
Inremental Reomputation in Loal Languages�yGuozhu DongDept of Comp. S. and EngrWright State UniversityDayton, OH 45435Email: gdong�s.wright.edu Leonid LibkinxDepartment of Computer SieneUniversity of TorontoToronto, Ontario, M5S 3H5, CanadaEmail: libkin�s.toronto.eduLimsoon WongKent Ridge Digital Labs21 Heng Mui Keng TerraeSingapore 119613Email: limsoon�krdl.org.sg
AbstratWe study the problem of maintaining reursively-de�ned views, suh as the transitive losure ofa relation, in traditional relational languages that do not have reursion mehanisms. The mainresults of this paper are negative ones: we show that a ertain property of query languages impliesimpossibility of suh inremental maintenane. The property we use is loality of queries, whihis known to hold for relational alulus and various extensions, inluding those with grouping andaggregate onstruts (essentially, plain SQL).1 IntrodutionIt is well known that relational alulus, or �rst-order logi, annot express reursive queries suh astransitive losure or same-generation, f. [1℄. This is one of the main reasons why languages extending�rst-order logi, suh as various �xpoint logis, have been so extensively studied in database theory.However, most pratial database systems still use query languages with limited expressive power.Indeed, the plain SQL that is used for writing the majority of queries is essentially �rst-order logiextended with grouping and aggregation, and as suh it annot ode reursion mehanisms.What an one do if one needs to know the result of a reursive query? One possibility is to use ageneral-purpose programming language to ompute suh a query. However, this may not be desirable,�Part of this work was done when the authors were visiting eah other in 5 out of 6 possible ombinations (Libkinnever visited Dong.). A revised version was made during Libkin's visit to INRIA-Roquenourt.yContat author: Leonid Libkin, Department of Computer Siene, University of Toronto, Toronto, Ontario, M5S3H5, Canada. Phone: (416) 978-4158, Fax: (416) 978-4765. Email: libkin�s.toronto.edu.xResearh aÆliation: Bell Laboratories. 1

as one no longer has aess to a delarative query language and to a query language optimizer. Analternative solution is to use a general-purpose programming language to ompute the initial result ofa query, and then update the result every time the database hanges. For example, for the transitivelosure query this amounts to updating the transitive losure of a graph every time an edge is insertedor deleted.The problem of updating the results of queries (alled views) when the underlying database hangesis known under the name of view maintenane, or inremental reomputation. There is also extensiveliterature on dynami algorithms (see, for example, [19, 27℄) whih does not onsider the issue of aquery language in whih updates are expressed. Sine databases are normally queried and updatedby languages of limited expressive power, this issue beomes important for view maintenane. Thereis a large body of literature on view maintenane that assumes that views are de�ned and maintainedusing the same language. Numerous algorithms exist dealing with fragments of relational algebra [2℄,full relational algebra [29, 13℄, bag (multiset) languages [12℄, languages with grouping and aggregation[16, 30℄ and others; see [15℄ for a survey.However, muh less is known in the ase when a view is de�ned in one, more powerful language, andis maintained in another one, less powerful. Those papers that do onsider this situation deal withthe ase when a reursive query is omputable in polynomial time and de�nable in a language suhas reursive datalog, and the maintenane is done in relational alulus.The query that reeived most attention is the transitive losure. It an be easily shown that thetransitive losure an be maintained under the insertion of edges [5, 3℄. A more interesting resultof [28, 6℄ shows that transitive losure of undireted graphs an always be maintained, provided someauxiliary (binary) relations an be used. For direted graphs, the situation is more omplex. It isknown [4℄ that the transitive losure of ayli graphs an be maintained in relational alulus, butthe question is still open for arbitrary direted graphs.In general, it is known that every query that an be inrementally maintained in relational alulushas PTIME data omplexity [28, 6℄. It is onjetured that the ontainment is strit, but, as wasshown in [9℄, when auxiliary relations of arity 2 or higher are allowed, proving suh bounds amountsto proving lower bounds for a general model of omputation, and bounds of this kind are extremelyhard to obtain.For auxiliary relations of arity 1 (or no auxiliary relations), some bounds have been reported forrelational alulus [6℄. These results are not ompletely satisfatory as they are very losely tiedto a partiular language; in fat, the proofs rely on Ehrenfeuht-Fra��ss�e games. It would thus beimpossible to extend proof tehniques from [6℄ to over languages that more losely resemble theommerial lingua frana of the database world|SQL. Nor it is lear how to extend those results todeal with operations suh as a built-in linear order.Thus, the main goal of this paper is to �nd properties of query languages (desribing their expressive-ness) that would imply unmaintainability of ertain reursive views. The main property we use is thatof loality. The ideas we desribe here are the ones typially used as tools in �nite-model theory forproving inexpressibility results. In partiular, the fat that they are possessed by relational alulus(even with aggregate funtions) is known. In terms of reursive queries, we onentrate on the twomost famous examples of queries expressible in datalog but not in relational alulus: transitive lo-2

sure and same-generation. Given the fat that some reursive queries an be maintained in relationalalulus, it is probably impossible to �nd general haraterizations of this kind, and thus one has toonentrate on some partiular queries. However, we believe that the tehniques developed in thispaper are easily extendible to deal with other queries.The rest of the paper is organized as follows. We de�ne the framework for inremental maintenanein Setion 2. In Setion 3, we de�ne loality of query languages. In Setion 4, we show how to useloality to derive bounds on inremental maintenane in query languages.2 De�nition of inremental maintenaneIn this setion, we desribe our setting for the problem of inremental maintenane of views. Weassume that all values that an appear in a database are drawn from a ountably in�nite domainU . A relational shema SC is a olletion fR1; : : : ; Rlg of relation names, eah name Ri having aritymi > 0. By Inst(SC) we denote the set of instanes of the shema SC, that is, the set of families of�nite relations RD1 � Um1 ; : : : ; RDl � Uml . We shall write just Ri in plae of RDi when it does notlead to onfusion.Let Q be a query, that is, a map that assoiates to every database D in Inst(SC in) an instane of anoutput shema SCout . When SCout onsists of a single n-ary relation symbol, we speak of an n-aryquery.We say that Q an be (inrementally) maintained under insertions in a language L, if for eah m-arysymbol R in SC in , there exists a L query QRins that takes as its inputs D 2 Inst(SC in), Q(D) 2Inst(SCout), and an m-ary tuple ~t, and returns the result of Q on D updated in suh a way that ~t isinserted into R. In other words,QRins(D;Q(D);~t) = Q(D[R := R [f~tg℄)where D[R := S℄) means D in whih the relation R is replaed with the relation S.Similarly, Q an be (inrementally) maintained under deletions in a language L, if for eah m-arysymbol R in SC in , there exists a L query QRdel that takes as its inputs D 2 Inst(SC in), Q(D) 2Inst(SCout), and an m-ary tuple ~t, and returns the result of Q on D updated in suh a way that ~t isdeleted from R. In other words,QRdel (D;Q(D);~t) = Q(D[R := R� f~tg℄):This de�nition assumes that no auxiliary data are kept. That is, to reompute the value of Q aftera single insertion or deletion, only the old value of Q, the old database and the inserted (deleted)tuple are needed. There are example of queries that annot be reomputed in suh a way, but anbe reomputed in the presene of some auxiliary data. To apture this situation, we say that Q is(inrementally) maintainable under insertions (deletions) in the presene of auxiliary relations if, thereexists a shema SCaux , disjoint from SC in and SCout , and a query Q0 from Inst(SC in [SCout [SCaux)to Inst(SCout [SCaux) suh that Q0 is maintainable under insertions (deletions) to SC in -relations,and Q0 is an extension of Q. 3

To de�ne this latter notion preisely, we have to explain how the initial value of the output of Q and ofthe auxiliary relations is obtained. In one model, we start with the empty database, and keep insertingand deleting tuples. In the other model, we are given the initial value of D;Q(D) and the auxiliarydata. Note that this is the model that makes sense when we deal with maintenane under deletionsonly. When we say that Q0 is an extension of Q, we mean that for every D 2 Inst(SC), the assoiatedauxiliary relations V 2 Inst(SCaux), and Q(D), for any sequene of updates u1; : : : ; un to the databaseD, and the sequene D0 = D;Z0 = (Q(D); V); : : : ;Di+1 = ui+1(Di); Zi+1 = Q0ui+1(Di; Zi), it holdsthat the values of SCout -relations in Zi are Q(Di), i � n. Here Q0u is the query maintaining Q0 underthe update u.Note that there are some subtle di�erenes between the two ways of initializing auxiliary data [6, 28℄.However, it will be lear from the proofs in the next setion that our results are not a�eted by theway in whih data is initialized.If all relations in SCaux are at most unary (binary, et.) then we say that Q is maintainable in thepresene of unary (binary, et.) auxiliary relations. In this paper we onentrate on maintenanewith at most unary auxiliary relations. As pointed out in the introdution, proving bounds formaintenane with auxiliary relations of arity 2 and higher is probably beyond reah. Note also that inthe algorithmi literature on view maintenane one typially onsiders maintenane without auxiliarydata, see [2, 13, 12, 15, 16℄.Another parameter of inremental maintenane is whether the value of auxiliary relations is the samefor any sequene of updates that leads to a given database. It was shown in [7℄ that fewer queriesan be inrementally maintained under this restrition. In what follows, we thus onsider this morepowerful model of inremental reomputation, as we are interested in proving negative results.3 Query languages and loalityIn the rest of the paper, when we say \language L," we always assume that the following is true of L:1. L ontains relational alulus, or �rst-order logi, as a sublanguage.2. L is losed under �rst-order operations.3. L is losed under substitutions. That is, assume that there is a L query Q : Inst(SC in) !Inst(SCout). Assume that some of the relations R1; : : : ; Rk are de�ned by means of other queries,Q1; : : : ; Qk on input databases of shemas SC1; : : : ;SCk. Let SC 0 = SC � fR1; : : : ; Rkg. Thenthere exists a L query Q0 : Inst(SC 0 [SC1 [: : : [SCk)! Inst(SCout) suh thatQ0(D) = Q(D[R1 := Q1(D1); : : : ; Rk := Qk(Dk)℄)where Di is the SCi part of D.For example, relational alulus and plain SQL are suh languages.4

Next we de�ne the onept of loal queries and loal languages. Given a shema SC in and D 2Inst(SC in), its ative domain, adom(D), is the set of all elements from D that our in relations fromD. The Gaifman graph [8, 11, 10℄ of D, G(D) is de�ned as a graph hA;Ei, where A = adom(D), and(a; b) is in E i� there is a tuple ~t 2 RDi for some i suh that both a and b are in ~t. The distaned(a; b) is de�ned as the length of the shortest path from a to b in G(D); we assume d(a; a) = 0. If~a = (a1; : : : ; an), then d(~a; b) = minij d(ai; b).Given a tuple ~a of elements of A = adom(D), its r-ball SDr (~a) is fb 2 A j d(~a; b) � rg. Its r-neighborhood NDr (~a) is de�ned as an instane of SC in where eah relation symbol Ri is interpreted asa set of tuples ~t 2 RDi where all elements in ~t are from SDr (~a). Furthermore, we treat ~a as distinguishedonstants.We write ~a �Dr ~b if NDr (~a) and NDr (~b) are isomorphi; that is, if there exists a one-to-one maph : SDr (~a) ! SDr (~b) suh that h(~a) = ~b and ~t 2 Ri i� h(~t) 2 Ri, for every i � l and a tuple ~t ofelements of SDr (~a).De�nition 1 (f. [11, 17℄) An n-ary query Q is alled loal if there exists a number r � 0 suh that,for any database D 2 Inst(SC in) and any ~a;~b 2 adom(D)n ,~a �Dr ~b implies ~a 2 Q(�A) i� ~b 2 Q(�A):The minimum suh r is alled the loality rank of Q, and is denoted by lr(Q).A language is alled loal if every m-ary query de�nable in it, m > 0, is loal. 2Gaifman's theorem [11℄ on loality of �rst-order queries implies that every query de�nable in relationalalulus is loal.It is rather pleasant that loality an be established for the language that is essentially plain SQL. SQL,the dominant language of ommerial databases, adds two main features to the relational alulus:grouping and aggregation. In a number of papers [23, 25, 18℄ we studied a theoretial reonstrution ofplain SQL and its expressive power. Our approah was as follows. To model the grouping feature, weonsidered a nested relational language, as in [3℄. If one deals with the usual queries from at relationaldatabases to at relational databases, then nested sets an appear as intermediate results. It is knownthat the nested relational algebra is an extension of relational algebra that has enough power to expressthe GROUPBY and HAVING lauses of SQL. To model aggregation, we made the language two-sorted. Inother words, it has two base types, one of them being the type of rational numbers. By graph querieswe meant queries of the type fb� bg ! fb� bg, where b is the other base type. We assumed that theusual rational arithmeti is present. Furthermore, we added an operator for summation of funtionvalues over a olumn, and showed that suh a language omputes the standard aggregate funtionssuh as AVG, TOTAL, COUNT.Then [25℄ established loality of relational queries in suh a language (that is, queries that do not havevalues of the numerial type in their input and output, but an use them for intermediate steps ofthe omputation). Furthermore, [18℄ showed (a stronger form of) loality under the assumption thatevery arithmeti funtion and every aggregate operator is present in the language.5

Another very useful result is that queries de�nable in relational alulus in the presene of a built-inorder relation are loal, provided they are order-invariant [14℄. Normally, adding order as one of therelations in D would render the onept of loality meaningless, as for every a, its unit ball S1(a)would ontain the entire ative domain. However, one an also de�ne the onept of neighborhoodswith respet to the original database, and use order as an additional built-in prediate, and restritone's attention to queries that do not depend on the partiular interpretation of this built-in order.The result is the order-invariant relational alulus, whih is known to be a proper extension of therelational alulus [1℄. The result of [14℄ shows that it is still loal.4 Inremental reomputation of reursive queriesIn this setion we prove our main results showing that ertain reursive queries annot be inrementallymaintained in loal languages. The queries we hoose are prototypial reursive queries that an beexpressed in languages suh as datalog, but not in relational alulus: the transitive losure query t,and the same-generation query sg . In both ases, the input is a direted graph (binary relation) R.The transitive losure query is given by the following datalog program:t(x; y) :- R(x; y)t(x; y) :- R(x; z); t(z; y):The same-generation query is given by the programsg(x; x) :-sg(x; y) :- sg(x0; y0); R(x; x0); R(y; y0):That is, a pair (a; b) belongs to the output of the same-generation query i� there is a node and twoequi-distant walks in the graph, one from to a, and the other from to b.It is well known that the transitive losure query an be inrementally maintained in relational alulusunder insertions (essentially, by oding Warshall's algorithm, f. [3, 5℄). Here we show that othermaintenane queries are impossible. The proof applies to all loal languages, and, unlike the tehniquesof [6℄, it is not limited to relational alulus.Theorem 2 Let L be a loal language. Then it annot inrementally maintain the transitive losurequery under deletions, nor the same-generation query under either deletions or insertions, even in thepresene of unary auxiliary relations.Proof. Throughout the proof, R is a binary relation symbol for the input graph, and G denotes thegraph itself. The main tehnique is the following. Let C be a lass of graphs. We say that an n-aryquery Q on graphs is L-de�nable on C with unary relations if there exists a number m, a shemaSCm = fR;V1; : : : ; Vmg, and an n-ary query Q0 on Inst(SCm) de�nable in L suh that, for everygraph G 2 C, there exists D 2 Inst(SCm) with RD = G, satisfyingQ0(D) = Q(G):6

That is, there is a way to de�ne m unary prediates on the nodes of G suh that Q0 on the resultingolored graph yields Q(G). Now, in eah ase, we �rst show that, assuming that a query an bemaintained, a ertain query would be L-de�nable on some lass of graphs with unary relations. Thenwe would show that suh de�nability ontradits loality.a) Transitive losure under deletions. Let C be the lass of hains, that is, graphs of the formf(a0; a1); (a1; a2); : : : ; (ak�1; ak)g, k > 0, where all ais are distint. Given any G, let G> stand forthe omplete graph with the same set of nodes as that of G. Assuming that the t query an bemaintained under deletions (perhaps with unary auxiliary relations), we �nd a query Qtdel that takesin a graph, its transitive losure, an edge to be deleted, and the auxiliary relations, and produes thetransitive losure after the deletion. In partiular, if G is the hain as above, and ~V is the tuple ofunary auxiliary relations, Qtdel (G [f(ak; a0)g; G>; (ak; a0); ~V) returns t(G), sine G [f(ak; a0)g is ayle, and its transitive losure is G>. Sine the edge (ak; a0) is de�nable from G in relational alulus,and so is G>, we onlude that the transitive losure query is L-de�nable on C with unary relations.It thus remains to show that this is impossible. Let m be the number of unary relations, and Q0 aquery that omputes the transitive losure of a hain G, given unary relations V1; : : : ; Vm. We anview adding these unary relations as oloring the nodes of G with 2m olors. Let r = lr(Q0). Forany node a in G at the distane at least r from the start and the end nodes, its r-neighborhood is a2r + 1-element hain, olored with 2m olors aording to the Vis. There are thus at most 2m(2r+1)di�erent types of r-neighborhoods of suh nodes in terms of their olors. Hene, for any hain withk > (2r+3) � 2m(2r+1)+2r there would be at least 2r+3 nodes at the distane at least r from the endnodes, and having the same neighborhood type, no matter how Vis are interpreted. In partiular, onean then �nd two suh nodes, a; b, with d(a; b) > 2r + 1. This implies that in D 2 Inst(SCm) wherethe relation R is interpreted as G, we have (a; b) �Dr (b; a), and thus (a; b) 2 Q0(D) i� (b; a) 2 Q0(D).However, this ontradits the assumption that Q0 omputes the transitive losure, as exatly one ofthe pairs (a; b), (b; a), belongs to t(G). This ontradition proves ase a).b) Same-generation query under insertion. The lass C onsists of the graphs of the following form.Let G0 be the union of a hain f(b0; b1); : : : ; (bp�1; bp)g; p > 1, and an edge (b0; b�), where all bis andb� are distint. Let G1 be similarly de�ned as the union of a hain f(a0; a1); : : : ; (ak�1; ak)g; 0 < k < pand an edge (a0; a�), where a� 6= ai; i = 0; : : : ; k. We also assume that G0 and G1 are disjoint. Thengraphs in C are those of the form G = G0 [G1 [f(a0; b0)g.Let G0 be G0 [G1. Then sg(G0) = f(a; a) j a node of Gg [f(a�; a1); (a1; a�); (b�; b1); (b1; b�)g; inpartiular, it is de�nable in relational alulus with G as an input. Note also that the pair (a0; b0) isde�nable in relational alulus (when the input is G), sine a0 is the only node of outdegree 3, andb0 is the only node of indegree 1 and outdegree 2. Furthermore, for i; j 6= 0; �, (ai; bj) 2 sg(G) i�j = i� 1.Assume now that sg an be maintained under the insertion of edges (perhaps with auxiliary unaryrelations). Then there is a query Qsgins that takes in a graph, an edge, and some unary relationsV1; : : : ; Vm, and returns the output of the same-generation query on the graph resulting from insertingthe input edge into the input graph. In partiular, Qsgins(G0; (a0; b0); sg(G0); ~V) would return sg(G).Sine (a0; b0) and sg(G0) are de�nable in relational alulus (with G as input), this means that sg isL-de�nable on C with unary relations. 7

To show that this is impossible, let Q0 be a query de�ning sg on C with unary relations, and letr = lr(Q0). As in the proof of a), we onlude that if k is large enough, there are two indies,j > i > r, suh that ai �Dr aj, where D is an extension of G with unary prediates Vis. This holdsno matter what the interpretation of Vis is. This implies that (ai; bj�1) �D (aj ; bj�1), sine the r-balls of ai and bj�1 are disjoint (and likewise for aj and bj�1). Thus, loality of Q0 would implythat (ai; bj�1) 2 Q0(D) i� (aj ; bj�1) 2 Q0(D). Sine (ai; bj�1) 62 sg(G) and (aj ; bj�1) 2 sg(G), thisontradits the assumption that sg an be maintained under insertions.) Same-generation under deletions. Let C onsist of graphs of the from f(a1; a2), (a2; a3), : : :,(al�1; al), (al; al+1), : : :, (a2l�1; a2l), (a�; a1), (a�; al+1)g, l > 1. That is, the subgraph on the nodes ai,i 6= �, is a hain, and we have edges from a� to two nodes on this hain: the start a1 and the middleal. Note that for suh a graph G, sg(G) is the union of f(a; a) j a node of Gg, f(al+i; ai) j 1 � i � lg,and f(ai; al+i) j 1 � i � lg.Let G0 be obtained from G by adding two edges: (a2l; a1) and (a1; a1). Then sg(G0) = f(a�; a�)g [f(ai; aj) j i; j 6= �g. This is beause for every k < l, and every N > k, there is a walk of length Nfrom a� to ak of length N , simply by using the loop on a1 suÆiently many times. Similarly, for everyk > l, and every N > 2l + k + 1, there is a walk of length N from a� to ak: one moves to al, then toa2l, uses the (a2l; a1) edge to move bak to a1, stay suÆiently long at a1 and then moves to ak alongthe hain. Hene, (ai; aj) 2 sg(G0) for any i; j 6= �.Now assume now that sg an be maintained under the deletion of edges (perhaps with auxiliary unaryrelations). Then there is a query Qsgdel that takes in a graph, an edge, and some unary relationsV1; : : : ; Vm, and returns the output of the same-generation query on the graph resulting from deletingthe input edge from the input graph, as well as new values V 01 ; : : : ; V 0m of the auxiliary relations. Bothpairs (a2l; a1) and (a1; a1) are de�nable in relational alulus, given G as input (a2l is the only node ofoutdegree 0, and a1 is the suessor of indegree 1 of the node of indegree 0), as well as sg(G0), if G isgiven as an input. Thus, we an �rst de�neQsgdel (G[f(a1; a1); (a2l; a1)g; (a2l; a1); sg(G0); ~V) in L, whihprodues sg(G [f(a1; a1)g) and the new values ~V 0 of auxiliary relations. Then, by ompositionality,we an de�ne, in L, Qsgdel (G [f(a1; a1)g; (a1; a1); sg(G [f(a1; a1)g); ~V 0), whih produes sg(G). Thus,the same-generation query is L-de�nable on C with unary relations.We now show that this is impossible. Again, assume that the same-generation query is de�nable bya query Q0 with lr(Q0) = r, using m auxiliary relations. Let D refer to the extension of G with unaryrelations Vis. As before, we an show that for large enough l, there exist two indies r < i < j < l� rsuh that ai �Dr aj , no matter what the interpretation of Vis is (sine r-neighborhoods of ai and ajare 2r + 1 hains olored with 2m olors). Therefore, (ai; aj+l) �Dr (aj ; aj+l), as elements in thesepairs at the distane at least 2r + 1 from eah other. By the loality of Q0, (ai; aj+l) 2 Q0(G; ~V) i�(aj ; aj+l) 2 Q0(G; ~V), and thus Q0 annot de�ne the same-generation query, sine (aj ; aj+l) 2 sg(G)and (ai; aj+l) 62 sg(G). This ompletes the proof. 2Remark It follows from the proof of a) that transitive losure an be replaed by deterministi transitivelosure [21℄ (every node on a path, exept the �nal one, is required to have outdegree 1)|this queryis omplete for deterministi logspae. 8

CorollariesSine relational alulus is loal [11℄, we immediately obtain:Corollary 3 It is impossible to inrementally maintain, in relational alulus, the transitive losurequery under deletions and the same-generation query under either deletions or insertions, even in thepresene of unary auxiliary relations. 2As we explained in the introdution, proving bounds in the presene of binary auxiliary relations isprobably beyond reah. One partiular binary relation used very often is a linear order on the domainU . While a linear order an be maintained with binary relations [9, 24℄, it is often available as a basioperation in relational alulus. In the ase when one an use a linear order in relational alulus(�rst-order) formulae, we refer to relational alulus with a built-in linear order. It turns out that theprevious orollary extends to it:Corollary 4 It is impossible to inrementally maintain, in relational alulus with built-in linearorder, the transitive losure query under deletions and the same-generation query under either deletionsor insertions, even in the presene of unary auxiliary relations.Proof. We follow the proof of Theorem 2 and observe that every query that we onstrut in order toontradit loality, is order-invariant, that is, its result is independent of a partiular interpretation ofthe linear order. Thus, the proof of Theorem 2 applies verbatim, sine [14℄ shows that order-invariant�rst-order queries are loal. 2We now turn our attention to plain SQL, that is, an extension of relational alulus with groupingand aggregation, desribed briey at the end of setion 3. We assume that there are two base types:type b, whose domain is U , and type Q of rational numbers. When we talk about graph queries, wemean queries of the type fb� bg ! fb� bg, that is, queries that take a �nite graph over U and returnanother �nite graph over U . We then an show:Corollary 5 It is impossible to inrementally maintain, in plain SQL, the transitive losure query un-der deletions and the same-generation query under either deletions or insertions, even in the preseneof non-numerial unary auxiliary relations.Proof. Again, we follow the proof of Theorem 2. Every query that we onstrut in order to ontraditloality, is relational: that is, its input has relations interpreted over U but not Q (due to the restritionthat auxiliary relations are nonnumerial). The result now follows from the fat that suh queries areloal [18℄. 2Note that if we onsider numerial input relations, or even a built-in linear order on the non-numerialbase type, and no auxiliary relations in the setting of plain SQL, then proving bounds not only oninremental maintenane but even on the expressive power is extremely hard. This follows from thefat that the language an then express every query whose data omplexity is in uniform TC0 [18, 22℄,9

whih so far has not been separated even from NP. On the other hand, in the inremental maintenaneframework in whih one starts with the empty database, it is possible to maintain, in plain SQL, everyquery whose data omplexity is in the polynomial hierarhy, using a built-in linear order and unaryauxiliary relations [26℄. The result of [26℄ assumes the setting in whih there is no a priori bound onthe number of elements that an be stored in a database (e.g., the number of nodes of graphs). Itwas reently shown in [20℄ that if the number of nodes of graphs is �xed in advane, then transitivelosure an be inrementally maintained in TC0. It is still unknown whether TC0 an be replaed bya smaller omplexity lass, e.g., �rst-order queries.5 ConlusionThe primary objetive of this note was to investigate general properties of query languages that renderthe unmaintainability of ertain reursive views. The property we foused on is loality. It is knownthat proving bounds on inremental reomputation with auxiliary relations of arity 2 and higher isextremely hard [9℄, so we onsidered auxiliary data of arity at most 1. We showed that loality impliesunmaintainability of two typial reursive queries: transitive losure, and same generation, even inthe presene of unary auxiliary relations. The results apply to relational alulus, relational aluluswith built-in order, and plain SQL.Aknowledgement The authors wish to thank Neil Immerman for his omments on the paper.Referenes[1℄ S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison Wesley, 1995.[2℄ J. Blakeley, P.-�A. Larson, and F. W. Tompa. EÆiently updating materialized views. In Proeedingsof the 1986 ACM-SIGMOD International Conferene on Management of Data, ACM Press, 1986,pages 61{71.[3℄ P. Buneman, S. Naqvi, V. Tannen and L. Wong. Priniples of programming with omplex objetsand olletion types. Theoretial Computer Siene, 149(1):3{48, 1995.[4℄ G. Dong and J. Su. Inremental and deremental evaluation of transitive losure by �rst-orderqueries. Information and Computation; 120(1):101{106, July 1995.[5℄ G. Dong and R. Topor. Inremental evaluation of datalog queries. In LNCS 646: Proeedings of4th International Conferene on Database Theory, Berlin, Germany, Otober 1992, pages 282{296.[6℄ G. Dong and J. Su. Arity bounds in �rst-order inremental evaluation and de�nition of polynomialtime database queries. JCSS, 57 (1998), 289{308.[7℄ G. Dong and J. Su. Deterministi FOIES are stritly weaker. Annals of Mathematis and Arti�ialIntelligene, 19(1-2):127{146, 1997.[8℄ H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag, 1995.10

[9℄ K. Etessami. Dynami tree isomorphism via �rst-order updates. In PODS'98, pages 235{243.[10℄ R. Fagin, L. Stokmeyer, M. Vardi, On monadi NP vs monadi o-NP, Information and Com-putation, 120 (1994), 78{92.[11℄ H. Gaifman. On loal and non-loal properties. In Proeedings of the Herbrand Symposium, LogiColloquium '81, pages 105{135. North Holland, 1982.[12℄ T. GriÆn and L. Libkin. Inremental maintenane of views with dupliates. Proeedings of the1995 ACM-SIGMOD International Conferene on Management of Data, ACM Press, 1995, pages328-339.[13℄ T. GriÆn, L. Libkin, and H. Trikey. An improved algorithm for inremental reomputation ofative relational expressions. IEEE Transations on Knowledge and Data Engineering, 9 (1997),508{511.[14℄ M. Grohe and T. Shwentik. Loality of order-invariant �rst-order formulas. ACM Transationson Computational Logi, 1 (2000), 112{130.[15℄ A. Gupta and I. S. Mumik. Maintenane of Materialized Views: Problems, Tehniques, andAppliations. IEEE Data Engineering Bulletin, Speial Issue on Materialized Views and DataWarehousing, 18(2):3{19, June 1995.[16℄ A. Gupta, I. S. Mumik, and V. S. Subrahmanian. Maintaining views inrementally. In Proeedingsof the 1993 ACM-SIGMOD International Conferene on Management of Data, ACM Press, 1993,pages 157{166.[17℄ L. Hella, L. Libkin and J. Nurmonen. Notions of loality and their logial haraterizations over�nite models. Journal of Symboli Logi, 64 (1999), 1751{1773.[18℄ L. Hella, L. Libkin, J. Nurmonen and L. Wong. Logis with aggregate operators. Journal of theACM, to appear. Extended abstrat in LICS'99, pages 35{44.[19℄ M. R. Henzinger and V. King. Fully dynami bionnetivity and transitive losure. In Proeedingsof the 36th Annual IEEE Symposium on Foundations of Computer Siene, pages 664{672, 1995.[20℄ W. Hesse. The dynami omplexity of transitive losure is in DynTC0. In Proeedings of Inter-national Conferene on Database Theory, Springer LNCS 1973, 2001, pages 234{247.[21℄ N. Immerman. Languages that apture omplexity lasses. SIAM Journal of Computing, 16:760{778, 1987.[22℄ N. Immerman. Desriptive Complexity. Springer-Verlag, 1999.[23℄ L. Libkin and L. Wong. Query languages for bags and aggregate funtions. JCSS, 55 (1997),241{272.[24℄ L. Libkin and L. Wong. Inremental reomputation of reursive queries with nested sets andaggregate funtions. In Pro. Database Programming Languages 1997, Springer LNCS 1369, pages222{238. 11

[25℄ L. Libkin and L. Wong. On the power of aggregation in relational query languages. InPro. Database Programming Languages 1997, Springer LNCS 1369, pages 260{280.[26℄ L. Libkin and L. Wong. On the power of inremental evaluation in SQL-like languages. InPro. Database Programming Languages 1999, Springer LNCS 1949, pages 17{30.[27℄ P. Miltersen, S. Subramanian, J. S. Vitter and R. Tamassia. Complexity models for inrementalomputation. Theoretial Computer Siene 130 (1994), 203{236.[28℄ S. Patnaik and N. Immerman. Dyn-FO: A parallel dynami omplexity lass. JCSS, 55 (1997),199{209.[29℄ X. Qian and G. Wiederhold. Inremental reomputation of ative relational expressions. IEEETransations on Knowledge and Data Engineering, 3(3):337{341, 1991.[30℄ D. Quass. Maintenane expressions for views with aggregation. In Proeedings of the SIGMOD'96Workshop on Materialized Views, pages 110{118.

12

