Interfacing HOL90 with a Functional Database
Query Language

Elsa L. Gunter! and Leonid Libkin?

! AT&T Bell Laboratories, Rm.#2A-432
600 Mountain Ave., Murray Hill, N.J. 07974, USA
phone: 1 908 582 5613 email: elsa@research.att.com
2 AT&T Bell Laboratories, Rm.#2A-422
phone: 1 908 582 7647 email:libkin@research.att.com

Abstract. We describe a functional database language OR-SML for
handling disjunctive information in database queries, its implementa-
tion in Standard ML [10], and its interface to HOL90. The core language
has the power of the nested relational algebra, and it is augmented with
or-sets which are used to deal with disjunctive information. Sets, or-sets
and tuples can be freely combined to create objects, which gives the
language a greater flexibility. We give an example of queries over the
“database” of HOL90 theories which require disjunctive information and
show how to use the language to answer these queries. Since the system
is running on top of Standard ML and all database objects are values in
the latter, the system benefits from combining a sophisticated query lan-
guage with the full power of a programming language. The language has
been implemented as an HOL90-loadable library of modules in Standard
ML.

1 Introduction

In this paper we describe a functional language, which we call OR-SML, for
querying databases with incomplete and disjunctive information, and its appli-
cation to querying HOL90 theories. Our language is based on the functional
paradigm. Design of functional database query languages has been studied
extensively in the past few years and proved very useful. (See, for example
[1, 2, 11, 14, 9].) Functional query languages have clear syntax, they can be
typechecked, their semantics is generally easy to define and they allow a lim-
ited form of polymorphism. We believe that such a powerful and general query
language will greatly facilitate the user in interactively finding useful theorems
in HOL90 theories, but will also allow for the development of tactics and other
tools of proof development which make full use of stored ancestor theories.

The language we describe in this paper contains the nested relational algebra
as a sublanguage. The nested relational algebra is a standard query language for
database objects that freely combine values of base types, records and sets. Its
standard presentations [4, 12, 13] have cumbersome syntax, so we have decided
to follow the approach of [2] which gives a clean and simple language that has
precisely the same expressive power.

In order to represent disjunctive information in our query language, we added
a new type constructor for or-sets to the nested relational algebra. One of the
problems addressed in the language is the difference between structural queries
and conceptual queries. At the structural level, an or-set is a collection of ob-
jects, just as a set is. However, at the conceptual level, an or-set represents one
element from the or-set, while the set continues to represent the whole collection.
It was shown in [8, 7] that conceptually equivalent objects can be reduced in a
canonical manner to the same object, called its normal form. The normal form
is a disjunct of all usual objects (i.e. not involving disjunctive information) rep-
resented by the given object prior to normalization. Therefore, one can take the
conceptual meaning of any object to be its normal form. Consequently, a con-
ceptual query language can be built by extending a structural language with a
single operator normal which takes the input object to its normal form. A query
at the conceptual level is then simply a query performed on normal forms. In
section 5 we give an example where it is desirable to be able to make queries at
both the structural level and at the conceptual level. We make use of queries at
the structural level to distinguish between recursive datatypes and other kinds
of types while we make use of the conceptual level to determine what are the
possibilities for induction principles for any recursive datatype.

The system OR-SML includes a subsystem which is equivalent to the nested
relational algebra, but the whole system contains much more. First, normaliza-
tion is present as a primitive. OR-SML also allows programming with struc-
tural recursion on sets and or-sets. It provides a mechanism for converting any
user-defined functions on base types (integers, strings, HOL90 types, terms, and
theorems) into functions that fit into the type system of OR-SML. It also gives
a “way out” of database objects into SML values. This is useful, for example, if
you wish to incorporate a query into a tactic or a derived rule of inference.

2 The core language

The theoretical language upon which OR-SML is based was developed by Libkin
and Wong in [8]. In this section we describe this core language, called or-ANRA,
and show how it is built on top of Standard ML. We have changed the names of
all constructs of or-A’RA to the names that are used in OR-SML.

Types of database objects (also called complex objects in the database liter-
ature) are given by the following grammar:

t=0b | unit | bool | txt |{t} | (¢)

Here b ranges over a collection of base types (which in OR-SML as interfaced
to HOL90 consists of int, string and a datatype composed of hol_type, term,
and thm); unit is a special type whose domain has a unique element denoted
in OR-SML by (); bool is the type of booleans; ¢ X s is the product type whose
objects are pairs of objects of types ¢ and s. The set type {¢} denotes finite sets
of elements of ¢ and the or-set type (t) denotes finite or-sets of elements of ¢. The
core language of or-N'RA consists of a family of operators, implemented as SML

functions which provides the basic interface to OR-SML. Their specific types as
or-N'RA operators are given by the rules in Fig. 1. All occurrences of s, ¢ and u
in the table are object types.

General operators

g:u—s f:is—ot c:bool f:s—t g:s—t fiu—s giu—t
comp(f,g) :u—t cond(c, f,g) : s =t pair(f,g):u— s xt

pl:sxt—=s pP2:sxt—t bang : t — unit

eq:t xt — bool id:t =t

Operators on sets

emptyset : unit — {t} sng : t — {t} union : {t} x {t} — {t}

fis—t
smap f: {s} — {t} pairwith:s x {t} — {s x t} flat : {{t}} — {t}

Operators on or-sets

emptyorset : unit — (t) orsng:t — (t) orunion : (t) X (t) — (¢)

fis—t
orsmap f: (s) — (t) orpairwith: s X (t) = (s x t) orflat : ((t)) — (¢)

Interaction of sets and or-sets

alpha: {(t)} — ({t})

Fig. 1. or-N'RA Type Inference of OR-SML Terms

Let us briefly recall the semantics of these operators. comp(f,g) is com-
position of functions f and g¢. pair(f,g) is pair formation: pair(f,g)(z) =

(f(z), g(z)). First and second projections are called p1 and p2. id is the identity
function. bang always returns the unique element of type unit, which has the
name unit_co. cond(c, f, g)(z) evaluates to f(z) if condition c is satisfied and
to g(z) otherwise.

The semantics of the set constructs is the following. emptyset() is the empty
set. This value also has the name empty. Similarly, the constant emptyorset()
is available under the name orempty. sng(x) returns the singleton set {z}.
union(z,y) is union of two sets z and y. smap(f) maps f over all elements
of a set; that is, smap(f){x1,...,zn} = {f(z1),..., f(zn)}. pairwith pairs
the first component of its argument with every item in the second component:
pairwith(y,{z1,...,2,}) = {(y,z1),...,(y,2n)}. Finally, flat is flattening:
flat{X;,..., X} = X; U...U X,,. The semantics of the or-set constructs is
similar.

The operator alpha provides interaction between sets and or-sets. Given a
set A ={A1,..., A}, where each A; is an or-set 4; = (al,...,a},), let F denote
the set of all functions f: {1,...,n} = Nsuch that 1 < f(i) < n; for all i. Then
alpha(A) = ({aj, |i=1,....n} [f € TF).

These constructs are represented in SML as follows. Every complex object
has SML type co. We shall refer to the type of an object or a function in or-A’RA
as its true type. True types of complex objects can be inferred using the function
typeof. (This is much the same as the situation with the types and terms of
HOL90.) They are SML values having type co_type. When OR-SML prints a
complex object together with its type, it uses :: for the true type, as : co is
used to show that the SML type of the object is co.

Besides integers, strings, and booleans, we may create complex objects from
one other type, namely:

datatype hol_theory_data =
Type of hol_type

| Term of term

| Thm of thm

| Parent of {thy_name : string, parent : string}

| TypeOp of {thy_name : string, tyop :{Name : string, Arity : int}}

| Constant_tm of {thy_name : string, constant : term}

| Infix_tm of {thy_name : string, constant : term}

| Binder_tm of {thy_name : string, constant : term}

| Axiom of {thy_name : string, theorem : (string * thm)}

| Definition of {thy_name : string, theorem : (string * thm)}

| StoredThm of {thy_name : string, theorem :(string * thm)}

The constructors Type, Term, and Thm are for injecting arbitrary HOL90 types,

terms and theorems into the base type. The remaining constructors are intended

to allow us to represent the components of HOL90 theories. The labels parent,

constant, and theorem in the arguments to StoredThm, etc., should not be

confused with SML functions of the same name. To create complex objects from

these types, the following basic functions are available:

val mkintco : int -> co
val mkboolco : bool -> co

val mkstringco : string -> co
val mkbaseco : hol_theory_data -> co

There are also some derived functions such as

val mksetint : int list -> co

val mkorsint : int list -> co

val mkprodco : co * co -> co

val mksetco : co list -> co

val mkorsco : co list -> co

val mk_theory_db : string -> co

val mk_all_theories_db : unit -> co

The string argument to mk_theory.db is the name of the HOL90 theory. It
returns the set of entries from the theory. The function mk_all theories_db
creates a complex object that is the set of all the entires in all the theories
available in the running HOL90 system. The reason for this being a function is
that this is an extensible collection.

An example of the creation of some complex objects is as follows:

a = mksetint [1,3,5];
= {1, 3, 5} :: {int} : co
- val b = mkbaseco (StoredThm{thy_name = "prim_rec",
theorem = ("LESS_0",
theorem "prim_rec" "LESS_0")1});

- val
val a

val b =
(StoredThm{theorem = ("LESS_O0", |- !'n. 0 < SUC n),
thy_name = "prim_rec"}) :: hol_theory_data : co

- val ¢ = itlist
(fn x => (fn y => orunion(orsng(mkbaseco(Thm x)),y)))
[EQ_SYM_EQ, TRUTH] orempty;

<(Thm (|- T)), (Thm (|- !xy. (x =y) =y = x))

> :: <hol_theory_data> : co

- val d = mkorsco (map (mkbaseco o Thm) [TRUTH, EQ_SYM_EQ]);

val c

val d = <(Thm (|- !'xy. (x=y) =y =x)), (Thm (|- T))
> :: <hol_theory_data> : co
- eq(c,d);

val it = T :: bool : co

Output in the example above, as in the other examples in this paper was
produced with a pretty-printer for the type co using the pretty-printer instal-
lation facility of the SML-NJ compiler. The pretty-printer for the type co is
constructed from a pretty-printer for the type hol_theory_data, which has also
been installed in SML-NJ.

In the second part of the example above, we give a sample derivation of
mkorsco from primitives. Notice that eq returns T for ¢ and d even though they
don’t print out in the same order. This is, of course, because we are dealing with
or-sets, and order is disregarded.

The language we presented can express many functions commonly found in
query languages. Among them are boolean and, or and negation, membership

test, subset test, difference, selection, cartesian product and their counterparts
for or-sets, see [2, 8]. These functions are included in OR-SML in the form of a
structure called Set.

- val x1 = mksetint [1,2];

val x1 = {1, 2} :: {int} : co

- smap (pair(id,id)) =x1;

val it = {(1, 1), (2, 2)} :: {(int * int)} : co

- val x2 = mksetint [3,4];

val x2 = {3, 4} :: {int} : co

- union(x1,x2);

val it = {1, 2, 3, 4} :: {int} : co

- Set.cartprod(x1,x2);

val it = {(1, 3), (1, 4), (2, 3), (2, 4)} :: {(int * int)} : co

3 Normalization

As we discussed before, while an object (1,2,3) is structurally just a set, con-
ceptually it is a single integer which is either 1 or 2 or 3. Assume we are given
an object z : t where type t contains some or-set brackets. What is this ob-
ject conceptually? Since we want to list all possibilities explicitly, it must be
an object ' : (t') where t' is derived from ¢ by erasing all or-set brackets from
t. Intuitively, for any given object # we can find the corresponding z’, but the
question is whether there exists a coherent way of obtaining all objects which
the given object can conceptually represent. Such a way was found in [8] and
later refined in [7].

Definition: The normal form of a complex object is the or-set of all con-
ceptual representations of the complex object, where

— for any z of base type, y is a conceptual representation of x if and only if
y =

— (2',y") conceptually represents (z,y) if and only if 2’ conceptually represents
z and y' conceptually represents y;

— x conceptually represents (z1,. .., z,) if and only if x conceptually represents
one of x1,...,Z,;

— {21,..., 2} conceptually represents {z1,..., z,} if and only if each z' €

3 3 3

{z},...,z}} conceptually represents some z € {z1,...,z,} and each z €

{z1,...,x,} is conceptually represented by some z' € {z,...,z}}.

Normalization is supported in OR-SML by the addition of two new func-
tions: normalize of SML type co_type -> co_type and normal of SML type
co -> co. These two functions are sufficient to give OR-SML adequate power to
work with conceptual representations of objects. The function normalize, when
applied to a type t, returns the type of the or-set of conceptual representatives
of objects of type t. As a primitive operator of OR-SML, normal has true type

normal : ¢ — normalize(t)

The semantics of normal x is the or-set of conceptual representatives of x. For
example, if we construct a pair x of an HOL90 term coupled with selections of
atomic subtypes of the term’s type, this is conceptually the same as a selection
of pairs of the term coupled with one of its atomic subtypes.

- val x = mkprodco(mkbaseco (Term(--‘f:ind -> ’a‘--)),
mkorsco (map (mkbaseco o Type)
[(==¢:ind‘==),(==‘:’a‘==)]1));

val x =
((Term ((--‘f‘--))),
<(Type ((==‘:’a‘==))), (Type ((==‘:ind‘==)))
>) :: (hol_theory_data * <hol_theory_data>) : co

- normalize (typeof x);
val it = <(hol_theory_data * hol_theory_data)> : co_type
- normal x;
val it =
<((Term ((--‘f‘--))), (Type ((==‘:ind‘==)))),
((Term ((--‘£¢--))), (Type ((==‘:’a‘==))))
> :: <(hol_theory_data * hol_theory_data)> : co

Many conceptual queries do not require that all objects in the normal form be
constructed at once, before the query can be asked. Instead, processing elements
of the normal forms one-by-one will often suffice. For example, in order to select
normal form entries that satisfy a given criterion, one need not construct the
entire normal form first. This suggest a different evaluation scheme for conceptual
queries, that processes entries in the normal form one-by-one, while accumulating
the result. OR-SML provides a number of functions that implement this query
evaluation mechanism. We do not discuss this feature of OR-SML here. The
interested reader may consult [7]. Notice that such a scheme greatly reduces the
space usage, which is important for large size databases.

4 Additional features of the system

4.1 Primitives involving hol theory data

So far we have seen ways to create objects of type co out of objects of type
hol_theory_data, and how to perform various generic constructs, like pairing
and union on the resulting objects. However, the system must also provide a
way of making functions on hol _theory_data into functions that fit into the
type system of OR-SML. For example, we want to be able to write a function
thm_of _co : co -> co that extracts the theorem component (as a complex ob-
ject) from complex object consisting of the information about a stored theo-
rem. Furthermore, there is a need for a mechanism to translate predicates on
hol_theory_data into predicates on complex objects which can be used with
operators like cond and Set.select.

The solution to this problem is given by the function apply which takes a
function £ : hol_theory_data list -> hol_theory_data and returns a func-
tion from co to co representing the action of £ on complex objects. For exam-
ple, if val f_co = apply f, then f_co applied to a complex object (r1, (r2,73))

yields £ [ry,r2,73] in the form of a complex object. If £f_co is applied to a
complex object which is not a tuple of hol theory_data, then it raises the ex-
ception Cannotapply. Bundling the arguments to a function in a list allows us
to apply functions of arbitrarily many arguments over hol_theory_data to the
corresponding complex objects.

In practice, most of the functions we will wish to perform on
hol_theory_data are unary or binary. Therefore, OR-SML has a special fea-
ture that allows you to apply unary and binary functions on hol_theory data
by using functions apply unary and apply_binary. For predicates, apply_test
takes a function of type (hol_theory_data -> bool) and returns it in the form
of a function on complex objects. For example, we may define thm_of by

- fun thm_of (Axiom {theorem = (_,thm),...}) = Thm thm
| thm_of (Definition {theorem = (_,thm),...}) = Thm thm
| thm_of (StoredThm {theorem = (_,thm),...}) = Thm thm
| thm_of (x as Thm _) = x
I

thm_of _ = raise HOL_ERR{origin_structure = "top",
origin_function = "thm_of",
message = "Has no theorem component"};

val thm_of = fn : hol_theory_data -> hol_theory_data

The function can when applied to a function f and then to an argument x returns
true if (f x) does not raise an exception, and false if it does. Using can with
thm_of gives us a test for whether an hol_theory_data object has a theorem
component. With this we are able to write a query to extract all the theorems
from the complex object representing an HOL90 theory as follows:

- val thm_of_co = apply_unary thm_of;

val thm_of_co = fn : co -> co

- val has_thm_component_co = apply_test (can thm_of);
val has_thm_component_co = fn : co -> co

- val one_db = mk_theory_db "omne";

val one_db =

{(StoredThm{theorem = ("one_axiom", |- !f g. f = g),
thy_name = "one"}),
(StoredThm{theorem = ("one", |- !v. v = one), thy_name = "one"}),
(StoredThm{theorem = ("one_Axiom", |- !'e. ?!fn. fn one = e),
thy_name = "one"}),

(Definition{theorem = ("one_TY_DEF",
|- ?rep. TYPE_DEFINITION (\b. b) rep),

thy_name = "one"}),
(Definition{theorem = ("one_DEF", |- one = (@x. T)),

thy_name = "one"}),
(Constant_tm{constant = (--‘one--)‘, thy_name = '"one"}),
(TypeOp{tyop = {Name = "one", Arity = 0}, thy_name = "one"}),
(Parent {parent = "bool", thy_name = "one"})

} :: {hol_theory_data} : co
- val one_stored_thms =
smap thm_of_co (Set.select has_thm_component_co one_db);
val one_stored_thms =

{(Thm (|- one = (@x. T))),
(Thm (|- ?rep. TYPE_DEFINITION (\b. b) rep)),
(Thm (|- !'e. ?!fn. fn one = e)), (Thm (|- !v. v = one)),
(Thm (I- !'f g. £ = g))} :: {hol_theory_data} : co

4.2 Structural recursion

Structural recursion on sets [1] is a very powerful programming tool for query
languages. Unfortunately, it is too powerful because it is often unsafe as an op-
eration on sets. A function defined by structural recursion is not guaranteed
to be well-defined as a function on sets or or-sets (i.e. two different presenta-
tions of the same set or or-set may yield unequal results), and well-definedness
can not generally be checked by a compiler [3]. Tt is, however, often helpful in
writing programs, so we have decided to include structural recursion in OR-
SML. Structural recursion on sets and or-sets is available to the user by means
of two constructs sr and orsr that take an object e of type ¢t and a func-
tion f of type s x ¢ — ¢ and return a function sr(e, f) of type {s} — ¢ or a
function orsr(e, f) of type (s) — ¢ respectively. Their semantics is as follows:
sr(e,){z1,...,xn} = f(z1, f(z2, f(x3,... f(zn,e)...))) and similarly for orsr.
That is, sr and orsr behave on sets and or-sets in much the same way as fold
or itlist behaves on lists. The two functions implementing structural recursion
are contained in the SML structure SR. As an example of the use of structural
recursion, functions for converting sets to or-sets and vice versa can be defined
as follows:

- val set_to_or = SR.sr(orempty, (fn (x,y) => orunion(orsng x, y)));
val set_to_or = fn : co -> co

- val or_to_set = SR.orsr(empty, (fn (x,y) => union(sng x, y)));

val or_to_set = fn : co -> co

- val a = mksetint [1,2,3,4,5];

val a = {1, 2, 3, 4, 5} :: {int} : co
- val b = set_to_or a;

val b = <1, 2, 3, 4, 5> :: <int> : co

- eq (a, or_to_set b);
val it = T :: bool : co

4.3 Deconstruction of complex objects

While we can use the system as described so far to query the HOL90 theories
interactively to find theorems that might be useful in solving goals, we really want
to be able to incorporate the results of such queries into further computations,
such as tactics and conversions. Since all operations of OR-SML described so far
produce elements of type co, there is a need to have a way out of complex objects
to the usual SML types. The structure DEST contains the following functions to
deconstruct complex objects and obtain ordinary SML values.

exception Cannotdestroy

val co_to_base : co -> hol_theory_data
val co_to_bool : co -> bool

val co_to_int : co -> int

val co_to_list : co -> co list
val co_to_pair : co -> co * co
val co_to_string : co -> string

It should be noted that because DEST.co_to_list takes an object whose ele-
ments are supposed to be treated as unordered and orders them, deconstruction
of complex objects is inherently as unsafe (in the sense of allowing ill-defined
functions over sets and or-sets) as structural recursion is.

4.4 Derived functions for HOL90 queries

To support some of the kinds of queries that users are most likely to perform
when browsing the HOL90 theories, we have provided a structure Hol_queries
containing the following functions:

val mk_theory_db : string -> co

val mk_all_theories_db : unit -> co

val type_test : (hol_type -> bool) -> hol_theory_data -> bool
val term_test : (term -> bool) -> hol_theory_data -> bool
val thm_test : (thm -> bool) -> hol_theory_data -> bool
val data_to_type : hol_theory_data -> hol_type

val data_to_term : hol_theory_data -> term

val data_to_thm : hol_theory_data -> thm

val db_find_thms : {test:thm -> bool, theory:string} -> co
val db_find_all_thms : (thm -> bool) -> co

val seek : {pattern:term, theory:string} -> co

val seek_all : term -> co

The functions mk_theory_db and mk_all theories db were mentioned ear-
lier. Care is taken with these two functions to memoize their results on any
proper ancestor theories to avoid their subsequent recomputation. The func-
tions type_test, term_test and thm_test convert predicates on HOL90 types,
terms and theorems respectively into predicates over hol_theory_data. They
can be composed with apply_test to create predicates over the corresponding
complex objects. The functions data to_type, data to_term and data_to_thm
extract the type, term or theorem from the given hol _theory data. The func-
tion db_find_thms returns the set of all theorems satisfying the given test in the
named theory, while db_find_all_thms looks in all currently available theories.
The function seek returns the set of all theorems in the named theory that
contain a subterm that match the given pattern. seek_all is the correspond-
ing function for looking in all the currently available theories. The functions
db_find _thms, db_find all_thms, seek, and seek_all all return complex ob-
jects so that further queries may be performed on the result. These functions
are not sufficient for complex queries, but will handle the simple lookups, and
they can be the starting point of more complex queries.

5 Using OR-SML and HOL90 together — an example

The main use to which the OR-SML extension of HOL90 has been put so far
is browsing the theories for theorems which might be relevant to the theorem
proving task at hand. The power of the combination of OR-SML and HOL90
can be seen, however, with an example involving proof planning.

A very important class of user-defined types in HOL90 are those of recursive
datatypes, including nested mutually recursive datatypes. Structural induction
over these datatypes is often an important step in solving goals. Part of the
process of defining a recursive datatype involves proving an “initiality theorem”
(or pair of theorems) which states that a function over the datatype may be
uniquely defined by cases over the constructors for the datatype. If a recursive
datatype was defined by one of the automatic procedures for creating recursive
datatypes, then such theorems have been stored in the theory database. Given a
recursive datatype, there may or may not be a principle of structural induction
for that type already stored in the theory database. However, one may test if a
theorem is the principle of induction for a type that corresponds to a given ini-
tiality theorem. Moreover, if the principle of structural induction is not present,
it may be automatically derived from the initiality theorems.

Given a goal to be proved, one often wants to proceed by structural induction
over any recursive datatypes over which the goal is universally quantified. Thus,
we would like to know all principles of induction stored in the HOL90 theory
database that are relevant to a given goal. However, a given type may or may
not be a recursive datatype. If the type is a recursive datatype, initiality may be
stated as one or two theorems, one for existence of the function and the other
for uniqueness. Moreover, a polymorphic datatype may have instances which
are components of several mutually recursive datatypes. To see this, consider
the two datatype specifications:

o list = Nil | Consof o (o list)

and
o Tree = Lf of o | Nd of (o Tree) list

The type (o Tree) list is an instance of the type o list and is a component of the
mutual recursion defining the type o Tree. They provide us with the following
two principles of induction:

VP (PNl AVt.Pt= VYh.P (Consht))=VIPI

and
VRP. ((Yn.R(Lfn) A (VI.P1 = R (Nd 1) A

PNil A (Vtl. (Rt N Pl) = P (Constl))) =
(Vt.Rt) A (V1. PI)

The first principle says that to prove that any property P holds for all lists, it
suffices to show that it holds for the Nil list, and that, if it holds for the tail of
a list, then it still holds when the head is put on. The second principle provides
a similar reduction, but for proving properties over trees and tree lists jointly.

If we are trying to prove that a fact holds for all objects of type o Tree list, we
could proceed by structural induction over lists, or we could proceed by mutual
structural induction over both tree lists and trees. Our query for finding such
information needs to be sensitive to the possibility of multiple choices, and thus
to disjunctive information.

Assume we have the following:

all theories db : co is the OR-SML version of the theories database for
HOL90, which is the set of entries from each ancestor theory, including the
current theory;

universal_types : term -> hol_type list returns the list of the types of the
leading universally quantified variables of a given term;
is_initial_theorem for : hol_type -> hol_theory_data -> bool tests
whether a given theorem is an initiality theorem for a given type;
is_existential for : hol_type -> hol_theory.data -> bool tests whether
a given theorem is the existential half of a statement of initiality for the given
type;

is_uniqueness_for : hol_theory data -> hol_theory_data -> bool when
applied to the existential half of a statement of initiality, tests whether the
second argument is the the corresponding uniqueness theorem.
is_induction_for : hol_theory._data -> hol_theory._data -> bool

takes an initiality theorem, or the existential half, as the first argument and
tests whether the second argument is the corresponding induction theorem.

The testing functions given above may be converted into ones which work
with OR-SML by composing them with apply test. When we wish to apply
a function over hol_theory_data to a complex object (i.e. an OR-SML object)
that we know is the equivalent of an object of hol_theory_data type, we may
accomplish this by composing the original function with DEST.co_to_base.

fun is_initial_co_for ty = apply_test (is_initial_theorem_for ty)
fun is_existential_co_for ty = apply_test (is_existential_for ty)
fun is_uniqueness_co_for thm_co =

apply_test (is_uniqueness_for (DEST.co_to_base thm_co))
fun is_induction_co_for thm_co =

apply_test (is_induction_for (DEST.co_to_base thm_co))

Using these functions together with some of the functions from OR-SML
described previously, we may incrementally define the query for finding all pos-
sible sequences of relevant induction information as follows. We will gather each
statement of initiality as a pair where either the first component is a theorem of
initiality and the second component is the empty set, or the first component is
the existential half of initiality and the second component is the set containing
the uniqueness half. (Remember that OR-SML is a typed language, so we need
to use the same type of representation in each case.)

fun mk_initial_co_for ty =
comp (smap (fn thm_co => mkprodco(thm_co, empty)),

Set.select (is_initial_co_for ty))

fun mk_exist_uniq_co_for ty theory_db =
smap (fn existential_co =>
mkprodco(existential_co,
Set.select (is_uniqueness_co_for existential_co)
theory_db))
(Set.select (is_existential_co_for ty) theory_db)

fun mk_initiality_options ty =
set_to_or (union (mk_initial_co_for ty all_theories_db,
mk_exist_uniq_co_for ty all_theories_db))

For each initiality statement we find for a given type, we want to find an
induction theorem, if it exists. Again, we will use sets to allow for the possibility
that none exists.

fun get_induct_thm_co init_thms_co =
let val init_co = pl init_thms_co (* Either the initiality theorem,*)
(* or the existential half. *)
val induct_co =
Set.select (is_induction_co_for init_co) all_theories_db
in mkprodco (init_thms_co, induct_co)
end

fun mk_induction_options ty =
orsmap get_induct_thm_co (mk_initiality_options ty)

For any one given type ty, the query mk_induction options ty returns the
or-set of pairs of initiality theorems and possible induction theorems. We need
to accumulate this information over the list of types over which the goal is
universally quantified. We wish to preserve the order in which the information is
gathered, to match it with the order in which the types are universally quantified.
Therefore, the result we return will be a tuple. We would like each entry in
the tuple to be the or-set of possibilities for viewing the type as a recursive
datatype. However, some types simply are not recursive datatypes. Therefore,
we take advantage of the structural level of OR-SML to replace the empty or-
set by the empty tuple, that is, unit_co, the unique element of unit type, to
represent that the type of the universally quantified variable does not admit
induction. This allows us to switch to the conceptual level using normalization to
acquire the collection of all possible sequences consisting of induction information
when appropriate and a place holder of the empty tuple when induction is not
appropriate.

fun fold_induction_options [] = unit_co
| fold_induction_options (hd_ty :: tl_tys) =
let val new_options = mk_induction_options hd_ty
in cond(eq(new_options, orempty),
(fn rem_co => mkprodco(unit_co,rem_co)),
(fn rem_co => mkprodco(new_options,rem_co)))

(fold_induction_options tl_tys)
end

fun goal_induction_options goal =
normal (fold_induction_options (universal_types goal))

Using a package for making nested recursive datatype definitions, we added
to HOL90 the definition of the type Tree as given above. An example of finding
the possible induction information for a goal over Tree in this setting is as
follows: (The output has been abbreviated for the sake of space.)

- val poss_ind = goal_induction_options
(-=“!(n:num) 1. ((Nd (CONS (Lf n) 1)) = Nd (APPEND 1 [(Lf n)])) =
(EVERY (\x. x = Lf n) 1)‘--);
val poss_ind =

<((((StoredThm{theorem = ("num_Axiom", (* ... the theorem ... *)),
thy_name = "prim_rec"}),
0,
{(StoredThm{theorem = ("INDUCTION", (* ... the theorem ... %)),
thy_name = "num"})}),
((((StoredThm{theorem = ("list_Axiom", (* ... the theorem ... %)),
i,
{(StoredThm{theorem = ("1list_INDUCT", (* ... the theorem ... *),
0N,
(. . (% same first tuple as above *) . . . ,

((((StoredThm{theorem = ("Tree_existence",
|- 'Lf_case Nd_case Tree_NIL_Tree_case Tree_CONS_Tree_case.
7y y’.
('x1. y (Lf x1) Lf_case x1) /\
('x1. y (Nd x1) = Nd_case (y’ x1) x1) /\
(y’ [1 = Tree_NIL_Tree_case) /\
('x1 x2.
y’ (CONS x1 x2) =
Tree_CONS_Tree_case (y x1) (y’ x2) x1 x2)),
thy_name = "Tree"}),
{(StoredThm{theorem = ("Tree_unique",
(* the uniqueness theorem corresponding *)
(* to the above existence theorem ¥) ...),
thy_name = "Tree"})}),
{(StoredThm{theorem = ("Tree_induct",
|- !Tree_Prop Tree_list_Tree_Prop.
('y. Tree_Prop (Lf y)) /\
(!y. Tree_list_Tree_Prop y ==> Tree_Prop (Nd y)) /\
Tree_list_Tree_Prop [] /\
(ly y°.
Tree_Prop y /\ Tree_list_Tree_Prop y’ ==>
Tree_list_Tree_Prop (CONS y y’)) ==>
(!'x1. Tree_Prop x1) /\ (!x2. Tree_list_Tree_Prop x2)),
thy_name = "Tree"})}),
0N
> :: <(((hol_theory_data * {’a}) * {hol_theory_data}) *

(((hol_theory_data * {hol_theory_data}) * {hol_theory_data}) *
unit))> : co

- val number_of_options = length (DEST.co_to_list poss_ind);

val number_of_options = 2 : int

Thus there are two possible ways to proceed by induction. In each case, there
is only one way to proceed by induction over the natural numbers. However, we
have two different options for how to proceed by induction over lists of trees
given to us by the second component of each tuple in poss_ind. We may either
proceed by induction over lists, or by mutual induction over trees and lists of
trees. Once having gathered this information in normal form, we may continue
with further queries, such as which of the possibilities are missing the induction
theorem and need to have it derived, or how many different ways are there to
proceed.

In the above example, no further heap increases were required after the code
from the library nested _rec was loaded. The heap at that time was 23 megabytes
in HOL90 built using version 93 of SML-NJ. All database operations (including
the calculation of all_theories_db) took place after the last major garbage
collection. The time to run the query for poss_ind took 12 seconds of wall-
clock time on a Sun Sparcstation 2. While more effort is needed to make queries
more efficient in general, we feel that this is already acceptable performance for
OR-SML to be a usable tool with HOL90 on moderately complicated queries.

In the above we have described a particular example of creating a query to
find all possible principles of structural induction and related information rele-
vant to a particular goal to be proved. Other examples exist which involve finding
all possible sequences of equations and conditional equations for rewriting a goal
towards a particular form. Our experience with using OR-SML in HOL90 is still
limited. However, it is our belief that the ability to make queries involving con-
junctive and disjunctive information using OR-SML within the theorem prover
HOL90 will enhance the end-user’s ability to gather information appropriate for
planning the proof of goals.

6 Conclusion

We describe a functional database language built on top of Standard ML and
interfaced to HOL90. The set part of the core language (i.e. the primitives not
involving or-sets) is precisely the nested relational algebra. It is then extended
with or-sets which are used to deal with disjunctive information. Normalization
of objects, when added as a primitive, allows querying databases at the structural
level and at the conceptual level. Moreover, representing objects as a single
SML type allows the user to write queries using higher-order functions which
are typically not present in query languages. In this paper we have described
OR-SML as it connects to HOL90. OR-SML is also capable of being built as a
stand-alone system, and as such, has certain features (for example file I/O, and
the ability to handle multisets) that were not relevant to this setting and were

not described here. A more complete description of the full system can be found
in [6].

By interfacing HOL90 to a powerful, general purpose, database query lan-
guage with good theoretical properties, such as a clear semantics, we believe we
have provided a good tool for theory browsing as well as a solid platform for
future work in constructing theorem-proving methodologies that make full use
of previously developed theories.

References

1. V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion as a query
language. In Proc. of 8rd Int. Workshop on Database Programming Languages,
pages 9-19, Naphlion, Greece, August 1991.

2. V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded query lan-
guages. In LNCS 646: Proc. ICDT, Berlin, Germany, October, 1992, pages 140—
154. Springer-Verlag, October 92.

3. V. Breazu-Tannen and R. Subrahmanyam. Logical and computational aspects of
programming with sets/bags/lists. In LNCS 510: Proc. of ICALP-1991, Springer
Verlag, 1991, pages 60-75.

4. L. Colby, A recursive algebra for nested relations, Inform. Systems 15 (1990),
567-582.

5. S. Grumbach, T. Milo, Towards tractable algebras for bags, Proc. 12th Symposium
on Principles of Database Systems, Washington DC, 1993, pages 49-58.

6. E. Gunter and L. Libkin, OR-SML: A functional database programming language
for disjunctive information and its applications, In: D. Karagiannis ed., Proc. 5th
Internat. Conf. on Database and Ezpert Systems Applications (DEXA’94), Athens,
Greece, September 1994. Springer-Verlag LNCS vol. 856, 1994, pp. 641-650.

7. L. Libkin. Normalizing incomplete databases. In Proceedings of the 14th Symp.
on Principles of Database Systems, San Jose CA, 1995, pages 219-230.

8. L. Libkin and L. Wong, Semantic representations and query languages for or-sets,
Proceedings of the 12th Symp. on Principles of Database Systems, Washington DC,
1993, pages 37-48.

9. L. Libkin and L. Wong, Some properties of query languages for bags, In Proceedings
of the 4th International Workshop on Database Programming Languages, Septem-
ber 1993, Springer Verlag, 1994, pages 97-114.

10. R. Milner, M. Tofte, R. Harper, ”The Definition of Standard ML”, The MIT Press,
Cambridge, Mass, 1990.

11. A. Ohori, V. Breazu-Tannen and P. Buneman, Database programming in Machi-
avelli: a polymorphic language with static type inference, In SIGMOD 89, pages
46-57.

12. H.-J. Schek and M. Scholl, The relational model with relation-valued attributes,
Inform. Systems 11 (1986), 137-147.

13. S.J. Thomas and P. Fischer, Nested relational structures, in P. Kanellakis ed.,
Advances in Computing Research: The Theory of Databases, pages 269-307, JAI
Press, 1986.

14. P.W. Trinder, Comprehension: A query notation for DBPLs, In Proc. 3rd Int.
Workshop on Database Progr. Languages, 1991, pages 49-62, Morgan Kaufmann.

This article was processed using the ITEX macro package with LLNCS style

