed as points R, lie on tr;e same circle:  peano arithmetic. It turns out that whetHep (901, o) =

Ja3bIrvaVy (E(z,y) — (v —a)® + (y —b)* =17). FO..t(9M, o) holds, depends on model-theoretic properties
This setting was brought to the fore in the contextai- of M. There are many sufficient conditions, which are sur-

straint databases [26]. Those were motivated by geograph- Veyed in [14, Chap. 5]. Below, we list examples which are

ical and temporal databases, in which potentially infinstss ~ Important for spatial and temporal applications.

are described finitely bj/O formulae over some structures: Theorem 5.1 FOM, o) = FO.(M, o) holds if M is

e.g., a geographical region can be described by its boundary one of the following:

given as a piecewise polynomial function. Expressibility , . ) ,

questions that arose in that setting initially looked et * (Q,+,—,0,1,<) (rationals, linear arithmetic);

from those that we have considered; for example, a typi- o (R,+,—,0,1,<) (reals, linear arithmetic);

cal question is whether it is possible to express topoldgica o (R, +,.,0,1, <) (reals, polynomial arithmetic);

connectivity of a region. But it was quickly noticed that (N,+) (Presburger arithmetic)

most such questions are easily answered if we can answer ’ g '

the usual, finite, expressibility questions [18].

Hence, for all the structures in Theorem 5.1, generic

So the model consists of queries over finite databases over them are already express-
ible in the usual finite model theory setting?O over the
e an infinite structure M (e.g., (N,+,:) or ordered finite structure alone.
<R7 +7 y 01 17 <>)!
e arelational vocabulary; and 6. Language equivalence
e finite o-structures ovef (e.g., graphs whose nodes
are numbers). A different set of finite model theory tools was taking

a prominent place in database theory research due to the
The logic is the usudlO but with one addition: we have  shift from relational model to semi-structured data models
two kind of quantifiers. Quantifiers of the first kind range most notably XML. These tools are based on thepo-
over theactive domain (the set of elements of the finite  sition method [31], which allows one to computéypes
structure). We denote them Bi: € adom andVz € adom. of structures. The notion of types has a precise mean-
The universal quantifiers in our “lies on a circle” example ing, to be defined shortly. These tools are often used in
are such. Quantifiers of the second kind range over the entireproving equivalence of two languages. To illustrate the
universe of)t. The existential quantifiersin our example are need for such equivalence results, consider a simple case
such, since the coordinates of the center of the circle and it of databases defining strings. The choice of strings is Rot ar
radius needn’t be in the active domain. We denote this logic bitrary: XML documents are modeled as unranked trees,



and strings can be viewed as the simplest possible casep, (2, a) as the set of all formulag(z) of quantifier rank

of those. Suppose we have a finite alphabeta string
w = ag...a,—1 € X* of lengthn can be represented as
a structure,, = ({0,...,n — 1}, <, (Py)aex), Where<

is the usual ordering, and ead?) is the set of positions
labeled witha, i.e.,P, = {i <n|a; = a}.

We consider logics such @0 or MSO (an extension of
FO with quantification over sets) over such structures. lItis
well-known that for each sentengethe set of strings) such
that2l,, = ¢ is regular. So here is one way of evaluating
. convert it into an automatosl, and run this automa-
ton onw. The complexity, in terms o, is O(|w|), but the
problemis that converting fromto A, requires nonelemen-
tary complexity. What is more remarkable is that (modulo
some complexity-theoretic assumptions), any algorithm fo
checking whethell,, = ¢ thatrunsin linear time ifw| will
necessarily be nonelementary in the size ¢t 1].

Does it mean thaFO querying of strings or trees is im-
possible if we want to achieve linear data complexity? Not
really, but we have to change thgntaz of the logic. In fact,
it is well known how to query strings with linear data and
query complexity: one uses the linear-time temporal logic
LTL. Its syntax is given by

e =aleVy|—p|Xe|pUy foraeX

Such a formula is evaluated in a positibnf a stringw =
ag . ..an—1: We have(w,i) = aiff a; = a; and(w,i) E
X iff (w,i+ 1) = ¢; and finally (w,i) = U iff for
some;j > i we have(w, j) &= ¢ and(w, k) = ¢ for all k
suchthai < k < j. Finally, we writew = ¢iff (w,0) = ¢.

It is well known that LTL-definable properties of strings
are precisely their FO-definable properties. And yet chregki
whetherw = ¢, for an LTL formulap, can be done in time
O(Jg]| - |w|). Of course it means that the translation fréa
to LTL is necessarily nonelementary, but LTL happens to be
a convenient logic for specifying properties of strings.

at mostk so thatdl = ¢(a).

It might appear initially that types are infinite objectst bu
they aren’t. In fact, up to logical equivalence, there arly on
finitely many differentO (or MSO) sentences of quantifier
rankk. Soifthese sentencesare . .., ¢, thentypes are
uniquely identified by formulae, = A,;.; vi A /\jQI ¢,
specifying completely whichp;’s hold and which don't.
Note thatqr(p,) = 7. Also, each sentence of quantifier
rank k is a disjunction of sentences defining rahlkypes,
and2l =5, B iff tp;,(~A) = tp,(B).

The latter observation allows us to compute types of struc-
tures from types of their substructures using games. As a
simple example, consider a struct@tg representing a string
w and a structuré@l,,., representingyv with letter « added
at the end. We claim thatp, (,,) uniquely determines
tpg (Aw.q). INdeed, if, =, Ay, thenA,.o =k Aot
the strategy of the duplicator is to mimic the winning strat-
egy guaranteeing,, =x 2, if the play happens ifw, w’),
and respond with the last letter to such a move by the spoiler.
Thus, the duplicator combines the game&gnandgl,,, with
a trivial game on two copies &, to come up with a game
on%l,., and2l,,., —hence the name ‘composition method'.

The same argument works fdfSO as well (which has a
slightly more complicated game allowing set-moves [7, 28])
This gives us the simplest proof that evafpO sentence
on strings can be converted into an equivalent automaton
A,. Letqr(e) = k and letT = {r,..., 7~} enumerate
rank+ MSO types. Letd : 7 x ¥ — 7 be a function
such that for each string with mso-tp, (2(,,) = 7, we have
mso-tp, (Ay.o) = (7, a); by what we have shown above,
the function is well-defined. Assume thatis the type of
the empty string, and thatis equivalentto/,_; ¢-,.

Then the automatowl, has7 as the set of states, as
the initial statey as the transition function, and, i € I, as
final states. This automaton is deterministic, and it attual

We shall now outline techniques behind such equivalence computes typesas itruns on astring: the state itis in after
results, for strings and trees. Even though XML documents readingw is preciselymso-tp;, (2., ).

are modeled asnranked trees (in which different nodes can

have different number of children), here we concentrate on

binary trees for the simplicity of exposition, and refer the

reader to [29, 39] for surveys about logics and automata over

unranked trees.
6.1 Computing with types

The key advantage of well-structured databases (e.g.
trees) is that the truth value of a formula on a structure
can be computed from truth-values of other formulae on
simpler substructures. This is the main idea of the com-

6.2 Anexample: monadic Datalog

We now use the ideas of the previous section and show how
to produce a linear-complexity language equivaleilt®O
formulaep(x) on both strings and binary trees. Suebury
queriesp(z) select a set of positions in a string or in a tree.
If we view trees as XML documents, such queries amount

'to information extraction: i.e., choosing certain nodesrir

trees. The technique of this section is from [13, 33].

We start with the easier case of strings. An easy observa-

position method, and the main concept that we need istion — again by composition — is thatso-tp;, (As,...a, %)

that of types. For a structuid, its (FO) rank-k type is
tp(A) = {¢ A E ¢ and qr(e) = k}. If formulae ¢
range oveiMSO, then we talk about the MSO-rariktype
mso-tp(2). (The notion of quantifier rank favISO counts

the nesting depth of all — first- and second-order — quan-

tifiers.) We can also add free variables, by talking about

is uniquely determined byso-tp;, (4,...q._, ), the lettera;,

and mso-tpy, (Aa,,..a,_,)- AlSO mso-tp, (™A,,) uniquely
determinesnso-tp;, (A, -1), i.e., w read backwards (again
by games; the duplicator doesn'’t in fact need to change
his strategy). Hence, we have a functignthat takes

a triple (7,7’,a) and computes thewso-tp, (Aay...a,_1,7)



under the assumptions thatso-tp, (ag...a;y) = T, treeT” whose root is labeled, the left subtree i§’

mso-tpy, (Aa, _,...a;p,) = 7' @Nda; = a. and the right subtree ', mso-tp, (T") = (1, 7/, a).

We now use this to come up with a Datalog program that 2. There are functions; : 7 x © — ©, fori = 0,1,
expresse®(x). The extensional predicates are the successor so that for a tred” and a node whose last letter is,
relationS(-, -), labeling P,(-), andFirst(-) andLast(-) for with mso-tp, (Ts) = 7 andmso-tp (env(T, s)) = 6,
the first and the last element. For each typae shall have we havemso-tp,, (env(T, s - 7)) = v;(7, 0).

two intensional unary predicatég™ (true in+ if the rank+
type ofag . ..a; is 7) andV; (true in: if the rank+ type of
an_1--.a;1ST). They are computed by:

3. There is a functions : 7 x ® — O so that if
mso-tp, (Ts) = 7 andmso-tp, (env(7T, s)) = 6, then
mso—tpk (Tv S) = B(Ta 9)

U, (x) — First(x), P(x); a€d

Up(z) — Sy,z),Pu(x),U-(y); a€X, é(r,a) =1 Again, these are proved by simple game composition argu-
Vi (x) = Last(z), P,(2); a€X ments. So now we can start building a monadic Datalog
Up(z) — Szy),Pu(z),Vr(y); a€X, d(r,a)=1", program that evaluates aiSO formulap(z) of quantifier

. . _ rank k. We assume that the extensional predicatesSare
where 7, is the type of the string.. Next, if the type g, the labeling predicates, as well as unary predichtes

n(r, 7', a) is consistent withp, we add a rule andRoot. First, we compute types of subtrees using
ANSWER(z) :— Ur(y), S(y,x), Pa(x), S(x, 2), Vi (2) U () +— Leaf(x), Py(z)

UT B S ’ /7S ) ”7Pa aUT/ /aU‘r” i
to the program. We also need the “bound- () ol@, "), Si(@,2"), Fa(w) (=) (")
ary” cases when one of the types is, e.g., forall 6(7',7",a) = . Herer, is the type of the singleton-
ANSWER(z) :—  First(x), S(z, 2), Py(2), Vi (2) if tree labeled:. Then we handle envelope predicaltgs:)’s:
n(70,a,7") impliesp. Vo.(r) + Root(z), Pa(z)

In the resulting program, every intensional predicate is Vo(z)  +— Soly,z),S1(y,2), Ve (y), Ur(2)

monadic, i.e., we are dealing withonadic Datalog. Thus,
over strings, ever¥ISO formulay(z) can be expressed by a
monadic Datalog program; the converse is true as well (and
in fact is much easier). Hence, monadic Datalagtures
MSO. Furthermore, monadic Datalog can be evaluated in
time linear in both the size of the program and the size of the ANSWER(z) — U,(x), Vy(x)

string [13]. Thus, again, the composition technique and computing with

This technique can be extended to unranked trees; in fact,types naturally suggested a language that capMf#3, and
due to its expressivity and low complexity, monadic Datalog has good query evaluation properties (both data and query
has been successfully used for information extraction from complexity remain linear over trees). In fact most langsage
XML documents [13]. For simplicity, we present it here for With good query evaluation properties over unranked trees
binary trees. A binary tree is viewed as a structiire= have been obtained with the help of the composition method
(D, Sy, S1, (P.)aes), whereD C {0,1}* isthe domain,i.e.  ([29] surveys several of them).
a prefix-closed finite set of strings ov€®, 1} so that for
eachs € D, either boths - 0 ands - 1 are in D, or none
isin D. In the vocabulary, we have two successor relations
So = {(s,s-0)} andS1 = {(s,s- 1)}, and the labeling
predicates”,’s, as for strings. Expressibility — or inexpressibility — of queries in logica
formalisms can tell us a lot about their complexity. This is
mainly due to the achievements of a field called descriptive
complexity, that provides machine-independent character
zations of complexity classes. Also, knowing the number
of variables needed to express a query can give us some ad-
ditional insights, not in terms of the complexity class, but
rather the actual big-O complexity of query evaluation.

whered,, is the type of a single-node tree labeledand
wherevy (0, 7) = 0 (of course we add symmetric rules for
~1). Finally, for each pair of types, 6 such that3(r, 9) is
consistent withp, we include the rule

7. Know the complexity

Given a treel’ and a node in its domain, byl; we mean
the subtree rooted at i.e., the subtree generated by all the
nodes that contain as a prefix. Anenvelope env(T), s) is
obtained by removing’, from 7', except the noda itself,
which is viewed as a distinguished node (technically, an en-
velopeis a structure of a vocabulary expanded with a cohstan
symbol, interpreted ag.

Fix k > 0. LetT = {r,...,7~} be the rankk MSO 7.1 Descriptive complexity
types of trees, an® = {6,,...,0} be the rankt MSO
types of trees with an extra element (e.g., types of envelope
will come from from this set). The three composition results
we need now are as follows:

The field of descriptive complexity started with a classical
result by Fagin that existential second-order logic casur
the classNP [8]. It was followed by the characterization of
PTIME on ordered structures as the set of properties defined
1. There is a functiod : 7 x 7 x ¥ — 7 so that if in least-fixed-point logic [23, 42], and then logical charac

mso-tp,(T) = 7 andmso-tp,(T”) = 7/, then for the terizations appeared for many more complexity classes (see



[24] for a comprehensive survey). We list below some of the complexity, and it pays off to use them carefully. Let us
most relevant classes used in database theory research, anzbnsider a simple property: a linear ordering has at least
their corresponding logics. Note that in all the results be- 3 elements. A naive way to write this as & sentence
low, exceptNP, coNP, andPH, logics capture complexity  is Jz3y3z (x < y < z). But we can also do it like this:
classes only over ordered structures. FrIy (x <yAJx (z=yAJy (z <y))). Sowe expressed
the same property with jug variables. In fact, the same
e ACY — the complexity of the relational calculus. This trick can show that every cardinality of a linear ordering ca
class can be described as constant parallel time (with be expressed by a sentence using just two variables.

. 0 . .
%ﬁg:rotrﬁ;ar: mgnc);agrsogf?gsgé‘?i)ﬁatl):’:e fgr%tger![?esa gg i We refer to a fragment oFO that uses a fixed set of
- ’ H k H
assumes an ordered universe and basic arithmetic predya”ablesxl’ -, by FO.- One of the key reasons this

icates () over it. Even thenAC® is one of very restriction is important is the following:

few complexity classes for which nontrivial bounds Theorem 7.1 ([43])  An FO*-definable query can be
have been proved: for example, we know thakiTy, evaluated in time O(n*).

graph connectivity, and many other queries are not ex-

pressible in it [1]. Another reason has to do with fixed-point logics. It can be
e TC" — constant parallel time with additional, majority, shown that for each fixed-point formula (whether it is least-
gates (checking whether the numbei sfis more than  or partial-, or some other fixed-point) withvariables can be
the number obs). The relevance of this class is due to  expressed as a countable disjunctio6F* formulae. The
the fact that it is captured, over ordered structures, by logic obtained by closingO™’s by countable disjunctions
FO+Cnt (the first counting approximation of SQL).  and conjunctions is well-studied in finite model theory, as
The class is not yet separated fron®, althoughitis it has good properties and provides a uniform treatment of
widely believed to be a small subsetRfIME. fixed-pointlogics (for example, it has the zero-one lawait c
e DLoG, NLoG — deterministic and nondeterministic be used to relate questions about separation of complexity
logspace. These classes are captured by extensionglasses to questions about distinguishing logics; anahibea

of FO with transitive closure operators. F&rLog, used to show that least-fixed-point logic captuPasME on
the transitive closure has to be deterministic, meaning some classes of unordered structures; see [5, 7, 28] for more
that on a path, every node has to have outdetyree details). Itis also known that over arbitrary finite struets,

e PTIME — captured by the extension BO with a least- theFO* hierarchy is strict, and in a remarkable recent paper

fixed-point operator (like in Datalog). This can be seen [38] a long-standing open question about the strictness of
as capturing the complexity of the extension of SQL the FOF hierarchy overordered structures was answered

with recursion. positively.

e NP,coNP,PH (polynomial hierarchy) — these
classes_ appear m_ostly _in static analysis Qf queries andg_ Satisfiability questions
constraints (queries with such complexity would be
prohibitively expensive). They are captured by exis-
tential, universal, and full second-order logic respec- ~ These questions often appear in the study of static analysis
tively. And while we cannot yet separate those, in the questions (for example, is a given specification consigjent
monadic case (when second-order variables range over Or in the study of incompleteness of information (can we
sets), we know that all these logics are different [10]. answer a query with certainty?)

e PsPACE — again this class typically comes up in static  The general satisfiability question is this: given B&
analysis problems; it can be characterized vid’@h  formula, does it have a model (i.e., is satisfiable)? In
extension with gartial fixed-point (i.e., a fixed-point  database theory, we are interested primarilyiinte satisfi-
operator that may or may not converge; if it diverges, apility: given v, does it have a finite model?
the result is assumed to be empty).

In a paper that is often associated with the birth of finite
We have a chain of inclusionsC® ¢ TC?® € DLoc C mqqlel .theory, Trakhtenbrot [41] prpv_ed that finite satigﬁ-
NLoG C PTiME C {NP, CONP} g+PH C Pspack. All ab|I_|ty is un(_je_0|d<_a_ble (e\_/en more, it is not co-r.e., unlike
results talk aboudata complexity, i.e., complexity in terms arbitrary satisfiability, which is co-r.e.). This resulfcmbe _
of the size of the structure, and not the formula. One can US€d to show thatsome problems related to answering queries
also gain a lot of additional insight by incorporating theesi ~ With certainty (say, over incomplete databases, or in data i

of the formula as a parameter; we refer to [15] for a survey tegration scenari_os) are undecidable. For example, assume
of the field of parameterized complexity. that we have a view of an unknown database, and we

know thatV is obtained fromD by losing tuples, and re-

placing some values with nulls. Now @ is anFO query,

can we find tuples that are guaranteed to belon@{®),

assuming that we only have accesdt® The answer is that
Often, when we writd?O formulae, we use variables as this problem is undecidable. Indeedifis empty, and? is

we please. But they turn out to be a useful measure of a Boolean query (a sentence), finding such certain answers

7.2 Count the variables



means that is valid in all finite structures, i.e;p is not
satisfiable. Hence, this is undecidable (not even r.e. di).fa

But for some classes dfO sentences, satisfiability and
finite satisfiability coincide, and can be established bymsea
of a finite model property. if ¢ has a model, then it has a
model of sizef(|¢]), for some computable functioh

[14]

(15]

[16]

Two such cases keep coming up in database research. Oné7l

is the Bernays-Sdinfinkel class that consists of formulae
Jxy ... Jz, VY1 .. Yyr a, wherex is quantifier-free. Itturns
out that if such a sentence is satisfiable, then it is satlsfiab
in a structure whose universe has at mastlements. This
can also be used to show that satisfiability for this class
is NExpT1ME-complete in general, andspAcE-complete
when arities of relations are fixed.

The second important class BO?, i.e., FO with two
variables. Each satisfiable sentence is again satisfialale in
finite structure, of a larger size, but still giving the oJera
NExpTiME-completeness bound. Moreover, this result is

(18]

(19]

20]

(21]

(22]

rather robust as the finite model property can be extended[23]
to classes of structures which are themselves not definable

in FO?, for example, for structures with an extra order, or
an extra equivalence relation, or even unranked trees with a
extra equivalence relation [3, 35].
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