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In order to represent disjunctive information in our query language, we addeda new type constructor for or-sets to the nested relational algebra. One of theproblems addressed in the language is the di�erence between structural queriesand conceptual queries. At the structural level, an or-set is a collection of ob-jects, just as a set is. However, at the conceptual level, an or-set represents oneelement from the or-set, while the set continues to represent the whole collection.It was shown in [8, 7] that conceptually equivalent objects can be reduced in acanonical manner to the same object, called its normal form. The normal formis a disjunct of all usual objects (i.e. not involving disjunctive information) rep-resented by the given object prior to normalization. Therefore, one can take theconceptual meaning of any object to be its normal form. Consequently, a con-ceptual query language can be built by extending a structural language with asingle operator normal which takes the input object to its normal form. A queryat the conceptual level is then simply a query performed on normal forms. Insection 5 we give an example where it is desirable to be able to make queries atboth the structural level and at the conceptual level. We make use of queries atthe structural level to distinguish between recursive datatypes and other kindsof types while we make use of the conceptual level to determine what are thepossibilities for induction principles for any recursive datatype.The system OR-SML includes a subsystem which is equivalent to the nestedrelational algebra, but the whole system contains much more. First, normaliza-tion is present as a primitive. OR-SML also allows programming with struc-tural recursion on sets and or-sets. It provides a mechanism for converting anyuser-de�ned functions on base types (integers, strings, HOL90 types, terms, andtheorems) into functions that �t into the type system of OR-SML. It also givesa \way out" of database objects into SML values. This is useful, for example, ifyou wish to incorporate a query into a tactic or a derived rule of inference.2 The core languageThe theoretical language upon which OR-SML is based was developed by Libkinand Wong in [8]. In this section we describe this core language, called or-NRA,and show how it is built on top of Standard ML. We have changed the names ofall constructs of or-NRA to the names that are used in OR-SML.Types of database objects (also called complex objects in the database liter-ature) are given by the following grammar:t ::= b j unit j bool j t� t j ftg j htiHere b ranges over a collection of base types (which in OR-SML as interfacedto HOL90 consists of int, string and a datatype composed of hol type, term,and thm); unit is a special type whose domain has a unique element denotedin OR-SML by (); bool is the type of booleans; t� s is the product type whoseobjects are pairs of objects of types t and s. The set type ftg denotes �nite setsof elements of t and the or-set type hti denotes �nite or-sets of elements of t. Thecore language of or-NRA consists of a family of operators, implemented as SML



functions which provides the basic interface to OR-SML. Their speci�c types asor-NRA operators are given by the rules in Fig. 1. All occurrences of s, t and uin the table are object types. General operatorsg : u ! s f : s! tcomp(f; g) : u! t c : bool f : s! t g : s! tcond(c; f; g) : s! t f : u ! s g : u! tpair(f; g) : u ! s� tp1 : s� t ! s p2 : s� t! t bang : t! uniteq : t� t! bool id : t! tOperators on setsemptyset : unit ! ftg sng : t! ftg union : ftg � ftg ! ftgf : s! tsmap f : fsg ! ftg pairwith : s� ftg ! fs� tg flat : fftgg ! ftgOperators on or-setsemptyorset : unit ! hti orsng : t ! hti orunion : hti � hti ! htif : s! torsmap f : hsi ! hti orpairwith : s� hti ! hs� ti orflat : hhtii ! htiInteraction of sets and or-setsalpha : fhtig ! hftgiFig. 1. or-NRA Type Inference of OR-SML TermsLet us briey recall the semantics of these operators. comp(f; g) is com-position of functions f and g. pair(f; g) is pair formation: pair(f; g)(x) =



(f(x); g(x)). First and second projections are called p1 and p2. id is the identityfunction. bang always returns the unique element of type unit, which has thename unit co. cond(c; f; g)(x) evaluates to f(x) if condition c is satis�ed andto g(x) otherwise.The semantics of the set constructs is the following. emptyset() is the emptyset. This value also has the name empty. Similarly, the constant emptyorset()is available under the name orempty. sng(x) returns the singleton set fxg.union(x; y) is union of two sets x and y. smap(f) maps f over all elementsof a set; that is, smap(f)fx1; : : : ; xng = ff(x1); : : : ; f(xn)g. pairwith pairsthe �rst component of its argument with every item in the second component:pairwith(y; fx1; : : : ; xng) = f(y; x1); : : : ; (y; xn)g. Finally, flat is attening:flatfX1; : : : ; Xng = X1 [ : : : [ Xn. The semantics of the or-set constructs issimilar.The operator alpha provides interaction between sets and or-sets. Given aset A = fA1; : : : ; Ang, where each Ai is an or-set Ai = hai1; : : : ; ainii, let F denotethe set of all functions f : f1; : : : ; ng ! N such that 1 � f(i) � ni for all i. Thenalpha(A) = hfaif(i) j i = 1; : : : ; ng j f 2 Fi.These constructs are represented in SML as follows. Every complex objecthas SML type co. We shall refer to the type of an object or a function in or-NRAas its true type. True types of complex objects can be inferred using the functiontypeof. (This is much the same as the situation with the types and terms ofHOL90.) They are SML values having type co type. When OR-SML prints acomplex object together with its type, it uses :: for the true type, as : co isused to show that the SML type of the object is co.Besides integers, strings, and booleans, we may create complex objects fromone other type, namely:datatype hol_theory_data =Type of hol_type| Term of term| Thm of thm| Parent of {thy_name : string, parent : string}| TypeOp of {thy_name : string, tyop :{Name : string, Arity : int}}| Constant_tm of {thy_name : string, constant : term}| Infix_tm of {thy_name : string, constant : term}| Binder_tm of {thy_name : string, constant : term}| Axiom of {thy_name : string, theorem : (string * thm)}| Definition of {thy_name : string, theorem : (string * thm)}| StoredThm of {thy_name : string, theorem :(string * thm)}The constructors Type, Term, and Thm are for injecting arbitrary HOL90 types,terms and theorems into the base type. The remaining constructors are intendedto allow us to represent the components of HOL90 theories. The labels parent,constant, and theorem in the arguments to StoredThm, etc., should not beconfused with SML functions of the same name. To create complex objects fromthese types, the following basic functions are available:val mkintco : int -> coval mkboolco : bool -> co



val mkstringco : string -> coval mkbaseco : hol_theory_data -> coThere are also some derived functions such asval mksetint : int list -> coval mkorsint : int list -> coval mkprodco : co * co -> coval mksetco : co list -> coval mkorsco : co list -> coval mk_theory_db : string -> coval mk_all_theories_db : unit -> coThe string argument to mk theory db is the name of the HOL90 theory. Itreturns the set of entries from the theory. The function mk all theories dbcreates a complex object that is the set of all the entires in all the theoriesavailable in the running HOL90 system. The reason for this being a function isthat this is an extensible collection.An example of the creation of some complex objects is as follows:- val a = mksetint [1,3,5];val a = {1, 3, 5} :: {int} : co- val b = mkbaseco (StoredThm{thy_name = "prim_rec",theorem = ("LESS_0",theorem "prim_rec" "LESS_0")});val b =(StoredThm{theorem = ("LESS_0", |- !n. 0 < SUC n),thy_name = "prim_rec"}) :: hol_theory_data : co- val c = itlist(fn x => (fn y => orunion(orsng(mkbaseco(Thm x)),y)))[EQ_SYM_EQ, TRUTH] orempty;val c = <(Thm (|- T)), (Thm (|- !x y. (x = y) = y = x))> :: <hol_theory_data> : co- val d = mkorsco (map (mkbaseco o Thm) [TRUTH, EQ_SYM_EQ]);val d = <(Thm (|- !x y. (x = y) = y = x)), (Thm (|- T))> :: <hol_theory_data> : co- eq(c,d);val it = T :: bool : coOutput in the example above, as in the other examples in this paper wasproduced with a pretty-printer for the type co using the pretty-printer instal-lation facility of the SML-NJ compiler. The pretty-printer for the type co isconstructed from a pretty-printer for the type hol theory data, which has alsobeen installed in SML-NJ.In the second part of the example above, we give a sample derivation ofmkorsco from primitives. Notice that eq returns T for c and d even though theydon't print out in the same order. This is, of course, because we are dealing withor-sets, and order is disregarded.The language we presented can express many functions commonly found inquery languages. Among them are boolean and, or and negation, membership



test, subset test, di�erence, selection, cartesian product and their counterpartsfor or-sets, see [2, 8]. These functions are included in OR-SML in the form of astructure called Set.- val x1 = mksetint [1,2];val x1 = {1, 2} :: {int} : co- smap (pair(id,id)) x1;val it = {(1, 1), (2, 2)} :: {(int * int)} : co- val x2 = mksetint [3,4];val x2 = {3, 4} :: {int} : co- union(x1,x2);val it = {1, 2, 3, 4} :: {int} : co- Set.cartprod(x1,x2);val it = {(1, 3), (1, 4), (2, 3), (2, 4)} :: {(int * int)} : co3 NormalizationAs we discussed before, while an object h1; 2; 3i is structurally just a set, con-ceptually it is a single integer which is either 1 or 2 or 3. Assume we are givenan object x : t where type t contains some or-set brackets. What is this ob-ject conceptually? Since we want to list all possibilities explicitly, it must bean object x0 : ht0i where t0 is derived from t by erasing all or-set brackets fromt. Intuitively, for any given object x we can �nd the corresponding x0, but thequestion is whether there exists a coherent way of obtaining all objects whichthe given object can conceptually represent. Such a way was found in [8] andlater re�ned in [7].De�nition: The normal form of a complex object is the or-set of all con-ceptual representations of the complex object, where{ for any x of base type, y is a conceptual representation of x if and only ify = x;{ (x0; y0) conceptually represents (x; y) if and only if x0 conceptually representsx and y0 conceptually represents y;{ x conceptually represents hx1; : : : ; xni if and only if x conceptually representsone of x1; : : : ; xn;{ fx01; : : : ; x0kg conceptually represents fx1; : : : ; xng if and only if each x0 2fx01; : : : ; x0kg conceptually represents some x 2 fx1; : : : ; xng and each x 2fx1; : : : ; xng is conceptually represented by some x0 2 fx01; : : : ; x0kg.Normalization is supported in OR-SML by the addition of two new func-tions: normalize of SML type co type -> co type and normal of SML typeco -> co. These two functions are su�cient to give OR-SML adequate power towork with conceptual representations of objects. The function normalize, whenapplied to a type t, returns the type of the or-set of conceptual representativesof objects of type t. As a primitive operator of OR-SML, normal has true typenormal : t! normalize(t)



The semantics of normal x is the or-set of conceptual representatives of x. Forexample, if we construct a pair x of an HOL90 term coupled with selections ofatomic subtypes of the term's type, this is conceptually the same as a selectionof pairs of the term coupled with one of its atomic subtypes.- val x = mkprodco(mkbaseco (Term(--`f:ind -> 'a`--)),mkorsco (map (mkbaseco o Type)[(==`:ind`==),(==`:'a`==)]));val x =((Term ((--`f`--))),<(Type ((==`:'a`==))), (Type ((==`:ind`==)))>) :: (hol_theory_data * <hol_theory_data>) : co- normalize (typeof x);val it = <(hol_theory_data * hol_theory_data)> : co_type- normal x;val it =<((Term ((--`f`--))), (Type ((==`:ind`==)))),((Term ((--`f`--))), (Type ((==`:'a`==))))> :: <(hol_theory_data * hol_theory_data)> : coMany conceptual queries do not require that all objects in the normal form beconstructed at once, before the query can be asked. Instead, processing elementsof the normal forms one-by-one will often su�ce. For example, in order to selectnormal form entries that satisfy a given criterion, one need not construct theentire normal form �rst. This suggest a di�erent evaluation scheme for conceptualqueries, that processes entries in the normal form one-by-one, while accumulatingthe result. OR-SML provides a number of functions that implement this queryevaluation mechanism. We do not discuss this feature of OR-SML here. Theinterested reader may consult [7]. Notice that such a scheme greatly reduces thespace usage, which is important for large size databases.4 Additional features of the system4.1 Primitives involving hol theory dataSo far we have seen ways to create objects of type co out of objects of typehol theory data, and how to perform various generic constructs, like pairingand union on the resulting objects. However, the system must also provide away of making functions on hol theory data into functions that �t into thetype system of OR-SML. For example, we want to be able to write a functionthm of co : co -> co that extracts the theorem component (as a complex ob-ject) from complex object consisting of the information about a stored theo-rem. Furthermore, there is a need for a mechanism to translate predicates onhol theory data into predicates on complex objects which can be used withoperators like cond and Set.select.The solution to this problem is given by the function apply which takes afunction f : hol theory data list -> hol theory data and returns a func-tion from co to co representing the action of f on complex objects. For exam-ple, if val f co = apply f, then f co applied to a complex object (r1; (r2; r3))



yields f [r1,r2,r3] in the form of a complex object. If f co is applied to acomplex object which is not a tuple of hol theory data, then it raises the ex-ception Cannotapply. Bundling the arguments to a function in a list allows usto apply functions of arbitrarily many arguments over hol theory data to thecorresponding complex objects.In practice, most of the functions we will wish to perform onhol theory data are unary or binary. Therefore, OR-SML has a special fea-ture that allows you to apply unary and binary functions on hol theory databy using functions apply unary and apply binary. For predicates, apply testtakes a function of type (hol theory data -> bool) and returns it in the formof a function on complex objects. For example, we may de�ne thm of by- fun thm_of (Axiom {theorem = (_,thm),...}) = Thm thm| thm_of (Definition {theorem = (_,thm),...}) = Thm thm| thm_of (StoredThm {theorem = (_,thm),...}) = Thm thm| thm_of (x as Thm _) = x| thm_of _ = raise HOL_ERR{origin_structure = "top",origin_function = "thm_of",message = "Has no theorem component"};val thm_of = fn : hol_theory_data -> hol_theory_dataThe function can when applied to a function f and then to an argument x returnstrue if (f x) does not raise an exception, and false if it does. Using can withthm of gives us a test for whether an hol theory data object has a theoremcomponent. With this we are able to write a query to extract all the theoremsfrom the complex object representing an HOL90 theory as follows:- val thm_of_co = apply_unary thm_of;val thm_of_co = fn : co -> co- val has_thm_component_co = apply_test (can thm_of);val has_thm_component_co = fn : co -> co- val one_db = mk_theory_db "one";val one_db ={(StoredThm{theorem = ("one_axiom", |- !f g. f = g),thy_name = "one"}),(StoredThm{theorem = ("one", |- !v. v = one), thy_name = "one"}),(StoredThm{theorem = ("one_Axiom", |- !e. ?!fn. fn one = e),thy_name = "one"}),(Definition{theorem = ("one_TY_DEF",|- ?rep. TYPE_DEFINITION (\b. b) rep),thy_name = "one"}),(Definition{theorem = ("one_DEF", |- one = (@x. T)),thy_name = "one"}),(Constant_tm{constant = (--`one--)`, thy_name = "one"}),(TypeOp{tyop = {Name = "one", Arity = 0}, thy_name = "one"}),(Parent {parent = "bool", thy_name = "one"})} :: {hol_theory_data} : co- val one_stored_thms =smap thm_of_co (Set.select has_thm_component_co one_db);val one_stored_thms =



{(Thm (|- one = (@x. T))),(Thm (|- ?rep. TYPE_DEFINITION (\b. b) rep)),(Thm (|- !e. ?!fn. fn one = e)), (Thm (|- !v. v = one)),(Thm (|- !f g. f = g))} :: {hol_theory_data} : co4.2 Structural recursionStructural recursion on sets [1] is a very powerful programming tool for querylanguages. Unfortunately, it is too powerful because it is often unsafe as an op-eration on sets. A function de�ned by structural recursion is not guaranteedto be well-de�ned as a function on sets or or-sets (i.e. two di�erent presenta-tions of the same set or or-set may yield unequal results), and well-de�nednesscan not generally be checked by a compiler [3]. It is, however, often helpful inwriting programs, so we have decided to include structural recursion in OR-SML. Structural recursion on sets and or-sets is available to the user by meansof two constructs sr and orsr that take an object e of type t and a func-tion f of type s � t ! t and return a function sr(e; f) of type fsg ! t or afunction orsr(e; f) of type hsi ! t respectively. Their semantics is as follows:sr(e; f)fx1; : : : ; xng = f(x1; f(x2; f(x3; : : : f(xn; e) : : :))) and similarly for orsr.That is, sr and orsr behave on sets and or-sets in much the same way as foldor itlist behaves on lists. The two functions implementing structural recursionare contained in the SML structure SR. As an example of the use of structuralrecursion, functions for converting sets to or-sets and vice versa can be de�nedas follows:- val set_to_or = SR.sr(orempty, (fn (x,y) => orunion(orsng x, y)));val set_to_or = fn : co -> co- val or_to_set = SR.orsr(empty, (fn (x,y) => union(sng x, y)));val or_to_set = fn : co -> co- val a = mksetint [1,2,3,4,5];val a = {1, 2, 3, 4, 5} :: {int} : co- val b = set_to_or a;val b = <1, 2, 3, 4, 5> :: <int> : co- eq (a, or_to_set b);val it = T :: bool : co4.3 Deconstruction of complex objectsWhile we can use the system as described so far to query the HOL90 theoriesinteractively to �nd theorems that might be useful in solving goals, we really wantto be able to incorporate the results of such queries into further computations,such as tactics and conversions. Since all operations of OR-SML described so farproduce elements of type co, there is a need to have a way out of complex objectsto the usual SML types. The structure DEST contains the following functions todeconstruct complex objects and obtain ordinary SML values.exception Cannotdestroyval co_to_base : co -> hol_theory_dataval co_to_bool : co -> boolval co_to_int : co -> int



val co_to_list : co -> co listval co_to_pair : co -> co * coval co_to_string : co -> stringIt should be noted that because DEST.co to list takes an object whose ele-ments are supposed to be treated as unordered and orders them, deconstructionof complex objects is inherently as unsafe (in the sense of allowing ill-de�nedfunctions over sets and or-sets) as structural recursion is.4.4 Derived functions for HOL90 queriesTo support some of the kinds of queries that users are most likely to performwhen browsing the HOL90 theories, we have provided a structure Hol queriescontaining the following functions:val mk_theory_db : string -> coval mk_all_theories_db : unit -> coval type_test : (hol_type -> bool) -> hol_theory_data -> boolval term_test : (term -> bool) -> hol_theory_data -> boolval thm_test : (thm -> bool) -> hol_theory_data -> boolval data_to_type : hol_theory_data -> hol_typeval data_to_term : hol_theory_data -> termval data_to_thm : hol_theory_data -> thmval db_find_thms : {test:thm -> bool, theory:string} -> coval db_find_all_thms : (thm -> bool) -> coval seek : {pattern:term, theory:string} -> coval seek_all : term -> coThe functions mk theory db and mk all theories db were mentioned ear-lier. Care is taken with these two functions to memoize their results on anyproper ancestor theories to avoid their subsequent recomputation. The func-tions type test, term test and thm test convert predicates on HOL90 types,terms and theorems respectively into predicates over hol theory data. Theycan be composed with apply test to create predicates over the correspondingcomplex objects. The functions data to type, data to term and data to thmextract the type, term or theorem from the given hol theory data. The func-tion db find thms returns the set of all theorems satisfying the given test in thenamed theory, while db find all thms looks in all currently available theories.The function seek returns the set of all theorems in the named theory thatcontain a subterm that match the given pattern. seek all is the correspond-ing function for looking in all the currently available theories. The functionsdb find thms, db find all thms, seek, and seek all all return complex ob-jects so that further queries may be performed on the result. These functionsare not su�cient for complex queries, but will handle the simple lookups, andthey can be the starting point of more complex queries.



5 Using OR-SML and HOL90 together | an exampleThe main use to which the OR-SML extension of HOL90 has been put so faris browsing the theories for theorems which might be relevant to the theoremproving task at hand. The power of the combination of OR-SML and HOL90can be seen, however, with an example involving proof planning.A very important class of user-de�ned types in HOL90 are those of recursivedatatypes, including nested mutually recursive datatypes. Structural inductionover these datatypes is often an important step in solving goals. Part of theprocess of de�ning a recursive datatype involves proving an \initiality theorem"(or pair of theorems) which states that a function over the datatype may beuniquely de�ned by cases over the constructors for the datatype. If a recursivedatatype was de�ned by one of the automatic procedures for creating recursivedatatypes, then such theorems have been stored in the theory database. Given arecursive datatype, there may or may not be a principle of structural inductionfor that type already stored in the theory database. However, one may test if atheorem is the principle of induction for a type that corresponds to a given ini-tiality theorem. Moreover, if the principle of structural induction is not present,it may be automatically derived from the initiality theorems.Given a goal to be proved, one often wants to proceed by structural inductionover any recursive datatypes over which the goal is universally quanti�ed. Thus,we would like to know all principles of induction stored in the HOL90 theorydatabase that are relevant to a given goal. However, a given type may or maynot be a recursive datatype. If the type is a recursive datatype, initiality may bestated as one or two theorems, one for existence of the function and the otherfor uniqueness. Moreover, a polymorphic datatype may have instances whichare components of several mutually recursive datatypes. To see this, considerthe two datatype speci�cations:� list = Nil j Cons of � (� list)and � Tree = Lf of � j Nd of (� Tree) listThe type (� Tree) list is an instance of the type � list and is a component of themutual recursion de�ning the type � Tree. They provide us with the followingtwo principles of induction:8 P: (P Nil ^ 8 t: P t =) 8h: P (Cons h t)) =) 8 l:P land 8R P: ( (8 n: R (Lf n)) ^ (8 l: P l =) R (Nd l)) ^P Nil ^ (8 t l: (R t ^ P l) =) P (Cons t l)) ) =)(8 t: R t) ^ (8 l: P l)The �rst principle says that to prove that any property P holds for all lists, itsu�ces to show that it holds for the Nil list, and that, if it holds for the tail ofa list, then it still holds when the head is put on. The second principle providesa similar reduction, but for proving properties over trees and tree lists jointly.



If we are trying to prove that a fact holds for all objects of type � Tree list, wecould proceed by structural induction over lists, or we could proceed by mutualstructural induction over both tree lists and trees. Our query for �nding suchinformation needs to be sensitive to the possibility of multiple choices, and thusto disjunctive information.Assume we have the following:all theories db : co is the OR-SML version of the theories database forHOL90, which is the set of entries from each ancestor theory, including thecurrent theory;universal types : term -> hol type list returns the list of the types of theleading universally quanti�ed variables of a given term;is initial theorem for : hol type -> hol theory data -> bool testswhether a given theorem is an initiality theorem for a given type;is existential for : hol type -> hol theory data -> bool tests whethera given theorem is the existential half of a statement of initiality for the giventype;is uniqueness for : hol theory data -> hol theory data -> bool whenapplied to the existential half of a statement of initiality, tests whether thesecond argument is the the corresponding uniqueness theorem.is induction for : hol theory data -> hol theory data -> booltakes an initiality theorem, or the existential half, as the �rst argument andtests whether the second argument is the corresponding induction theorem.The testing functions given above may be converted into ones which workwith OR-SML by composing them with apply test. When we wish to applya function over hol theory data to a complex object (i.e. an OR-SML object)that we know is the equivalent of an object of hol theory data type, we mayaccomplish this by composing the original function with DEST.co to base.fun is_initial_co_for ty = apply_test (is_initial_theorem_for ty)fun is_existential_co_for ty = apply_test (is_existential_for ty)fun is_uniqueness_co_for thm_co =apply_test (is_uniqueness_for (DEST.co_to_base thm_co))fun is_induction_co_for thm_co =apply_test (is_induction_for (DEST.co_to_base thm_co))Using these functions together with some of the functions from OR-SMLdescribed previously, we may incrementally de�ne the query for �nding all pos-sible sequences of relevant induction information as follows. We will gather eachstatement of initiality as a pair where either the �rst component is a theorem ofinitiality and the second component is the empty set, or the �rst component isthe existential half of initiality and the second component is the set containingthe uniqueness half. (Remember that OR-SML is a typed language, so we needto use the same type of representation in each case.)fun mk_initial_co_for ty =comp (smap (fn thm_co => mkprodco(thm_co, empty)),



Set.select (is_initial_co_for ty))fun mk_exist_uniq_co_for ty theory_db =smap (fn existential_co =>mkprodco(existential_co,Set.select (is_uniqueness_co_for existential_co)theory_db))(Set.select (is_existential_co_for ty) theory_db)fun mk_initiality_options ty =set_to_or (union (mk_initial_co_for ty all_theories_db,mk_exist_uniq_co_for ty all_theories_db))For each initiality statement we �nd for a given type, we want to �nd aninduction theorem, if it exists. Again, we will use sets to allow for the possibilitythat none exists.fun get_induct_thm_co init_thms_co =let val init_co = p1 init_thms_co (* Either the initiality theorem,*)(* or the existential half. *)val induct_co =Set.select (is_induction_co_for init_co) all_theories_dbin mkprodco (init_thms_co, induct_co)endfun mk_induction_options ty =orsmap get_induct_thm_co (mk_initiality_options ty)For any one given type ty, the query mk induction options ty returns theor-set of pairs of initiality theorems and possible induction theorems. We needto accumulate this information over the list of types over which the goal isuniversally quanti�ed. We wish to preserve the order in which the information isgathered, to match it with the order in which the types are universally quanti�ed.Therefore, the result we return will be a tuple. We would like each entry inthe tuple to be the or-set of possibilities for viewing the type as a recursivedatatype. However, some types simply are not recursive datatypes. Therefore,we take advantage of the structural level of OR-SML to replace the empty or-set by the empty tuple, that is, unit co, the unique element of unit type, torepresent that the type of the universally quanti�ed variable does not admitinduction. This allows us to switch to the conceptual level using normalization toacquire the collection of all possible sequences consisting of induction informationwhen appropriate and a place holder of the empty tuple when induction is notappropriate.fun fold_induction_options [] = unit_co| fold_induction_options (hd_ty :: tl_tys) =let val new_options = mk_induction_options hd_tyin cond(eq(new_options, orempty),(fn rem_co => mkprodco(unit_co,rem_co)),(fn rem_co => mkprodco(new_options,rem_co)))



(fold_induction_options tl_tys)endfun goal_induction_options goal =normal (fold_induction_options (universal_types goal))Using a package for making nested recursive datatype de�nitions, we addedto HOL90 the de�nition of the type Tree as given above. An example of �ndingthe possible induction information for a goal over Tree in this setting is asfollows: (The output has been abbreviated for the sake of space.)- val poss_ind = goal_induction_options(--`!(n:num) l. ((Nd (CONS (Lf n) l)) = Nd (APPEND l [(Lf n)])) =(EVERY (\x. x = Lf n) l)`--);val poss_ind =<((((StoredThm{theorem = ("num_Axiom", (* ... the theorem ... *)),thy_name = "prim_rec"}),{}),{(StoredThm{theorem = ("INDUCTION", (* ... the theorem ... *)),thy_name = "num"})}),((((StoredThm{theorem = ("list_Axiom", (* ... the theorem ... *)),{}),{(StoredThm{theorem = ("list_INDUCT", (* ... the theorem ... *),())),( . . . (* same first tuple as above *) . . . ,((((StoredThm{theorem = ("Tree_existence",|- !Lf_case Nd_case Tree_NIL_Tree_case Tree_CONS_Tree_case.?y y'.(!x1. y (Lf x1) = Lf_case x1) /\(!x1. y (Nd x1) = Nd_case (y' x1) x1) /\(y' [] = Tree_NIL_Tree_case) /\(!x1 x2.y' (CONS x1 x2) =Tree_CONS_Tree_case (y x1) (y' x2) x1 x2)),thy_name = "Tree"}),{(StoredThm{theorem = ("Tree_unique",. . . (* the uniqueness theorem corresponding *) . . .. . . (* to the above existence theorem *) . . . ),thy_name = "Tree"})}),{(StoredThm{theorem = ("Tree_induct",|- !Tree_Prop Tree_list_Tree_Prop.(!y. Tree_Prop (Lf y)) /\(!y. Tree_list_Tree_Prop y ==> Tree_Prop (Nd y)) /\Tree_list_Tree_Prop [] /\(!y y'.Tree_Prop y /\ Tree_list_Tree_Prop y' ==>Tree_list_Tree_Prop (CONS y y')) ==>(!x1. Tree_Prop x1) /\ (!x2. Tree_list_Tree_Prop x2)),thy_name = "Tree"})}),()))> :: <(((hol_theory_data * {'a}) * {hol_theory_data}) *



(((hol_theory_data * {hol_theory_data}) * {hol_theory_data}) *unit))> : co- val number_of_options = length (DEST.co_to_list poss_ind);val number_of_options = 2 : intThus there are two possible ways to proceed by induction. In each case, thereis only one way to proceed by induction over the natural numbers. However, wehave two di�erent options for how to proceed by induction over lists of treesgiven to us by the second component of each tuple in poss ind. We may eitherproceed by induction over lists, or by mutual induction over trees and lists oftrees. Once having gathered this information in normal form, we may continuewith further queries, such as which of the possibilities are missing the inductiontheorem and need to have it derived, or how many di�erent ways are there toproceed.In the above example, no further heap increases were required after the codefrom the library nested recwas loaded. The heap at that time was 23 megabytesin HOL90 built using version 93 of SML-NJ. All database operations (includingthe calculation of all theories db) took place after the last major garbagecollection. The time to run the query for poss ind took 12 seconds of wall-clock time on a Sun Sparcstation 2. While more e�ort is needed to make queriesmore e�cient in general, we feel that this is already acceptable performance forOR-SML to be a usable tool with HOL90 on moderately complicated queries.In the above we have described a particular example of creating a query to�nd all possible principles of structural induction and related information rele-vant to a particular goal to be proved. Other examples exist which involve �ndingall possible sequences of equations and conditional equations for rewriting a goaltowards a particular form. Our experience with using OR-SML in HOL90 is stilllimited. However, it is our belief that the ability to make queries involving con-junctive and disjunctive information using OR-SML within the theorem proverHOL90 will enhance the end-user's ability to gather information appropriate forplanning the proof of goals.6 ConclusionWe describe a functional database language built on top of Standard ML andinterfaced to HOL90. The set part of the core language (i.e. the primitives notinvolving or-sets) is precisely the nested relational algebra. It is then extendedwith or-sets which are used to deal with disjunctive information. Normalizationof objects, when added as a primitive, allows querying databases at the structurallevel and at the conceptual level. Moreover, representing objects as a singleSML type allows the user to write queries using higher-order functions whichare typically not present in query languages. In this paper we have describedOR-SML as it connects to HOL90. OR-SML is also capable of being built as astand-alone system, and as such, has certain features (for example �le I/O, andthe ability to handle multisets) that were not relevant to this setting and were
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