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Abstract. Whenever we have data represented by constraints (such as
order, linear, polynomial, etc.), running time for many constraint pro-
cessing algorithms can be considerably lowered if it is known that certain
variables in those constraints are independent of each other. For example,
when one deals with spatial and temporal databases given by constraints,
the projection operation, which corresponds to quantifier elimination, is
usually the costliest. Since the behavior of many quantifier elimination
algorithms becomes worse as the dimension increases, eliminating certain
variables from consideration helps speed up those algorithms.

While these observations have been made in the literature, it re-
mained unknown when the problem of testing if certain variables are
independent is decidable, and how to construct efficiently a new rep-
resentation of a constraint-set in which those variables do not appear
together in the same atomic constraints. Here we answer this question.
We first consider a general condition that gives us decidability of vari-
able independence; this condition is stated in terms of model-theoretic
properties of the structures corresponding to constraint classes. We then
show that this condition covers the domains most relevant to spatial
and temporal applications. For some of these domains, including linear
and polynomial constraints over the reals, we provide a uniform decision
procedure which gives us tractability, and present a polynomial-time al-
gorithm for producing nice constraint representations.

1 Introduction

We start with a simple example. Suppose we have a set S C R? given by simple
order-constraints ¢(z,y) = (0 < z < 1) A (0 < y < 1). Suppose we want to
find its projection on the z axis. This means writing the formula Jy p(z,y) as
a quantifier-free formula. This can be done, in general, because the theory of
(R, <, (7)rer) admits quantifier elimination. But in this particular case it is very
easy to find a quantifier-free formula equivalent to Jy ¢(z,y) using just standard
rules for equivalence of first-order formulae:

Jyp(z,y) © 0<z<)ATFY(0<y<l) & (0<z<1)Atrue & 0<z < 1.

* Part of this work was done while visiting INRIA.



Now notice that ¢ can be considered as a formula in the language of the real
field (R, +,-,0,1, <) whose theory also admits quantifier elimination. Suppose
then that instead of ¢, we are given an equivalent formula v (x,y):

(0<z<A(O<y<1)A(z?—-—y—1>0)
V((O0<z<)AO0<y<1)A(4a?-y—-1<0)).

The first step of quantifier elimination for Jy 1 is easy, as we propagate Jy
inside the disjunction. However, trying to find a quantifier-free equivalent for
the first disjunct, that is, a formula equivalent to Jy ((0 < z < 1) A (0 <
y < 1) A (42 —y — 1 > 0)), one immediately encounters obstacles. Unlike
the earlier example, this one requires a bit of thought to come up with the
answer (0.5 < z < 1). Similarly, some work is needed to compute the answer
(0 < x < 1/+/2) for the second disjunct.

Why is it that the first quantifier-elimination procedure is completely ele-
mentary, and the second is not, even though both ¢ and v define the same set?
The reason is that in the first representation of S, variables x and y are inde-
pendent, that is, they do not appear in the same atomic formulae. This makes
quantifier elimination easy. In the second case, z and y do appear together in
the same term 2% — 4y — 1, and this is what causes the problem.

This extremely simple observation can often make constraint processing eas-
ier. While it can conceivably be useful in various tasks such as more efficient
variable elimination in constraint logic programming [8, 12], here we concentrate
on one application area, namely constraint databases [15,14] where it found its
way into a practical system for querying spatio-temporal databases [9]. The main
goal of constraint databases is to model infinite database objects, which arise in
a variety of applications, for example, in Geographical Information Systems.

A particular constraint model is defined over a structure M = (U, 2) (where
U is the universe and {2 is the vocabulary) which is typically required to have
quantifier elimination. Those considered most often in spatial application are the
real field R = (R, +, -, 0, 1, <) and the real ordered group Ry, = (R, +, —,0,1 <),
which give rise to polynomial and linear constraint databases, respectively. A
constraint relation of arity n is simply a definable subset of U", that is, a set
of tuples @ € U™ that satisfy a first-order formula. For the above structures,
constraint relations are semi-algebraic sets for R, and semi-linear sets for Ry
[2]. A constraint database is a finite set of constraint relations.

A standard constraint query language over M is FO + M, that is, first-order
logic in the language of M and symbols for relations in a constraint database.
For example, if a database contains a single ternary symbol S, the query ¢(z) =
Ju,v Yy, z (S(x,y,2) <> 2z =u -y +v) finds all a such that the intersection of S
with the plane x = a is a line. Note that if S is a semi-algebraic set, then so is
©(5).

One of the standard database operations is projection. In the language of
constraint processing, it corresponds to quantifier elimination. That is, given a
quantifier-free formula ¢(y, z1, ..., z,_1), one wishes to find a quantifier-free for-
mula () equivalent to Jy ¢(y, Z). In many cases, the complexity of algorithms



to find such a 1 is of the form O(N/("), where N is the size of the formula, and
f is some function. For example, if one uses cylindrical algebraic decomposition
[3] for the real field, f is O(2™). In general, even if better algorithms are avail-
able, the complexity of constraint processing often increases with dimension to
such an extent that it becomes unmanageable for large datasets (see, e.g., [10]).

Assume now that Z is split into two disjoint tuples @ and @ such that (y,d)
and ¢ are independent, that is, they do not appear in the same atomic formulae.
Then ¢ is equivalent to a formula of the form

k
(1) \/ iy, @) A Bi(0).

Therefore, the formula Jy ¢ is equivalent to

(2)

<

(Fy ai(y, @) A Bi(7).

i=1

For a number of operations this is a significant improvement, as the exponent
becomes lower. For example, in addition to quantifier elimination, data often
has to be represented in a nice format (essentially, as union of cells [3]), and
algorithms for doing this also benefit from reduction in the dimension [9, 10].

Even though such a notion of independence may seem to be too much of a
restriction, from the practical point of view it is sometimes necessary to insist on
it, as the cost of general quantifier elimination and other operations could be pro-
hibitively expensive. For example, the DEDALE constraint database system [9]
requires that the projection operation only be applied when 4 consists of a single
variable. Dealing with spatio-temporal applications, one often queries trajecto-
ries of objects, or cadastral (land-ownership) information. These are typically
represented as objects in R® given by formulae p(x,y,t). To be able to com-
pute Jy ¢(x,y,t), one approximates ¢ by a formula ¢ (x,y,t) which is a Boolean
combination of formulae a;(x,y) and §;(t). For trajectories, this amounts to say-
ing that an object is in a given region during a given interval of time; thus, it
is the information about the speed that is lost in order to have efficient query
evaluation. As was further demonstrated in [10], the difference between the case
when at most 2 variables are dependent, and that of 3 or more variables being
dependent, is quite dramatic, in the case of linear and polynomial constraints.

What is missing, however, in this picture, is the ability to determine whether
a given constraint representation of the data can be converted to the one in the
right format, just as in our first example, ¢ (z, y) is equivalent to ¢(x, y), in which
variables z and y are independent. It was claimed in [5] that such a procedure
exists for linear constraints, and then [10] gave a simpler algorithm. However, [16]
then showed that both claims were incorrect. It was thus not known if variable
independence can be tested for relevant classes of constraints.

Our main goal here is to show that variable independence can be tested for
many classes of constraints, and that algorithms for converting a given formula
into a one in the right form can be obtained. Moreover, those algorithms often



work in time polynomial in the size of the formula (assuming the total number
of variables is fixed). Among structures for which we prove such results are the
real ordered group, the real field, as well as (Z, +,0, 1, <) extended with all the
relations z = y(mod k), k > 1 (which is used in temporal applications). Even
if those algorithms are relatively expensive, it is worth putting data in a nice
format for two reasons. First, such an algorithm works only once, and then the
data is repeatedly queried by different queries, which can be evaluated faster.
Secondly, some queries are known to preserve variable independence; hence, this

information can be used for further processing the query output.

Organization In Section 2, we define the notion of variable independence, and
more generally, the notion ¢ ~ P of a formula ¢ respecting a certain partition
P of its free variables. Then, in Section 3, we discuss requirements on the theory
of M that guarantee decidability of this notion, as well as the existence of an
algorithm that converts a given formula into a one in the right shape. In Section
4, we discuss specific classes of structures and derive some complexity bounds.
In particular, we look at o-minimal structures [23] (which include linear and
polynomial constraints over the reals) and give a uniform decision procedure.
This procedure gives us tractability, and we also show how to find an equivalent
formula in the right shape in polynomial time. All proofs are only sketched here;
complete proofs are in the full version [17].

2 Notations

All the definitions can be stated for arbitrary first-order structures, although for
the algorithmic considerations we shall require at least decidability of the theory,
and often quantifier elimination.

Given a structure M = (U, {2) (where U is a set always assumed to be
infinite, and {2 can contain predicate, function, and constant symbols, and is
always assumed to be a recursive set), we say that the theory of M is decidable
if for every first-order sentence @ in the language of M it decidable if M = &.
We say that M admits (effective) quantifier elimination if for every formula (%)
in the language of M, there exists (and can be effectively found) a quantifier-free
formula (&) such that M = VZ ¢(Z) « ¢(Z).

Given a formula (7, %) in the language of M, with Z of length n and ¥ of
length m, and @ € U™, we write (@, M) for the set {b € U™ | M |= ¢(@,b)}. In
the absence of variables # we write (M) for {b | M = @(b)}. Sets of the form
p(M) are called definable. A function f : U™ — U™ is definable if its graph
{(@,b) € U™ | b = (@)} is a definable set.

Given a tuple of variables # = (1, ...,2,) and a partition P = {Bi,...,Bn}
on {1,...,n}, we let ¥, stand for the subtuple of ¥ consisting of the z;s with
J € B;. For a formula ¢(z1,...,z,), we then say that ¢ respects the partition P
(over M) if ¢ is equivalent to a Boolean combination of formulae each having
its free variables among Z'p, for some ¢ < k. This will be written as ¢ ~xq P, or
just @ ~ P if M is clear from the context.



In other words (by putting a Boolean combination into DNF), ¢ ~x P if

there exists a family of formulae aé(is’Bi), i=1,...,m,j=1,...,k, such that
k
(%) M E @) o \/(aj@s)A...Aa] (T8,))
j=1

When M has quantifier elimination, all aés are quantifier free. In fact, under
the quantifier-elimination assumption, the definition of ¢ ~ 4 P can be restated
as the equivalence of ¢ to a quantifier-free formula ¢ such that every atomic
subformula of ¢ uses variables from only one block of P.

We say that in ¢, two variables z; and z; are independent if there exists a
partition P such that ¢ ~x¢ P, and z; and x; are in two different blocks of P.
Equivalently, z; and z; are independent if there exists a partition P = (7, Z) of
# such that ¢ ~x P, 2; is in § and z; is in Z. (When convenient notationally,
we identify partitions on the indices of variables and variables themselves.)

Structures. After presenting a general decidability result, we shall deal with
several important classes of structures. Two of them were mentioned al-
ready: the real ordered group Ry, = (R,+,—,0,1,<) and the real field
R = (R, +,-,0,1,<), corresponding to linear and polynomial constraints over
the reals. Some of the results for these structures extend to a larger class of o-
minimal structures: M = (U, £2) is called o-minimal [19, 23] if one of the symbols
in 2 is <, interpreted as a linear order on U, and every definable subset of U,
{a | M = ¢(a)}, is a finite union of points and open intervals. Both Ry, and R
have quantifier elimination (by Fourier elimination [25], and Tarski’s theorem [2,
3], respectively), which easily implies that they are o-minimal. The exponential
field (R, +, -, e”) is an example of a structure which is o-minimal [24] but does
not have quantifier elimination [22]. For other o-minimal structures on the reals,
see [23].

We shall deal with some structures on the integers. Of most interest to us is
Zo=(Z,+,—,0,1,<,(=¢)k>1) where n = m iff n = m(mod k). This structure
corresponds to constraints given by linear repeating points, which are used for
modeling temporal databases [13]. The structure Z, admits effective quantifier
elimination, and its theory is decidable [7].

3 General conditions for deciding variable independence

Given a structure M, we consider two problems. The wvariable independence
problem VIp(p,z;, ;) is to decide, for ¢(z1,...,2,) in the language of M,
if z; and z; are independent. The variable partition problem VP r((p, P) is to
decide, for a given formula ¢(z1,...,z,) and a partition P on {1,...,n}, if
o ~m P

Note that the variable independence problem is a special case of the variable
partition problem, as to solve the former, one needs to solve the latter for some

partition P = (By, By) with i € By and j € Bs.



The above problems are just decision problems, but if the theory of M is
decidable, and the answer to VP (p, P) is ‘yes’, one can effectively find a
representation in the form (x), simply by enumerating all the formulae (¢(F));
which are Boolean combinations of formulae having free variables from at most
one block of P, and then checking if M = VZ (¢(Z) < ;(F)). Since ¢ ~aq P,
for some finite i, we get a positive answer. In many interesting cases, we shall
see better algorithms for finding representation (x) than simple enumeration.

The first easy result shows that the problems VIr((p, z;, ;) and VP ap (¢, P)
are equivalent; this allows us to deal then only with two-block partitions.

Lemma 1. For any M, the variable independence problem is decidable over M
iff the variable partition problem is decidable over M.

Next, we discuss conditions for decidability of the variable independence
problem. It is clear that one needs decidability of the theory of M. However,
decidability alone (and even effective quantifier elimination) are not sufficient.

Proposition 1. a) If the theory of M is undecidable, then the wvariable
independence problem is undecidable over M.

b) There exists a structure M with a decidable theory and effective quantifier
elimination such that the variable independence problem is undecidable over

M.

Proof sketch. a) If @ is a sentence and ¢(x,y) is (x = y) A =P, then x and y are
independent in ¢ iff M = &.

b) An example is provided by the theory of traces from [21]. Let U be a union
of three disjoint sets: descriptions of Turing machines, input words, and traces,
or partial computations of machines on input words, all appropriately coded as
strings. Let {2 contain a constant symbol for every element of U, and a single
ternary predicate P(m,w,t) saying that ¢ is a trace of the machine m on the
input word w. This signature can be expanded by finitely many symbols so that
the expanded model has effective quantifier elimination.

Now fix a Turing machine mg and an input word wg and consider the formula
p(t,t') = (P(mg,wq,t) A (t =¢')). We then show that ¢ and ' are independent
iff mg halts on wy.

The proof of Proposition 1, b), shows that it is essential to be able to decide
finiteness in order to decide VI(g, z;,z;) (as it is the finiteness of the number of
traces that turns out to be equivalent to variable independence). Recall that a
formula ¢(x) is algebraic if (M) is finite. We say that there is an effective test
for algebraicity in M if for every ¢(z) in the language of M, it is decidable if
 is algebraic. Note that this somewhat technical notion will trivially hold for
most relevant classes of constraints.

While the notion of variable independence is needed in the context of con-
straint databases, for finite relational structures it is assumed to be meaningless
as every tuple is represented as a conjunction of constraints of the form z; = ¢;,



where ¢;s are constants. For example, the graph {(1,2),(3,4)} is given by the
formula ((z = 1) A (y =2)) V ((z = 3) A (y = 4)). Clearly, variables z and y are
independent.

However, over arbitrary structures, not every finite definable set would sat-
isfy the variable independence condition. To see this, let M = (N, C, E), where
C is a unary relation interpreted as {1,2} and FE is a binary relation symbol in-
terpreted as {(1,2), (2,1)}. A routine argument shows that this M has quantifier
elimination, decidable theory, and there is a test for algebraicity. The formula
p(z,y) = E(z,y) then defines a finite set, but variables  and y are not inde-
pendent: this is because the only definable proper subsets of N are {1,2} and
N — {1, 2}, and no Boolean combination of those gives us E. As another exam-
ple, consider the field of complex numbers, whose theory is decidable and has
quantifier elimination [18]. Let p(x,y) = (z2+1=0)A(y>+1=0)A(z+y = 0).
It defines the finite set {(i, —i),(—i,7)} but nevertheless z and y are not inde-
pendent (since i is not definable).

To avoid similar situations, we impose an extra condition on a structure,
again, well known in model theory [4,11]. We say that M has definable Skolem
functions if for every formula ¢(Z, ) there exists a definable function f, (&) with
the property that M |= V& (37 p(Z,§) — ¢(&, f,(Z))). In other words, f,(a) is
an element of (@, M), assuming ¢(d@, M) is not empty. We say that a Skolem
function f,, is invariant [18], if ¢(d1, M) = ¢(d2, M) implies f,(@1) = f,(d2).
If the existence of such a Skolem function can be guaranteed for every ¢, we say
that M has definable invariant Skolem functions.

Theorem 1. Assume that M has the following properties:

(a) its theory is decidable;
(b) M has effective test for algebraicity; and
(¢c) M has definable invariant Skolem functions.

Then the variable partition and independence problems are decidable over M.

Proof sketch. We consider the case of two block partitions; that is, deciding if a
formula ¢(Z, §) respects the partition P with blocks # and 7. Let & have length
n and ¢ have length [. Define an equivalence relation on U™ by

Eil = 5:2 iff <p(c'[1,/\/l) = (p((_J:QIM)

Lemma 2. For ¢, P and = as above, ¢ ~x P iff = has finitely many equiva-
lence classes.

Using this and the assumptions on M, we show how to define a formula y (&)
finding a set of representatives of the equivalence classes of =; then again using
the assumptions on M we show that it is decidable if x(M) is finite.

The proof of Theorem 1 gives an explicit construction for a formula witnessing
¢ ~rp P, where P has two blocks. We now extend it to arbitrary partitions.

Let ¢(z1,...,2,) be given, and let B C {1,...,n}. Let card(B) = k. For
@ € Uk, by ¢p(@, M) we denote the set of b € U™* such that ¢(&) holds, where



¢ is obtained from @ and gby putting their elements in the appropriate position,
@ being in the positions specified by B. For example, if n = 4, B = {2,4}, and
a= (a1,(12), g: (b1,b2), then ¢ is (bl,a1,b2,a2). Formally, for i € [1,’!7,], let k‘l
be the number of j € B with j <4, and k2 be the number of j ¢ B with j < i.
Then ¢; is ag, if i € B, and by,, if i € B.

We use the notation

a1 E%i s iff (pBi(alaM) = (pBi((_inM)'

We now obtain the following characterization of VP o(¢p, P).

Corollary 1. Let M be as in Theorem 1, and let p(z1,...,2z,) and a partition
P =(By,...,By) on{l,...,n} be given. Then:

1. For each i < m, it is decidable if the equivalence relation =%, has finitely

many equivalence classes. Furthermore, ¢ ~aq P iff each E%i has finitely
many classes.
2. If ¢ ~xq P, then one can further effectively find integers Ny,..., Ny > 0

and formulae a;:(:E'Bi), i=1,...,m, j = 1,...,N;, such that Egi has N;
equivalence classes, which are definable by the formulae aj-(fBl.), j < Nj.
Furthermore,
M E Vi (g@(f)(—) \/ ol (Fs,) A ... /\a;:;(me))
(J1,rdm)EK
where

K ={(ise e jm) | M =37 (al,(F5,) A ... Aol (Fp,) A @@)}.

4 Decidability for specific classes of constraints

The general decidability result can be applied to a variety of structures, most
notably, those that we listed earlier as the ones particularly relevant to constraint
database applications (especially to spatial and temporal databases). In fact, the
problem will be shown to be decidable for linear constraints over the rationals and
the reals (this corresponds to structures (Q, +, —,0, 1, <) and Ry;,), polynomial
constraints over the reals (R), and linear repeating points [13] (Zp).

4.1 Constraints on the integers
Here the result follows easily form Theorem 1.

Proposition 2. Let M be (N, <,...) or {Z,<,...), and let its theory be decid-
able. Assume, in the latter case, that there is at least one definable constant in
M. Then the variable partition and independence problems are decidable over

M.

Corollary 2. The wariable partition problem is decidable over Z; =
<Z7+:_:Oala<a (Ek)k>1>-



4.2 Linear and polynomial constraints over the reals

The linear constraints over the reals (corresponding to the structure Ry, =
(R,+,—,0,1,<)) and the polynomial constraints over the reals (corresponding
to R = (R, +,-,0,1,<)) are the most useful constraints for spatial and spatio-
temporal applications, where the problem of variable independence originated,
and where variable independence is used in system prototypes. We thus concen-
trate on these constraints.

In many cases, however, we can state the results in greater generality using
the concept of o-minimality (cf. section 2).

It is known that every o-minimal expansion of the Ry, has definable invariant
Skolem functions [18,23]. Since every definable subset of U is a finite union of
points and open intervals, one can test algebraicity, assuming that the order is
dense: given ¢(z), the sentence JuIvVr (u < © < v = @(z)) tests if p(M) is
infinite. This shows

Corollary 3. Let M = (R, +,0,1,<,...) be o-minimal, and have a decidable
theory. Then the variable partition and independence problems are decidable over
M. In particular, these problems are decidable over Ry, and R.

Since (Q,+,—,0,1,<) is elementarily equivalent to Ry, we conclude that
the variable partition problem is decidable over it, too.

Uniform decidability and complexity bounds Our next goal is to present
a uniform procedure for solving the problem VI (g, P). More precisely, we say
that the variable independence problem is wuniformly decidable over M if the
theory of M is decidable, and for every partition P on {1,...,n}, there exists a

single sentence @ p in the language of M expanded with an n-ary relation symbol
S such that for any formula p(z1,...,z,),

p~m P (M, pM)) E 2p.

Here (M, ¢(M)) is the expansion of M where the new symbol S is interpreted
as {@ | M = ¢(a@)}. Note that the decidability of the theory of M implies that
(M, p(M)) = &p is decidable.

Proposition 3. Let M = (R, +,0,1,<,...) be o-minimal and have a decid-
able theory. Then the variable independence problem and partition problems are
uniformly decidable over M.

Proof sketch. We show explicitly how to construct invariant Skolem function for
a given equivalence relation. Given a (definable) set Y of representatives of a
definable equivalence relation, its finiteness is tested as follows: Let X be the
set of all coordinates of elements of Y. Since this is a definable set, it is finite
iff it does not contain an open interval (by o-minimality). This condition can be
tested by a sentence in the language of M.



Proposition 3 implies that the variable independence problem is uniformly
decidable over Ry, and R. The main application of this result is in establishing
complexity bounds.

Since R admits quantifier elimination, every semi-algebraic set is given by a
Boolean combination of polynomial inequalities. Thus, a standard way to repre-
sent a semi-algebraic set in R™ [1,3,20] is by specifying a collection of polyno-
mials py,...,pr € Z[x1,...,2,], and defining a set X as a Boolean combination
of sets of the form {@ | p;(@) 6 0}, where 8 is either = or >. Here Z[z1,...,z,],
as usual, is the set of all polynomials in n variables with coefficients from Z.
One can use coefficients from Q as well, but this would not affect the class of
definable sets.

Thus, when we study complexity of VPr(p, P), we assume that ¢ is given
a Boolean combination of polynomial equalities and inequalities, with all poly-
nomials having integer coefficients. The size of the input formula is then defined
in a standard way, assuming that all integer coefficients are given in binary. All
the above applies to semi-linear sets (that is, sets definable over Ry, ); we just
restrict our attention to polynomials of degree 1.

Corollary 4. Let M be Ryin or R. Let P be a fized partition on {1,...,n}.
Then, for a semi-algebraic (semi-linear) set given by a Boolean combination
»(Z) of polynomial inequalities (of degree 1), the problem VI (p, P) is solvable
in time polynomial in the size of .

Proof sketch. This follows from Proposition 3 and complexity bounds on quan-
tifier elimination [1, 20].

Another reason to consider the uniform decision procedure for variable inde-
pendence is that it gives us a test for variable independence under some transfor-
mations. For example, linear coordinate change in general would destroy variable
independence, although it has relatively little effect on shapes on objects in R™.
Consider, for example, the following version of the variable independence prob-
lem LVI(X, z;,2;): Given a semi-algebraic set X C R" (defined by a formula
over R), is there a linear change of coordinates such that in the new coordinate
system, variables z; and x; are independent?

The general decision procedure of Theorem 1 does not give us a decision
procedure for LVI. However, using uniformity, we easily obtain:

Corollary 5. The problem LVI(X,z;,x;) is decidable.

It turns out that not only the decision part of VIr((p, P) and VP o (g, P)
can be solved in polynomial time for a fixed P over Ry, and R, but there is also
a polynomial time algorithm for finding a formula equivalent to ¢ that witnesses
p~m P

Theorem 2. . Given n > 1, and a partition P = (By,...,By) on {1,...,n},

there exists an algorithm that, for every semi-algebraic set given by a for-
mula p(z1,...,x,) which is a Boolean combination of polynomial equali-

ties and inequalities, tests if ¢ ~ar P, and in the case of the positive an-
swer, computes quantifier-free formulae o, (ZB,) such that each ) (ZB,) is



a Boolean combination of polynomial (in)equalities (where polynomials de-
pend only on Zp, and all coefficients are integers), and p(Z) is equivalent to
Vi A a;- (ZB,). Moreover the algorithm works in time polynomial in the size
of .

2. The same statement is true when on replaces semi-algebraic by semi-linear,
and all polynomials are of degree 1.

Proof combines Corollary 1, uniform decidability (Proposition 3), complexity
bounds for quantifier elimination [1,20] and, for 1), algorithms for polynomial
root isolation [6].

In the full version, we also consider the most typical case of spatio-temporal
applications: sets in R® given by formulae (z,y,t), where x,y describe the
spatial component and # describes the temporal component. For this case, we
present an algorithm based on cylindrical algebraic decomposition [3] for faster
testing of variable independence.

5 Conclusion

We looked at the problem of deciding, for a set represented by a collection of
constraints, whether some variables in those constraints are independent of each
other. Knowing this can considerably improve the running time of several con-
straint processing algorithms, in particular, quantifier elimination. The problem
originated in the field of spatio-temporal databases represented by constraints
(linear or polynomial over the reals, for example); it was demonstrated that on
large datasets, reasonable performance can only be achieved if variables comprise
small independent groups. It had not been known, however, if such independence
conditions are decidable.

Here we showed that these conditions are decidable for a large class of con-
straints, including those relevant to spatial and temporal applications. Moreover,
for linear and polynomial constraints over the reals, we gave a uniform decision
procedure that implies tractability, and we showed that a given constraint set
can be converted into one in a nice shape in polynomial time, too.

Acknowledgements I thank Stavros Cosmadakis and Gabi Kuper for bring-
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