
Variable Independence, Quanti�er Elimination,and Constraint RepresentationsLeonid Libkin1?Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA.Email: libkin@research.bell-labs.comAbstract. Whenever we have data represented by constraints (such asorder, linear, polynomial, etc.), running time for many constraint pro-cessing algorithms can be considerably lowered if it is known that certainvariables in those constraints are independent of each other. For example,when one deals with spatial and temporal databases given by constraints,the projection operation, which corresponds to quanti�er elimination, isusually the costliest. Since the behavior of many quanti�er eliminationalgorithms becomes worse as the dimension increases, eliminating certainvariables from consideration helps speed up those algorithms.While these observations have been made in the literature, it re-mained unknown when the problem of testing if certain variables areindependent is decidable, and how to construct e�ciently a new rep-resentation of a constraint-set in which those variables do not appeartogether in the same atomic constraints. Here we answer this question.We �rst consider a general condition that gives us decidability of vari-able independence; this condition is stated in terms of model-theoreticproperties of the structures corresponding to constraint classes. We thenshow that this condition covers the domains most relevant to spatialand temporal applications. For some of these domains, including linearand polynomial constraints over the reals, we provide a uniform decisionprocedure which gives us tractability, and present a polynomial-time al-gorithm for producing nice constraint representations.1 IntroductionWe start with a simple example. Suppose we have a set S � R2 given by simpleorder-constraints '(x; y) = (0 < x < 1) ^ (0 < y < 1). Suppose we want to�nd its projection on the x axis. This means writing the formula 9y '(x; y) asa quanti�er-free formula. This can be done, in general, because the theory ofhR; <; (r)r2Ri admits quanti�er elimination. But in this particular case it is veryeasy to �nd a quanti�er-free formula equivalent to 9y '(x; y) using just standardrules for equivalence of �rst-order formulae:9y '(x; y) $ (0 < x < 1)^9y (0 < y < 1) $ (0 < x < 1)^true $ 0 < x < 1:? Part of this work was done while visiting INRIA.



Now notice that ' can be considered as a formula in the language of the real�eld hR;+; �; 0; 1; <i whose theory also admits quanti�er elimination. Supposethen that instead of ', we are given an equivalent formula  (x; y):�(0 < x < 1) ^ (0 < y < 1) ^ (4x2 � y � 1 � 0)�_ �(0 < x < 1) ^ (0 < y < 1) ^ (4x2 � y � 1 � 0)�:The �rst step of quanti�er elimination for 9y  is easy, as we propagate 9yinside the disjunction. However, trying to �nd a quanti�er-free equivalent forthe �rst disjunct, that is, a formula equivalent to 9y �(0 < x < 1) ^ (0 <y < 1) ^ (4x2 � y � 1 � 0)�, one immediately encounters obstacles. Unlikethe earlier example, this one requires a bit of thought to come up with theanswer (0:5 � x < 1). Similarly, some work is needed to compute the answer(0 < x � 1=p2) for the second disjunct.Why is it that the �rst quanti�er-elimination procedure is completely ele-mentary, and the second is not, even though both ' and  de�ne the same set?The reason is that in the �rst representation of S, variables x and y are inde-pendent, that is, they do not appear in the same atomic formulae. This makesquanti�er elimination easy. In the second case, x and y do appear together inthe same term x2 � 4y � 1, and this is what causes the problem.This extremely simple observation can often make constraint processing eas-ier. While it can conceivably be useful in various tasks such as more e�cientvariable elimination in constraint logic programming [8, 12], here we concentrateon one application area, namely constraint databases [15, 14] where it found itsway into a practical system for querying spatio-temporal databases [9]. The maingoal of constraint databases is to model in�nite database objects, which arise ina variety of applications, for example, in Geographical Information Systems.A particular constraint model is de�ned over a structureM = hU;
i (whereU is the universe and 
 is the vocabulary) which is typically required to havequanti�er elimination. Those considered most often in spatial application are thereal �eldR = hR;+; �; 0; 1; <i and the real ordered groupRlin = hR;+;�; 0; 1 <i,which give rise to polynomial and linear constraint databases, respectively. Aconstraint relation of arity n is simply a de�nable subset of Un, that is, a setof tuples ~a 2 Un that satisfy a �rst-order formula. For the above structures,constraint relations are semi-algebraic sets for R, and semi-linear sets for Rlin[2]. A constraint database is a �nite set of constraint relations.A standard constraint query language overM is FO+M, that is, �rst-orderlogic in the language of M and symbols for relations in a constraint database.For example, if a database contains a single ternary symbol S, the query '(x) �9u; v 8y; z (S(x; y; z)$ z = u � y + v) �nds all a such that the intersection of Swith the plane x = a is a line. Note that if S is a semi-algebraic set, then so is'(S).One of the standard database operations is projection. In the language ofconstraint processing, it corresponds to quanti�er elimination. That is, given aquanti�er-free formula '(y; x1; : : : ; xn�1), one wishes to �nd a quanti�er-free for-mula  (~x) equivalent to 9y '(y; ~x). In many cases, the complexity of algorithms



to �nd such a  is of the form O(Nf(n)), where N is the size of the formula, andf is some function. For example, if one uses cylindrical algebraic decomposition[3] for the real �eld, f is O(2n). In general, even if better algorithms are avail-able, the complexity of constraint processing often increases with dimension tosuch an extent that it becomes unmanageable for large datasets (see, e.g., [10]).Assume now that ~x is split into two disjoint tuples ~u and ~v such that (y; ~u)and ~v are independent, that is, they do not appear in the same atomic formulae.Then ' is equivalent to a formula of the form(1) k_i=1�i(y; ~u) ^ �i(~v):Therefore, the formula 9y ' is equivalent to(2) k_i=1(9y �i(y; ~u)) ^ �i(~v):For a number of operations this is a signi�cant improvement, as the exponentbecomes lower. For example, in addition to quanti�er elimination, data oftenhas to be represented in a nice format (essentially, as union of cells [3]), andalgorithms for doing this also bene�t from reduction in the dimension [9, 10].Even though such a notion of independence may seem to be too much of arestriction, from the practical point of view it is sometimes necessary to insist onit, as the cost of general quanti�er elimination and other operations could be pro-hibitively expensive. For example, the Dedale constraint database system [9]requires that the projection operation only be applied when ~u consists of a singlevariable. Dealing with spatio-temporal applications, one often queries trajecto-ries of objects, or cadastral (land-ownership) information. These are typicallyrepresented as objects in R3 given by formulae '(x; y; t). To be able to com-pute 9y '(x; y; t), one approximates ' by a formula  (x; y; t) which is a Booleancombination of formulae �i(x; y) and �i(t). For trajectories, this amounts to say-ing that an object is in a given region during a given interval of time; thus, itis the information about the speed that is lost in order to have e�cient queryevaluation. As was further demonstrated in [10], the di�erence between the casewhen at most 2 variables are dependent, and that of 3 or more variables beingdependent, is quite dramatic, in the case of linear and polynomial constraints.What is missing, however, in this picture, is the ability to determine whethera given constraint representation of the data can be converted to the one in theright format, just as in our �rst example,  (x; y) is equivalent to '(x; y), in whichvariables x and y are independent. It was claimed in [5] that such a procedureexists for linear constraints, and then [10] gave a simpler algorithm. However, [16]then showed that both claims were incorrect. It was thus not known if variableindependence can be tested for relevant classes of constraints.Our main goal here is to show that variable independence can be tested formany classes of constraints, and that algorithms for converting a given formulainto a one in the right form can be obtained. Moreover, those algorithms often



work in time polynomial in the size of the formula (assuming the total numberof variables is �xed). Among structures for which we prove such results are thereal ordered group, the real �eld, as well as hZ;+; 0; 1; <i extended with all therelations x = y(mod k), k > 1 (which is used in temporal applications). Evenif those algorithms are relatively expensive, it is worth putting data in a niceformat for two reasons. First, such an algorithm works only once, and then thedata is repeatedly queried by di�erent queries, which can be evaluated faster.Secondly, some queries are known to preserve variable independence; hence, thisinformation can be used for further processing the query output.Organization In Section 2, we de�ne the notion of variable independence, andmore generally, the notion ' � P of a formula ' respecting a certain partitionP of its free variables. Then, in Section 3, we discuss requirements on the theoryof M that guarantee decidability of this notion, as well as the existence of analgorithm that converts a given formula into a one in the right shape. In Section4, we discuss speci�c classes of structures and derive some complexity bounds.In particular, we look at o-minimal structures [23] (which include linear andpolynomial constraints over the reals) and give a uniform decision procedure.This procedure gives us tractability, and we also show how to �nd an equivalentformula in the right shape in polynomial time. All proofs are only sketched here;complete proofs are in the full version [17].2 NotationsAll the de�nitions can be stated for arbitrary �rst-order structures, although forthe algorithmic considerations we shall require at least decidability of the theory,and often quanti�er elimination.Given a structure M = hU;
i (where U is a set always assumed to bein�nite, and 
 can contain predicate, function, and constant symbols, and isalways assumed to be a recursive set), we say that the theory of M is decidableif for every �rst-order sentence � in the language of M it decidable if M j= �.We say thatM admits (e�ective) quanti�er elimination if for every formula '(~x)in the language ofM, there exists (and can be e�ectively found) a quanti�er-freeformula  (~x) such that M j= 8~x '(~x)$  (~x).Given a formula '(~x; ~y) in the language of M, with ~x of length n and ~y oflength m, and ~a 2 Un, we write '(~a;M) for the set f~b 2 Um j M j= '(~a;~b)g. Inthe absence of variables ~x we write '(M) for f~b j M j= '(~b)g. Sets of the form'(M) are called de�nable. A function f : Un ! Um is de�nable if its graphf(~a;~b) 2 Un+m j ~b = f(~a)g is a de�nable set.Given a tuple of variables ~x = (x1; : : : ; xn) and a partition P = fB1; : : : ; Bmgon f1; : : : ; ng, we let ~xBi stand for the subtuple of ~x consisting of the xjs withj 2 Bi. For a formula '(x1; : : : ; xn), we then say that ' respects the partition P(over M) if ' is equivalent to a Boolean combination of formulae each havingits free variables among ~xBi for some i � k. This will be written as ' �M P , orjust ' � P if M is clear from the context.



In other words (by putting a Boolean combination into DNF), ' �M P ifthere exists a family of formulae �ij(~xBi), i = 1; : : : ;m, j = 1; : : : ; k, such that(�) M j= '(~x)$ k_j=1(�1j (~xB1) ^ : : : ^ �mj (~xBm))When M has quanti�er elimination, all �ijs are quanti�er free. In fact, underthe quanti�er-elimination assumption, the de�nition of ' �M P can be restatedas the equivalence of ' to a quanti�er-free formula  such that every atomicsubformula of  uses variables from only one block of P .We say that in ', two variables xi and xj are independent if there exists apartition P such that ' �M P , and xi and xj are in two di�erent blocks of P .Equivalently, xi and xj are independent if there exists a partition P = (~y; ~z) of~x such that ' �M P , xi is in ~y and xj is in ~z. (When convenient notationally,we identify partitions on the indices of variables and variables themselves.)Structures. After presenting a general decidability result, we shall deal withseveral important classes of structures. Two of them were mentioned al-ready: the real ordered group Rlin = hR;+;�; 0; 1; <i and the real �eldR = hR;+; �; 0; 1; <i, corresponding to linear and polynomial constraints overthe reals. Some of the results for these structures extend to a larger class of o-minimal structures:M = hU;
i is called o-minimal [19, 23] if one of the symbolsin 
 is <, interpreted as a linear order on U , and every de�nable subset of U ,fa j M j= '(a)g, is a �nite union of points and open intervals. Both Rlin and Rhave quanti�er elimination (by Fourier elimination [25], and Tarski's theorem [2,3], respectively), which easily implies that they are o-minimal. The exponential�eld hR;+; �; exi is an example of a structure which is o-minimal [24] but doesnot have quanti�er elimination [22]. For other o-minimal structures on the reals,see [23].We shall deal with some structures on the integers. Of most interest to us isZ0 = hZ;+;�; 0; 1;<; (�k)k>1i where n �k m i� n = m(mod k). This structurecorresponds to constraints given by linear repeating points, which are used formodeling temporal databases [13]. The structure Z0 admits e�ective quanti�erelimination, and its theory is decidable [7].3 General conditions for deciding variable independenceGiven a structure M, we consider two problems. The variable independenceproblem VIM('; xi; xj) is to decide, for '(x1; : : : ; xn) in the language of M,if xi and xj are independent. The variable partition problem VPM('; P ) is todecide, for a given formula '(x1; : : : ; xn) and a partition P on f1; : : : ; ng, if' �M P .Note that the variable independence problem is a special case of the variablepartition problem, as to solve the former, one needs to solve the latter for somepartition P = (B1; B2) with i 2 B1 and j 2 B2.



The above problems are just decision problems, but if the theory of M isdecidable, and the answer to VPM('; P ) is `yes', one can e�ectively �nd arepresentation in the form (�), simply by enumerating all the formulae h (~x)iiwhich are Boolean combinations of formulae having free variables from at mostone block of P , and then checking if M j= 8~x ('(~x) $  i(~x)). Since ' �M P ,for some �nite i, we get a positive answer. In many interesting cases, we shallsee better algorithms for �nding representation (�) than simple enumeration.The �rst easy result shows that the problemsVIM('; xi; xj) andVPM('; P )are equivalent; this allows us to deal then only with two-block partitions.Lemma 1. For any M, the variable independence problem is decidable over Mi� the variable partition problem is decidable over M.Next, we discuss conditions for decidability of the variable independenceproblem. It is clear that one needs decidability of the theory of M. However,decidability alone (and even e�ective quanti�er elimination) are not su�cient.Proposition 1. a) If the theory of M is undecidable, then the variableindependence problem is undecidable over M.b) There exists a structure M with a decidable theory and e�ective quanti�erelimination such that the variable independence problem is undecidable overM.Proof sketch. a) If � is a sentence and '(x; y) is (x = y) ^ :�, then x and y areindependent in ' i� M j= �.b) An example is provided by the theory of traces from [21]. Let U be a unionof three disjoint sets: descriptions of Turing machines, input words, and traces,or partial computations of machines on input words, all appropriately coded asstrings. Let 
 contain a constant symbol for every element of U , and a singleternary predicate P (m;w; t) saying that t is a trace of the machine m on theinput word w. This signature can be expanded by �nitely many symbols so thatthe expanded model has e�ective quanti�er elimination.Now �x a Turing machine m0 and an input word w0 and consider the formula'(t; t0) = (P (m0; w0; t) ^ (t = t0)). We then show that t and t0 are independenti� m0 halts on w0.The proof of Proposition 1, b), shows that it is essential to be able to decide�niteness in order to decide VI('; xi; xj) (as it is the �niteness of the number oftraces that turns out to be equivalent to variable independence). Recall that aformula '(x) is algebraic if '(M) is �nite. We say that there is an e�ective testfor algebraicity in M if for every '(x) in the language of M, it is decidable if' is algebraic. Note that this somewhat technical notion will trivially hold formost relevant classes of constraints.While the notion of variable independence is needed in the context of con-straint databases, for �nite relational structures it is assumed to be meaninglessas every tuple is represented as a conjunction of constraints of the form xi = ci,



where cis are constants. For example, the graph f(1; 2); (3; 4)g is given by theformula ((x = 1) ^ (y = 2)) _ ((x = 3) ^ (y = 4)). Clearly, variables x and y areindependent.However, over arbitrary structures, not every �nite de�nable set would sat-isfy the variable independence condition. To see this, let M = hN; C; Ei, whereC is a unary relation interpreted as f1; 2g and E is a binary relation symbol in-terpreted as f(1; 2); (2; 1)g. A routine argument shows that thisM has quanti�erelimination, decidable theory, and there is a test for algebraicity. The formula'(x; y) � E(x; y) then de�nes a �nite set, but variables x and y are not inde-pendent: this is because the only de�nable proper subsets of N are f1; 2g andN � f1; 2g, and no Boolean combination of those gives us E. As another exam-ple, consider the �eld of complex numbers, whose theory is decidable and hasquanti�er elimination [18]. Let '(x; y) = (x2+1 = 0)^(y2+1 = 0)^(x+y = 0).It de�nes the �nite set f(i;�i); (�i; i)g but nevertheless x and y are not inde-pendent (since i is not de�nable).To avoid similar situations, we impose an extra condition on a structure,again, well known in model theory [4, 11]. We say that M has de�nable Skolemfunctions if for every formula '(~x; ~y) there exists a de�nable function f'(~x) withthe property that M j= 8~x (9~y '(~x; ~y)! '(~x; f'(~x))). In other words, f'(~a) isan element of '(~a;M), assuming '(~a;M) is not empty. We say that a Skolemfunction f' is invariant [18], if '(~a1;M) = '(~a2;M) implies f'(~a1) = f'(~a2).If the existence of such a Skolem function can be guaranteed for every ', we saythat M has de�nable invariant Skolem functions.Theorem 1. Assume that M has the following properties:(a) its theory is decidable;(b) M has e�ective test for algebraicity; and(c) M has de�nable invariant Skolem functions.Then the variable partition and independence problems are decidable over M.Proof sketch. We consider the case of two block partitions; that is, deciding if aformula '(~x; ~y) respects the partition P with blocks ~x and ~y. Let ~x have lengthn and ~y have length l. De�ne an equivalence relation on Un by~a1 � ~a2 i� '(~a1;M) = '(~a2;M):Lemma 2. For ', P and � as above, ' �M P i� � has �nitely many equiva-lence classes.Using this and the assumptions onM, we show how to de�ne a formula �(~x)�nding a set of representatives of the equivalence classes of �; then again usingthe assumptions on M we show that it is decidable if �(M) is �nite.The proof of Theorem 1 gives an explicit construction for a formula witnessing' �M P , where P has two blocks. We now extend it to arbitrary partitions.Let '(x1; : : : ; xn) be given, and let B � f1; : : : ; ng. Let card(B) = k. For~a 2 Uk, by 'B(~a;M) we denote the set of ~b 2 Un�k such that '(~c) holds, where



~c is obtained from ~a and ~b by putting their elements in the appropriate position,~a being in the positions speci�ed by B. For example, if n = 4, B = f2; 4g, and~a = (a1; a2), ~b = (b1; b2), then ~c is (b1; a1; b2; a2). Formally, for i 2 [1; n], let k1be the number of j 2 B with j � i, and k2 be the number of j 62 B with j � i.Then ci is ak1 if i 2 B, and bk2 , if i 62 B.We use the notation~a1 �'Bi ~a2 i� 'Bi(~a1;M) = 'Bi(~a2;M):We now obtain the following characterization of VPM('; P ).Corollary 1. Let M be as in Theorem 1, and let '(x1; : : : ; xn) and a partitionP = (B1; : : : ; Bm) on f1; : : : ; ng be given. Then:1. For each i � m, it is decidable if the equivalence relation �'Bi has �nitelymany equivalence classes. Furthermore, ' �M P i� each �'Bi has �nitelymany classes.2. If ' �M P , then one can further e�ectively �nd integers N1; : : : ; Nm > 0and formulae �ij(~xBi), i = 1; : : : ;m, j = 1; : : : ; Ni, such that �'Bi has Niequivalence classes, which are de�nable by the formulae �ij(~xBi ), j � Ni.Furthermore,M j= 8~x �'(~x)$ _(j1;:::;jm)2K �1j1(~xB1) ^ : : : ^ �mjm(~xBm)�whereK = f(j1; : : : ; jm) j M j= 9~x ��1j1 (~xB1) ^ : : : ^ �mjm(~xBm) ^ '(~x)�g:4 Decidability for speci�c classes of constraintsThe general decidability result can be applied to a variety of structures, mostnotably, those that we listed earlier as the ones particularly relevant to constraintdatabase applications (especially to spatial and temporal databases). In fact, theproblem will be shown to be decidable for linear constraints over the rationals andthe reals (this corresponds to structures hQ;+;�; 0; 1; <i and Rlin), polynomialconstraints over the reals (R), and linear repeating points [13] (Z0).4.1 Constraints on the integersHere the result follows easily form Theorem 1.Proposition 2. Let M be hN; <; : : :i or hZ; <; : : :i, and let its theory be decid-able. Assume, in the latter case, that there is at least one de�nable constant inM. Then the variable partition and independence problems are decidable overM.Corollary 2. The variable partition problem is decidable over Z0 =hZ;+;�; 0; 1; <; (�k)k>1i.



4.2 Linear and polynomial constraints over the realsThe linear constraints over the reals (corresponding to the structure Rlin =hR;+;�; 0; 1; <i) and the polynomial constraints over the reals (correspondingto R = hR;+; �; 0; 1; <i) are the most useful constraints for spatial and spatio-temporal applications, where the problem of variable independence originated,and where variable independence is used in system prototypes. We thus concen-trate on these constraints.In many cases, however, we can state the results in greater generality usingthe concept of o-minimality (cf. section 2).It is known that every o-minimal expansion of theRlin has de�nable invariantSkolem functions [18, 23]. Since every de�nable subset of U is a �nite union ofpoints and open intervals, one can test algebraicity, assuming that the order isdense: given '(x), the sentence 9u9v8x (u < x < v ! '(x)) tests if '(M) isin�nite. This showsCorollary 3. Let M = hR;+; 0; 1; <; : : :i be o-minimal, and have a decidabletheory. Then the variable partition and independence problems are decidable overM. In particular, these problems are decidable over Rlin and R.Since hQ;+;�; 0; 1; <i is elementarily equivalent to Rlin, we conclude thatthe variable partition problem is decidable over it, too.Uniform decidability and complexity bounds Our next goal is to presenta uniform procedure for solving the problem VIM('; P ). More precisely, we saythat the variable independence problem is uniformly decidable over M if thetheory of M is decidable, and for every partition P on f1; : : : ; ng, there exists asingle sentence �P in the language ofM expanded with an n-ary relation symbolS such that for any formula '(x1; : : : ; xn),' �M P i� (M; '(M)) j= �P :Here (M; '(M)) is the expansion of M where the new symbol S is interpretedas f~a j M j= '(~a)g. Note that the decidability of the theory of M implies that(M; '(M)) j= �P is decidable.Proposition 3. Let M = hR;+; 0; 1; <; : : :i be o-minimal and have a decid-able theory. Then the variable independence problem and partition problems areuniformly decidable over M.Proof sketch. We show explicitly how to construct invariant Skolem function fora given equivalence relation. Given a (de�nable) set Y of representatives of ade�nable equivalence relation, its �niteness is tested as follows: Let X be theset of all coordinates of elements of Y . Since this is a de�nable set, it is �nitei� it does not contain an open interval (by o-minimality). This condition can betested by a sentence in the language of M.



Proposition 3 implies that the variable independence problem is uniformlydecidable over Rlin and R. The main application of this result is in establishingcomplexity bounds.Since R admits quanti�er elimination, every semi-algebraic set is given by aBoolean combination of polynomial inequalities. Thus, a standard way to repre-sent a semi-algebraic set in Rn [1, 3, 20] is by specifying a collection of polyno-mials p1; : : : ; pk 2 Z[x1; : : : ; xn], and de�ning a set X as a Boolean combinationof sets of the form f~a j pi(~a) � 0g, where � is either = or >. Here Z[x1; : : : ; xn],as usual, is the set of all polynomials in n variables with coe�cients from Z.One can use coe�cients from Q as well, but this would not a�ect the class ofde�nable sets.Thus, when we study complexity of VPR('; P ), we assume that ' is givena Boolean combination of polynomial equalities and inequalities, with all poly-nomials having integer coe�cients. The size of the input formula is then de�nedin a standard way, assuming that all integer coe�cients are given in binary. Allthe above applies to semi-linear sets (that is, sets de�nable over Rlin); we justrestrict our attention to polynomials of degree 1.Corollary 4. Let M be Rlin or R. Let P be a �xed partition on f1; : : : ; ng.Then, for a semi-algebraic (semi-linear) set given by a Boolean combination'(~x) of polynomial inequalities (of degree 1), the problem VIM('; P ) is solvablein time polynomial in the size of '.Proof sketch. This follows from Proposition 3 and complexity bounds on quan-ti�er elimination [1, 20].Another reason to consider the uniform decision procedure for variable inde-pendence is that it gives us a test for variable independence under some transfor-mations. For example, linear coordinate change in general would destroy variableindependence, although it has relatively little e�ect on shapes on objects in Rn .Consider, for example, the following version of the variable independence prob-lem LVI(X; xi; xj): Given a semi-algebraic set X � Rn (de�ned by a formulaover R), is there a linear change of coordinates such that in the new coordinatesystem, variables xi and xj are independent?The general decision procedure of Theorem 1 does not give us a decisionprocedure for LVI. However, using uniformity, we easily obtain:Corollary 5. The problem LVI(X; xi; xj) is decidable.It turns out that not only the decision part of VIM('; P ) and VPM('; P )can be solved in polynomial time for a �xed P over Rlin and R, but there is alsoa polynomial time algorithm for �nding a formula equivalent to ' that witnesses' �M P .Theorem 2. 1. Given n > 1, and a partition P = (B1; : : : ; Bk) on f1; : : : ; ng,there exists an algorithm that, for every semi-algebraic set given by a for-mula '(x1; : : : ; xn) which is a Boolean combination of polynomial equali-ties and inequalities, tests if ' �M P , and in the case of the positive an-swer, computes quanti�er-free formulae �ij(~xBi ) such that each �ij(~xBi) is
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